JP4312426B2 - Hydraulic friction variable damper - Google Patents

Hydraulic friction variable damper Download PDF

Info

Publication number
JP4312426B2
JP4312426B2 JP2002194492A JP2002194492A JP4312426B2 JP 4312426 B2 JP4312426 B2 JP 4312426B2 JP 2002194492 A JP2002194492 A JP 2002194492A JP 2002194492 A JP2002194492 A JP 2002194492A JP 4312426 B2 JP4312426 B2 JP 4312426B2
Authority
JP
Japan
Prior art keywords
shaft member
pressure
hydraulic
damper
cylindrical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002194492A
Other languages
Japanese (ja)
Other versions
JP2004036753A (en
Inventor
敏之 兼澤
一博 斉藤
登也 佐藤
Original Assignee
株式会社巴技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社巴技研 filed Critical 株式会社巴技研
Priority to JP2002194492A priority Critical patent/JP4312426B2/en
Publication of JP2004036753A publication Critical patent/JP2004036753A/en
Application granted granted Critical
Publication of JP4312426B2 publication Critical patent/JP4312426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軸方向に摺動自在に嵌合された軸部材と筒部材とが所定の流体抵抗により衝撃が減衰して吸収されるように構成された油圧式ダンパーに関し、好適には地震等の急激な振動をすばやく減衰させる制振ダンパーに適用される。
【0002】
【従来の技術】
地震等の急激な振動が発生した場合に、基礎に対する建物構造物や橋脚に対する橋梁等の振動を有効に減衰させるものとして制振ダンパーが使用されている。制振ダンパーとしては、従来から種々のものが提案されて使用されている。図3に示した第1従来例のものは、軸部材を構成するピストン部により区画されたシリンダ内の両側の油圧室間に連通するオリフィスを前記ピストン部に穿設した油圧式ダンパーで、ピストン部の軸方向移動により油がオリフィスを流れる際のピストン部前後に生じる圧力差が減衰力としてピストン部に作用する。ピストン・シリンダ型の油圧ダンパーは力の伝達が効率的で、車両用として多用される。
【0003】
また、図4に示した第2従来例のものは、作動油が密封されたシリンダユニットと減衰力を発生させるバルブユニットと構造体への取付けのためのボールジョイントとで構成されたもので、作動原理は、建物等の構造体に振動が加わるとピストンロッドとシリンダとに軸方向の相対移動が生じ、作動油が外付け構成としたバルブユニットを通過して左右の圧力室間を移動する。その際にバルブユニット内に設置された調圧弁を押し出す流体抵抗を利用して減衰力を得るもので、建物や土木用ダンパーとして高剛性、高減衰力および高耐久性が得られる。
【0004】
さらに、図5に示した第3従来例のものは、改良された摩擦型ダンパーに関するもので、外筒とロッドとの間の相対的軸移動の際のすべり摩擦抵抗を減衰力として用いるものである。摩擦力の調整に皿ばねと楔機構が採用される。皿ばねによりスラスト方向の予圧が付与され、楔機構を介して摺動子に外筒内周面への所定の摩擦力が得られる。かくして、油等の媒体を使用することなく、地盤側基礎に接続された外筒と上部構造物側基礎に接続されたロッドとの間に振動による軸方向の相対移動が生じると、軸方向の力は楔機構を介して径方向に変換されて外筒の内周面と摺動子との間に予圧によるものに加えて摩擦力が付与されて、振動が有効に減衰される。他に、制振ダンパーとしては、鋼棒のような弾塑性履歴エネルギー型、磁気粘性体を利用した速度比例型等がある。
【0005】
【発明が解決しようとする課題】
ところが、このような従来の制振ダンパーにあって、前記第1従来例のピストン部にオリフィスを穿設した油圧式ダンパーでは、減衰力がオリフィスの径に依存して流量制御されるもので、安価ではあるものの、性能が固定されていた。また、前記第2従来例の調圧弁を用いた外付けバルブユニットを有する油圧式ダンパーでは、調圧弁による減衰力の調整を可能にして高剛性、高減衰力および高耐久性が得られることとなったものの、地震等による急激な振動(変位、力)が作用した場合でも、調圧弁にて設定された所定の減衰力による減衰制御がなされるのみで、効果的な減衰制御が充分になされなかった。さらに、前記第3従来例の改良された摩擦型ダンパーでは、油を用いることなく簡便な構成で、予圧付与等の機能により摩擦による減衰力の調整が可能であるものの、組付け後の減衰力の調整はダンパーを分解する必要があって面倒であった。また、前記鋼棒のような弾塑性履歴エネルギー型は復元性に不利であり、磁気粘性体を利用した油圧式ダンパーは高価であり実用性に乏しいものであった。
【0006】
そこで、本発明では前述したような従来の制振ダンパーにおける諸課題を解決して、組付け後でも減衰力の調整が容易で、さらに外力に応じて摩擦減衰力を自動的に調整することを可能にして、常に適切な減衰制御を行うことを可能にした油圧式ダンパーを提供することを目的とする。
【0007】
【課題を解決するための手段】
このため本発明は、軸方向に摺動自在に嵌合された軸部材と筒部材とが所定の流体抵抗により衝撃が減衰して吸収されるように構成された油圧式ダンパーであって、前記軸部材と筒部材との間に加圧流体の供給を受けて筒部材に対する軸部材の締結嵌合度合いを増大させるように構成した油圧式ダンパーにおいて、前記加圧流体の供給が、軸部材と筒部材との間の相対的な軸移動により生じた圧力上昇を導入してなされるように構成したことを特徴とする。また本発明は、前記軸部材と筒部材との間に加圧流体の供給を受けて軸部材を締め付ける制限部材を配設したことを特徴とする。また本発明は、前記制限部材として、分割された複数個を軸方向に配列して構成したことを特徴とする。また本発明は、前記加圧流体の供給が、軸部材と筒部材との間の相対的な軸移動により生じた圧力上昇によって開弁するカウンタバランス弁の設定圧力を導入してなされるように構成したことを特徴とする。また本発明は、軸部材を構成するピストン部により区画され筒部材を構成するシリンダ室間を連通する管路内にストップ弁あるいは絞り弁を設置したことを特徴とするもので、これらを課題解決のための手段とするものである。
【0008】
【実施の形態】
以下、本発明の油圧式摩擦力可変ダンパーの実施の形態を図面に基づいて詳細に説明する。図1は本発明の油圧式摩擦力可変ダンパーの第1実施の形態を示す全体概念図および要部拡大図である。本発明の基本的な構成は、図1(A)に示すように、軸方向に摺動自在に嵌合された軸部材2と筒部材3とが所定の流体抵抗により衝撃が減衰して吸収されるように構成された油圧式ダンパー1において、前記軸部材2と筒部材3との間に加圧流体の供給を受けて筒部材3(3B)に対する軸部材2(2C)の締結嵌合度合いを増大させるように構成したことを特徴とする。
【0009】
以下に詳述する。油圧式ダンパー1は、それぞれが建物構造体等にヒンジ接続される軸部材2と筒部材3が互いに嵌合されて構成される。軸部材2は、軸方向の略中央部に形成された径大部からなるピストン部2Bとその両側の基部2Aと先端部2Cとから構成され、筒部3は、前記ピストン2Bを収容するシリンダ部3Cと軸の先端部2Cに制限力を付与する加圧ロック部4である加圧部3Bと先端を収容する基部3Aとから構成される。筒部材3における各部3A、3Bおよび3Cは同径でもよいが、図示の例では、最も径の大きいシリンダ部3C、やや径の小さな基部3Aおよび最も径の小さな加圧部3Bとから構成されている。
【0010】
前記ピストン部2Bにより区画され筒部材を構成するシリンダ部3C内のシリンダ室7、8にそれぞれ第1開口部9および第2開口部10が穿設され、これらの開口部9、10に管路が接続される。これらの開口部9、10からの流れのみを可能にする第1逆止弁13および第2逆止弁14を経て合流地点にカウンタバランス弁12が配設される。前記合流地点から加圧路L4が前記筒部材3における加圧ロック部4に延びる。前記第1開口部9と第2開口部10とはストップ弁11を介して接続される。前記カウンタバランス弁12の下流(図面上方)には第5逆止弁18および絞り19を介してアキュムレータ17が配設され、カウンタバランス弁12とアキュムレータ17との合流地点の近傍には、前記第1開口部9および第2開口部10への流れのみを可能とする第3および第4逆止弁15および16が配設される。
【0011】
図1(B)に示すように、加圧路L4からの加圧流体の供給を受ける加圧ロック部4は、一体あるいは別部材から構成される径の最も小さな筒部材である加圧部3B内周の加圧室5と、さらに内周側に配置され軸部材の先端部2Cの外周に密接嵌合する鋼鉄製等の制限部材(ロックスリーブ)6とから構成される。好適にはロックスリーブ6は、分割された複数個を軸方向に配列して構成される。
【0012】
以下に、本実施の形態のものの動作を説明する。前記ストップ弁11を閉じた場合において、図1(A)の白矢印のように外力が加わると、軸部材2に対して筒部材3が図面右方への軸移動により第1シリンダ室7内に圧力上昇を生じ、第1逆止弁13を押し開けてカウンタバランス弁12の前面を加圧すると同時に加圧路L4を介して加圧ロック部4における圧力室5を加圧して制限部材であるロックスリーブ6を縮径して軸部材2の先端部2Cを締め付けて所定の摩擦力が得られる。このとき、第2逆止弁14は閉じている。外力が所定値を超えると、第1シリンダ室7内の圧力が設定された所定値に達してカウンタバランス弁12を開く。すると、第3および第4逆止弁15、16を介して第1シリンダ室7と第2シリンダ室8とが連通して圧油の循環がなされる。これにより、圧力室5を加圧して得られた摩擦力は減少し、軸部材2に対して筒部材3が移動する。
【0013】
過大な外力により急激な流量変化があった場合には、カウンタバランス弁12を通過した流体は絞り19により衝撃が吸収されつつアキュムレータ17内に吸収される。外力の開放に伴って、蓄圧された流体はアキュムレータ17から第5逆止弁18を経て第1および第2シリンダ室7、8に戻る。また、前記アキュムレータ17の配設は、該アキュムレータ17からの所定の初期圧力の付与によって、第5逆止弁18から、第3逆止弁15、第1逆止弁13および第4逆止弁16、第2逆止弁14を経て加圧路L4に伝達されて、イニシャルロックを付与することができる。かくして、ダンパー1は、シリンダ室7、8を検出部としてカウンタバランス弁12の設定値に達するまで適正にコントロールされて、圧力にほぼ比例してロック圧(制限圧)を制御して摩擦による減衰力を自動的に制御することができる。カウンタバランス弁12の設定値を変更すれば、加圧ロック部4の最大ロック制限圧を変更することができる。
【0014】
前記ストップ弁11を開放した場合は、カウンタバランス弁12の開放の設定値以下で、第1開口部9と第2開口部10を通じて所定の減衰値のダンパー動作がなされる。
<実施例>
カウンタバランス弁の設定圧力: 500Kg/cm2
シリンダ室7、8の受圧面積: それぞれ 20cm2
加圧ロック機構 : 圧力500Kg/cm2 にて、5tonの保持力発生
ストローク : ±20cm
としたとき、
外力10tが作用した場合、シリンダ室7の圧力 P1=10ton/20cm2 =500Kg/cm2 となる。よって、P1=500Kg/cm2 により加圧ロック部4に5tonの保持力が発生する。同時にカウンタバランス弁12が開となり、シリンダ室7、8に圧油が連通し、与えられた保持力は減少する。外力の変位がストロークの75%(15cm=20×0.75)とすると、消費エネルギーは、5tonf×15cm=75tonf・cmとなる。
【0015】
図2は本発明の油圧式摩擦力可変ダンパーの第2実施の形態を示す全体概念図である。本実施の形態のものは、筒部材を構成するシリンダ部3Cにおけるシリンダ室7、8間を連通する管路内に絞り弁20を設置したことを特徴とする。したがって、本実施の形態のものでは、絞り弁20の開度を調整することで、外力の速度が絞り弁20の設定流量以内では、絞り弁20により減衰されつつシリンダ室7、8間を流体が流れて軸部材2と筒部材3とが相対軸移動する。外力の速度が絞り弁20の設定流量を超えると、絞り弁20の両側にてP1>P2の圧力差が生じる。カウンタバランス弁12の設定圧がP1のとき、カウンタバランス弁12が開き、同時に加圧ロック部4に圧力P1に相当するロック制限圧が生じる。したがって、本実施の形態のものは、カウンタバランス弁12と関連付けて絞り弁20の流量に相当する外力の速度に感応させてロック制限圧を得ることができる。
【0016】
以上、本発明の各実施の形態について説明してきたが、本発明の趣旨の範囲内で、軸部材および筒部材の形状、形式、それらの間の油圧式ダンパーとしての嵌合形態、加圧流体の供給を受けて筒部材に対する軸部材の締結嵌合度合いの増大形態(軸部材を締め付ける加圧ロックの他、軸部材を締付け勝手の制限部材をばね圧等による加圧流体の供給で拡開して軸動可能に構成した無圧ロックタイプのものを、外力の速度に応じて発生させた加圧流体の供給で無圧ロックを解除して軸部材を締め付けるように構成することもできる)、加圧流体の供給形態(外力の大きさあるいは速度をセンサー等により検出してそれらの大きさに応じて流体を加圧するように構成することもできる)、制限部材としてのロックスリーブの形状(分割された鋼鉄製の複数個を軸方向に配列して構成する他、1つの筒状の耐磨耗性樹脂部材あるいは分割されない1つの筒状の金属製部材等から構成されてもよい)、カウンタバランス弁の形状、形式およびその設定圧力の設定形態、主たる減衰部を構成してシリンダ室を区画するピストン部とシリンダ部との間の関連構成、ピストンにより区画されたシリンダ室間を連通する管路の形状、配設部位(外部配管の他、シリンダ部内に設置することもできる)、ストップ弁および絞り弁の形状、形式等については適宜採用が可能である。
【0017】
【発明の効果】
以上、詳細に説明してきたように本発明によれば、軸方向に摺動自在に嵌合された軸部材と筒部材とが所定の流体抵抗により衝撃が減衰して吸収されるように構成された油圧式ダンパーであって、前記軸部材と筒部材との間に加圧流体の供給を受けて筒部材に対する軸部材の締結嵌合度合いを増大させるように構成した油圧式ダンパーにおいて、前記加圧流体の供給が、軸部材と筒部材との間の相対的な軸移動により生じた圧力上昇を導入してなされるように構成したことにより、油圧を利用したダンパー効果を発揮させつつ、加圧流体の供給を受けて軸部材と筒部材との間の摩擦力を調整して、摩擦による減衰力制御が可能となり、シリンダ部におけるシリンダ室等を検出部として、外力の速度あるいは大きさに応じて軸部材と筒部材との間の摩擦によるロック制限力を得ることができて、適正な減衰力制御がなされる。
【0018】
また、前記軸部材と筒部材との間に加圧流体の供給を受けて軸部材を締め付ける制限部材を配設した場合は、加圧流体を導入して制限部材を締め付けるだけの簡便な方法で摩擦力の調整が可能となる。
さらに、前記制限部材として、分割された複数個を軸方向に配列して構成した場合は、分割された複数個の制限部材における各内周側端面のエッジ部が制限部材による軸部材の制動効果をより高めることができる。
【0019】
また、前記加圧流体の供給が、軸部材と筒部材との間の相対的な軸移動により生じた圧力上昇によって開弁するカウンタバランス弁の設定圧力を導入してなされるように構成した場合は、カウンタバランス弁の設定値に達するまで適正にコントロールされて、圧力にほぼ比例してロック圧(制限圧)を制御して摩擦による減衰力を自動的に制御することができ、ダンパー自体の組付け後にても、カウンタバランス弁の設定値を変更して加圧ロック部の最大ロック制限圧を変更することが可能となる。
【0020】
さらに、軸部材を構成するピストン部により区画され筒部材を構成するシリンダ室間を連通する管路内にストップ弁を設置した場合は、ストップ弁の開弁により軸部材と筒部材とが通常のダンパー動作を行い、ストップ弁の閉弁によりカウンタバランス弁の設定値に達するまで適正にコントロールされて、圧力にほぼ比例してロック圧(制限圧)を制御して摩擦による減衰力を自動的に制御することができる。
さらにまた、軸部材を構成するピストン部により区画され筒部材を構成するシリンダ室間を連通する管路内に絞り弁を設置した場合は、カウンタバランス弁と関連付けて絞り弁の流量に相当する外力の速度に感応させてロック制限圧を得ることができる。
かくして、本発明によれば、組付け後でも減衰力の調整が容易で、さらに外力に応じて摩擦減衰力を自動的に調整することを可能にして、常に適切な減衰制御を行うことを可能にした油圧式ダンパーが提供される。
【図面の簡単な説明】
【図1】本発明の油圧式摩擦力可変ダンパーの第1実施の形態を示す全体概念図および要部拡大図である。
【図2】本発明の油圧式摩擦力可変ダンパーの第2実施の形態を示す全体概念図である。
【図3】従来のオリフィス型油圧式ダンパーの要部断面図である。
【図4】従来の改良された油圧式ダンパーの全体断面図である。
【図5】従来の摩擦型ダンパーの全体断面図である。
【符号の説明】
1・・・・ダンパー
2・・・・軸部材
2A・・・・基部
2B・・・・ピストン部
2C・・・・先端部
3・・・・筒部材
3A・・・・基部
3B・・・・加圧部
3C・・・・シリンダ部
4・・・・加圧ロック部
5・・・・加圧室
6・・・・制限部材(ロックスリーブ)
7・・・・第1シリンダ室
8・・・・第2シリンダ室
9・・・・第1開口部
10・・・・第2開口部
11・・・・ストップ弁
12・・・・カウンタバランス弁
13・・・・第1逆止弁
14・・・・第2逆止弁
15・・・・第3逆止弁
16・・・・第4逆止弁
17・・・・アキュムレーター
18・・・・第5逆止弁
19・・・・絞り
20・・・・絞り弁
L4・・・・加圧路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydraulic damper configured such that a shaft member and a cylindrical member, which are slidably fitted in an axial direction, are attenuated and absorbed by a predetermined fluid resistance, and preferably an earthquake or the like. It is applied to a damping damper that quickly attenuates sudden vibrations.
[0002]
[Prior art]
When a sudden vibration such as an earthquake occurs, a vibration damping damper is used to effectively attenuate the vibration of the building structure with respect to the foundation and the bridge with respect to the pier. Various types of vibration dampers have been proposed and used. The first conventional example shown in FIG. 3 is a hydraulic damper in which an orifice communicating between hydraulic chambers on both sides in a cylinder defined by a piston portion constituting a shaft member is formed in the piston portion. The pressure difference generated before and after the piston part when oil flows through the orifice due to the axial movement of the part acts on the piston part as a damping force. Piston / cylinder type hydraulic dampers are efficient in transmitting force and are often used for vehicles.
[0003]
The second conventional example shown in FIG. 4 is composed of a cylinder unit in which hydraulic oil is sealed, a valve unit that generates a damping force, and a ball joint for attachment to a structure. The operating principle is that when vibration is applied to a structure such as a building, relative movement in the axial direction occurs between the piston rod and the cylinder, and hydraulic oil moves between the left and right pressure chambers through a valve unit with an external configuration. . At that time, a damping force is obtained by utilizing a fluid resistance that pushes out a pressure regulating valve installed in the valve unit, and high rigidity, high damping force, and high durability can be obtained as a building or civil engineering damper.
[0004]
Furthermore, the third conventional example shown in FIG. 5 relates to an improved friction damper, which uses the sliding frictional resistance during relative axial movement between the outer cylinder and the rod as a damping force. is there. A disc spring and a wedge mechanism are employed for adjusting the frictional force. A preload in the thrust direction is applied by the disc spring, and a predetermined frictional force to the inner peripheral surface of the outer cylinder is obtained on the slider via the wedge mechanism. Thus, if relative movement in the axial direction occurs due to vibration between the outer cylinder connected to the foundation on the ground side and the rod connected to the foundation on the upper structure side without using a medium such as oil, the axial direction The force is converted in the radial direction via the wedge mechanism, and a frictional force is applied between the inner peripheral surface of the outer cylinder and the slider in addition to the preload, and the vibration is effectively damped. In addition, as the damping damper, there are an elastic-plastic hysteresis energy type such as a steel rod, a speed proportional type using a magnetic viscous material, and the like.
[0005]
[Problems to be solved by the invention]
However, in such a conventional damping damper, in the hydraulic damper having an orifice formed in the piston portion of the first conventional example, the damping force is controlled in flow rate depending on the diameter of the orifice, Although it was cheap, the performance was fixed. Further, in the hydraulic damper having the external valve unit using the pressure regulating valve of the second conventional example, the damping force can be adjusted by the pressure regulating valve, and high rigidity, high damping force and high durability can be obtained. However, even when a sudden vibration (displacement, force) due to an earthquake or the like is applied, only the damping control by the predetermined damping force set by the pressure regulating valve is performed, and the effective damping control is sufficiently performed. There wasn't. Further, the improved friction type damper of the third conventional example has a simple configuration without using oil, and the damping force by friction can be adjusted by a function such as preloading. This adjustment was troublesome because it was necessary to disassemble the damper. In addition, the elastic-plastic hysteretic energy type such as the steel rod is disadvantageous in terms of resilience, and the hydraulic damper using a magnetic viscous material is expensive and lacks practical utility.
[0006]
Therefore, the present invention solves the problems in the conventional vibration damping damper as described above, makes it easy to adjust the damping force even after assembly, and automatically adjusts the friction damping force according to the external force. It is an object of the present invention to provide a hydraulic damper that is capable of always performing appropriate damping control.
[0007]
[Means for Solving the Problems]
Thus the present invention provides a configured hydraulic damper as the shaft member and the cylindrical member slidably fitted in the axial direction is impact attenuated absorbed by a given fluid resistance, the In the hydraulic damper configured to receive a supply of pressurized fluid between the shaft member and the tubular member and increase the degree of fastening and fitting of the shaft member to the tubular member, the supply of the pressurized fluid is performed between the shaft member and the tubular member. It is characterized in that it is constructed by introducing a pressure increase caused by a relative axial movement with the cylindrical member . Further, the present invention is characterized in that a limiting member is provided between the shaft member and the tubular member to receive the pressurized fluid and tighten the shaft member. Further, the present invention is characterized in that a plurality of divided members are arranged in the axial direction as the restricting member . Or the invention, so that the supply of pressurized fluid, is made by introducing a relative axial set pressure of a counter balance valve which is opened by the pressure rise caused by the movement between the shaft member and the cylindrical member It is characterized by comprising. Further, the present invention is characterized in that a stop valve or a throttle valve is installed in a pipe line that communicates between cylinder chambers that are partitioned by a piston portion that constitutes a shaft member and constitutes a cylindrical member. As a means for
[0008]
Embodiment
Embodiments of the hydraulic friction variable damper according to the present invention will be described below in detail with reference to the drawings. FIG. 1 is an overall conceptual diagram and an enlarged view of a main part showing a first embodiment of a hydraulic friction force variable damper of the present invention. As shown in FIG. 1 (A), the basic configuration of the present invention is that the shaft member 2 and the cylindrical member 3 fitted so as to be slidable in the axial direction are attenuated and absorbed by a predetermined fluid resistance. In the hydraulic damper 1 configured as described above, when the pressurized fluid is supplied between the shaft member 2 and the cylindrical member 3, the shaft member 2 (2C) is fastened to the cylindrical member 3 (3B). It is characterized by being configured to increase the degree.
[0009]
This will be described in detail below. The hydraulic damper 1 is configured by fitting a shaft member 2 and a tubular member 3 that are hinged to a building structure or the like, respectively. The shaft member 2 includes a piston portion 2B having a large diameter portion formed at a substantially central portion in the axial direction, a base portion 2A on both sides thereof, and a tip portion 2C, and the cylindrical portion 3 is a cylinder that accommodates the piston 2B. It is composed of a pressing portion 3B that is a pressing lock portion 4 that applies a limiting force to the portion 3C and the tip portion 2C of the shaft, and a base portion 3A that houses the tip. The portions 3A, 3B and 3C in the cylindrical member 3 may have the same diameter, but in the example shown in the figure, the cylinder portion 3C having the largest diameter, the base portion 3A having a slightly smaller diameter, and the pressure portion 3B having the smallest diameter are configured. Yes.
[0010]
A first opening 9 and a second opening 10 are respectively bored in cylinder chambers 7 and 8 in a cylinder portion 3C that is partitioned by the piston portion 2B and constitutes a cylindrical member. Is connected. A counter balance valve 12 is disposed at a junction through a first check valve 13 and a second check valve 14 that allow only the flow from the openings 9 and 10. A pressurizing path L4 extends from the junction point to the pressurizing lock portion 4 in the cylindrical member 3. The first opening 9 and the second opening 10 are connected via a stop valve 11. An accumulator 17 is disposed downstream of the counter balance valve 12 (above the drawing) via a fifth check valve 18 and a throttle 19, and in the vicinity of the junction of the counter balance valve 12 and the accumulator 17, the first Third and fourth check valves 15 and 16 that allow only flow to the first opening 9 and the second opening 10 are provided.
[0011]
As shown in FIG. 1 (B), the pressurizing lock portion 4 that receives the supply of the pressurized fluid from the pressurizing passage L4 is a pressurizing portion 3B that is a cylindrical member having the smallest diameter constituted by an integral or separate member. It is composed of an inner peripheral pressurizing chamber 5 and a restricting member (lock sleeve) 6 made of steel or the like that is disposed on the inner peripheral side and closely fits to the outer periphery of the tip end portion 2C of the shaft member. Preferably, the lock sleeve 6 is configured by arranging a plurality of divided sleeves in the axial direction.
[0012]
The operation of this embodiment will be described below. When the stop valve 11 is closed, when an external force is applied as indicated by the white arrow in FIG. 1A, the cylinder member 3 moves in the first cylinder chamber 7 by the axial movement of the shaft member 2 to the right in the drawing. Pressure rises, the first check valve 13 is pushed open to pressurize the front surface of the counter balance valve 12, and at the same time, the pressure chamber 5 in the pressurization lock portion 4 is pressurized via the pressurization path L4. A predetermined friction force is obtained by reducing the diameter of a certain lock sleeve 6 and tightening the distal end portion 2 </ b> C of the shaft member 2. At this time, the second check valve 14 is closed. When the external force exceeds a predetermined value, the pressure in the first cylinder chamber 7 reaches the set predetermined value and the counter balance valve 12 is opened. Then, the first cylinder chamber 7 and the second cylinder chamber 8 communicate with each other through the third and fourth check valves 15 and 16 to circulate the pressure oil. Thereby, the frictional force obtained by pressurizing the pressure chamber 5 decreases, and the cylindrical member 3 moves relative to the shaft member 2.
[0013]
When there is a rapid flow rate change due to an excessive external force, the fluid that has passed through the counter balance valve 12 is absorbed into the accumulator 17 while the impact is absorbed by the throttle 19. As the external force is released, the accumulated fluid returns from the accumulator 17 to the first and second cylinder chambers 7 and 8 via the fifth check valve 18. Further, the accumulator 17 is arranged so that a predetermined initial pressure is applied from the accumulator 17 to the fifth check valve 18, the third check valve 15, the first check valve 13, and the fourth check valve. 16, it is transmitted to the pressurizing path L4 through the second check valve 14, and an initial lock can be applied. Thus, the damper 1 is appropriately controlled until the set value of the counter balance valve 12 is reached using the cylinder chambers 7 and 8 as the detection unit, and the lock pressure (limit pressure) is controlled almost in proportion to the pressure to attenuate by friction. The power can be controlled automatically. If the set value of the counter balance valve 12 is changed, the maximum lock limit pressure of the pressurization lock unit 4 can be changed.
[0014]
When the stop valve 11 is opened, a damper operation with a predetermined attenuation value is performed through the first opening 9 and the second opening 10 below the set value for opening the counter balance valve 12.
<Example>
Set pressure of counter balance valve: 500Kg / cm 2
Pressure receiving area of cylinder chambers 7 and 8: 20 cm 2 each
Pressure lock mechanism: 5 ton holding force generation stroke at a pressure of 500 kg / cm 2 : ± 20 cm
When
When the external force 10t is applied, the pressure in the cylinder chamber 7 is P1 = 10 ton / 20 cm 2 = 500 Kg / cm 2 . Therefore, a holding force of 5 tons is generated in the pressure lock unit 4 by P1 = 500 Kg / cm 2 . At the same time, the counter balance valve 12 is opened, pressure oil communicates with the cylinder chambers 7 and 8, and the applied holding force decreases. If the displacement of the external force is 75% of the stroke (15 cm = 20 × 0.75), the energy consumption is 5 ton × 15 cm = 75 ton · cm.
[0015]
FIG. 2 is an overall conceptual view showing a second embodiment of the hydraulic friction variable damper of the present invention. The thing of this Embodiment has installed the throttle valve 20 in the pipe line which connects between the cylinder chambers 7 and 8 in the cylinder part 3C which comprises a cylinder member, It is characterized by the above-mentioned. Therefore, in the present embodiment, by adjusting the opening of the throttle valve 20, the fluid between the cylinder chambers 7 and 8 is attenuated by the throttle valve 20 while the speed of the external force is within the set flow rate of the throttle valve 20. Flows and the shaft member 2 and the cylindrical member 3 move relative to each other. When the speed of the external force exceeds the set flow rate of the throttle valve 20, a pressure difference of P1> P2 occurs on both sides of the throttle valve 20. When the set pressure of the counter balance valve 12 is P1, the counter balance valve 12 is opened, and at the same time, a lock limit pressure corresponding to the pressure P1 is generated in the pressurization lock unit 4. Therefore, in the present embodiment, the lock limit pressure can be obtained in association with the counter balance valve 12 in response to the speed of the external force corresponding to the flow rate of the throttle valve 20.
[0016]
The embodiments of the present invention have been described above. However, within the scope of the present invention, the shape and type of the shaft member and the cylindrical member, the fitting form as a hydraulic damper between them, the pressurized fluid The degree of tightening and fitting of the shaft member to the cylindrical member is increased (in addition to the pressurization lock that tightens the shaft member, the shaft member is tightened and the restricting member that can be easily tightened is expanded by supplying pressurized fluid such as spring pressure) The non-pressure lock type that can be axially moved can also be configured to release the non-pressure lock and tighten the shaft member by supplying pressurized fluid generated according to the speed of the external force) , Pressurized fluid supply form (can be configured to pressurize the fluid according to the magnitude or speed of the external force detected by a sensor or the like), the shape of the lock sleeve as the limiting member ( Split steel In addition to the arrangement of a plurality of the above, it may be constituted by one cylindrical wear-resistant resin member or one non-divided cylindrical metal member), the shape of the counter balance valve , Type and setting form of the set pressure, related configuration between the piston part and the cylinder part that constitute the main damping part and divide the cylinder chamber, the shape of the pipe line communicating between the cylinder chambers divided by the piston, The arrangement site (can be installed in the cylinder portion in addition to the external piping), the shape and the form of the stop valve and the throttle valve, etc. can be appropriately employed.
[0017]
【The invention's effect】
As described above in detail, according to the present invention, the shaft member and the cylindrical member that are slidably fitted in the axial direction are configured so that the impact is attenuated and absorbed by a predetermined fluid resistance. and a hydraulic damper, in a hydraulic damper configured to increase the fastening fitting degree of the shaft member relative to the tubular member by being supplied with the pressurized fluid between the shaft member and the tubular member, said pressure Since the pressurized fluid is supplied by introducing a pressure increase caused by the relative axial movement between the shaft member and the tubular member, the damper effect using the hydraulic pressure is exerted while adding pressure. by adjusting the frictional force between the shaft member and the cylindrical member by being supplied with fluid, Ri Do enables the damping force control by the friction, as a detection unit of the cylinder chamber and the like in the cylinder unit, the rate or magnitude of the external force Depending on the length of the shaft member and the cylindrical member To be able to obtain a lock limiting force of frictional, proper damping force control is performed.
[0018]
In addition, when a restricting member that tightens the shaft member by receiving the supply of pressurized fluid between the shaft member and the cylindrical member is disposed, it is a simple method that simply introduces the pressurized fluid and tightens the restricting member. The frictional force can be adjusted.
Furthermore, when the plurality of divided members are arranged in the axial direction as the restricting member, the edge portion of each inner peripheral side end surface of the divided plurality of restricting members is the braking effect of the shaft member by the restricting member. Ru can be further improved.
[0019]
Further, when the pressurized fluid is supplied by introducing a set pressure of a counter balance valve that opens due to a pressure increase caused by a relative axial movement between the shaft member and the cylindrical member. Is properly controlled until the set value of the counter balance valve is reached, and the damping pressure due to friction can be controlled automatically by controlling the lock pressure (limit pressure) in proportion to the pressure. Even after assembly, it is possible to change the set value of the counter balance valve to change the maximum lock limit pressure of the pressurization lock unit.
[0020]
Further, when a stop valve is installed in a pipe line that is defined by the piston portion that constitutes the shaft member and communicates between the cylinder chambers that constitute the cylinder member, the shaft member and the cylinder member are normally separated by opening the stop valve. Damper operation is performed until the counter balance valve set value is reached by closing the stop valve, and the damping pressure due to friction is automatically controlled by controlling the lock pressure (limit pressure) in proportion to the pressure. Can be controlled.
Furthermore, when a throttle valve is installed in a pipe line that is defined by the piston portion constituting the shaft member and communicates between the cylinder chambers constituting the cylindrical member, an external force corresponding to the flow rate of the throttle valve is associated with the counter balance valve. The lock limit pressure can be obtained in response to the speed.
Thus, according to the present invention, the damping force can be easily adjusted even after assembly, and the friction damping force can be automatically adjusted according to the external force, so that appropriate damping control can always be performed. A hydraulic damper is provided.
[Brief description of the drawings]
FIG. 1 is an overall conceptual diagram and an enlarged view of a main part showing a first embodiment of a hydraulic friction variable damper of the present invention.
FIG. 2 is an overall conceptual diagram showing a second embodiment of a hydraulic friction variable damper according to the present invention.
FIG. 3 is a cross-sectional view of a main part of a conventional orifice type hydraulic damper.
FIG. 4 is an overall cross-sectional view of a conventional improved hydraulic damper.
FIG. 5 is an overall sectional view of a conventional friction damper.
[Explanation of symbols]
1 ... Damper 2 ... Shaft member 2A ... Base 2B ... Piston 2C ... Tip 3 ... Cylindrical member 3A ... Base 3B ...・ Pressure part 3C ・ ・ ・ ・ Cylinder part 4 ・ ・ ・ ・ Pressure lock part 5 ・ ・ ・ ・ Pressurization chamber 6 ・ ・ ・ ・ Restriction member (lock sleeve)
7 .... first cylinder chamber 8 .... second cylinder chamber 9 .... first opening 10 .... second opening 11 .... stop valve 12 .... counter balance Valve 13 ... First check valve 14 ... Second check valve 15 ... Third check valve 16 ... Fourth check valve 17 ... Accumulator 18 ... Fifth check valve 19 ... Throttle 20 ... Throttle valve L4 ... Pressure passage

Claims (5)

軸方向に摺動自在に嵌合された軸部材と筒部材とが所定の流体抵抗により衝撃が減衰して吸収されるように構成された油圧式ダンパーであって、前記軸部材と筒部材との間に加圧流体の供給を受けて筒部材に対する軸部材の締結嵌合度合いを増大させるように構成した油圧式ダンパーにおいて、前記加圧流体の供給が、軸部材と筒部材との間の相対的な軸移動により生じた圧力上昇を導入してなされるように構成したことを特徴とする油圧式摩擦力可変ダンパー。 A hydraulic damper configured to axially slidably fitted a shaft member and the cylindrical member is an impact is attenuated absorbed by a given fluid resistance, and the shaft member and the tubular member In the hydraulic damper configured to increase the degree of fastening and fitting of the shaft member with respect to the cylindrical member by receiving the supply of pressurized fluid during the period, the supply of the pressurized fluid is between the shaft member and the cylindrical member. A hydraulic friction force variable damper configured to introduce a pressure increase caused by relative axial movement . 前記軸部材と筒部材との間に加圧流体の供給を受けて軸部材を締め付ける制限部材を配設したことを特徴とする請求項1に記載の油圧式摩擦力可変ダンパー。  2. The hydraulic frictional force variable damper according to claim 1, wherein a limiting member that receives supply of pressurized fluid and fastens the shaft member is disposed between the shaft member and the cylindrical member. 前記制限部材として、分割された複数個を軸方向に配列して構成したことを特徴とする請求項2に記載の油圧式摩擦力可変ダンパー。  The hydraulic frictional force variable damper according to claim 2, wherein a plurality of divided members are arranged in the axial direction as the limiting member. 前記加圧流体の供給が、軸部材と筒部材との間の相対的な軸移動により生じた圧力上昇によって開弁するカウンタバランス弁の設定圧力を導入してなされるように構成したことを特徴とする請求項1ないし3のいずれかに記載の油圧式摩擦力可変ダンパー。The pressurized fluid is supplied by introducing a set pressure of a counter balance valve that opens due to a pressure increase caused by relative axial movement between the shaft member and the cylindrical member. The hydraulic frictional force variable damper according to any one of claims 1 to 3. 軸部材を構成するピストン部により区画され筒部材を構成するシリンダ室間を連通する管路内にストップ弁あるいは絞り弁を設置したことを特徴とする請求項1ないしのいずれかに記載の油圧式摩擦力可変ダンパー。The hydraulic pressure according to any one of claims 1 to 4 , wherein a stop valve or a throttle valve is installed in a pipe line defined by a piston portion constituting a shaft member and communicating between cylinder chambers constituting a cylindrical member. Variable friction force damper.
JP2002194492A 2002-07-03 2002-07-03 Hydraulic friction variable damper Expired - Fee Related JP4312426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002194492A JP4312426B2 (en) 2002-07-03 2002-07-03 Hydraulic friction variable damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002194492A JP4312426B2 (en) 2002-07-03 2002-07-03 Hydraulic friction variable damper

Publications (2)

Publication Number Publication Date
JP2004036753A JP2004036753A (en) 2004-02-05
JP4312426B2 true JP4312426B2 (en) 2009-08-12

Family

ID=31703174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002194492A Expired - Fee Related JP4312426B2 (en) 2002-07-03 2002-07-03 Hydraulic friction variable damper

Country Status (1)

Country Link
JP (1) JP4312426B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031983A (en) * 2010-08-03 2012-02-16 Ihi Corp Damper device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5220643B2 (en) * 2009-02-05 2013-06-26 カヤバ工業株式会社 Shock absorber
KR101017730B1 (en) 2010-05-26 2011-02-28 동일고무벨트주식회사 Cylindrical hybrid vibration control apparatus using viscoelasticity and friction
CN102720124B (en) * 2012-07-05 2014-04-02 大连理工大学 Fluid viscous damper with working switch
JP5720653B2 (en) * 2012-10-23 2015-05-20 トヨタ自動車株式会社 Suspension device
JP6498436B2 (en) * 2014-12-25 2019-04-10 首都高速道路株式会社 Fall bridge prevention device
CN107724762A (en) * 2017-11-10 2018-02-23 智性科技南通有限公司 The viscous and difunctional damper of friction energy-dissipating
CN108951435A (en) * 2018-06-29 2018-12-07 南京理工大学 The method for improving existing assembled bridge pier energy dissipation capacity
CN108978447A (en) * 2018-06-29 2018-12-11 南京理工大学 The method for improving Precast Concrete Segmental Bridges bridge pier energy dissipation capacity
JP6507303B2 (en) * 2018-11-06 2019-04-24 首都高速道路株式会社 Failure prevention device with 3 dimensional bracket

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031983A (en) * 2010-08-03 2012-02-16 Ihi Corp Damper device

Also Published As

Publication number Publication date
JP2004036753A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
US7997394B2 (en) Damping force adjustable fluid pressure shock absorber
US10473179B2 (en) Movement stage for a hydraulic shock absorber and shock absorber with the movement stage
JP4312426B2 (en) Hydraulic friction variable damper
JP3321739B2 (en) Damping force adjustable hydraulic shock absorber
JP3479647B2 (en) Vibration damper
JP4840557B2 (en) Damping force adjustable hydraulic shock absorber
CN100359202C (en) Shock absorber with frequency-dependent damping
JP4038654B2 (en) Damping force adjustable hydraulic shock absorber
EP1659310A3 (en) Damper (shock absorber) intended for vehicles
US20110017558A1 (en) Shock absorber with increasing damping force
JPH0356334B2 (en)
WO2011104911A1 (en) Hydraulic shock absorbing device
US20180038441A1 (en) Regulable vibration damper
KR101518097B1 (en) Hydropneumatic suspension unit
KR980002966A (en) Shock absorbers with variable cushioning force
KR20110089078A (en) Damper
US20020104722A1 (en) Vibration damper with overload protection
JP7427003B2 (en) Buffer with simultaneous speed- and frequency-dependent hydraulic load adjustment
JP2001012534A (en) Damping force adjustable type hydraulic shock absorber
JPH06330977A (en) Damping force regulation type hydraulic buffer
JPH10512352A (en) Pre-controlled proportional / pressure limiting valve
JPH07208532A (en) Damping force adjusting device for hydraulic shock absorber
JP2015108451A (en) Shock absorber with two pistons of reduced attenuation at initial stage of stroke
EP1212545B1 (en) Damper
JP2004257507A (en) Hydraulic damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees