JP2004036522A - Hydraulic power unit - Google Patents

Hydraulic power unit Download PDF

Info

Publication number
JP2004036522A
JP2004036522A JP2002195645A JP2002195645A JP2004036522A JP 2004036522 A JP2004036522 A JP 2004036522A JP 2002195645 A JP2002195645 A JP 2002195645A JP 2002195645 A JP2002195645 A JP 2002195645A JP 2004036522 A JP2004036522 A JP 2004036522A
Authority
JP
Japan
Prior art keywords
generator
turbine
power
wastewater
drainage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002195645A
Other languages
Japanese (ja)
Inventor
Takahito Tanigawa
谷川 貴仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002195645A priority Critical patent/JP2004036522A/en
Publication of JP2004036522A publication Critical patent/JP2004036522A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Control Of Eletrric Generators (AREA)
  • Sink And Installation For Waste Water (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To contribute to preventing global warming due to the reduced consumption of fossil fuel by collecting the kinetic energy of wastewater which is uselessly disposed so far. <P>SOLUTION: A turbine 2 is provided in a collective pipe 8 into which wastewater is fed from each of apartment houses through branch pipes 9, 9. The rotation of the turbine 2 with the flow of the wastewater is transmitted to a generator 3 via a toroidal stepless speed change device 10. Electric power generated by the generator 3 is stored in a secondary battery 5 for use in common parts of the apartment houses. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明に係る水力発電装置は、マンション、公営住宅等の集合住宅に設置して、従来は無駄に捨てられていた排水のエネルギの一部を回収して発電するものである。
【0002】
【従来の技術】
地球温暖化防止に関する京都議定書の義務を果たす面からも、僅かなエネルギも有効に利用して、石油、石炭、天然ガス等の化石燃料の消費を少しでも低減する事が求められている。化石燃料を使わない発電システムとしては、水力発電、太陽熱発電、地熱発電、潮力発電等が知られている。このうちの水力発電は、古くから広く実施されている発電システムであるが、電力消費地から離れた山間部に発電所を設置する場合が多く、設備投資が極めて嵩む。しかも、近年、新規の水力発電所を設置できる場所が極く限られて、新たな発電所建設が難しいのが現状である。
【0003】
一方、小規模な水力発電装置により電力を要する機器に通電する事を意図した構造として従来から、特開平10−26243号公報、特開2002−39048号公報に記載されたものが知られている。これら各公報に記載された水力発電装置は、自動水栓に送られる水道水により発電機を動かすものである。この発電機が発電した電力は、二次電池に溜めておき、上記自動水栓を開閉させる電磁弁の為の電力等として利用する。
【0004】
【発明が解決しようとする課題】
手洗い等に利用する程度の水量で十分な発電を行なう事は難しく、十分な発電量を確保する為に水量を多くした場合には、水道水を無駄に消費する事になる為、省資源の面から好ましくない。そもそも、これから使用する水道水のエネルギをその手前で回収した場合、下流側で必要とするエネルギが不足する。自動水栓の場合には、手洗いに必要な水の勢いが弱くなり、手洗いの時間が長くなる為、結局省エネルギにならない可能性がある。手洗いに必要な水の勢いを確保すべく、上記自動水栓に送る水道水の圧力を高めるのでは、その為のエネルギが必要になり、やはり省エネルギにならない可能性がある。
本発明の水力発電装置は、この様な事情に鑑みて発明したものである。
【0005】
【課題を解決するための手段】
本発明の水力発電装置は、排水を流す排水路内に配置したタービンにより発電機を回転駆動する。
【0006】
【作用】
本発明の水力発電装置の場合、排水の運動エネルギを回収する事により発電機を駆動する為、化石燃料を使用せずに発電を行なえる。又、排水は下流側で使用する事がない為、運動エネルギを回収し切っても、特に問題を生じない。しかも、排水は、例えば風呂の栓を外した場合を考えれば明らかな通り、勢い良く流れる場合が多く、発電機を駆動する為のエネルギを得易い。
【0007】
【発明の実施の形態】
図1は、請求項1にのみ対応する、本発明の実施の形態の第1例を示している。本例の水力発電装置は、排水路である排水管1内に配置したタービン2により、発電機3を回転駆動する様にしている。この排水管1のうちでこのタービン2を配置する部分は、上下方向に配設された、内部を排水が勢い良く流れる部分とする。上記発電機3が発電した電力は、ケーブル4により図示しない分電盤に送り、商用電力と合わせて家庭内等で消費したり、電力会社に販売する事もできる。
【0008】
上述の様に構成する本例の水力発電装置の場合、上記排水管1内を勢い良く流下する排水の運動エネルギを回収する事により上記発電機3を駆動する為、化石燃料を使用せずに発電を行なえる。又、排水は下流側で使用する事がない。言い換えれば、下水まで流れ落ちる事ができれば良い。従って、上記排水中から運動エネルギを回収し切っても、特に問題を生じない。しかも、排水は、例えば風呂の栓を外した場合を考えれば明らかな通り、勢い良く流れる場合が多く、上記発電機3を駆動する為のエネルギを得易い。
【0009】
次に、図2は、やはり請求項1にのみ対応する、本発明の実施の形態の第2例を示している。本例の場合には、発電機3により発電した電力により二次電池5を充電し、必要に応じてこの二次電池5から電力を取り出して家庭内等で使用できる様にしている。この為、排水時と電気製品の使用時とがずれても、排水の運動エネルギの有効利用を図れる。その他の構成及び作用は、上述した第1例の場合と同様である。
【0010】
次に、図3は、請求項1、2に対応する、本発明の実施の形態の第3例を示している。本例の場合には、排水路を構成する排水管1の途中でタービン2よりも上流側部分に、貯水槽6と流量調整弁7とを、上流側から順番に、互いに直列に設けている。本例の場合には、風呂場、厨房の流し等から排出される排水を上記貯水槽6内に一時貯めた後、上記流量調整弁7から少しずつ上記タービン2を設置した部分に流下させる。この様な本例の場合には、このタービン2部分に適正量ずつの排水を長い時間に亙って流し続ける事ができて、発電効率の向上を図れる。又、一定量の発電を行なえて、電力の安定供給が可能になる。その他の構成及び作用は、上述した第1例の場合と同様である。尚、本例の場合も、二次電池を組み込める事は勿論である。
【0011】
次に、図4は、請求項1、3に対応する、本発明の実施の形態の第4例を示している。本例の場合には、排水路が、マンション、公営住宅等の集合住宅で複数の家庭排水をまとめて流す集合管8である。この集合管8には、各戸毎に風呂場、厨房等に通じる枝管9、9の下流端が通じている。集合住宅の各戸から排出された排水は、これら各枝管9、9から上記集合管8に流れ込み、下水等に排出される。従って、この集合管8には、比較的多量の排水が頻繁に流れる。本例の場合、この様な集合管8に設置したタービン2が発電機3を回転駆動し、二次電池5を充電する。この二次電池5に蓄えられた電力は、上記集合住宅の共用スペースの電灯を点灯する為等に利用する。その他の構成及び作用は、上述した第1例の場合と同様である。尚、本例の場合も、貯水槽や流量調整弁と組み合わせて実施できる事は勿論である。
【0012】
次に、図5〜6は、請求項1、3、4に対応する、本発明の実施の形態の第5例を示している。本例の場合には、タービン2と発電機3との間にトロイダル型無段変速機10を設けている。このトロイダル型無段変速機10は、一部車両に自動変速機の変速ユニットとして搭載されているもので、入力軸11と共に回転する1対の入力側ディスク12、12を備える。この入力軸11の中間部周囲には、1対の出力側ディスク13、13と出力歯車14とを、互いに同期した回転、及び上記入力軸11に対する相対回転自在に設けている。そして、上記各入力側ディスク12、12と上記各出力側ディスク13、13との間にパワーローラ15、15をそれぞれ複数個ずつ挟持して、上記各入力側ディスク12、12から上記各出力側ディスク13、13への動力の伝達を自在としている。
【0013】
上記タービン2により、上述の様なトロイダル型無段変速機10の入力軸11を回転駆動すると、この入力軸11の回転は、上記各入力側ディスク12、12、上記各パワーローラ15、15、上記各出力側ディスク13、13を介して、上記出力歯車14に伝わる。そして、この出力歯車14の回転が、別の歯車16を介して上記発電機3に伝わり、この発電機3により発電させる。
【0014】
この様な本例の場合、上記タービン2を設置した集合管8内を流れる排水の量が多く、このタービン2の回転速度が早い場合には、上記トロイダル型無段変速機10の変速状態を減速側にする。反対に、上記排水の量が少なく、上記タービン2の回転速度が遅い場合には、上記トロイダル型無段変速機10の変速状態を増速側にする。この様にして、上記発電機3の回転速度を適正範囲に納め、効率の良い発電を行なえる様にする。その他の構成及び作用は、前述した第4例の場合と同様である。尚、本例の場合も、貯水槽や流量調整弁と組み合わせて実施できる事は勿論である。
【0015】
次に、図7は、やはり請求項1、3、4に対応する、本発明の実施の形態の第6例を示している。本例の場合には、タービン2と発電機3との間に、トロイダル型無段変速機10と遊星歯車変速機構17とを組み合わせた、パワースプリット型と呼ばれる無段変速装置18を設けている。上記トロイダル型無段変速機10を通過した動力は、上記遊星歯車変速機構17のキャリア19に伝達する。従って、上記トロイダル型無段変速機10の変速比を変える事により、上記キャリア19に支持した、ダブルピニオン型の遊星歯車20、20の公転速度を調節自在である。又、上記トロイダル型無段変速機10をバイパスさせる動力伝達経路21を設け、この動力伝達経路21により、上記遊星歯車変速機構17のリングギヤ22を回転駆動自在としている。この様な構成により、上記発電機3の入力軸に固定した太陽歯車23を、上記リング歯車22の回転速度と上記キャリア19の回転速度との差に応じた速度で回転させ、発電機3を回転回転駆動する様にしている。
【0016】
上述の様な構成によれば、排水路を流れる排水の量が多く、タービン2が大きなトルクで回転した場合でも、トロイダル型無段変速機10を通過するトルクを低く抑えられる。この為、排水の流量が多い場合を考慮しても、上記トロイダル型無段変速機10として、通過トルクの容量が小さい、小型のものを使用できて、水力発電装置全体を小型化できる。その他の構成及び作用は、前述した第5例の場合と同様である。尚、本例の場合も、貯水槽や流量調整弁と組み合わせて実施できる事は勿論である。
【0017】
【発明の効果】
本発明は、以上に述べた通り構成され作用するので、従来は無駄に捨てられていた排水の運動エネルギを有効に回収できて、化石燃料の消費低減による地球温暖化防止に寄与できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の第1例を示す略図。
【図2】同第2例を示す略図。
【図3】同第3例を示す略図。
【図4】同第4例を示す略図。
【図5】同第5例を示す略図。
【図6】第5例の要部を取り出して示す略断面図。
【図7】本発明の実施の形態の第6例を示す、図6と同様の図。
【符号の説明】
1  排水管
2  タービン
3  発電機
4  ケーブル
5  二次電池
6  貯水槽
7  流量調整弁
8  集合管
9  枝管
10  トロイダル型無段変速機
11  入力軸
12  入力側ディスク
13  出力側ディスク
14  出力歯車
15  パワーローラ
16  歯車
17  遊星歯車変速機構
18  無段変速装置
19  キャリア
20  遊星歯車
21  動力伝達経路
22  リング歯車
23  太陽歯車
[0001]
TECHNICAL FIELD OF THE INVENTION
The hydroelectric generator according to the present invention is installed in an apartment house such as a condominium or a public house, and recovers a part of wastewater energy that has been wasted conventionally to generate power.
[0002]
[Prior art]
From the aspect of fulfilling the obligations of the Kyoto Protocol on the prevention of global warming, there is a demand for the effective use of a small amount of energy to reduce the consumption of fossil fuels such as oil, coal and natural gas. Known power generation systems that do not use fossil fuels include hydroelectric power, solar thermal power, geothermal power, and tidal power. Of these, hydroelectric power generation is a power generation system that has been widely implemented since ancient times, but power plants are often installed in mountainous areas away from power consumption areas, and capital investment is extremely high. Moreover, in recent years, places where new hydroelectric power plants can be installed are extremely limited, and it is currently difficult to construct new power plants.
[0003]
On the other hand, structures described in JP-A-10-26243 and JP-A-2002-39048 are conventionally known as structures intended to energize equipment requiring power by a small-scale hydroelectric power generator. . The hydroelectric generators described in these publications operate a generator by tap water sent to an automatic faucet. The power generated by the generator is stored in a secondary battery and used as power for a solenoid valve for opening and closing the automatic faucet.
[0004]
[Problems to be solved by the invention]
It is difficult to generate sufficient power with the amount of water used for hand washing, etc.If the amount of water is increased to secure a sufficient amount of power generation, tap water will be wasted and wasteful. It is not preferable from the viewpoint. In the first place, when the energy of tap water to be used in the future is recovered in front of it, the energy required on the downstream side is insufficient. In the case of an automatic faucet, the momentum of water required for hand washing is weakened, and the time for hand washing is lengthened, so that energy saving may not be achieved eventually. If the pressure of tap water sent to the automatic faucet is increased in order to secure the momentum of water required for hand washing, energy for that purpose is required, and energy saving may not be achieved.
The hydroelectric generator of the present invention has been invented in view of such circumstances.
[0005]
[Means for Solving the Problems]
In the hydraulic power generator according to the present invention, the generator is rotated and driven by a turbine disposed in a drainage channel through which drainage flows.
[0006]
[Action]
In the case of the hydroelectric power generator of the present invention, since the generator is driven by recovering the kinetic energy of the wastewater, power can be generated without using fossil fuel. Further, since the wastewater is not used on the downstream side, there is no particular problem even if the kinetic energy is completely recovered. Moreover, the drainage often flows vigorously, as is apparent when the bath plug is removed, for example, and it is easy to obtain energy for driving the generator.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a first example of an embodiment of the present invention corresponding to only claim 1. In the hydroelectric generator of this example, the generator 3 is driven to rotate by a turbine 2 disposed in a drain pipe 1 which is a drain passage. The portion of the drain pipe 1 where the turbine 2 is disposed is a portion which is disposed in the up-down direction and in which drainage flows vigorously inside. The power generated by the generator 3 can be sent to a distribution board (not shown) via the cable 4 and consumed together with commercial power at home or the like, or sold to a power company.
[0008]
In the case of the hydroelectric generator of the present embodiment configured as described above, the generator 3 is driven by recovering the kinetic energy of the wastewater flowing down the drain pipe 1 vigorously, so that fossil fuel is not used. It can generate electricity. Also, wastewater is not used downstream. In other words, it only has to be able to flow down to the sewage. Therefore, even if the kinetic energy is completely recovered from the wastewater, no particular problem occurs. Moreover, the drainage often flows vigorously, as is apparent when the bath plug is removed, for example, so that energy for driving the generator 3 can be easily obtained.
[0009]
Next, FIG. 2 shows a second example of the embodiment of the present invention, which also corresponds only to claim 1. In the case of this example, the secondary battery 5 is charged with the electric power generated by the generator 3, and the electric power is taken out from the secondary battery 5 as needed so that it can be used at home or the like. For this reason, even if the time of drainage is different from the time of use of the electric appliance, the kinetic energy of the drainage can be effectively used. Other configurations and operations are the same as those of the above-described first example.
[0010]
Next, FIG. 3 shows a third example of the embodiment of the present invention corresponding to the first and second aspects. In the case of the present example, a water storage tank 6 and a flow control valve 7 are provided in series with each other in order from the upstream side in a part of the drainage pipe 1 constituting the drainage channel, on the upstream side of the turbine 2. . In the case of this example, after drainage discharged from a bathroom, a kitchen sink, or the like is temporarily stored in the water storage tank 6, the water is gradually flown down from the flow control valve 7 to a portion where the turbine 2 is installed. In the case of the present embodiment, an appropriate amount of wastewater can be continuously flown to the portion of the turbine 2 for a long time, so that the power generation efficiency can be improved. In addition, a constant amount of power can be generated, and a stable power supply can be achieved. Other configurations and operations are the same as those of the above-described first example. Incidentally, also in the case of this example, it goes without saying that a secondary battery can be incorporated.
[0011]
Next, FIG. 4 shows a fourth example of the embodiment of the present invention corresponding to claims 1 and 3. In the case of this example, the drainage channel is the collecting pipe 8 that collectively drains a plurality of household wastewater in an apartment house such as an apartment or a public housing. Downstream ends of branch pipes 9, 9 that lead to a bathroom, a kitchen, and the like for each house communicate with the collecting pipe 8. Drainage discharged from each unit of the apartment house flows into the collective tube 8 from each of the branch pipes 9 and 9 and is discharged to sewage or the like. Therefore, a relatively large amount of drainage frequently flows through the collecting pipe 8. In the case of this example, the turbine 2 installed in such a collecting pipe 8 drives the generator 3 to rotate, and charges the secondary battery 5. The electric power stored in the secondary battery 5 is used to turn on a light in a common space of the apartment house. Other configurations and operations are the same as those of the above-described first example. In addition, also in the case of this example, it is needless to say that it can be implemented in combination with a water storage tank and a flow control valve.
[0012]
Next, FIGS. 5 and 6 show a fifth embodiment of the present invention corresponding to claims 1, 3 and 4. FIG. In the case of this example, a toroidal type continuously variable transmission 10 is provided between the turbine 2 and the generator 3. The toroidal-type continuously variable transmission 10 is mounted on a vehicle as a transmission unit of an automatic transmission, and includes a pair of input-side disks 12 and 12 that rotate together with an input shaft 11. A pair of output disks 13 and 13 and an output gear 14 are provided around an intermediate portion of the input shaft 11 so as to rotate in synchronization with each other and to rotate relative to the input shaft 11. A plurality of power rollers 15, 15 are sandwiched between the input disks 12, 12 and the output disks 13, 13, respectively. Power can be freely transmitted to the disks 13 and 13.
[0013]
When the input shaft 11 of the toroidal type continuously variable transmission 10 as described above is driven to rotate by the turbine 2, the rotation of the input shaft 11 is caused by the input disks 12, 12, the power rollers 15, 15, The power is transmitted to the output gear 14 via the output disks 13, 13. Then, the rotation of the output gear 14 is transmitted to the generator 3 via another gear 16, and the generator 3 generates electric power.
[0014]
In the case of such an example, when the amount of drainage flowing in the collecting pipe 8 in which the turbine 2 is installed is large and the rotation speed of the turbine 2 is high, the speed change state of the toroidal type continuously variable transmission 10 is changed. Set to the deceleration side. Conversely, when the amount of drainage is small and the rotational speed of the turbine 2 is low, the speed change state of the toroidal type continuously variable transmission 10 is set to the speed increasing side. In this way, the rotation speed of the generator 3 is kept within an appropriate range, so that efficient power generation can be performed. Other configurations and operations are the same as those of the above-described fourth example. In addition, also in the case of this example, it is needless to say that it can be implemented in combination with a water storage tank and a flow control valve.
[0015]
Next, FIG. 7 shows a sixth example of the embodiment of the present invention, which also corresponds to claims 1, 3, and 4. In the case of the present example, a continuously variable transmission 18 called a power split type, in which a toroidal type continuously variable transmission 10 and a planetary gear transmission mechanism 17 are combined, is provided between the turbine 2 and the generator 3. . The power that has passed through the toroidal type continuously variable transmission 10 is transmitted to the carrier 19 of the planetary gear transmission mechanism 17. Therefore, by changing the gear ratio of the toroidal type continuously variable transmission 10, the revolution speed of the double pinion type planetary gears 20, 20 supported by the carrier 19 can be freely adjusted. In addition, a power transmission path 21 that bypasses the toroidal-type continuously variable transmission 10 is provided, and the ring gear 22 of the planetary gear transmission mechanism 17 is rotatable by the power transmission path 21. With such a configuration, the sun gear 23 fixed to the input shaft of the generator 3 is rotated at a speed corresponding to the difference between the rotation speed of the ring gear 22 and the rotation speed of the carrier 19, and the generator 3 is rotated. It is driven to rotate.
[0016]
According to the above-described configuration, even when the amount of drainage flowing through the drainage channel is large and the turbine 2 rotates with a large torque, the torque passing through the toroidal type continuously variable transmission 10 can be suppressed to be low. For this reason, even when the flow rate of the drainage is large, a small-sized toroidal-type continuously variable transmission 10 having a small passing torque capacity can be used, and the entire hydroelectric generator can be downsized. Other configurations and operations are the same as those of the above-described fifth example. In addition, also in the case of this example, it is needless to say that it can be implemented in combination with a water storage tank and a flow control valve.
[0017]
【The invention's effect】
Since the present invention is configured and operates as described above, it is possible to effectively recover kinetic energy of wastewater that has been conventionally wasted, and to contribute to prevention of global warming by reducing consumption of fossil fuels.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a first example of an embodiment of the present invention.
FIG. 2 is a schematic diagram showing the second example.
FIG. 3 is a schematic view showing a third example.
FIG. 4 is a schematic view showing a fourth example.
FIG. 5 is a schematic view showing a fifth example.
FIG. 6 is a schematic sectional view showing a main part of the fifth example.
FIG. 7 is a view similar to FIG. 6, showing a sixth example of the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Drain pipe 2 Turbine 3 Generator 4 Cable 5 Secondary battery 6 Reservoir 7 Flow control valve 8 Collecting pipe 9 Branch pipe 10 Toroidal-type continuously variable transmission 11 Input shaft 12 Input disk 13 Output disk 14 Output gear 15 Power Roller 16 gear 17 planetary gear transmission mechanism 18 continuously variable transmission 19 carrier 20 planetary gear 21 power transmission path 22 ring gear 23 sun gear

Claims (4)

排水を流す排水路内に配置したタービンにより発電機を回転駆動する水力発電装置。A hydroelectric generator that rotates a generator with a turbine placed in a drainage channel that drains water. 排水路のうちでタービンよりも上流側部分に貯水槽を設けた、請求項1に記載した水力発電装置。The hydraulic power generator according to claim 1, wherein a water storage tank is provided in a part of the drainage channel upstream of the turbine. 排水路が、集合住宅で複数戸の家庭排水をまとめて流す集合管である、請求項1〜2の何れかに記載した水力発電装置。The hydraulic power generator according to any one of claims 1 to 2, wherein the drainage channel is a collective pipe that collectively drains a plurality of household wastewater in an apartment house. タービンと発電機との間にトロイダル型無段変速機を設けた、請求項1〜3の何れかに記載した水力発電装置。The hydroelectric power generator according to any one of claims 1 to 3, wherein a toroidal-type continuously variable transmission is provided between the turbine and the generator.
JP2002195645A 2002-07-04 2002-07-04 Hydraulic power unit Pending JP2004036522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002195645A JP2004036522A (en) 2002-07-04 2002-07-04 Hydraulic power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195645A JP2004036522A (en) 2002-07-04 2002-07-04 Hydraulic power unit

Publications (1)

Publication Number Publication Date
JP2004036522A true JP2004036522A (en) 2004-02-05

Family

ID=31703960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195645A Pending JP2004036522A (en) 2002-07-04 2002-07-04 Hydraulic power unit

Country Status (1)

Country Link
JP (1) JP2004036522A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023879A1 (en) * 2005-08-25 2007-03-01 Institute For Energy Application Technologies Co., Ltd. Power generating apparatus and power generating method
ES2443999A1 (en) * 2012-08-21 2014-02-21 Coremi 2003, S.L. Turbine for a community sewer system and method for cleaning the rotor thereof
CN111119285A (en) * 2019-12-17 2020-05-08 歌乐电磁(深圳)有限公司 Energy-saving power generation system and method by using building water supply system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023879A1 (en) * 2005-08-25 2007-03-01 Institute For Energy Application Technologies Co., Ltd. Power generating apparatus and power generating method
GB2442929A (en) * 2005-08-25 2008-04-16 Inst Energy Applic Technologie Power generating apparatus and power generating method
GB2442929B (en) * 2005-08-25 2011-02-16 Inst Energy Applic Technologies Co Ltd Power generator and power generation method
US7948106B2 (en) 2005-08-25 2011-05-24 Institute For Energy Application Technologies Co., Ltd. Power generator and power generation method
JP4947800B2 (en) * 2005-08-25 2012-06-06 株式会社エネルギー応用技術研究所 Power generation apparatus and power generation method
ES2443999A1 (en) * 2012-08-21 2014-02-21 Coremi 2003, S.L. Turbine for a community sewer system and method for cleaning the rotor thereof
CN111119285A (en) * 2019-12-17 2020-05-08 歌乐电磁(深圳)有限公司 Energy-saving power generation system and method by using building water supply system

Similar Documents

Publication Publication Date Title
CN104100450A (en) Simple hydraulic power unit
KR101202678B1 (en) A waterpower generator for a drain pipe
US20090008943A1 (en) Residential hydroelectric generator
JP7142191B2 (en) hydro power plant
Tamrakar et al. Hydro power opportunity in the sewage waste water
KR20110104628A (en) Water-power generation device for pipe
JP2013189969A (en) Vertical channel type cross flow turbine
CN201739067U (en) Tap water power generation device
WO2010086958A1 (en) Hydraulic power generation device
JP2004036522A (en) Hydraulic power unit
CN2866889Y (en) Pipeline hydroelectric power generator
EP2473731A1 (en) Miniature hydroelectric power plant
JP3141948U (en) Hydroelectric generator
KR20100008648A (en) Water-power generating apparatus
KR200464478Y1 (en) Water-power generating apparatus using water pressure
KR20060120873A (en) Hydraulic power generator system
KR101092123B1 (en) Generating apparatus using water pressure of pipe
WO2012105924A1 (en) Improvements to a fluid line electricity generation apparatus
KR101755256B1 (en) Scroll turbine for electricity generation
JP2006132344A (en) Method for generating power with using water turbine
WO2022043802A1 (en) A hydro power generation system
CN102465817A (en) Water, fire and wind power generation system
CN107084087A (en) Emergent hydroelectric installation
CN201714560U (en) Generating apparatus for mountain area drinking water pipeline
KR20150140058A (en) Tracks water turbine and waterturbing genetator using the same