JP2013189969A - Vertical channel type cross flow turbine - Google Patents

Vertical channel type cross flow turbine Download PDF

Info

Publication number
JP2013189969A
JP2013189969A JP2012078087A JP2012078087A JP2013189969A JP 2013189969 A JP2013189969 A JP 2013189969A JP 2012078087 A JP2012078087 A JP 2012078087A JP 2012078087 A JP2012078087 A JP 2012078087A JP 2013189969 A JP2013189969 A JP 2013189969A
Authority
JP
Japan
Prior art keywords
water turbine
water
turbine
liquid
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012078087A
Other languages
Japanese (ja)
Inventor
Hisashi Tsuji
永 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Co Ltd
Original Assignee
Shoei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Co Ltd filed Critical Shoei Co Ltd
Priority to JP2012078087A priority Critical patent/JP2013189969A/en
Publication of JP2013189969A publication Critical patent/JP2013189969A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small cross flow turbine for small hydro power to efficiently recover the energy which liquid possesses.SOLUTION: A liquid inflow pipe and a liquid outflow pipe are located on a straight line in such an installation as able to lie on a water passage downward from the upper part to the lower part. A turbine room has an approximately the same capacity as a capacity of the outside dimension of a water turbine, and a turbine room water reception part is provided which receives liquid flowing in. A channel partitioning plate is interposed between the liquid inflow pipe and the turbine room water reception part. A casing is used which can accommodate a plurality of water turbines of the structure to cause odd-numbered water turbines and even-numbered water turbines from the upstream to be reversed in a flow rotational direction. The rotational power of all water turbines are integrated in one electric power transfer unit, so that only one generator is needed to be used.

Description

本発明は、小水力発電に利用されるクロスフロー水車に関する。  The present invention relates to a crossflow turbine used for small hydropower generation.

発電所の相次ぐ運転停止による電力供給能力の不足や、火力発電所の燃料節減に対する意識の高まり、また、発電電力の固定価格買い取り制度開始による電力料金の上昇などに伴い、電力需要家に近接した場所における発電に関心が集まっている。例えば、太陽光発電、風力発電、小水力発電などの再生可能エネルギーを利用するものである。都市部では大型の発電施設を設置できる空間も少ないため、省スペース化も課題となる。  Proximity to power consumers due to shortage of power supply capacity due to successive shutdowns of power plants, increased awareness of fuel savings at thermal power plants, and rising electricity prices due to the start of a fixed price purchase system for generated power There is interest in power generation at the site. For example, renewable energy such as solar power generation, wind power generation, and small hydropower generation is used. In urban areas, there are few spaces where large power generation facilities can be installed, so space saving is also an issue.

特に小水力発電としては、河川や用水路などを利用したものが良く知られており、主にプロペラ水車や開放周流形水車、ペルトン水車などの水車を、筺体を用いずに設置して、垂直よりも水平方向に近い傾きで流通する水を利用するものが一般的である。これらの技術はマスコミ等でも取り上げられており、一般市民にも広がり始めている知識である。然しながら、埋め立てられたり暗渠化したりして、地表に現れている河川の少ない都市部では活用しにくく、大きく電力を消費する地域において自ら電力を生み出す能力が低いと考えられる。  In particular, small hydropower generation is well-known using rivers and irrigation canals. Mainly, propeller turbines, open peripheral flow turbines, Pelton turbines, etc. are installed without using a chassis. It is common to use water that circulates at an inclination closer to the horizontal direction. These techniques have been taken up by the media and are now beginning to spread to the general public. However, it is difficult to use it in urban areas with few rivers appearing on the surface because it has been landfilled or darkened, and it is thought that its ability to generate power itself is low in areas that consume large amounts of power.

そこで本発明では、設置空間の省スペース化の問題を解決し、且つ液体が持つエネルギーを効率よく回収することが可能な小水力発電用の水車を提供するものである。  Accordingly, the present invention provides a water turbine for small hydropower generation that solves the problem of space saving of the installation space and can efficiently recover the energy of the liquid.

プールや浴場等の入浴施設水の浄化用、雨水のろ過中水利用、大型ビル内の空調用、その他の用途で、建築物内に液体の配管が設置されていることが多いため、都市部ではこれらを河川の代用とし、小水力発電を行うことができる。配管の中でも特に、上方から下方へ液体が流通する配管を利用し、流通する液体が持つ位置エネルギーや運動エネルギーを電力へ変換する。配管の傾きは、略垂直である部分を利用する場合が、液体が持つエネルギーを有効利用できるため理想的であるが、それ以外の角度でも良い。これらの建築物は都市以外の地域でもみられるため、河川や用水路等の利用が難しい地域に利用したり、発電電力量の補助的に利用したり、又は売電のために用いたりすることができる。また、河川水や用水利用のために配管を利用して取水し、河底よりも下方の地下等へ配管を設置している場合は、その配管の角度が垂直に近い部分に設置することでも利用可能である。  In many urban areas, liquid pipes are installed in buildings for the purification of water in bathing facilities such as pools and baths, the use of rainwater during filtration, air conditioning in large buildings, and other uses. Then, these can be used as substitutes for rivers and small hydropower generation can be performed. Among the pipes, in particular, a pipe through which liquid flows from above to below is used to convert the potential energy and kinetic energy of the flowing liquid into electric power. The inclination of the pipe is ideal when a portion that is substantially vertical is used because the energy of the liquid can be effectively used, but other angles may be used. Since these buildings can be found in areas other than cities, they can be used in areas where it is difficult to use rivers, irrigation canals, etc. it can. In addition, if the pipe is used for river water or irrigation, and the pipe is installed in the basement below the riverbed, it can be installed in a section where the angle of the pipe is close to vertical. Is available.

建築物内の配管は、通常狭い空間に設けられているため、水車も小型にする必要がある。また、建築物内であるため液体を外部に漏らさないための筺体が必要であること、配管が垂直方向よりも水平方向に近づくほど内部を流通する液体がもつエネルギーを損失するため可能な限り垂直に液体を流通させる必要があること、配管内という限られた量の液体を利用するため、エネルギーの回収効率を上げる必要があること。これらを満たすための水車は、内部を流通する液体が水車の流入口と流出口の2回水車羽根に衝突しエネルギーを与えることが可能な、クロスフロー水車を用いることとする。河川水や用水を利用する場合も、利用場所まで液体を漏洩してはならないので、同じく小型の筺体が必要となる。  Since piping in a building is usually provided in a narrow space, it is necessary to reduce the size of the water wheel. In addition, because it is inside the building, a housing is required to prevent the liquid from leaking to the outside, and the energy of the liquid flowing through the inside is lost as the piping approaches the horizontal direction rather than the vertical direction, so that it is as vertical as possible. It is necessary to circulate the liquid in the pipe, and it is necessary to increase the energy recovery efficiency in order to use a limited amount of liquid in the piping. As a water turbine for satisfying these requirements, a cross-flow water turbine is used in which liquid flowing through the inside can collide with water turbine blades at the inlet and outlet of the turbine twice to give energy. Even when using river water or irrigation water, liquid must not leak to the place of use, so a small enclosure is also required.

通常用いられるクロスフロー水車は、水車の円周部に沿うように液体流入管が設けられ、前記液体流入管と略直角方向に液体流出管が設けられている。本発明では、前記液体流入管及び前記液体流出管を水車の直径と一致する方向に設けることとし、前記液体流入管と前期液体流出管が同一直線上に配置されるよう水車室の側面円周部に配設する。即ち、垂直流路型クロスフロー水車となる。前記水車室も、内部を流通する液体の全量が水車に衝突するよう、略水車と同形とする。但し、同容積であると、水車内に流入しようとする液体を受け入れきれず滞留や逆流の原因となり、元の設備の動作に影響するため、前記液体流入管と前記水車室の接続部である液体流入口から水車の回転方向に向かって水車室の円周を拡張し、液体の受け入れ空間である水車室受水部を設ける。この構造にすることで、筺体の寸法を抑えられると同時に、液体が持つ位置エネルギーを効率よく水車羽根に作用させることができる。  A normally used crossflow water turbine is provided with a liquid inflow pipe along the circumference of the water wheel, and a liquid outflow pipe is provided in a direction substantially perpendicular to the liquid inflow pipe. In the present invention, the liquid inflow pipe and the liquid outflow pipe are provided in a direction coinciding with the diameter of the water turbine, and the side circumference of the water turbine chamber is arranged so that the liquid inflow pipe and the previous liquid outflow pipe are arranged on the same straight line. It arranges in the part. That is, it becomes a vertical flow path type cross flow turbine. The water turbine chamber is also substantially the same shape as the water turbine so that the entire amount of liquid flowing through the water chamber collides with the water turbine. However, if the volume is the same, the liquid that is about to flow into the water turbine cannot be received, causing stagnation and backflow and affecting the operation of the original equipment. The circumference of the water turbine chamber is expanded from the liquid inlet toward the rotation direction of the water turbine, and a water turbine chamber water receiving portion that is a liquid receiving space is provided. With this structure, the size of the casing can be suppressed, and at the same time, the potential energy of the liquid can be efficiently applied to the water turbine blades.

前記液体流入口の全面から液体が流入すると水車を逆回転させる方向の力も加わり効率が落ちる。このため、水車軸よりも逆回転方向の液体流入口を流路仕切板で閉塞する。前記流路仕切板は、液体が水車へ流入する流路を狭めて流速を速める効果も持つ。流速が増すと水車を回転させる力が高まるが、狭めすぎると液体の滞留や逆流の原因となるため、前記流路仕切板は、差し込み式やねじ止め式等の交換可能な構造とし、最も水車の発電効率が高くなるよう閉塞面積を調節可能とする。いずれの場合でも、前記液体流入口の、水車回転軸よりも逆回転方向の半面を閉塞することにはなるため、この部分を筺体と一体として成形し、調節部分のみ交換可能な構造としても良い。  When liquid flows in from the entire surface of the liquid inlet, a force in the direction of reverse rotation of the water wheel is also applied and efficiency is lowered. For this reason, the liquid inflow port in the reverse rotation direction relative to the water wheel shaft is closed by the flow path partition plate. The channel partition plate also has the effect of narrowing the channel through which the liquid flows into the water turbine and increasing the flow velocity. If the flow velocity increases, the force to rotate the turbine increases, but if it is too narrow, it may cause liquid stagnation and backflow. The closed area can be adjusted to increase the power generation efficiency. In any case, since the half surface of the liquid inlet in the reverse rotation direction with respect to the rotating shaft of the water turbine is closed, this portion may be formed integrally with the casing and only the adjustment portion may be replaced. .

段落番号0006乃至段落番号0007で述べた垂直流路型クロスフロー水車を1台使用してエネルギーを電力に変換するより、複数台を直列に設けた方が、上流側の水車で取り切れなかったエネルギーを回収できるため、より多くの電力を得ることができる。配管の距離が長い場合は、複数直列に配置することが可能である。このため、予め複数台の水車を収容可能な筺体を用意しておき、液体の流量や流速に合わせて実際に使用する台数分の水車を収めて製作する。このことで、設置場所での工事も簡略化されるため、設置場所における工期の短縮も可能である。  Rather than using one vertical flow crossflow turbine as described in paragraphs 0006 to 0007 to convert energy into electric power, it was not possible to remove the upstream turbine by using multiple units in series. Since energy can be recovered, more electric power can be obtained. When the distance between the pipes is long, a plurality of pipes can be arranged in series. For this reason, a housing capable of accommodating a plurality of water turbines is prepared in advance, and the number of water turbines actually used is accommodated and manufactured in accordance with the flow rate and flow velocity of the liquid. As a result, the construction at the installation site is simplified, and the construction period at the installation site can be shortened.

水車を回転させる際、内部を流通する液体には水車回転方向の慣性力が働いている。即ち、前記液体流出管と前記水車室の接続部である液体流出口における液体の自然な流通方向は、前記液体流入口における閉塞面の方向である。このとき、上流側の水車と同方向に下流側の水車を回転させようとすると、一旦流通した方向から逆方向へ液体の流通方向を変換する必要があり、液体の持つエネルギーを損失することとなる。このため、下流側の水車は上流側の水車と水平方向に反転した構造とする。水車室の構造及び流路仕切板の設置位置及び方向も同様である。即ち、奇数台目の水車と偶数台目の水車は、前記液体流入管の中心軸及び水車回転軸の中心軸を含む面に対し面対称の構造とする。  When rotating the water wheel, the inertial force in the direction of rotation of the water wheel is acting on the liquid flowing inside. That is, the natural flow direction of the liquid at the liquid outlet that is a connection portion between the liquid outflow pipe and the water turbine chamber is the direction of the closed surface at the liquid inlet. At this time, if the downstream turbine is rotated in the same direction as the upstream turbine, it is necessary to change the flow direction of the liquid from the direction once flowed to the opposite direction, and the energy of the liquid is lost. Become. For this reason, the downstream water turbine has a structure that is reversed in the horizontal direction from the upstream water turbine. The structure of the water turbine chamber and the installation position and direction of the flow path partition plate are the same. That is, the odd-numbered and even-numbered turbines have a plane-symmetric structure with respect to a plane including the central axis of the liquid inflow pipe and the central axis of the turbine rotation axis.

複数の水車を用いて発電を行う方法として、各水車に発電機を接続し、前記複数の発電機の発電電力を配線で合流させる方法が考えられる。然し、設置スペースが多く必要となること、配管途中に設けるため床面に置設できず架台が必要であること、前記発電機の台数分の導入コストが必要であることが問題である。そこで、各水車の回転力を1つの動力伝達装置に集約し、その回転力を1台の発電機に伝達することとする。前記動力伝達装置は、歯車(ギア)を用いるものや、滑車(プーリ)とベルトの組み合わせを用いるもの、歯付き滑車(タイミングプーリ)と歯付きベルト(タイミングベルト)の組み合わせを用いるもの、鎖車(スプロケット)と鎖(チェーン)の組み合わせを用いるものが考えられる。  As a method for generating power using a plurality of water turbines, a method is conceivable in which a generator is connected to each water turbine and the generated power of the plurality of power generators is joined by wiring. However, there are problems in that a large installation space is required, that the installation space is not provided on the floor because it is provided in the middle of the piping, and that a mounting base is required, and that the introduction cost for the number of generators is required. Therefore, the rotational force of each turbine is collected in one power transmission device, and the rotational force is transmitted to one generator. The power transmission device uses a gear (gear), uses a combination of a pulley (pulley) and a belt, uses a combination of a toothed pulley (timing pulley) and a toothed belt (timing belt), a chain wheel A combination of (sprocket) and chain (chain) is conceivable.

本発明を実施すると、これまで小水力発電を行うことが難しかった地域でも発電が可能となる。また、建築物に設ける場合は、前記建築物の所有者自身が欲すれば、水利権の取得にかかる煩雑な手続きなくして小水力発電を行うことが可能である。更に、全ての水車の回転動力を1つに集約し、使用する発電機を1台とすることで、導入にかかるコストと設置スペースを抑え、且つ、本発明と発電機間の増速に掛る部品点数を削減することができる。  By implementing the present invention, it is possible to generate power even in regions where it has been difficult to perform small hydropower generation. Moreover, when providing in a building, if the owner of the said building desires, it is possible to perform small hydroelectric power generation without the complicated procedure concerning acquisition of water rights. Furthermore, by consolidating the rotational power of all the water turbines into one and using one generator, the cost and installation space required for introduction are reduced, and the speed between the present invention and the generator is increased. The number of parts can be reduced.

図1は、本発明の要部断面図である。  FIG. 1 is a sectional view of an essential part of the present invention. 図2は、本発明の水車を3台収容可能な筺体の正面図である。  FIG. 2 is a front view of a housing that can accommodate three water wheels of the present invention. 図3は、図2のA−A断面図である。  FIG. 3 is a cross-sectional view taken along the line AA of FIG. 図4は、各水車の動力連結を水車に直結した歯車のみによって行い、上流から奇数番目と偶数番目の水車の回転方向が逆転している場合の右側面図である。  FIG. 4 is a right side view of the case where the power connection of each turbine is performed by only the gear directly connected to the turbine, and the rotation directions of the odd-numbered and even-numbered turbines from the upstream are reversed. 図5は、各水車の動力連結を滑車又は歯付き滑車又は鎖車によって行い、ベルト又は歯付きベルト又は鎖を8の字状に掛け、上流から奇数台目と偶数台目の水車の回転方向が逆転している場合の右側面図である。  FIG. 5 shows the power connection of each water wheel by a pulley or a toothed pulley or a chain wheel, and the belt or toothed belt or chain is hung in the shape of 8 and the rotation direction of the odd and even numbered turbines from the upstream. It is a right side view in case where is reversed. 図6は、図4及び図5のB−B断面図である。  6 is a cross-sectional view taken along the line BB in FIGS. 4 and 5.

以下、本発明の実施形態を図面とともに説明する。本発明では、筺体内に水車を収めることが可能な台数や、前記筺体内部に実際に収める水車の台数を限定していないが、説明と図面の簡略化のため、水車を3台収めることが可能な筺体に水車を3台収めたものを例として挙げる。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present invention, the number of water turbines that can be accommodated in the housing and the number of water turbines that can actually be accommodated in the housing are not limited. However, in order to simplify the explanation and the drawings, three water turbines may be accommodated. Take as an example a three-wheel turbine in a possible enclosure.

図1は、本発明の要部断面図である。また、図2は、本発明の水車を3台収容可能な筺体の正面図であり、図3は、図2のA−A断面図である。この3図で水車1台の構造を説明する。  FIG. 1 is a sectional view of an essential part of the present invention. FIG. 2 is a front view of a housing that can accommodate three water wheels of the present invention, and FIG. 3 is a cross-sectional view taken along line AA of FIG. The structure of one water wheel will be described with reference to FIG.

符号10の水車は、円盤状で2枚1組の符号11の水車側板と、前記水車側板に挟まれ円周部分に設けられた符号12の水車羽根と、水車を筺体に回動可能に取り付けるため符号11の水車側板の中心に設けた符号13の水車回転軸とで構成される。符号13の水車回転軸は、符号20の筺体外へと延伸し、前記水車回転軸の筺体外に露出した部分に動力伝達装置を設ける。前記筺体内に符号10の水車を収めるため符号21の水車室を設けるが、前記水車を効率よく回転させるため、前記水車室は略前記水車と同型とし、流入する液体の全量が水車内を流通する構造にする。また、符号21の水車室へ流入する液体の流入管と前記水車室から流出する液体の流出管は、同一直線状に配設し、液体の持つエネルギーを効率良く水車へ伝達する必要がある。このため、水車室の対向する位置に配設された、符号31の液体流入口と同径の符号32の液体流入管と、符号33の液体流出口と同径の符号34の液体流出管との、それぞれの中心線を延長すると一致し、水車の直径と重なるよう、前記液体流入管と前記液体流出管を設ける必要がある。その一致した中心線を仮想線として表したものが、符号30の液体流入管及び液体流出管の中心線である。  The reference numeral 10 is a disk-shaped two-wheel set of the reference number 11 turbine wheel side plate, the reference number 12 water turbine blade sandwiched between the water wheel side plates, and the water wheel rotatably attached to the housing. Therefore, it is composed of a water turbine rotating shaft of reference numeral 13 provided at the center of a water turbine side plate of reference numeral 11. The turbine wheel rotation shaft denoted by reference numeral 13 extends outside the housing denoted by reference numeral 20, and a power transmission device is provided at a portion of the turbine rotation shaft exposed outside the housing. A water turbine chamber 21 is provided to accommodate the water turbine 10 in the housing. However, in order to efficiently rotate the water turbine, the water turbine chamber is substantially the same type as the water turbine, and the entire amount of inflowing liquid circulates in the water turbine. To make the structure. In addition, the inflow pipe for the liquid flowing into the water turbine chamber 21 and the outflow pipe for the liquid flowing out from the water turbine chamber are arranged in the same straight line, and it is necessary to efficiently transmit the energy of the liquid to the water turbine. For this reason, the liquid inflow pipe of the code | symbol 32 same diameter as the liquid inflow port of the code | symbol 31 arrange | positioned in the position which opposes a water turbine chamber, and the liquid outflow pipe of the code | symbol 34 of the same diameter as the liquid outflow port of the code | symbol 33 It is necessary to provide the liquid inflow pipe and the liquid outflow pipe so as to coincide with the extension of the respective center lines and overlap the diameter of the water turbine. The center lines of the liquid inflow pipe and the liquid outflow pipe denoted by reference numeral 30 represent the coincident center lines as virtual lines.

段落番号0015の構造では、符号31の液体流入口全体から液体が流入するため、符号10の水車が逆回転する方向にも力が加わってしまい、水車効率が著しく落ちる。そこで、符号40の流路仕切板を用いて、前記水車が逆回転する方向へ液体が流入しない構造とする。前記流路仕切板によって前記液体流入口は狭められ、流速を増して符号10の水車内へ流入するため、より液体の持つエネルギーが上昇する。また、符号41の流路仕切板交換例のように、前記流路仕切板を交換可能としておけば、液体流入口の幅を可変とでき、設置する設備に対して最も効率良く且つ元の設備への影響を最も小さく調節可能である。符号42で表される部分が、狭められた液体流入口である。図3で確認すると、前記液体流入口の、逆回転方向の半面乃至それ以上が、前記流路仕切板によって覆われていることが分かる。液体流入口が狭められた分、水車内へ流入する液体にかかる抵抗も増えるため、符号21の水車室の、液体流入口より回転方向に向かって、符号22の水車室受水部を設ける必要がある。これは、前記水車室の円周部を半径方向に拡大した空間として設ける。  In the structure of Paragraph 0015, since the liquid flows in from the entire liquid inlet 31, a force is also applied in the direction in which the water turbine 10 reversely rotates, and the turbine efficiency is significantly reduced. In view of this, the flow path partition plate 40 is used to prevent the liquid from flowing in the direction in which the water turbine rotates in the reverse direction. The liquid inlet is narrowed by the flow path partition plate, and the flow rate is increased to flow into the water turbine indicated by reference numeral 10, so that the energy of the liquid increases. Further, if the flow path partition plate can be replaced as in the case of the flow path partition plate replacement of reference numeral 41, the width of the liquid inflow port can be made variable, which is the most efficient and original equipment for the installed equipment. The effect on the smallest is adjustable. A portion represented by reference numeral 42 is a narrowed liquid inlet. As can be seen from FIG. 3, it can be seen that half or more of the liquid inlet in the reverse rotation direction is covered by the flow path partition plate. Since the resistance to the liquid flowing into the water turbine increases as the liquid inlet is narrowed, it is necessary to provide the water turbine chamber water receiving portion 22 of the water turbine chamber 21 from the liquid inlet toward the rotation direction. There is. This provides the circumferential part of the water turbine chamber as a space expanded in the radial direction.

図4は、各水車の動力連結を水車に直結した歯車のみによって行い、上流から奇数番目と偶数番目の水車の回転方向が逆転している場合の右側面図である。また、図5は、各水車の動力連結を滑車又は歯付き滑車又は鎖車によって行い、ベルト又は歯付きベルト又は鎖を8の字状に掛け、上流から奇数台目と偶数台目の水車の回転方向が逆転している場合の右側面図であり、図6は、図4及び図5のB−B断面図である。図2及び図4乃至図6で、複数の水車を直列一体とした構造を説明する。  FIG. 4 is a right side view of the case where the power connection of each turbine is performed by only the gear directly connected to the turbine, and the rotation directions of the odd-numbered and even-numbered turbines from the upstream are reversed. Further, FIG. 5 shows that the power of each turbine is connected by a pulley or a toothed pulley or a chain wheel, and the belt or the toothed belt or chain is hung in the shape of 8 and FIG. 6 is a right side view when the rotation direction is reversed, and FIG. 6 is a cross-sectional view taken along line BB in FIGS. 4 and 5. A structure in which a plurality of water turbines are integrated in series will be described with reference to FIGS. 2 and 4 to 6.

複数の筺体を直列一体とする場合、下流側の筺体の符号32の液体流入管と、上流側の筺体の符号34の液体流出管とを、符号35の液体流出管兼液体流入管として成形する。また、最も上流側の液体流入口及び最も下流側の液体流出口には、前後の配管と接続を容易にするため、符号23の配管接続用顎部を設ける。筺体を樹脂製とし、接着にて配管に接続する方法もあるが、メンテナンス性を考慮すると、前後の配管にも顎部を設け、ボルトとナットを用いて固定する方法が、必要な時に筺体を配管から外すことができるため良い。更に、配管側で分岐により本発明を回避する配管を成し切替弁等で流路を切り替え可能にしておけば、元の設備への影響なくメンテナンスを行うことができる。  When a plurality of casings are integrated in series, the liquid inlet pipe 32 of the downstream casing and the liquid outlet pipe 34 of the upstream casing are formed as a liquid outlet / liquid inlet pipe 35. . Further, a pipe connecting jaw portion 23 is provided at the most upstream liquid inlet and the most downstream liquid outlet to facilitate connection with the front and rear pipes. There is also a method to connect the housing to resin and connect it to the pipe by bonding, but considering the maintainability, the method of providing jaws on the front and rear pipes and fixing them with bolts and nuts can be Good because it can be removed from the pipe. Furthermore, if a piping that avoids the present invention is formed by branching on the piping side and the flow path can be switched by a switching valve or the like, maintenance can be performed without affecting the original equipment.

本発明では全ての水車の回転動力を1つに集約し、集約された回転動力を外部に設けた1台の発電機に伝達するため、符号50や符号60のような動力伝達装置を用いる。符号50の動力伝達装置は、水車の台数と同じ枚数だけ、符号51の歯車を用いるものである。前記歯車は、符号13の水車回転軸により回転し、更に、隣接する歯車同士がかみ合うよう設けられる。隣接する歯車同士は逆回転するため、間に動力伝達装置や他の歯車を介さなくても交互に逆回転させることができる。図示していないが、いずれかの歯車に外部へ動力を伝達するための歯車をかみ合わせ、発電機へ動力を伝達する。また、符号60の動力伝達装置は、隣接する水車同士の、符号61の円盤状動力伝達装置を、符号62の交差させた動力連結装置を用いて連結する。前記動力連結装置を8の字状に交差させることで、隣接する前記円盤状動力伝達装置を互いに逆回転させることが可能となる。前記円盤状動力伝達装置は、符号13の水車回転軸により回転する。各円盤状動力伝達装置同士は2台の連結までしかできないため、最も上流の水車及び最も下流の水車以外の水車に連結された前記円盤状動力伝達装置は、1本の前記水車回転軸に対して2枚設けられる。また、最も上流の水車又は最も下流の水車のいずれかは、符号63の外部接続動力伝達装置によって発電機へと動力を伝達するため、最も上流の水車又は最も下流の水車のいずれかの前記水車回転軸に設けられる前記円盤状動力伝達装置は、1本の水車回転軸に対して2枚設けられる。図5では、最も下流の水車から外部へと動力が伝達される。最も上流の水車及び最も下流の水車以外の水車から外部へ動力を伝達させることも可能であるが、1本の水車回転軸に対して前記円盤状動力伝達装置が3枚必要となるため、水車全体の寸法が水車回転軸方向に大きくなるため、本発明の課題の1つである省スペース化に反する。  In the present invention, in order to consolidate the rotational power of all the water turbines into one and transmit the aggregated rotational power to one generator provided outside, a power transmission device such as reference numeral 50 or reference numeral 60 is used. The power transmission device denoted by reference numeral 50 uses the same number of gears denoted by reference numeral 51 as the number of water turbines. The gear is rotated by a water turbine rotating shaft denoted by reference numeral 13 and is further provided so that adjacent gears mesh with each other. Since adjacent gears rotate reversely, they can be rotated reversely alternately without using a power transmission device or other gears therebetween. Although not shown, a gear for transmitting power to the outside is engaged with one of the gears, and the power is transmitted to the generator. Further, the power transmission device denoted by reference numeral 60 connects the adjacent disc-shaped power transmission devices between the water turbines by using a power coupling device denoted by reference numeral 62. By crossing the power coupling devices in a figure eight shape, the adjacent disk-shaped power transmission devices can be reversely rotated. The disk-shaped power transmission device is rotated by a water turbine rotating shaft 13. Since each disk-shaped power transmission device can be connected to only two units, the disk-shaped power transmission device connected to a turbine other than the most upstream turbine and the most downstream turbine is connected to one turbine rotation shaft. Two are provided. Further, since either the most upstream turbine or the most downstream turbine transmits power to the generator by the externally connected power transmission device denoted by reference numeral 63, the turbine of either the most upstream turbine or the most downstream turbine is used. Two of the disk-shaped power transmission devices provided on the rotation shaft are provided for one turbine rotation shaft. In FIG. 5, power is transmitted from the most downstream water turbine to the outside. Although it is possible to transmit power from the turbines other than the most upstream turbine and the most downstream turbine to the outside, three disc-shaped power transmission devices are required for one turbine rotation shaft. Since the overall dimension increases in the direction of the turbine rotation axis, this is contrary to space saving, which is one of the problems of the present invention.

符号61の円盤状動力伝達装置と符号62の交差させた動力連結装置には多くの組み合わせが考えられる。前者が滑車、後者がベルトのもの。前者が歯付き滑車、後者が歯付きベルトのもの。前者が鎖車、後者が鎖のもの。等である。いずれの場合も隣接する前記円盤状動力伝達装置、更に言えば、符号13の水車回転軸により前記円盤状動力伝達装置と連結された水車のうち隣接するもの同士が逆回転可能であれば、利用可能である。この時の水車内部の構造は、図6の、図4及び図5のB−B断面図によって表される。上流側から2台目の水車の、水車羽根の傾きや流路仕切板の取付位置、水車室受水部が設けられている位置が、他の2台のものとは異なり、液体流入管の中心軸及び水車回転軸の中心軸を含む面に対し面対称の構造となっており、逆回転する構造であることがわかる。  There are many possible combinations of the disc-shaped power transmission device 61 and the crossed power coupling device 62. The former is a pulley and the latter is a belt. The former is a toothed pulley and the latter is a toothed belt. The former is a chain wheel and the latter is a chain wheel. Etc. In any case, the adjacent disk-shaped power transmission device, more specifically, if the adjacent ones of the water turbines connected to the disk-shaped power transmission device by the turbine rotation shaft of reference numeral 13 can be rotated in reverse. Is possible. The structure inside the water wheel at this time is represented by the BB cross-sectional views of FIGS. 4 and 5 in FIG. 6. Unlike the other two units, the second turbine wheel from the upstream differs from the other two units in the inclination of the turbine blades, the mounting position of the flow path partition plate, and the position where the turbine chamber receiving part is provided. It can be seen that the structure is plane-symmetric with respect to the plane including the central axis and the central axis of the water turbine rotation axis, and is reversely rotated.

本発明は、液体流通用配管であれば容易に設置可能である。例えば、建築物内に設けられた循環、浄化、空調などを目的としたものや、雨水ろ過による中水利用を目的としたもの、又は、河川や用水から河底より低い位置へ配管で取水する施設にも利用可能である。  The present invention can be easily installed as long as it is a liquid circulation pipe. For example, for the purpose of circulation, purification, air conditioning, etc. provided in buildings, for the purpose of using middle water by rainwater filtration, or taking water from a river or irrigation water to a position below the riverbed It is also available for facilities.

10 水車
11 水車側板
12 水車羽根
13 水車回転軸
20 筺体
21 水車室
22 水車室受水部
23 配管接続用顎部
30 液体流入管及び液体流出管の中心線
31 液体流入口
32 液体流入管
33 液体流出口
34 液体流出管
35 液体流出管兼液体流入管
40 流路仕切板
41 流路仕切板交換例
42 狭められた液体流入口
50 動力伝達装置
51 歯車
60 動力伝達装置
61 円盤状動力伝達装置
62 交差させた動力連結装置
63 外部接続動力伝達装置
DESCRIPTION OF SYMBOLS 10 Water wheel 11 Water wheel side plate 12 Water wheel blade 13 Water wheel rotating shaft 20 Housing 21 Water wheel chamber 22 Water wheel chamber receiving portion 23 Pipe connection jaw 30 Center line 31 of liquid inflow pipe and liquid outflow pipe Liquid inlet 32 Liquid inflow pipe 33 Liquid Outlet 34 Liquid outflow pipe 35 Liquid outflow pipe / liquid inflow pipe 40 Channel partition plate 41 Channel partition plate replacement example 42 Narrowed liquid inflow port 50 Power transmission device 51 Gear 60 Power transmission device 61 Disk-shaped power transmission device 62 Crossed power coupling device 63 Externally connected power transmission device

Claims (6)

筺体外に延長し動力伝達装置を設けた水車回転軸を中心に回動可能な水車と、前記水車と略同寸法かつ同容積の水車室と、水車室の側面に互いに開口部面積が等しくかつその中心同士を結ぶ仮想線分が水車の直径と重なる位置に対向して配設される筒状の液体流入管と、筒状の液体流出管と、前記水車室と前記液体流入口の接続部である液体流入口から回転方向に向かって前記水車室の円周部を拡大した空間として設けられる水車室受水部と、前記液体流入口の断面積の1/2以上を閉塞し且つ前記水車回転軸よりも逆回転方向の半面を確実に閉塞するように前記液体流入口に交換可能に設けた流路仕切板と、で構成される垂直流路型クロスフロー水車であって、前記水車を複数台直列に収めることが可能で且つ隣接する2つの水車の上流側水車の液体流出管と下流側水車の液体流入管とを共有する筺体を持ち、上流側より偶数台目に設けられた前記水車は、傾きが上流側より奇数台目に設けられた前記水車と逆向きの水車羽根を持ち、且つ上流側より偶数台目に設けられた前記流路仕切板は、上流側より奇数台目に設けられた前記流路仕切板と、前記液体流入管の中心軸及び水車回転軸の中心軸を含む面に対して面対称の位置及び方向に設けられると同時に、前記水車室及び前記水車室受水部の構造も、上流側より奇数台目に設けられた前記水車室及び前記水車室受水部の構造と、前記液体流入管の中心軸及び水車回転軸の中心軸を含む面に対して面対称の構造とし、更に内部に収める水車の数を変更することにより水車の使用台数を変更し、エネルギー回収効率を可変とすることを特徴とする、垂直流路型クロスフロー水車A water turbine that is rotatable outside a housing and is provided with a power transmission device and that is rotatable about a water turbine rotating shaft, a water turbine chamber having substantially the same size and volume as the water turbine, and a side surface of the water turbine chamber having the same opening area. A cylindrical liquid inflow pipe, a cylindrical liquid outflow pipe, and a connecting portion between the water turbine chamber and the liquid inlet, which are arranged to face each other at a position where an imaginary line segment connecting the centers thereof overlaps the diameter of the water turbine. A water turbine chamber receiving portion provided as a space in which the circumferential portion of the water turbine chamber is enlarged from the liquid inlet toward the rotation direction, and ½ or more of a cross-sectional area of the liquid inlet is closed and the water turbine A vertical flow-path type cross-flow water turbine configured to be exchangeable at the liquid inlet so as to reliably close the half surface in the reverse rotation direction with respect to the rotation shaft, Upstream of two adjacent turbines that can be accommodated in series The water turbine having a casing that shares the liquid outflow pipe of the car and the liquid inflow pipe of the downstream water turbine, and the water turbine provided in the even number from the upstream side is the same as the water wheel provided in the odd number from the upstream side. The flow path partition plate provided with even numbered turbine blades from the upstream side with the water turbine blades in the reverse direction, and the flow path partition plate provided at the odd number level from the upstream side and the central axis of the liquid inflow pipe And the structure of the water turbine chamber and the water turbine chamber receiving portion are also provided on the odd-numbered stage from the upstream side. The structure of the water turbine chamber and the water receiving portion of the water turbine chamber and the plane including the central axis of the liquid inflow pipe and the central axis of the water turbine rotating shaft are plane-symmetrical, and the number of water turbines to be accommodated therein is changed. To change the number of turbines used and make the energy recovery efficiency variable. Wherein the vertical channel type cross-flow water turbine 請求項1に記載の垂直流路型クロスフロー水車であって、更に、前記動力伝達装置の回転力を何れか1つの動力伝達装置に集約することで、使用する発電機の台数を1台とすることが可能であることを特徴とする、請求項1に記載の垂直流路型クロスフロー水車The vertical flow crossflow water turbine according to claim 1, further comprising aggregating the rotational force of the power transmission device into any one of the power transmission devices, so that the number of generators to be used is one. The vertical flow type cross-flow turbine according to claim 1, wherein 請求項1乃至請求項2に記載の垂直流路型クロスフロー水車であって、前記動力伝達装置として、それぞれ同径かつ歯数が同一である歯車を使用し、隣接する水車の水車回転軸に設けられた歯車同士がかみ合うよう設けたものであることを特徴とする、請求項1乃至請求項2に記載の垂直流路型クロスフロー水車The vertical flow crossflow turbine according to claim 1 or 2, wherein gears having the same diameter and the same number of teeth are used as the power transmission device, and the turbine rotation shaft of an adjacent turbine is used. The vertical flow type crossflow water turbine according to claim 1, wherein the gears are provided so as to mesh with each other. 請求項1に記載の垂直流路型クロスフロー水車であって、前記動力伝達装置として滑車を用い、隣接する滑車同士を連結するベルトを8の字状に交差させることを特徴とする、請求項1乃至請求項2に記載の垂直流路型クロスフロー水車The vertical flow crossflow turbine according to claim 1, wherein a pulley is used as the power transmission device, and a belt that connects adjacent pulleys is crossed in an 8-shape. The vertical flow type crossflow water turbine according to claim 1 or 2. 請求項1に記載の垂直流路型クロスフロー水車であって、前記動力伝達装置として歯付き滑車を用い、隣接する滑車同士を連結する歯付きベルトを8の字状に交差させることを特徴とする、請求項1乃至請求項2に記載の垂直流路型クロスフロー水車The vertical flow crossflow water turbine according to claim 1, wherein a toothed pulley is used as the power transmission device, and a toothed belt that connects adjacent pulleys is crossed in an 8-shape. The vertical flow type crossflow water turbine according to claim 1 or 2, 請求項1に記載の垂直流路型クロスフロー水車であって、前記動力伝達装置として鎖車を用い、隣接する鎖車同士を連結する鎖を8の字状に交差させることを特徴とする、請求項1乃至請求項2に記載の垂直流路型クロスフロー水車It is a vertical flow type cross flow water turbine according to claim 1, wherein a chain wheel is used as the power transmission device, and a chain connecting adjacent chain wheels is crossed in an 8-shape. The vertical flow type cross flow water turbine according to claim 1 or 2.
JP2012078087A 2012-03-12 2012-03-12 Vertical channel type cross flow turbine Pending JP2013189969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012078087A JP2013189969A (en) 2012-03-12 2012-03-12 Vertical channel type cross flow turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012078087A JP2013189969A (en) 2012-03-12 2012-03-12 Vertical channel type cross flow turbine

Publications (1)

Publication Number Publication Date
JP2013189969A true JP2013189969A (en) 2013-09-26

Family

ID=49390459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012078087A Pending JP2013189969A (en) 2012-03-12 2012-03-12 Vertical channel type cross flow turbine

Country Status (1)

Country Link
JP (1) JP2013189969A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016070136A (en) * 2014-09-29 2016-05-09 株式会社Lixil Hydraulic power generation device
JP2016079892A (en) * 2014-10-16 2016-05-16 独立行政法人国立高等専門学校機構 Cross-flow type power generator
CN106801454A (en) * 2017-01-17 2017-06-06 杭州知加网络科技有限公司 A kind of building drainage pipeline
CN108396846A (en) * 2018-03-20 2018-08-14 河海大学 A kind of deep layer outlet tunnel enters flow through shaft energy dissipating and energy storage device
JP2020514594A (en) * 2017-03-20 2020-05-21 河海大学 System to generate electricity using energy storage pipes of multiple high-rise buildings
WO2024085773A2 (en) 2022-10-20 2024-04-25 Felicianne As Bi-directional wave energy converter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016070136A (en) * 2014-09-29 2016-05-09 株式会社Lixil Hydraulic power generation device
JP2016079892A (en) * 2014-10-16 2016-05-16 独立行政法人国立高等専門学校機構 Cross-flow type power generator
CN106801454A (en) * 2017-01-17 2017-06-06 杭州知加网络科技有限公司 A kind of building drainage pipeline
JP2020514594A (en) * 2017-03-20 2020-05-21 河海大学 System to generate electricity using energy storage pipes of multiple high-rise buildings
CN108396846A (en) * 2018-03-20 2018-08-14 河海大学 A kind of deep layer outlet tunnel enters flow through shaft energy dissipating and energy storage device
WO2024085773A2 (en) 2022-10-20 2024-04-25 Felicianne As Bi-directional wave energy converter

Similar Documents

Publication Publication Date Title
JP2013189969A (en) Vertical channel type cross flow turbine
KR20100131078A (en) Float type hydraulic power generater
CN2921401Y (en) Apparatus for guiding forward and backward direction fluid to single directional rotating
CN201739067U (en) Tap water power generation device
WO2013000101A1 (en) Fluid pipeline structure having power-generating function
JPH10299636A (en) Same water multistage hydro-electric power generation
JP6078364B2 (en) Water current generator
CN202140231U (en) Pipeline vacuum hydrogenerator
JP5093704B1 (en) Drop-head hydraulic turbine transmission
WO2012105924A1 (en) Improvements to a fluid line electricity generation apparatus
CN100439874C (en) Device for guiding frontback flow to one-way rotation
CN200999689Y (en) Flat water stream hydroelectric generator
KR101314465B1 (en) Small hydroelectric power generation facilities using industrial water line
KR101320044B1 (en) Power generating apparatus using cooling tower
CN203146198U (en) Water turbine for ocean current power generation
KR101320636B1 (en) A waterpower generator for pipe flowing water
CN207598414U (en) Tide and flow magnitude electricity generation system
TW201211384A (en) Fluid pipeline structure with multiple power generation functions
CN106150830A (en) Flow velocity type hydroelectric generator
KR20100112450A (en) A hydroelectric powergeneration system
CN201121554Y (en) Hydraulic turbogenerator
WO2014000349A1 (en) Water turbine and power station with same
CN218724420U (en) Passive water meter
CN104141581A (en) Integrated bulb type water-turbine generating set
JP2004036522A (en) Hydraulic power unit