WO2010086958A1 - Hydraulic power generation device - Google Patents

Hydraulic power generation device Download PDF

Info

Publication number
WO2010086958A1
WO2010086958A1 PCT/JP2009/051271 JP2009051271W WO2010086958A1 WO 2010086958 A1 WO2010086958 A1 WO 2010086958A1 JP 2009051271 W JP2009051271 W JP 2009051271W WO 2010086958 A1 WO2010086958 A1 WO 2010086958A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
generator
gear
hydroelectric
rotating shaft
Prior art date
Application number
PCT/JP2009/051271
Other languages
French (fr)
Japanese (ja)
Inventor
裕二 海野
Original Assignee
シーベルインターナショナル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーベルインターナショナル株式会社 filed Critical シーベルインターナショナル株式会社
Priority to PCT/JP2009/051271 priority Critical patent/WO2010086958A1/en
Priority to JP2009524036A priority patent/JPWO2010086958A1/en
Publication of WO2010086958A1 publication Critical patent/WO2010086958A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • F03B17/063Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having no movement relative to the rotor during its rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/97Mounting on supporting structures or systems on a submerged structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to a hydroelectric power generation apparatus that is installed in a river, an artificial irrigation channel, or the like, and generates power using the flow of water.
  • This hydroelectric power generator has an L-shaped draft tube with a water wheel installed in the water passage, and is arranged upstream of the weir plate to rotate the water wheel by the water flowing down the passage, and the rotational force is generated by the generator. It is comprised so that it may transmit to and may generate electric power.
  • the present invention has been made to solve the above-described problems, and the object of the present invention is a hydroelectric power generation apparatus that can be easily installed without using a water drop, and in particular, a comparison. It is an object of the present invention to provide a hydroelectric power generation apparatus that can efficiently generate power even with a small water flow.
  • the present invention is a hydroelectric power generation device that generates electricity using a horizontally flowing water flow, a float that floats on the water surface, a bottom surface of the float, and a submerged state.
  • a casing having a water channel penetrating from an upstream intake port toward a downstream drain port and a casing arranged opposite to each other in the width direction of the water channel of the casing, and reversely rotate with each other by the water flow passing through the central portion of the water channel
  • a speed increaser that speeds up the output of the motor and a generator that is installed on the top surface of the float and that generates electric power using the driving force output through the speed increaser.
  • the drive shaft that doubles the speed increase ratio by rotating the other side of the rotation shaft to the gear body of the gearbox and rotating the input shaft of the gearbox and the gear body relatively on the same axis. Is output from the output shaft of the gearbox to the generator.
  • a planetary gear mechanism can be adopted as the speed increaser.
  • the planetary gear mechanism includes a sun gear arranged at the center, a ring gear provided so as to surround the outer periphery of the sun gear, and both the outer gear of the sun gear and the inner gear of the ring gear arranged between the sun gear and the ring gear.
  • a generator small generator
  • One rotating shaft is connected to the planetary carrier via a power transmission mechanism, and the other rotating shaft is connected to the ring gear.
  • the planetary carrier and the ring gear are rotated in reverse relative to each other on the same axis so that the driving force transmitted from the planet gear to the sun gear is output to the generator.
  • a structure in which the generator is mounted vertically above the gearbox placed vertically on the float by connecting the shaft directly to the rotor of the generator
  • the looseness-preventing gear in which the gear shaft slides in the long hole is brought into contact with the outer periphery of the drive chain or the drive belt constituting the power transmission mechanism, so that the drive chain or the drive belt A tension adjusting mechanism for adjusting the tension may be provided.
  • the water flow speed increasing portion for gradually decreasing the area of the opening end of the water intake port from the upstream side toward the downstream side is provided on the water intake side of the casing, Since the water flow taken in from the inside is compressed in the casing and the accelerated water flow passes through the water channel, it is preferable.
  • a turbulent flow suppressing portion that gradually increases the area of the opening end of the drain port from the upstream side toward the downstream side is provided on the drain port side of the casing. This is preferable because water flowing out from the water channel is released by the turbulent flow suppressing portion and turbulent flow generated in the peripheral portion downstream of the drain port is suppressed.
  • the cross-flow type is one in which a plurality of curved plate-like blades are arranged side by side in the circumferential direction between the upper and lower disks fixed to the rotating shaft, and a gap through which water passes is provided between the blades and the rotating shaft.
  • water reliably passes through the gap between the blade and the rotating shaft, and the water passing through the gap pushes the blade on the rear side again to give a rotational force. It is suitable for installation in a relatively slow water flow of about 5 m / sec.
  • the turbine fan type has a spiral groove formed on the outer periphery of a main body fixed to a rotating shaft.
  • This turbine fan type turbine has no gap through which water passes, and has a higher strength than a cross-flow type turbine, and thus is suitable for installation in a fast water flow with a flow rate of 2.5 m / sec or more.
  • the water flow is accelerated to increase the kinetic energy of the water, and the input shaft of the gearbox and the gear body are coaxially used by utilizing the rotations of the water turbines that are reversely rotated by the increased kinetic energy.
  • the driving force that doubles the speed increase ratio is output from the output shaft of the speed increaser to the generator. For this reason, even when installing in a slow water stream, it is not necessary to increase the gear ratio of the gearbox or increase the number of poles of the generator in order to increase the amount of power generation. And the cost can be reduced, and the power generation efficiency of the generator can be greatly improved.
  • FIGS. 1 is a perspective view showing the external appearance of the apparatus
  • FIGS. 2 and 3 are cross-sectional views showing the internal structure of the apparatus
  • FIG. 4 is a perspective view showing the main part of the apparatus
  • FIG. 6 is an enlarged view of the speed increaser in the apparatus
  • FIG. 7 is a top view of the apparatus
  • FIGS. 8 to 10 are partial sectional views of the apparatus.
  • the hydroelectric generator P1 of the present embodiment is installed floating on an artificial waterway such as a river or an industrial waterway or an agricultural waterway, and converts the moving energy of water flowing in a substantially horizontal direction into electric energy.
  • This is a float-type flowing water generator that generates electricity.
  • This hydroelectric generator P1 is generally configured to include a float 1, a casing 2, a water wheel 3, a rotating shaft 4, a speed increaser 5, and a generator 6.
  • the float 1 is made of a hollow structure and is used for installing at least the speed increaser 5 and the generator 6 above the water surface.
  • the float 1 is provided as a component for fixing to a structure placed on the river rim (land) of a river or an irrigation channel, or to another structure installed on the water. According to this hydroelectric power generation device P1, the installation is completed by a simple operation of simply fixing the float 1 floated on the water surface to the structure, so that it can be installed at a very low cost.
  • the casing 2 is formed by molding a plastic plate such as acrylic or a metal plate such as stainless steel into a substantially rectangular tube shape, and is fixed to the bottom surface of the float 1.
  • the casing 2 is installed in a state where it is submerged in the flowing water, and has a water passage 23 penetrating from a water intake port 21 opened on the upstream side of the water flow toward a drain port 22 opened on the downstream side.
  • a water intake port 21 in the casing 2 fixed to the bottom surface of the float 1 in this manner, it is always near the water surface (a position where the movement energy of water is maximized) without being affected by fluctuations in the water depth and water level of the river and the canal.
  • the water flowing through the water can be taken from the water inlet 21.
  • a water flow speed increasing portion 24 is provided on the intake port 21 side of the casing 2.
  • the water flow speed increasing portion 24 is formed by integrally forming a tapered rectifying plate on the main body of the casing 2 so that the area of the opening end of the water intake 21 gradually decreases from the upstream side toward the downstream side.
  • the loss head is reduced to a minimum by Bernoulli's theorem, the flow velocity V1 of water taken from the intake 21 is increased to the flow velocity V2, and the accelerated water flow passes through the water channel 23. ing.
  • a turbulent flow suppressing portion 25 is provided on the drain port 22 side of the casing 2.
  • the turbulent flow suppression unit 25 is formed by integrally forming a tapered rectifying plate in the casing 2 main body so that the area of the opening end of the drain port 22 gradually increases from the upstream side toward the downstream side. Since the flow velocity of the water flowing through the water channel 23 in the casing 2 becomes larger than the flow velocity of the water flowing outside the main body of the casing 2 by the water flow speed increasing portion 24, if the two merge directly in the vicinity of the drainage port 22, it is caused by the speed difference. Turbulence may occur.
  • the water flowing out from the water channel 23 in the casing 2 is released by the turbulent flow suppression unit 25 and smoothly drained while the flow velocity V2 is reduced to the flow velocity V3, so that the water is generated in the peripheral portion downstream of the drain port 22. Turbulence is suppressed and the power generation flow rate can be adjusted.
  • a pair of water turbines 3 (3A, 3B) are accommodated in the water channel 23 in the casing 2.
  • the water turbine 3 of the present embodiment has a vertical shaft type biaxial structure, and a pair of water turbines 3A and 3B are arranged to face each other at a predetermined interval in the width direction of the water channel 23, and rotate reversely with each other by the water flow passing through the water channel 23. It is configured as follows. In order to rotate the water wheel 3, a rotation shaft 4 (4 ⁇ / b> A, 4 ⁇ / b> B) is fixed to the center of each of the water wheels 3 ⁇ / b> A, 3 ⁇ / b> B. As shown in FIG.
  • the rotary shaft 4 is provided in a posture standing in the water depth direction (vertical direction) in the water channel 23 of the casing 2, and the upper end portion projects through the through hole 11 of the float 1 and projects above the water surface.
  • the lower end is rotatably supported by a bearing 41 on the bottom surface of the casing 2.
  • the shape of the water turbine 3 is a cross flow type.
  • this cross-flow type water turbine 3 is a kind of drag type that directly receives water pressure and rotates.
  • the upper and lower disks 31, 31 are fixed to the rotating shaft 4, and the disk A plurality of curved plate-like blades 32, 32,... Are arranged at equal intervals in the circumferential direction of the disk 31, and a gap 33 through which water passes is provided between the blades 32 and the rotating shaft 4. It is a thing. Accordingly, both water turbines 3A and 3B rotate by receiving the pressure of water passing between the pair of rotating shafts 4A and 4B by the curved surfaces 32a of the plurality of blades 32, 32,. In FIG.
  • the water turbine 3A disposed on the left side rotates as the water flow having the maximum flow velocity passing through the center portion of the water channel 23 collides with the tip portions of the innermost blades 32 and 32 of the two water turbines 3A and 3B.
  • the water turbine 3B arranged on the right side rotates about the axis 4B, and rotates in the direction of arrow S2 about the rotation axis 4B.
  • the casing 2 is provided with a water flow restricting portion 26.
  • the water flow restricting portion 26 is formed by bending the wall surface of the casing 2 in a curved shape so as to restrict the water flow flowing between the rotary shaft 4 and the casing 2 in the width direction of the water passage 23 of the casing 2. More specifically, a curved wall covering the outer half of each of the water turbines 3A and 3B inside the casing 2 (in other words, rotating on both sides in the water channel 23 so that the cross flow type water turbine 3 does not rotate in the opposite direction.
  • the hydroelectric power generation device P1 of the present embodiment accelerates the water flow to increase the kinetic energy of the water, and effectively uses the rotational force of the two-shaft structure turbines 3A and 3B that are rotated in reverse by the increased kinetic energy. It is characterized in that the power generation efficiency of the generator 6 is improved by increasing the speed increase ratio of the speed increaser 5 by using the power generator.
  • the pair of rotating shafts 4A and 4B are not connected to the pair of rotating shafts 4A and 4B separately, but the pair of rotating shafts 4A and 4B are connected to one speed increasing device 5 as shown in FIG. I did it.
  • the speed increaser 5 increases the rotational speeds of the rotary shafts 4 ⁇ / b> A and 4 ⁇ / b> B input to the input shaft 51 to adjust to the rated rotational speed of the generator 6, and the driving force of the rotational speed is output to the output shaft 52.
  • the speed increaser 5 includes a planetary gear mechanism, and a sun gear 53 disposed in the center and a ring gear provided so as to surround the outer periphery of the sun gear 53. 54, a plurality of planet gears 55, 55,...
  • the upper and lower planetary carriers 56 and 56 to be connected are provided.
  • the input shaft 51 is connected to the planetary carrier 56, and the output shaft 52 is connected to the sun gear 53.
  • the left rotary shaft 4A is connected to the input shaft 51, and the right rotary shaft 4B is connected to the ring gear 54.
  • a power transmission mechanism 7 composed of a sprocket and a chain is adopted as the connection structure, and the sprocket 71 attached to the left rotating shaft 4A and the sprocket 71 attached to the input shaft 51 of the speed increasing device 5 are driven.
  • the chain 72 is hung and connected, and the drive chain 72 is hung and connected to a sprocket 71 mounted on the right rotation shaft 4B and a gear portion 54a provided at the lower end of the ring gear 54.
  • a power transmission mechanism using a pulley and a belt may be employed.
  • tension adjusting mechanisms 8 are provided for all the drive chains 72.
  • the tension adjusting mechanism 8 includes a locking gear 81 and a long hole 82, and a gear shaft 81 a of the locking gear 81 is fitted in the long hole 82. For this reason, the tension of the drive chain 72 can be easily adjusted by sliding the gear shaft 81 a in the long hole 82 and press-contacting the locking gear 81 to the outer periphery of the drive chain 72.
  • the speed increaser 5 and the generator 6 are connected by directly connecting the output shaft 52 of the speed increaser 5 to the rotor 61 of the generator 6.
  • the speed increaser 5 is vertically installed on the upper surface of the float 1, and the generator 6 is vertically placed thereon.
  • the generator 6 (6A) of the present embodiment is a small one having a rated power of about 200 to 500W. Therefore, in this hydroelectric power generation device P1, since the power generation parts composed of the speed increaser 5 and the power generator 6 are installed above the water surface, the manufacturing cost can be reduced and the maintenance of these parts can be easily performed. Can do.
  • the hydroelectric generator P1 of the present embodiment is configured as described above.
  • the pair of water turbines 3A and 3B are opposite to each other about the respective rotation shafts 4A and 4B. Rotate.
  • the left rotation shaft 4A rotates in the arrow S1 direction.
  • the input shaft 51 of the gearbox 5 rotates in the same direction via the drive chain 72.
  • the rotation is transmitted from the input shaft 51 to the planetary carrier 56.
  • the right rotation shaft 4B rotates in the direction of the arrow S2 on the contrary, and the rotation is transmitted to the ring gear 54 of the speed increaser 5 through the drive chain 72.
  • the speed increase ratio of the speed increaser 5 can be increased by the relative reverse rotation of the planetary carrier 56 and the ring gear 54 even when installed in a slow water flow. Is doubled, and the driving force output from the output shaft 52 to the rotor 61 of the generator 6 becomes extremely large. Therefore, it is not necessary to increase the gear ratio of the speed increaser 5 or increase the number of poles of the generator 6 in order to increase the amount of power generation. Efficiency can be greatly improved.
  • FIGS. 11 is a perspective view showing the main part of the apparatus
  • FIG. 12 is a front view showing the operating principle of the apparatus
  • FIG. 13 is a top view of the apparatus
  • FIGS. 14 to 16 are partial sectional views of the apparatus.
  • the same components as those of the hydroelectric generator P1 of the first embodiment described with reference to FIGS. 1 to 10 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the hydroelectric generator P2 of the present embodiment is a medium-sized rated power of about 5 to 10 kW instead of the small generator 6 (6A) used in the hydroelectric generator P1 of the first embodiment.
  • the generator 6 (6B) is used.
  • the medium generator 6B When the medium generator 6B is used, its weight exceeds approximately 100 kg. Therefore, when the generator 6B is placed on the speed increaser 5 as in the first embodiment, the load on the speed increaser 5 is increased by the load. As a result, the gear does not rotate or in some cases the gear is crushed and breaks down, and the rotational force of the rotating shaft 4 (4A, 4B) cannot be transmitted to the generator 6.
  • the generator 6B is connected to the speed increaser 5 by a new power transmission mechanism 7. That is, as shown in FIGS. 11 to 16, the sprocket 73 is mounted on the output shaft 52 of the speed increaser 5 and the rotor 61 of the generator 6B, respectively, and the drive chain 74 is hung around the sprockets 73 and 73 and connected. It is. As a result, the speed increaser 5 is vertically installed on the upper surface of the float 1, and the generator 6 ⁇ / b> B is vertically placed on the side of the speed increaser 5.
  • the other structure is the same as that of the hydroelectric generator P1 of the first embodiment.
  • the generator 6B is arranged on the side of the speed increaser 5 without being placed on the speed increaser 5, thereby increasing the weight of the generator 6B.
  • the speed machine 5 does not break down, and the rotational force of the rotating shaft 4 (4A, 4B) is reliably transmitted to the generator 6B via the speed increaser 5. Therefore, as in the first embodiment, the speed increase ratio of the speed increaser 5 is doubled by using the rotations of the rotating shafts 4A and 4B that rotate in reverse directions, so that the power generation efficiency of the generator 6B can be improved. it can.
  • FIGS. 17 is a perspective view showing the main part of the apparatus
  • FIGS. 18 and 19 are a front view and a side view showing the operation principle of the apparatus
  • FIG. 20 is a top view of the apparatus
  • FIGS. It is a fragmentary sectional view.
  • the same components as those of the hydroelectric generator P1 of the first embodiment described with reference to FIGS. 1 to 10 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the hydroelectric power generator P3 of this embodiment is a large-sized power having a rated power of about 100 to 200 kW instead of the small power generator 6 (6A) used in the hydroelectric power generator P1 of the first embodiment.
  • the generator 6 (6C) is used.
  • Such a large generator 6C usually has a weight exceeding 1 t, and of course cannot be placed on the speed increaser 5 like the medium generator 6B.
  • the large generator 6C has an extremely high speed of rotation input to the rotor 61, and in many cases, the diameter is reduced and the length is increased in the axial direction in order to cope with the high speed rotation.
  • the speed increaser 5 is connected to the rotating shaft 4 (4A, 4B) by the power transmission mechanism 7 and the bevel gear mechanism 9, and the generator 6C is connected to the speed increaser 5 by the power transmission mechanism 7. By connecting, the generator 6C was placed horizontally.
  • a drive chain 72 is wound around the sprocket 71 attached to the left rotating shaft 4A and the sprocket 71 attached to the input shaft 91 of the bevel gear mechanism 9 to
  • the drive chain 72 is wound around the sprocket 71 attached to the input shaft 51 and the sprocket 71 attached to the output shaft 92 of the bevel gear mechanism 9.
  • the left rotation shaft 4A and the input shaft 51 of the speed increaser 5 are connected to each other via the main driving gear 93 and the driven gear 94, which are bevel gears meshing with each other in the vertical direction.
  • the drive chain 72 is hung around the sprocket 71 attached to the right rotation shaft 4B and the sprocket 71 attached to the input shaft 91 of the other bevel gear mechanism 9, and the drive chain 72 is attached to the gear portion 54a at the lower end of the ring gear 54. Hang around.
  • the right rotation shaft 4B and the ring gear 54 of the speed increaser 5 are connected via the main drive gear 93 and the driven gear 94, which are formed by meshing the bevel gears in the vertical direction.
  • a drive chain 74 is wound around and connected to the sprocket 73 attached to the output shaft 52 of the gearbox 5 and the sprocket 73 attached to the rotor 61 of the generator 6C.
  • the speed increaser 5 is horizontally installed on the upper surface of the float 1, and a generator 6 ⁇ / b> C is arranged on the side of the speed increaser 5 with the rotor 61 facing the horizontal direction.
  • the other structure is the same as that of the hydroelectric generator P1 of the first embodiment.
  • the rotation of the vertical shaft transmitted from the drive chain 72 to the input shaft 91 of the bevel gear 9 is the main driving gear. 93 and the driven gear 94 are converted into rotation of the horizontal axis. Then, the rotation of the output shaft 92 of the bevel gear 9 is transmitted from the input shaft 51 of the gearbox 5 to the planetary carrier 56 via the drive chain 72.
  • the rotation of the vertical shaft transmitted from the drive chain 72 to the input shaft 91 of the bevel gear 9 is converted into the rotation of the horizontal shaft via the main driving gear 93 and the driven gear 94. Is done. Then, the rotation of the output shaft 92 of the bevel gear 9 is transmitted to the ring gear 54 of the speed increaser 5 through the drive chain 72.
  • the speed increase ratio of the speed increaser 5 is doubled by using the rotation of the rotating shafts 4A and 4B that rotate in reverse directions, so that the power generation efficiency of the generator 6C can be improved. it can.
  • the cross flow type is adopted as the shape of the water turbine 3, but a turbine fan type as shown in FIG. 23 may be adopted instead.
  • This turbine fan type water turbine 3 (3C, 3D) has a substantially spherical main body 34 like a lemon as a whole, and a spiral groove 35 is formed on the outer periphery of the main body 34 in order to improve the passage of water. Is.
  • the water surely passes through the gap 33 between the blade 32 and the rotary shaft 4, and the water passing through the gap 33 is the curved surface of the blade 32 on the rear side. Since 32a is pressed again to apply a rotational force, it is suitable for installation in a relatively slow water flow having a flow velocity of about 1 to 2.5 m / sec. On the other hand, when installed in a fast water flow with a flow velocity of 2.5 m / sec or more, a turbine fan type with an increased overall strength by eliminating a gap through which water can pass to withstand the fast flow. It is preferable to use a water wheel 3 (3C, 3D).
  • the hydroelectric generator of the present invention can obtain efficient power generation energy by using the kinetic energy of water flowing in the horizontal direction, the following various use cases and the effects thereof can be considered.
  • Case of use in agricultural waterway Independent power supply to places where electricity was not used (2) Case of use in agricultural waterway Independent power supply to places where electricity was not used ( 3)
  • Use cases at water treatment facilities and power station discharge basins Creation of new industries and urban revitalization by effectively using waterways Creation of new businesses that make effective use of existing facilities, including PPP and PFI projects
  • FIG. 6 is a top view of FIG. 5.
  • FIG. 6 is a cross-sectional view taken along line AA in FIG.
  • FIG. 6 is a sectional view taken along line BB of FIG. FIG.
  • FIG. 6 is a cross-sectional view taken along the line CC of FIG. It is a perspective view which shows the principal part of the hydroelectric generator of 2nd Embodiment. It is a front view which shows typically the operation principle of the hydroelectric generator of FIG.
  • FIG. 13 is a top view of FIG. 12.
  • FIG. 13 is a sectional view taken along line AA in FIG. 12.
  • FIG. 13 is a sectional view taken along line BB in FIG. 12.
  • It is a perspective view which shows the principal part of the hydroelectric generator of 3rd Embodiment.
  • It is a side view which shows typically the operation principle of the hydroelectric generator of FIG.
  • FIG. 19 is a sectional view taken along line AA in FIG.
  • FIG. 19 is a sectional view taken along line BB in FIG. It is a longitudinal cross-sectional view which shows the modification of the water wheel in a hydroelectric generator.
  • Planet gear 56 ... Planetary carrier 6 ... Generator 61 ... Rotor 7 ... Power transmission mechanism 71 ... Sprocket 72 ... Drive chain 73 ... Sprocket 74 ... Drive chain 8 ... Tension adjusting mechanism 81 ... Loosening stop gear 82 ... Long hole 9 ... Bevel gear mechanism 91 ... Input shaft 92 ... Output shaft 93 ... Main drive gear 94 ... Subordinate Gear

Abstract

Provided is a hydraulic power generation device which can efficiently generate electric power even with a relatively small current. A hydraulic power generation device (P1) includes a pair of waterwheels (3A, 3B) rotating reversely to each other disposed in the waterway (23) of a casing (2) provided on the bottom surface of a float (1). The rotation shaft (4A) of the waterwheel (3A) on one side is coupled with the input shaft of a speed-increasing device (5), the rotating shaft (4B) of the waterwheel (3B) on the other side is coupled with the gear body of the speed-increasing device (5), and the input shaft and the gear body of the speed-increasing device (5) are rotated reversely to each other on the same axis, whereby a driving force with a doubled speed increase ratio can be outputted from the output shaft of the speed-increasing device (5) to a generator (6).

Description

水力発電装置Hydroelectric generator
 本発明は、河川や人工の用水路等に設置され、水の流れを利用して発電する水力発電装置に関する。 The present invention relates to a hydroelectric power generation apparatus that is installed in a river, an artificial irrigation channel, or the like, and generates power using the flow of water.
 従来、水路の途中に堰を設けることにより、水の落差を利用して発電を行う水力発電装置が知られている(例えば特許文献1参照)。この水力発電装置は、水の通路内に水車を設置したL字型のドラフトチューブを堰板の上流側に配置することにより、通路内を流れ落ちる水流によって水車を回転させ、その回転力を発電機に伝達して発電を行うように構成されている。 Conventionally, there has been known a hydroelectric power generation apparatus that generates power using a water drop by providing a weir in the middle of a water channel (see, for example, Patent Document 1). This hydroelectric power generator has an L-shaped draft tube with a water wheel installed in the water passage, and is arranged upstream of the weir plate to rotate the water wheel by the water flowing down the passage, and the rotational force is generated by the generator. It is comprised so that it may transmit to and may generate electric power.
特開平11-30179号公報Japanese Patent Laid-Open No. 11-30179
 しかしながら、このような水の落差を利用した水力発電装置の場合には、水路の途中に段差を形成するために、堰板やL字型のドラフトチューブ等を設置する必要がある。すなわち、水車の設置以外に発電のための専用の設備を敷設しなければならず、設置作業が面倒であり、発電コストも高くなるという問題があった。 However, in the case of a hydroelectric generator using such a water drop, it is necessary to install a dam plate, an L-shaped draft tube, or the like in order to form a step in the middle of the water channel. In other words, in addition to installing a water turbine, a dedicated facility for power generation has to be laid, and there is a problem that the installation work is troublesome and the power generation cost increases.
 そこで、本発明は上記の問題を解決するためになされたものであり、その目的とするところは、水の落差を利用せずに簡単に設置が可能な水力発電装置であって、特に、比較的小さな水流でも効率的な発電を行うことができる水力発電装置を提供することにある。 Therefore, the present invention has been made to solve the above-described problems, and the object of the present invention is a hydroelectric power generation apparatus that can be easily installed without using a water drop, and in particular, a comparison. It is an object of the present invention to provide a hydroelectric power generation apparatus that can efficiently generate power even with a small water flow.
 上記の目的を達成するため、本発明は、水平方向に流れる水流を利用して発電する水力発電装置であって、水面に浮上させるフロートと、フロートの底面に設けられ、水中に沈めた状態で上流側の取水口から下流側の排水口に向かって貫通した水路を有するケーシングと、ケーシングの水路の幅方向に間隔を空けて対向配置され、水路の中心部を通過する水流によって互いに逆回転する一対の水車と、水深方向に起立した姿勢で各水車の回転中心に固定され、上端部がフロートを介して水面上に突出する一対の回転軸と、回転軸に連結され、入力された回転軸の回転を増速して出力する増速機と、フロートの上面に設置され、増速機を介して出力された駆動力によって発電する発電機と、を備え、一方側の回転軸が増速機の入力軸に連結され、他方側の回転軸が増速機のギア本体に連結されており、増速機の入力軸とギア本体を同軸上で相対的に逆回転させることにより、増速比を倍増させた駆動力を増速機の出力軸から発電機に出力するようにしたことを特徴とする。 In order to achieve the above object, the present invention is a hydroelectric power generation device that generates electricity using a horizontally flowing water flow, a float that floats on the water surface, a bottom surface of the float, and a submerged state. A casing having a water channel penetrating from an upstream intake port toward a downstream drain port and a casing arranged opposite to each other in the width direction of the water channel of the casing, and reversely rotate with each other by the water flow passing through the central portion of the water channel A pair of water turbines, a pair of rotary shafts that are fixed to the rotation center of each water turbine in a standing posture in the depth direction, and whose upper end protrudes above the water surface via the float, and a rotary shaft that is connected to the rotary shaft and input A speed increaser that speeds up the output of the motor and a generator that is installed on the top surface of the float and that generates electric power using the driving force output through the speed increaser. Connected to the input shaft of the machine The drive shaft that doubles the speed increase ratio by rotating the other side of the rotation shaft to the gear body of the gearbox and rotating the input shaft of the gearbox and the gear body relatively on the same axis. Is output from the output shaft of the gearbox to the generator.
 本発明の水力発電装置において、増速機には遊星ギア機構を採用することができる。遊星ギア機構は、中心に配置されたサンギアと、サンギアの外周を取り囲むように設けられたリングギアと、サンギアとリングギアの間に配置されてサンギアの外歯とリングギアの内歯の両方に噛み合う複数個のプラネットギアと、プラネットギア同士を連結するプラネタリキャリアを備えて構成される。ここで、増速機に遊星ギア機構を採用した場合、回転軸と増速機と発電機の連結構造としては次のような構造が考えられる。 In the hydroelectric generator of the present invention, a planetary gear mechanism can be adopted as the speed increaser. The planetary gear mechanism includes a sun gear arranged at the center, a ring gear provided so as to surround the outer periphery of the sun gear, and both the outer gear of the sun gear and the inner gear of the ring gear arranged between the sun gear and the ring gear. A plurality of planet gears that mesh with each other and a planetary carrier that connects the planet gears together. Here, when the planetary gear mechanism is adopted for the speed increaser, the following structure is conceivable as a connection structure of the rotating shaft, the speed increaser, and the generator.
 A.定格電力が200~500W程度の発電機(小型発電機)を使用する場合
 一方側の回転軸がプラネタリキャリアに動力伝達機構を介して連結され、他方側の回転軸がリングギアに動力伝達機構を介して連結されており、プラネタリキャリアとリングギアを同軸上で相対的に逆回転させることで、プラネットギアからサンギアに伝達した駆動力を発電機に出力する構造であって、増速機の出力軸が発電機の回転子に直接連結されることにより、フロート上に垂直に配置された増速機の上方に発電機が垂直に載置されている構造
A. When using a generator (small generator) with a rated power of about 200 to 500 W One rotating shaft is connected to the planetary carrier via a power transmission mechanism, and the other rotating shaft is connected to the ring gear. The planetary carrier and the ring gear are rotated in reverse relative to each other on the same axis so that the driving force transmitted from the planet gear to the sun gear is output to the generator. A structure in which the generator is mounted vertically above the gearbox placed vertically on the float by connecting the shaft directly to the rotor of the generator
 B.定格電力が5~10KW程度の発電機(中型発電機)を使用する場合
 一方側の回転軸がプラネタリキャリアに動力伝達機構を介して連結され、他方側の回転軸がリングギアに動力伝達機構を介して連結されており、プラネタリキャリアとリングギアを同軸上で相対的に逆回転させることで、プラネットギアからサンギアに伝達した駆動力を発電機に出力する構造であって、増速機の出力軸が発電機の回転子に動力伝達機構を介して連結されることにより、フロート上に垂直に配置された増速機の側方に発電機が垂直に設置されている構造
B. When using a generator (medium generator) with a rated power of about 5 to 10 kW One rotating shaft is connected to the planetary carrier via a power transmission mechanism, and the other rotating shaft is connected to the ring gear. The planetary carrier and the ring gear are rotated in reverse relative to each other on the same axis so that the driving force transmitted from the planet gear to the sun gear is output to the generator. A structure in which the generator is vertically installed on the side of the gearbox arranged vertically on the float by connecting the shaft to the rotor of the generator via a power transmission mechanism
 C.定格電力が100~200KW程度の発電機(大型発電機)を使用する場合
 一方側の回転軸がプラネタリキャリアに動力伝達機構とベベルギア機構を介して連結され、他方側の回転軸がリングギアに動力伝達機構とベベルギア機構を介して連結され、増速機の出力軸が発電機の回転子に動力伝達機構を介して連結されることにより、フロート上に水平に配置された増速機の側方に発電機が水平に設置されている構造
C. When using a generator (large generator) with a rated power of about 100 to 200 kW One rotating shaft is connected to the planetary carrier via a power transmission mechanism and a bevel gear mechanism, and the other rotating shaft is powered by a ring gear. It is connected to the transmission mechanism and the bevel gear mechanism, and the output shaft of the gearbox is connected to the rotor of the generator via the power transmission mechanism. The generator is installed horizontally
 また、本発明の水力発電装置において、動力伝達機構を構成する駆動チェーン又は駆動ベルトの外周に、ギア軸が長孔内を摺動する緩み止めギアを当接させることで駆動チェーン又は駆動ベルトの張力を調整する張力調整機構が設けられていても良い。 Further, in the hydraulic power generation device of the present invention, the looseness-preventing gear in which the gear shaft slides in the long hole is brought into contact with the outer periphery of the drive chain or the drive belt constituting the power transmission mechanism, so that the drive chain or the drive belt A tension adjusting mechanism for adjusting the tension may be provided.
 また、本発明の水力発電装置において、ケーシングの取水口側に、取水口の開口端の面積を上流側から下流側に向かって徐々に減少させる水流増速部が設けられていると、取水口から取り込まれた水流がケーシング内で圧縮され、加速した水流が水路内を通過するようになるので好ましい。 Further, in the hydroelectric generator of the present invention, when the water flow speed increasing portion for gradually decreasing the area of the opening end of the water intake port from the upstream side toward the downstream side is provided on the water intake side of the casing, Since the water flow taken in from the inside is compressed in the casing and the accelerated water flow passes through the water channel, it is preferable.
 また、本発明の水力発電装置において、ケーシングの排水口側に、排水口の開口端の面積を上流側から下流側に向かって徐々に増大させる乱流抑制部が設けられていると、ケーシング内の水路から流れ出る水が乱流抑制部で解放され、排水口よりも下流側の周辺部に発生する乱流が抑制されるので好ましい。 Further, in the hydroelectric generator of the present invention, when a turbulent flow suppressing portion that gradually increases the area of the opening end of the drain port from the upstream side toward the downstream side is provided on the drain port side of the casing, This is preferable because water flowing out from the water channel is released by the turbulent flow suppressing portion and turbulent flow generated in the peripheral portion downstream of the drain port is suppressed.
 なお、水車の形状としては、クロスフロー型やタービンファン型を採用することができる。クロスフロー型とは、回転軸に固定した上下の円盤間の円周方向に湾曲板状の羽根を複数枚並べて配置して、羽根と回転軸の間に水が通り抜ける隙間を設けたものである。このクロスフロー型の水車によれば、水が羽根と回転軸の間の隙間を確実に通り抜け、隙間を通り抜けた水が後方側の羽根を再度押して回転力を付与するので、流速1~2.5m/sec程度の比較的流れの遅い水流に設置する場合に好適である。これに対して、タービンファン型とは、回転軸に固定した本体の外周に螺旋状の溝を形成したものである。このタービンファン型の水車は、水が通り抜ける隙間が無く、クロスフロー型の水車に比べて強度が高いので、流速2.5m/sec以上の流れの速い水流に設置する場合に好適である。 As the shape of the water wheel, a cross flow type or a turbine fan type can be adopted. The cross-flow type is one in which a plurality of curved plate-like blades are arranged side by side in the circumferential direction between the upper and lower disks fixed to the rotating shaft, and a gap through which water passes is provided between the blades and the rotating shaft. . According to this cross-flow type water wheel, water reliably passes through the gap between the blade and the rotating shaft, and the water passing through the gap pushes the blade on the rear side again to give a rotational force. It is suitable for installation in a relatively slow water flow of about 5 m / sec. On the other hand, the turbine fan type has a spiral groove formed on the outer periphery of a main body fixed to a rotating shaft. This turbine fan type turbine has no gap through which water passes, and has a higher strength than a cross-flow type turbine, and thus is suitable for installation in a fast water flow with a flow rate of 2.5 m / sec or more.
 本発明の水力発電装置によれば、水流を加速させて水の運動エネルギーを高めるとともに、高めた運動エネルギーによって互いに逆回転する水車の回転を利用して増速機の入力軸とギア本体を同軸上で相対的に逆回転させることにより、増速比を倍増させた駆動力を増速機の出力軸から発電機に出力するようにした。このため、速度の遅い水流に設置する場合であっても、発電量を多くするために増速機のギア比を大きくしたり発電機の極数を増やしたりしなくても済み、装置の小型化とコストダウンを図れ、発電機の発電効率を大幅に向上させることができるという効果が得られる。 According to the hydroelectric generator of the present invention, the water flow is accelerated to increase the kinetic energy of the water, and the input shaft of the gearbox and the gear body are coaxially used by utilizing the rotations of the water turbines that are reversely rotated by the increased kinetic energy. By relatively rotating in the reverse direction, the driving force that doubles the speed increase ratio is output from the output shaft of the speed increaser to the generator. For this reason, even when installing in a slow water stream, it is not necessary to increase the gear ratio of the gearbox or increase the number of poles of the generator in order to increase the amount of power generation. And the cost can be reduced, and the power generation efficiency of the generator can be greatly improved.
 以下、本発明を実施するための形態(第1~3実施形態)について、図面を参照しながら説明する。 Hereinafter, modes (first to third embodiments) for carrying out the present invention will be described with reference to the drawings.
[第1実施形態]
 第1実施形態の水力発電装置を図1~10に示す。図1は同装置の外観を示す斜視図、図2と図3は同装置の内部構造を示す断面図、図4は同装置の主要部を示す斜視図、図5は同装置の動作原理を示す正面図、図6は同装置における増速機の拡大図、図7は同装置の上面図、図8~10は同装置の部分断面図である。
[First Embodiment]
A hydroelectric generator according to a first embodiment is shown in FIGS. 1 is a perspective view showing the external appearance of the apparatus, FIGS. 2 and 3 are cross-sectional views showing the internal structure of the apparatus, FIG. 4 is a perspective view showing the main part of the apparatus, and FIG. FIG. 6 is an enlarged view of the speed increaser in the apparatus, FIG. 7 is a top view of the apparatus, and FIGS. 8 to 10 are partial sectional views of the apparatus.
 図1に示すように、本実施形態の水力発電装置P1は、河川または工業用水路や農業用水路等の人工水路に浮かべて設置され、ほぼ水平方向に流れる水の移動エネルギーを電気エネルギーに変換して発電するフロート型の流水式発電装置である。この水力発電装置P1は、フロート1と、ケーシング2と、水車3と、回転軸4と、増速機5と、発電機6を備えて大略構成されている。以下、各部の構造について詳細に説明する。 As shown in FIG. 1, the hydroelectric generator P1 of the present embodiment is installed floating on an artificial waterway such as a river or an industrial waterway or an agricultural waterway, and converts the moving energy of water flowing in a substantially horizontal direction into electric energy. This is a float-type flowing water generator that generates electricity. This hydroelectric generator P1 is generally configured to include a float 1, a casing 2, a water wheel 3, a rotating shaft 4, a speed increaser 5, and a generator 6. Hereinafter, the structure of each part will be described in detail.
 フロート1は、中空構造体からなり、少なくとも増速機5と発電機6を水面より上に設置するためのものである。このフロート1は河川や用水路の川縁(陸上)に置かれた構造物に固定するか、あるいは水上に設置されている他の構造物に固定するための構成部品として設けられている。この水力発電装置P1によれば、水面に浮上させたフロート1を構造物に固定するだけの簡単な作業で設置が完了するので、極めて低コストで設置することが可能である。 The float 1 is made of a hollow structure and is used for installing at least the speed increaser 5 and the generator 6 above the water surface. The float 1 is provided as a component for fixing to a structure placed on the river rim (land) of a river or an irrigation channel, or to another structure installed on the water. According to this hydroelectric power generation device P1, the installation is completed by a simple operation of simply fixing the float 1 floated on the water surface to the structure, so that it can be installed at a very low cost.
 ケーシング2は、例えばアクリル等のプラスチック板やステンレス等の金属板を略方形管状に成形したものであり、フロート1の底面に固定されている。このケーシング2は流れの生じている水中に沈めた状態で設置され、水流の上流側に開口した取水口21から下流側に開口した排水口22に向かって貫通した水路23を有している。このようにフロート1の底面に固定したケーシング2に取水口21を設けたことにより、河川や用水路の水深や水位の変動に影響されず、常に水面付近(水の移動エネルギーが最大となる位置)に流れる水を取水口21から取り込むことができる。 The casing 2 is formed by molding a plastic plate such as acrylic or a metal plate such as stainless steel into a substantially rectangular tube shape, and is fixed to the bottom surface of the float 1. The casing 2 is installed in a state where it is submerged in the flowing water, and has a water passage 23 penetrating from a water intake port 21 opened on the upstream side of the water flow toward a drain port 22 opened on the downstream side. By providing the intake port 21 in the casing 2 fixed to the bottom surface of the float 1 in this manner, it is always near the water surface (a position where the movement energy of water is maximized) without being affected by fluctuations in the water depth and water level of the river and the canal. The water flowing through the water can be taken from the water inlet 21.
 図2に示すように、ケーシング2の取水口21側には水流増速部24が設けられている。この水流増速部24は、取水口21の開口端の面積が上流側から下流側に向かって徐々に減少するように、テーパ状の整流板をケーシング2の本体に一体成形したものであり、取水口21から水路23に到達するまでの過程で水の通過面積を狭めて圧縮し、ケーシング2内を圧力管状態にする。これにより、ベルヌーイの定理によって損失水頭(摩擦抵抗)を最小限に軽減し、取水口21から取り込まれる水の流速V1を流速V2に増加させ、加速した水流が水路23内を通過するようになっている。 As shown in FIG. 2, a water flow speed increasing portion 24 is provided on the intake port 21 side of the casing 2. The water flow speed increasing portion 24 is formed by integrally forming a tapered rectifying plate on the main body of the casing 2 so that the area of the opening end of the water intake 21 gradually decreases from the upstream side toward the downstream side. In the process of reaching the water channel 23 from the water intake 21, the water passage area is narrowed and compressed, and the inside of the casing 2 is brought into a pressure pipe state. As a result, the loss head (friction resistance) is reduced to a minimum by Bernoulli's theorem, the flow velocity V1 of water taken from the intake 21 is increased to the flow velocity V2, and the accelerated water flow passes through the water channel 23. ing.
 ケーシング2の排水口22側には乱流抑制部25が設けられている。この乱流抑制部25は、排水口22の開口端の面積が上流側から下流側に向かって徐々に増大するように、テーパ状の整流板をケーシング2本体に一体成形したものである。ケーシング2内の水路23を流れる水の流速は水流増速部24によってケーシング2の本体の外側を流れる水の流速よりも大きくなるため、両者が排水口22付近で直接合流すると速度差に起因して乱流が発生する場合がある。そこで、ケーシング2内の水路23から流れ出る水を乱流抑制部25で解放し、流速V2を流速V3に低下させつつスムーズに排水することによって、排水口22よりも下流側の周辺部に発生する乱流を抑制し、発電流量を調整できるようになっている。 A turbulent flow suppressing portion 25 is provided on the drain port 22 side of the casing 2. The turbulent flow suppression unit 25 is formed by integrally forming a tapered rectifying plate in the casing 2 main body so that the area of the opening end of the drain port 22 gradually increases from the upstream side toward the downstream side. Since the flow velocity of the water flowing through the water channel 23 in the casing 2 becomes larger than the flow velocity of the water flowing outside the main body of the casing 2 by the water flow speed increasing portion 24, if the two merge directly in the vicinity of the drainage port 22, it is caused by the speed difference. Turbulence may occur. Therefore, the water flowing out from the water channel 23 in the casing 2 is released by the turbulent flow suppression unit 25 and smoothly drained while the flow velocity V2 is reduced to the flow velocity V3, so that the water is generated in the peripheral portion downstream of the drain port 22. Turbulence is suppressed and the power generation flow rate can be adjusted.
 ケーシング2内の水路23には一対の水車3(3A,3B)が収容されている。本実施形態の水車3は垂直軸型の2軸構造であり、一対の水車3A,3Bが水路23の幅方向に所定間隔を空けて対向配置され、水路23を通過する水流によって互いに逆回転するように構成されている。水車3を回転させるために、各々の水車3A,3Bの中心部には回転軸4(4A,4B)が固定されている。図3に示すように、回転軸4はケーシング2の水路23内で水深方向(鉛直方向)に起立した姿勢で設けられており、上端部がフロート1の貫通孔11を突き抜けて水面上に突出し、下端部がケーシング2の底面の軸受41によって回転可能に支持されている。 A pair of water turbines 3 (3A, 3B) are accommodated in the water channel 23 in the casing 2. The water turbine 3 of the present embodiment has a vertical shaft type biaxial structure, and a pair of water turbines 3A and 3B are arranged to face each other at a predetermined interval in the width direction of the water channel 23, and rotate reversely with each other by the water flow passing through the water channel 23. It is configured as follows. In order to rotate the water wheel 3, a rotation shaft 4 (4 </ b> A, 4 </ b> B) is fixed to the center of each of the water wheels 3 </ b> A, 3 </ b> B. As shown in FIG. 3, the rotary shaft 4 is provided in a posture standing in the water depth direction (vertical direction) in the water channel 23 of the casing 2, and the upper end portion projects through the through hole 11 of the float 1 and projects above the water surface. The lower end is rotatably supported by a bearing 41 on the bottom surface of the casing 2.
 本実施形態において、水車3の形状はクロスフロー型を採用している。図4に詳細に示すように、このクロスフロー型の水車3は、水の圧力を直接受けて回転する抗力型の一種であり、上下の円盤31,31を回転軸4に固定し、その円盤31,31間に複数枚の湾曲板状の羽根32,32,…を円盤31の円周方向に等間隔で並べて配置して、羽根32と回転軸4の間に水が通り抜ける隙間33を設けたものである。これにより、両方の水車3A,3Bは一対の回転軸4A,4B間を通過する水の圧力を複数枚の羽根32,32,…の湾曲面32aで受けて回転する。また、図2において、水路23の中心部を通過する最大流速の水流が両水車3A,3Bの最も内側の羽根32,32の先端部に衝突することによって、左側に配置された水車3Aは回転軸4Bを中心にして矢印S1方向に回転し、右側に配置された水車3Bは回転軸4Bを中心にして矢印S2方向に回転するようになっている。 In the present embodiment, the shape of the water turbine 3 is a cross flow type. As shown in detail in FIG. 4, this cross-flow type water turbine 3 is a kind of drag type that directly receives water pressure and rotates. The upper and lower disks 31, 31 are fixed to the rotating shaft 4, and the disk A plurality of curved plate- like blades 32, 32,... Are arranged at equal intervals in the circumferential direction of the disk 31, and a gap 33 through which water passes is provided between the blades 32 and the rotating shaft 4. It is a thing. Accordingly, both water turbines 3A and 3B rotate by receiving the pressure of water passing between the pair of rotating shafts 4A and 4B by the curved surfaces 32a of the plurality of blades 32, 32,. In FIG. 2, the water turbine 3A disposed on the left side rotates as the water flow having the maximum flow velocity passing through the center portion of the water channel 23 collides with the tip portions of the innermost blades 32 and 32 of the two water turbines 3A and 3B. The water turbine 3B arranged on the right side rotates about the axis 4B, and rotates in the direction of arrow S2 about the rotation axis 4B.
 また、水車3の回転効率を考慮して、ケーシング2には水流規制部26が設けられている。この水流規制部26は、ケーシング2の水路23の幅方向において、回転軸4とケーシング2の間を流れる水流を規制するようにケーシング2の壁面を湾曲状に成形したものである。より詳しくは、クロスフロー型の水車3に逆方向の回転が生じないように、ケーシング2の内部に個々の水車3A,3Bの外側半分を覆う湾曲壁(言い換えれば、水路23内において両側の回転軸4A,4Bよりも外側に位置する複数枚の羽根32,32,…を囲んだ形状の湾曲壁)が設けられている。このため、水路23内を流れる水の進路が湾曲壁に沿って規制され、これにより一対の水車3A,3Bが効率良く回転し、大きな回転力を得ることができる。 Further, in consideration of the rotational efficiency of the water turbine 3, the casing 2 is provided with a water flow restricting portion 26. The water flow restricting portion 26 is formed by bending the wall surface of the casing 2 in a curved shape so as to restrict the water flow flowing between the rotary shaft 4 and the casing 2 in the width direction of the water passage 23 of the casing 2. More specifically, a curved wall covering the outer half of each of the water turbines 3A and 3B inside the casing 2 (in other words, rotating on both sides in the water channel 23 so that the cross flow type water turbine 3 does not rotate in the opposite direction. A curved wall having a shape surrounding a plurality of blades 32, 32,... Located outside the shafts 4A, 4B. For this reason, the course of the water flowing in the water channel 23 is regulated along the curved wall, whereby the pair of water turbines 3A and 3B can efficiently rotate and a large rotational force can be obtained.
 上記のようにして一対の水車3A,3Bが回転すると、その回転力はそれぞれの回転軸4A,4Bから増速機5を介して発電機6に伝達される。ここで、本実施形態の水力発電装置P1は、水流を加速させて水の運動エネルギーを高めるとともに、高めた運動エネルギーによって互いに逆回転する2軸構造の水車3A,3Bの回転力を効果的に利用することにより、増速機5の増速比を高くして発電機6の発電効率を向上させたことが特徴である。そのための構造として、一対の回転軸4A,4Bにそれぞれ別々に増速機5を連結するのではなく、図4に示すように一対の回転軸4A,4Bを一個の増速機5に連結するようにした。 When the pair of water turbines 3A, 3B rotates as described above, the rotational force is transmitted from the respective rotating shafts 4A, 4B to the generator 6 via the speed increaser 5. Here, the hydroelectric power generation device P1 of the present embodiment accelerates the water flow to increase the kinetic energy of the water, and effectively uses the rotational force of the two- shaft structure turbines 3A and 3B that are rotated in reverse by the increased kinetic energy. It is characterized in that the power generation efficiency of the generator 6 is improved by increasing the speed increase ratio of the speed increaser 5 by using the power generator. As a structure for this purpose, the pair of rotating shafts 4A and 4B are not connected to the pair of rotating shafts 4A and 4B separately, but the pair of rotating shafts 4A and 4B are connected to one speed increasing device 5 as shown in FIG. I did it.
 図5において、増速機5は、入力軸51に入力された回転軸4A,4Bの回転数を増加して発電機6の定格回転数に調整し、その回転数の駆動力を出力軸52から出力して発電機6に伝達する機能を有する。より詳細に説明すると、図6に示すように、本実施形態の増速機5は遊星ギア機構からなり、中心に配置されたサンギア53と、サンギア53の外周を取り囲むように設けられたリングギア54と、サンギア53とリングギア54の間に配置されてサンギア53の外歯とリングギア54の内歯の両方に噛み合う複数個のプラネットギア55,55,…と、プラネットギア55,55同士を連結する上下のプラネタリキャリア56,56を備えて構成されている。また、入力軸51はプラネタリキャリア56に接続され、出力軸52はサンギア53に接続されている。 In FIG. 5, the speed increaser 5 increases the rotational speeds of the rotary shafts 4 </ b> A and 4 </ b> B input to the input shaft 51 to adjust to the rated rotational speed of the generator 6, and the driving force of the rotational speed is output to the output shaft 52. Output to the generator 6. More specifically, as shown in FIG. 6, the speed increaser 5 according to the present embodiment includes a planetary gear mechanism, and a sun gear 53 disposed in the center and a ring gear provided so as to surround the outer periphery of the sun gear 53. 54, a plurality of planet gears 55, 55,... That are arranged between the sun gear 53 and the ring gear 54 and mesh with both the outer teeth of the sun gear 53 and the inner teeth of the ring gear 54. The upper and lower planetary carriers 56 and 56 to be connected are provided. The input shaft 51 is connected to the planetary carrier 56, and the output shaft 52 is connected to the sun gear 53.
 図5に戻って回転軸4と増速機5との関係を見ると、左側の回転軸4Aが入力軸51に連結され、右側の回転軸4Bがリングギア54に連結されている。その連結構造として、本実施形態ではスプロケットとチェーンからなる動力伝達機構7を採用しており、左側の回転軸4Aに装着したスプロケット71と増速機5の入力軸51に装着したスプロケット71に駆動チェーン72を掛け回して連結し、右側の回転軸4Bに装着したスプロケット71とリングギア54の下端に設けたギア部54aに駆動チェーン72を掛け回して連結してある。なお、スプロケット71とチェーン72による動力伝達機構7に代えて、図示しないプーリとベルトによる動力伝達機構を採用しても良い。 Referring back to FIG. 5 and seeing the relationship between the rotary shaft 4 and the speed increaser 5, the left rotary shaft 4A is connected to the input shaft 51, and the right rotary shaft 4B is connected to the ring gear 54. In this embodiment, a power transmission mechanism 7 composed of a sprocket and a chain is adopted as the connection structure, and the sprocket 71 attached to the left rotating shaft 4A and the sprocket 71 attached to the input shaft 51 of the speed increasing device 5 are driven. The chain 72 is hung and connected, and the drive chain 72 is hung and connected to a sprocket 71 mounted on the right rotation shaft 4B and a gear portion 54a provided at the lower end of the ring gear 54. Instead of the power transmission mechanism 7 using the sprocket 71 and the chain 72, a power transmission mechanism using a pulley and a belt (not shown) may be employed.
 また、回転軸4の駆動力を増速機5に確実に伝達するために、図7~10に示すように、すべての駆動チェーン72に対して張力調整機構8が設けられている。この張力調整機構8は、緩み止めギア81と長孔82で構成されており、緩み止めギア81のギア軸81aが長孔82に嵌められている。このため、ギア軸81aを長孔82内で摺動させて緩み止めギア81を駆動チェーン72の外周に圧接することにより、駆動チェーン72の張力調整を容易に行える。 Further, in order to reliably transmit the driving force of the rotating shaft 4 to the speed increaser 5, as shown in FIGS. 7 to 10, tension adjusting mechanisms 8 are provided for all the drive chains 72. The tension adjusting mechanism 8 includes a locking gear 81 and a long hole 82, and a gear shaft 81 a of the locking gear 81 is fitted in the long hole 82. For this reason, the tension of the drive chain 72 can be easily adjusted by sliding the gear shaft 81 a in the long hole 82 and press-contacting the locking gear 81 to the outer periphery of the drive chain 72.
 さらに、図5において、増速機5の出力軸52を発電機6の回転子61に直接連結することにより、増速機5と発電機6が接続されている。本実施形態では、図1に示したように、増速機5をフロート1の上面に垂直に設置し、その上方に発電機6を垂直に載置した構造になっている。また、増速機5の上に発電機6を載置する関係から、本実施形態の発電機6(6A)は、定格電力が200~500W程度の小型のものを使用している。したがって、この水力発電装置P1は、増速機5と発電機6からなる発電部品が水面よりも上に設置されるので、製造コストを安価にでき、しかもこれらの部品のメンテナンスを簡単に行うことができる。 Further, in FIG. 5, the speed increaser 5 and the generator 6 are connected by directly connecting the output shaft 52 of the speed increaser 5 to the rotor 61 of the generator 6. In the present embodiment, as shown in FIG. 1, the speed increaser 5 is vertically installed on the upper surface of the float 1, and the generator 6 is vertically placed thereon. Further, since the generator 6 is mounted on the speed increaser 5, the generator 6 (6A) of the present embodiment is a small one having a rated power of about 200 to 500W. Therefore, in this hydroelectric power generation device P1, since the power generation parts composed of the speed increaser 5 and the power generator 6 are installed above the water surface, the manufacturing cost can be reduced and the maintenance of these parts can be easily performed. Can do.
 本実施形態の水力発電装置P1は以上のように構成されており、ケーシング2内の水路23を水流が通過すると、一対の水車3A,3Bがそれぞれの回転軸4A,4Bを中心にして互いに逆回転する。ここで、図5と図6に示したように、左側の回転軸4Aは矢印S1方向に回転するが、このとき駆動チェーン72を介して増速機5の入力軸51が同じ方向に回転し、その回転が入力軸51からプラネタリキャリア56に伝達する。また、このとき右側の回転軸4Bは逆に矢印S2方向に回転するが、その回転は駆動チェーン72を介して増速機5のリングギア54に伝達する。これにより、増速機5ではプラネタリキャリア56とリングギア54が同軸上で相対的に逆回転し、プラネットギア55からサンギア53に伝達した駆動力が出力軸52から発電機6の回転子61に出力される。 The hydroelectric generator P1 of the present embodiment is configured as described above. When a water flow passes through the water passage 23 in the casing 2, the pair of water turbines 3A and 3B are opposite to each other about the respective rotation shafts 4A and 4B. Rotate. Here, as shown in FIGS. 5 and 6, the left rotation shaft 4A rotates in the arrow S1 direction. At this time, the input shaft 51 of the gearbox 5 rotates in the same direction via the drive chain 72. The rotation is transmitted from the input shaft 51 to the planetary carrier 56. At this time, the right rotation shaft 4B rotates in the direction of the arrow S2 on the contrary, and the rotation is transmitted to the ring gear 54 of the speed increaser 5 through the drive chain 72. As a result, in the gearbox 5, the planetary carrier 56 and the ring gear 54 relatively rotate on the same axis and the driving force transmitted from the planet gear 55 to the sun gear 53 is transferred from the output shaft 52 to the rotor 61 of the generator 6. Is output.
 したがって、本実施形態の水力発電装置P1によれば、速度の遅い水流に設置した場合であっても、プラネタリキャリア56とリングギア54の相対的な逆回転によって、増速機5の増速比が倍増し、出力軸52から発電機6の回転子61に出力される駆動力が極めて大きくなる。よって、発電量を多くするために増速機5のギア比を大きくしたり発電機6の極数を増やしたりしなくても済み、装置の小型化とコストダウンを図れ、発電機6の発電効率を大幅に向上させることができる。 Therefore, according to the hydroelectric generator P1 of the present embodiment, the speed increase ratio of the speed increaser 5 can be increased by the relative reverse rotation of the planetary carrier 56 and the ring gear 54 even when installed in a slow water flow. Is doubled, and the driving force output from the output shaft 52 to the rotor 61 of the generator 6 becomes extremely large. Therefore, it is not necessary to increase the gear ratio of the speed increaser 5 or increase the number of poles of the generator 6 in order to increase the amount of power generation. Efficiency can be greatly improved.
[第2実施形態]
 第2実施形態の水力発電装置を図11~16に示す。図11は同装置の主要部を示す斜視図、図12は同装置の動作原理を示す正面図、図13は同装置の上面図、図14~16は同装置の部分断面図である。なお、本実施形態において、図1~10で説明した第1実施形態の水力発電装置P1と同一の構成については同一の符号を付与し、その詳細な説明を省略する。
[Second Embodiment]
A hydroelectric generator according to a second embodiment is shown in FIGS. 11 is a perspective view showing the main part of the apparatus, FIG. 12 is a front view showing the operating principle of the apparatus, FIG. 13 is a top view of the apparatus, and FIGS. 14 to 16 are partial sectional views of the apparatus. In the present embodiment, the same components as those of the hydroelectric generator P1 of the first embodiment described with reference to FIGS. 1 to 10 are denoted by the same reference numerals, and detailed description thereof is omitted.
 図11に示すように、本実施形態の水力発電装置P2は、第1実施形態の水力発電装置P1で使用した小型の発電機6(6A)に代えて、定格電力が5~10KW程度の中型の発電機6(6B)を使用したものである。中型の発電機6Bを使用する場合、その重量はおよそ100kgを超えるため、第1実施形態のように増速機5の上に発電機6Bを載置するとその荷重によって増速機5に負荷が掛かり、ギアが回転しないか場合によってはギアが潰れて故障してしまい、回転軸4(4A,4B)の回転力を発電機6に伝達できなくなる。 As shown in FIG. 11, the hydroelectric generator P2 of the present embodiment is a medium-sized rated power of about 5 to 10 kW instead of the small generator 6 (6A) used in the hydroelectric generator P1 of the first embodiment. The generator 6 (6B) is used. When the medium generator 6B is used, its weight exceeds approximately 100 kg. Therefore, when the generator 6B is placed on the speed increaser 5 as in the first embodiment, the load on the speed increaser 5 is increased by the load. As a result, the gear does not rotate or in some cases the gear is crushed and breaks down, and the rotational force of the rotating shaft 4 (4A, 4B) cannot be transmitted to the generator 6.
 そこで、本実施形態では発電機6Bを増速機5に対して新たな動力伝達機構7によって連結するようにした。すなわち、図11~16に示すように、増速機5の出力軸52と発電機6Bの回転子61にそれぞれスプロケット73を装着し、両スプロケット73,73に駆動チェーン74を掛け回して連結してある。これにより、増速機5がフロート1の上面に垂直に設置され、その増速機5の側方に発電機6Bを垂直に縦置きした構造になっている。なお、その他の構造は第1実施形態の水力発電装置P1と同様である。 Therefore, in this embodiment, the generator 6B is connected to the speed increaser 5 by a new power transmission mechanism 7. That is, as shown in FIGS. 11 to 16, the sprocket 73 is mounted on the output shaft 52 of the speed increaser 5 and the rotor 61 of the generator 6B, respectively, and the drive chain 74 is hung around the sprockets 73 and 73 and connected. It is. As a result, the speed increaser 5 is vertically installed on the upper surface of the float 1, and the generator 6 </ b> B is vertically placed on the side of the speed increaser 5. The other structure is the same as that of the hydroelectric generator P1 of the first embodiment.
 このように、本実施形態の水力発電装置P2によれば、発電機6Bを増速機5の上に載せずに増速機5の側方に配置したことにより、発電機6Bの重みで増速機5が故障することはなく、回転軸4(4A,4B)の回転力が増速機5を介して発電機6Bに確実に伝達される。したがって、第1実施形態と同様に、互いに逆回転する回転軸4A,4Bの回転を利用することで増速機5による増速比が倍増するので、発電機6Bの発電効率を向上させることができる。 As described above, according to the hydroelectric generator P2 of the present embodiment, the generator 6B is arranged on the side of the speed increaser 5 without being placed on the speed increaser 5, thereby increasing the weight of the generator 6B. The speed machine 5 does not break down, and the rotational force of the rotating shaft 4 (4A, 4B) is reliably transmitted to the generator 6B via the speed increaser 5. Therefore, as in the first embodiment, the speed increase ratio of the speed increaser 5 is doubled by using the rotations of the rotating shafts 4A and 4B that rotate in reverse directions, so that the power generation efficiency of the generator 6B can be improved. it can.
[第3実施形態]
 第3実施形態の水力発電装置を図17~22に示す。図17は同装置の主要部を示す斜視図、図18と図19は同装置の動作原理を示す正面図と側面図、図20は同装置の上面図、図21と図22は同装置の部分断面図である。なお、本実施形態において、図1~10で説明した第1実施形態の水力発電装置P1と同一の構成については同一の符号を付与し、その詳細な説明を省略する。
[Third Embodiment]
A hydroelectric generator according to a third embodiment is shown in FIGS. 17 is a perspective view showing the main part of the apparatus, FIGS. 18 and 19 are a front view and a side view showing the operation principle of the apparatus, FIG. 20 is a top view of the apparatus, and FIGS. It is a fragmentary sectional view. In the present embodiment, the same components as those of the hydroelectric generator P1 of the first embodiment described with reference to FIGS. 1 to 10 are denoted by the same reference numerals, and detailed description thereof is omitted.
 図17に示すように、本実施形態の水力発電装置P3は、第1実施形態の水力発電装置P1で使用した小型の発電機6(6A)に代えて、定格電力が100~200KW程度の大型の発電機6(6C)を使用したものである。このような大型の発電機6Cは、通常その重量が1tを超えるものであり、中型の発電機6Bと同じく増速機5の上に載置することは勿論不可能である。しかも大型の発電機6Cは回転子61に入力される回転が極めて高速であり、その高速回転に対応するために直径を小さくして軸方向に長くした形態のものが多い。 As shown in FIG. 17, the hydroelectric power generator P3 of this embodiment is a large-sized power having a rated power of about 100 to 200 kW instead of the small power generator 6 (6A) used in the hydroelectric power generator P1 of the first embodiment. The generator 6 (6C) is used. Such a large generator 6C usually has a weight exceeding 1 t, and of course cannot be placed on the speed increaser 5 like the medium generator 6B. In addition, the large generator 6C has an extremely high speed of rotation input to the rotor 61, and in many cases, the diameter is reduced and the length is increased in the axial direction in order to cope with the high speed rotation.
 そこで、本実施形態では増速機5を回転軸4(4A,4B)に対して動力伝達機構7とベベルギア機構9で連結し、発電機6Cを増速機5に対して動力伝達機構7で連結することにより、発電機6Cを横置きにした。 Therefore, in this embodiment, the speed increaser 5 is connected to the rotating shaft 4 (4A, 4B) by the power transmission mechanism 7 and the bevel gear mechanism 9, and the generator 6C is connected to the speed increaser 5 by the power transmission mechanism 7. By connecting, the generator 6C was placed horizontally.
 より詳細には、図17~22に示すように、左側の回転軸4Aに装着したスプロケット71とベベルギア機構9の入力軸91に装着したスプロケット71に駆動チェーン72を掛け回し、増速機5の入力軸51に装着したスプロケット71とベベルギア機構9の出力軸92に装着したスプロケット71に駆動チェーン72を掛け回す。これにより、左側の回転軸4Aと増速機5の入力軸51が、傘歯車同士を垂直方向に噛み合わせてなる主動ギア93と従動ギア94を介して連結されている。 More specifically, as shown in FIGS. 17 to 22, a drive chain 72 is wound around the sprocket 71 attached to the left rotating shaft 4A and the sprocket 71 attached to the input shaft 91 of the bevel gear mechanism 9 to The drive chain 72 is wound around the sprocket 71 attached to the input shaft 51 and the sprocket 71 attached to the output shaft 92 of the bevel gear mechanism 9. As a result, the left rotation shaft 4A and the input shaft 51 of the speed increaser 5 are connected to each other via the main driving gear 93 and the driven gear 94, which are bevel gears meshing with each other in the vertical direction.
 また、右側の回転軸4Bに装着したスプロケット71ともう一つのベベルギア機構9の入力軸91に装着したスプロケット71に駆動チェーン72を掛け回し、リングギア54の下端のギア部54aに駆動チェーン72を掛け回す。これにより、右側の回転軸4Bと増速機5のリングギア54が、傘歯車同士を垂直方向に噛み合わせてなる主動ギア93と従動ギア94を介して連結されている。 Further, the drive chain 72 is hung around the sprocket 71 attached to the right rotation shaft 4B and the sprocket 71 attached to the input shaft 91 of the other bevel gear mechanism 9, and the drive chain 72 is attached to the gear portion 54a at the lower end of the ring gear 54. Hang around. As a result, the right rotation shaft 4B and the ring gear 54 of the speed increaser 5 are connected via the main drive gear 93 and the driven gear 94, which are formed by meshing the bevel gears in the vertical direction.
 更に、増速機5の出力軸52に装着したスプロケット73と発電機6Cの回転子61に装着したスプロケット73に駆動チェーン74を掛け回して連結してある。これにより、増速機5はフロート1の上面に水平に設置され、その増速機5の側方に発電機6Cが回転子61を水平方向に向けて配置した構造になっている。なお、その他の構造は第1実施形態の水力発電装置P1と同様である。 Furthermore, a drive chain 74 is wound around and connected to the sprocket 73 attached to the output shaft 52 of the gearbox 5 and the sprocket 73 attached to the rotor 61 of the generator 6C. Thus, the speed increaser 5 is horizontally installed on the upper surface of the float 1, and a generator 6 </ b> C is arranged on the side of the speed increaser 5 with the rotor 61 facing the horizontal direction. The other structure is the same as that of the hydroelectric generator P1 of the first embodiment.
 このように、本実施形態の水力発電装置P3によれば、左側の回転軸4Aが矢印S1方向に回転すると、駆動チェーン72からベベルギア9の入力軸91に伝達された垂直軸の回転が主動ギア93と従動ギア94を介して水平軸の回転に変換される。そして、ベベルギア9の出力軸92の回転が駆動チェーン72を介して増速機5の入力軸51からプラネタリキャリア56に伝達する。また、右側の回転軸4Bが矢印S2方向に回転すると、駆動チェーン72からベベルギア9の入力軸91に伝達された垂直軸の回転が主動ギア93と従動ギア94を介して水平軸の回転に変換される。そして、ベベルギア9の出力軸92の回転が駆動チェーン72を介して増速機5のリングギア54に伝達する。 Thus, according to the hydroelectric generator P3 of the present embodiment, when the left rotation shaft 4A rotates in the arrow S1 direction, the rotation of the vertical shaft transmitted from the drive chain 72 to the input shaft 91 of the bevel gear 9 is the main driving gear. 93 and the driven gear 94 are converted into rotation of the horizontal axis. Then, the rotation of the output shaft 92 of the bevel gear 9 is transmitted from the input shaft 51 of the gearbox 5 to the planetary carrier 56 via the drive chain 72. When the right rotation shaft 4B rotates in the direction of arrow S2, the rotation of the vertical shaft transmitted from the drive chain 72 to the input shaft 91 of the bevel gear 9 is converted into the rotation of the horizontal shaft via the main driving gear 93 and the driven gear 94. Is done. Then, the rotation of the output shaft 92 of the bevel gear 9 is transmitted to the ring gear 54 of the speed increaser 5 through the drive chain 72.
 これにより、増速機5ではプラネタリキャリア56とリングギア54が同軸上で相対的に逆回転し、プラネットギア55からサンギア53に伝達した駆動力が出力軸52から発電機6の回転子61に出力される。したがって、第1実施形態と同様に、互いに逆回転する回転軸4A,4Bの回転を利用することで増速機5による増速比が倍増するので、発電機6Cの発電効率を向上させることができる。 As a result, in the gearbox 5, the planetary carrier 56 and the ring gear 54 relatively rotate on the same axis and the driving force transmitted from the planet gear 55 to the sun gear 53 is transferred from the output shaft 52 to the rotor 61 of the generator 6. Is output. Therefore, as in the first embodiment, the speed increase ratio of the speed increaser 5 is doubled by using the rotation of the rotating shafts 4A and 4B that rotate in reverse directions, so that the power generation efficiency of the generator 6C can be improved. it can.
 以上説明した実施形態では水車3の形状としてクロスフロー型を採用したが、これに代えて、図23に示すようなタービンファン型を採用することもできる。このタービンファン型の水車3(3C,3D)は、全体としてレモンのような略球状の本体34を有し、水の通り抜けを良くするために本体34の外周に螺旋状の溝35を形成したものである。 In the embodiment described above, the cross flow type is adopted as the shape of the water turbine 3, but a turbine fan type as shown in FIG. 23 may be adopted instead. This turbine fan type water turbine 3 (3C, 3D) has a substantially spherical main body 34 like a lemon as a whole, and a spiral groove 35 is formed on the outer periphery of the main body 34 in order to improve the passage of water. Is.
 なお、上述したクロスフロー型の水車3(3A,3B)は、水が羽根32と回転軸4の間の隙間33を確実に通り抜け、隙間33を通り抜けた水が後方側の羽根32の湾曲面32aを再度押して回転力を付与するので、流速1~2.5m/sec程度の比較的流れの遅い水流に設置する場合に好適である。これに対して、流速2.5m/sec以上の流れの速い水流に設置する場合には、その速い流れに耐え得るように、水が通り抜ける隙間を無くして全体の強度を高めたタービンファン型の水車3(3C,3D)を使用するのが好ましい。 In the cross-flow type water wheel 3 (3A, 3B) described above, the water surely passes through the gap 33 between the blade 32 and the rotary shaft 4, and the water passing through the gap 33 is the curved surface of the blade 32 on the rear side. Since 32a is pressed again to apply a rotational force, it is suitable for installation in a relatively slow water flow having a flow velocity of about 1 to 2.5 m / sec. On the other hand, when installed in a fast water flow with a flow velocity of 2.5 m / sec or more, a turbine fan type with an increased overall strength by eliminating a gap through which water can pass to withstand the fast flow. It is preferable to use a water wheel 3 (3C, 3D).
 本発明の水力発電装置は、水平方向に流れる水の移動エネルギーを利用して効率的な発電エネルギーを得ることができるため、次のような様々な利用ケースとその効果が考えられる。
(1)工場排水路での利用ケース
 自然エネルギーの利用による省エネ効果、CO2対策
 安定した発電による買電利用効果
(2)農業用水路での利用ケース
 電気を利用していなかった場所への独立電源
(3)水処理施設や発電所放流渠での利用ケース
 水路を有効利用した新たな産業の創出や都市活性化
 PPP事業やPFI事業なども含め、既存施設を有効に活用した新しい事業の創出など
Since the hydroelectric generator of the present invention can obtain efficient power generation energy by using the kinetic energy of water flowing in the horizontal direction, the following various use cases and the effects thereof can be considered.
(1) Case of use in factory drainage energy saving effect by use of natural energy, CO2 countermeasures Effect of purchase of electricity by stable power generation (2) Case of use in agricultural waterway Independent power supply to places where electricity was not used ( 3) Use cases at water treatment facilities and power station discharge basins Creation of new industries and urban revitalization by effectively using waterways Creation of new businesses that make effective use of existing facilities, including PPP and PFI projects
第1実施形態の水力発電装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the hydroelectric generator of 1st Embodiment. 図1の水力発電装置の内部構造を示す横断面図である。It is a cross-sectional view which shows the internal structure of the hydroelectric generator of FIG. 図1の水力発電装置の内部構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the internal structure of the hydroelectric generator of FIG. 図1の水力発電装置の主要部を示す斜視図である。It is a perspective view which shows the principal part of the hydroelectric generator of FIG. 図1の水力発電装置の動作原理を模式的に示す正面図である。It is a front view which shows typically the operation principle of the hydroelectric generator of FIG. 図5の水力発電装置における増速機の拡大図である。It is an enlarged view of the gearbox in the hydroelectric generator of FIG. 図5の上面図である。FIG. 6 is a top view of FIG. 5. 図5のA-A線断面図である。FIG. 6 is a cross-sectional view taken along line AA in FIG. 図5のB-B線断面図である。FIG. 6 is a sectional view taken along line BB of FIG. 図5のC-C線断面図である。FIG. 6 is a cross-sectional view taken along the line CC of FIG. 第2実施形態の水力発電装置の主要部を示す斜視図である。It is a perspective view which shows the principal part of the hydroelectric generator of 2nd Embodiment. 図11の水力発電装置の動作原理を模式的に示す正面図である。It is a front view which shows typically the operation principle of the hydroelectric generator of FIG. 図12の上面図である。FIG. 13 is a top view of FIG. 12. 図12のA-A線断面図である。FIG. 13 is a sectional view taken along line AA in FIG. 12. 図12のB-B線断面図である。FIG. 13 is a sectional view taken along line BB in FIG. 12. 図12のC-C線断面図である。It is CC sectional view taken on the line of FIG. 第3実施形態の水力発電装置の主要部を示す斜視図である。It is a perspective view which shows the principal part of the hydroelectric generator of 3rd Embodiment. 図17の水力発電装置の動作原理を模式的に示す正面図である。It is a front view which shows typically the operation principle of the hydroelectric generator of FIG. 図17の水力発電装置の動作原理を模式的に示す側面図である。It is a side view which shows typically the operation principle of the hydroelectric generator of FIG. 図18の上面図である。It is a top view of FIG. 図18のA-A線断面図である。FIG. 19 is a sectional view taken along line AA in FIG. 図18のB-B線断面図である。FIG. 19 is a sectional view taken along line BB in FIG. 水力発電装置における水車の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of the water wheel in a hydroelectric generator.
符号の説明Explanation of symbols
 P1…第1実施形態の水力発電装置
 P2…第2実施形態の水力発電装置
 P3…第3実施形態の水力発電装置
 1…フロート
  11…貫通孔
 2…ケーシング
  21…取水口
  22…排水口
  23…水路
  24…水流増速部
  25…乱流抑制部
  26…水流規制部
 3…水車
  31…円盤
  32…羽根
  33…隙間
  34…本体
  35…溝
 4…回転軸
  41…軸受
 5…増速機
  51…入力軸
  52…出力軸
  53…サンギア
  54…リングギア
  55…プラネットギア
  56…プラネタリキャリア
 6…発電機
  61…回転子
 7…動力伝達機構
  71…スプロケット
  72…駆動チェーン
  73…スプロケット
  74…駆動チェーン
 8…張力調整機構
  81…緩み止めギア
  82…長孔
 9…ベベルギア機構
  91…入力軸
  92…出力軸
  93…主動ギア
  94…従動ギア
 
DESCRIPTION OF SYMBOLS P1 ... Hydroelectric power generation apparatus of 1st Embodiment P2 ... Hydroelectric power generation apparatus of 2nd Embodiment P3 ... Hydroelectric power generation apparatus of 3rd Embodiment 1 ... Float 11 ... Through-hole 2 ... Casing 21 ... Water intake 22 ... Drainage port 23 ... Water channel 24 ... Water speed increasing part 25 ... Turbulent flow suppressing part 26 ... Water flow restricting part 3 ... Water wheel 31 ... Disk 32 ... Blade 33 ... Gap 34 ... Body 35 ... Groove 4 ... Rotating shaft 41 ... Bearing 5 ... Speed increaser 51 ... Input shaft 52 ... Output shaft 53 ... Sun gear 54 ... Ring gear 55 ... Planet gear 56 ... Planetary carrier 6 ... Generator 61 ... Rotor 7 ... Power transmission mechanism 71 ... Sprocket 72 ... Drive chain 73 ... Sprocket 74 ... Drive chain 8 ... Tension adjusting mechanism 81 ... Loosening stop gear 82 ... Long hole 9 ... Bevel gear mechanism 91 ... Input shaft 92 ... Output shaft 93 ... Main drive gear 94 ... Subordinate Gear

Claims (10)

  1.  水平方向に流れる水流を利用して発電する水力発電装置であって、
     水面に浮上させるフロートと、
     フロートの底面に設けられ、水中に沈めた状態で上流側の取水口から下流側の排水口に向かって貫通した水路を有するケーシングと、
     ケーシングの水路の幅方向に間隔を空けて対向配置され、水路の中心部を通過する水流によって互いに逆回転する一対の水車と、
     水深方向に起立した姿勢で各水車の回転中心に固定され、上端部がフロートを介して水面上に突出する一対の回転軸と、
     回転軸に連結され、入力された回転軸の回転を増速して出力する増速機と、
     フロートの上面に設置され、増速機を介して出力された駆動力によって発電する発電機と、を備え、
     一方側の回転軸が増速機の入力軸に連結され、他方側の回転軸が増速機のギア本体に連結されており、増速機の入力軸とギア本体を同軸上で相対的に逆回転させることにより、増速比を倍増させた駆動力を増速機の出力軸から発電機に出力するようにしたことを特徴とする水力発電装置。
    A hydroelectric power generation device that generates electricity using a horizontal flow of water,
    A float that floats on the surface of the water,
    A casing provided on the bottom surface of the float and having a water passage penetrating from an upstream intake port toward a downstream drainage port in a submerged state;
    A pair of water turbines arranged opposite each other at an interval in the width direction of the water channel of the casing, and reversely rotated by the water flow passing through the central portion of the water channel;
    A pair of rotating shafts that are fixed to the rotation center of each turbine in a standing posture in the water depth direction, and whose upper end protrudes above the water surface via the float;
    A step-up gear connected to the rotating shaft, which speeds up and outputs the rotation of the input rotating shaft;
    A generator that is installed on the upper surface of the float and generates electric power by the driving force output via the gearbox,
    The rotating shaft on one side is connected to the input shaft of the gearbox, and the rotating shaft on the other side is connected to the gear body of the gearbox, so that the input shaft of the gearbox and the gear body are relatively coaxial. A hydroelectric generator characterized in that, by rotating in the reverse direction, the driving force that doubles the speed increase ratio is output from the output shaft of the speed increaser to the generator.
  2.  増速機が遊星ギア機構からなり、一方側の回転軸がプラネタリキャリアに動力伝達機構を介して連結され、他方側の回転軸がリングギアに動力伝達機構を介して連結されており、プラネタリキャリアとリングギアを同軸上で相対的に逆回転させることで、プラネットギアからサンギアに伝達した駆動力を発電機に出力することを特徴とする請求項1に記載の水力発電装置。 The speed-up gear is composed of a planetary gear mechanism, one rotating shaft is connected to the planetary carrier via a power transmission mechanism, and the other rotating shaft is connected to the ring gear via a power transmission mechanism. The hydroelectric generator according to claim 1, wherein the driving force transmitted from the planet gear to the sun gear is output to the generator by relatively rotating the ring gear on the same axis.
  3.  増速機の出力軸が発電機の回転子に直接連結されることにより、フロート上に垂直に配置された増速機の上方に発電機が垂直に載置されていることを特徴とする請求項2に記載の水力発電装置。 The output shaft of the step-up gear is directly connected to the rotor of the generator, so that the generator is vertically mounted above the step-up gear arranged vertically on the float. Item 3. The hydroelectric generator according to Item 2.
  4.  増速機の出力軸が発電機の回転子に動力伝達機構を介して連結されることにより、フロート上に垂直に配置された増速機の側方に発電機が垂直に設置されていることを特徴とする請求項2に記載の水力発電装置。 The output shaft of the gearbox is connected to the rotor of the generator via a power transmission mechanism, so that the generator is installed vertically on the side of the gearbox placed vertically on the float. The hydroelectric power generator according to claim 2.
  5.  増速機が遊星ギア機構からなり、一方側の回転軸がプラネタリキャリアに動力伝達機構とベベルギア機構を介して連結され、他方側の回転軸がリングギアに動力伝達機構とベベルギア機構を介して連結され、増速機の出力軸が発電機の回転子に動力伝達機構を介して連結されることにより、フロート上に水平に配置された増速機の側方に発電機が水平に設置されていることを特徴とする請求項1に記載の水力発電装置。 The gearbox consists of a planetary gear mechanism, one rotating shaft is connected to the planetary carrier via a power transmission mechanism and a bevel gear mechanism, and the other rotating shaft is connected to a ring gear via a power transmission mechanism and a bevel gear mechanism. The output shaft of the speed increaser is connected to the rotor of the generator via a power transmission mechanism, so that the generator is installed horizontally on the side of the speed increaser arranged horizontally on the float. The hydroelectric power generator according to claim 1, wherein
  6.  動力伝達機構を構成する駆動チェーン又は駆動ベルトの外周に、ギア軸が長孔内を摺動する緩み止めギアを当接させることで駆動チェーン又は駆動ベルトの張力を調整する張力調整機構が設けられていることを特徴とする請求項1~5のいずれか1項に記載の水力発電装置。 A tension adjustment mechanism that adjusts the tension of the drive chain or drive belt by bringing a locking gear that the gear shaft slides in the long hole into contact with the outer periphery of the drive chain or drive belt constituting the power transmission mechanism is provided. The hydroelectric power generator according to any one of claims 1 to 5, wherein the hydroelectric power generator is provided.
  7.  ケーシングの取水口側に、取水口の開口端の面積を上流側から下流側に向かって徐々に減少させる水流増速部が設けられていることを特徴とする請求項1~6のいずれか1項に記載の水力発電装置。 The water flow speed increasing portion for gradually decreasing the area of the opening end of the water intake port from the upstream side to the downstream side is provided on the water intake side of the casing. The hydroelectric generator according to item.
  8.  ケーシングの排水口側に、排水口の開口端の面積を上流側から下流側に向かって徐々に増大させる乱流抑制部が設けられていることを特徴とする請求項1~7のいずれか1項に記載の水力発電装置。 The turbulent flow suppressing portion for gradually increasing the area of the opening end of the drain port from the upstream side toward the downstream side is provided on the drain port side of the casing. The hydroelectric generator according to item.
  9.  水車の形状が、クロスフロー型であり、回転軸に固定した上下の円盤間の円周方向に湾曲板状の羽根を複数枚並べて配置して、羽根と回転軸の間に水が通り抜ける隙間を設けたことを特徴とする請求項1~8のいずれか1項に記載の水力発電装置。 The shape of the water wheel is a cross-flow type, and a plurality of curved plate-like blades are arranged side by side in the circumferential direction between the upper and lower disks fixed to the rotating shaft, and there is a gap through which water passes between the blade and the rotating shaft. The hydroelectric power generator according to any one of claims 1 to 8, wherein the hydroelectric generator is provided.
  10.  水車の形状が、タービンファン型であり、回転軸に固定した本体の外周に螺旋状の溝を形成したことを特徴とする請求項1~8のいずれか1項に記載の水力発電装置。
     
    The hydroelectric generator according to any one of claims 1 to 8, wherein the turbine is of a turbine fan type, and a spiral groove is formed on an outer periphery of a main body fixed to a rotating shaft.
PCT/JP2009/051271 2009-01-27 2009-01-27 Hydraulic power generation device WO2010086958A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/051271 WO2010086958A1 (en) 2009-01-27 2009-01-27 Hydraulic power generation device
JP2009524036A JPWO2010086958A1 (en) 2009-01-27 2009-01-27 Hydroelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/051271 WO2010086958A1 (en) 2009-01-27 2009-01-27 Hydraulic power generation device

Publications (1)

Publication Number Publication Date
WO2010086958A1 true WO2010086958A1 (en) 2010-08-05

Family

ID=42395229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051271 WO2010086958A1 (en) 2009-01-27 2009-01-27 Hydraulic power generation device

Country Status (2)

Country Link
JP (1) JPWO2010086958A1 (en)
WO (1) WO2010086958A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101261780B1 (en) 2012-10-15 2013-05-07 한영환 A generating module for following a tidal current and a generating apparatus having the same
JP2013137012A (en) * 2011-11-30 2013-07-11 Fuji Hensokuki Co Ltd Speed increasing device for water power generation
JP2013538314A (en) * 2010-08-30 2013-10-10 クヮンオク チョン, Water turbine and hydroelectric power generation structure using the same
JP2014118937A (en) * 2012-12-19 2014-06-30 Nakayama Iron Works Ltd Fluid force power generating device
WO2016035264A1 (en) * 2014-09-05 2016-03-10 Thk株式会社 Hydraulic power generation device and method for assembling hydraulic power generation device
WO2018199708A1 (en) * 2017-04-28 2018-11-01 유제우 Vertical shaft impeller blade propulsion apparatus for electric propulsion vessel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410668B2 (en) * 1986-03-05 1989-02-22 Sanuki Tetsuko Kk
JPH0310037B2 (en) * 1986-12-19 1991-02-12 Oriental Kiden Kk
JP2002508048A (en) * 1997-07-07 2002-03-12 シンベント アーエス Tidal turbine equipment
JP4022244B2 (en) * 2007-04-06 2007-12-12 シーベルインターナショナル株式会社 Hydroelectric generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410668B2 (en) * 1986-03-05 1989-02-22 Sanuki Tetsuko Kk
JPH0310037B2 (en) * 1986-12-19 1991-02-12 Oriental Kiden Kk
JP2002508048A (en) * 1997-07-07 2002-03-12 シンベント アーエス Tidal turbine equipment
JP4022244B2 (en) * 2007-04-06 2007-12-12 シーベルインターナショナル株式会社 Hydroelectric generator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538314A (en) * 2010-08-30 2013-10-10 クヮンオク チョン, Water turbine and hydroelectric power generation structure using the same
JP2013137012A (en) * 2011-11-30 2013-07-11 Fuji Hensokuki Co Ltd Speed increasing device for water power generation
KR101261780B1 (en) 2012-10-15 2013-05-07 한영환 A generating module for following a tidal current and a generating apparatus having the same
JP2014118937A (en) * 2012-12-19 2014-06-30 Nakayama Iron Works Ltd Fluid force power generating device
WO2016035264A1 (en) * 2014-09-05 2016-03-10 Thk株式会社 Hydraulic power generation device and method for assembling hydraulic power generation device
JP2016056695A (en) * 2014-09-05 2016-04-21 Thk株式会社 Water power generation device and assembly method of water power generation device
WO2018199708A1 (en) * 2017-04-28 2018-11-01 유제우 Vertical shaft impeller blade propulsion apparatus for electric propulsion vessel

Also Published As

Publication number Publication date
JPWO2010086958A1 (en) 2012-07-26

Similar Documents

Publication Publication Date Title
ES2743698T3 (en) Turbine assembly
RU2606211C2 (en) Plant for conversion of fluid flow into energy
US4960363A (en) Fluid flow driven engine
JP4022244B2 (en) Hydroelectric generator
WO2010086958A1 (en) Hydraulic power generation device
US8616829B2 (en) Shrouded turbine assembly
RU2753106C1 (en) Hydroelectric power generator
WO2010109169A2 (en) Bladeless turbine and power generator
US7645115B2 (en) System, method, and apparatus for a power producing linear fluid impulse machine
JP6168269B2 (en) Fluid machinery and fluid plant
JP5738252B2 (en) Impulse air turbine equipment used with reverse bidirectional airflow in wave power plants
JP5370964B2 (en) Small hydro power generation system
KR20040033160A (en) Current energy power generation apparatus using impeller type water mill
KR101208613B1 (en) Hybrid type micro small hydroelectric power generator
KR20100118673A (en) Turbine for a hydroelectric power station
JP5935114B2 (en) Power generator
JP2006132344A (en) Method for generating power with using water turbine
WO2012100128A2 (en) Hydroelectric power generating system
CN104976029A (en) Hollow turbine outer transmission driving power generation system
JP5805555B2 (en) Spiral water wheel
GB2608806A (en) Underwater hydro turbine with radial waterjet nozzles
TWM648244U (en) Hydroelectric power generation device
Suzuki et al. Counter-Rotating Type Hydroelectric Unit (Effects of Blade Numbers on On-Cam Operations)
JP2011007172A (en) Waterwheel utilizing vortex

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009524036

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839150

Country of ref document: EP

Kind code of ref document: A1