JP2004033420A - Fluoroscopic imaging apparatus - Google Patents

Fluoroscopic imaging apparatus Download PDF

Info

Publication number
JP2004033420A
JP2004033420A JP2002193318A JP2002193318A JP2004033420A JP 2004033420 A JP2004033420 A JP 2004033420A JP 2002193318 A JP2002193318 A JP 2002193318A JP 2002193318 A JP2002193318 A JP 2002193318A JP 2004033420 A JP2004033420 A JP 2004033420A
Authority
JP
Japan
Prior art keywords
top plate
ray
height
subject
rotation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002193318A
Other languages
Japanese (ja)
Other versions
JP4461666B2 (en
Inventor
Katsuhiro Masuo
増尾 克裕
Takayoshi Okamura
岡村 貴由
Mikihiko Kato
加藤 三紀彦
Hirotaka Isono
磯野 浩孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002193318A priority Critical patent/JP4461666B2/en
Publication of JP2004033420A publication Critical patent/JP2004033420A/en
Application granted granted Critical
Publication of JP4461666B2 publication Critical patent/JP4461666B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the height of a subject from a floor from largely changing according to the rising/lowering motion of a top plate on which the subject is laid from the horizontal position. <P>SOLUTION: When a priority motion changeover switch 17b of a control panel 17 is turned on and a top plate rising/lowering operation switch 17a is turned on, locus data 19a stored in a memory 19 of a control part 16 are read, and a top plate rotation driving motor 15 and a top plate lifting driving motor 15c of a fluoroscopic imaging table 15 make motions so that the fluoroscopic imaging table 15 is raised/lowered. After that, signals detected by a top plate rotation angle detector 15b and a top plate lifting height detector 15d are returned to the control part 16, and it is confirmed that the process is executed according to the locus data 19a. Then, an imaging system consisting of an X-ray tube device and X-ray image detecting part can be moved parallel to the top plate in the range of movement limited by the locus data 19a. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、X線管装置とX線像検出部からなる映像系を天板に平行移動させ、起倒回転させてX線透視・撮影を行うX線透視撮影装置に係わり、特に、起倒回転によって動作範囲が制限されるX線透視撮影装置に関する。
【0002】
【従来の技術】
X線透視撮影装置は、制御部と透視撮影台からなり、X線を放射するX線管装置と天板上に載せられた被検者のX線透過像を受像するX線像検出部(スポット撮影装置やイメージングシステムなど)が天板を挟んで対向して配置され、X線管装置から放射したX線が、天板に載せられた被検者の診断部位を透過し、そのX線透過像がイメージインテンシファイアなどのX線像検出部に受像されて透視及び撮影される。
透視撮影台は、X線管装置が天板の上にありX線像検出部が天板の下に配置されたオーバテーブルチューブタイプのものと、X線管装置が天板の下にありX線像検出部が天板の上にあるアンダテーブルチューブタイプのものがある。
オーバテーブルチューブタイプ透視撮影台は、X線管装置が天板より離れた位置にあるため、天板の上部空間が大きく、被検者の観察も容易であり、さらに被検者の体位変換なども行いやすい。そのため、被検者に対する多種の診断(例えば、ミエログラフィやIVR)を行う場合や、他の診断(例えば内視鏡診断や超音波診断など)を併用する場合に便利である。また、重いスポット撮影装置を保持しやすいという特徴がある。そして、装置の動作時、被検者とX線管装置との干渉にあまり注意を払わなくてもよいため、遠隔操作式透視撮影台として、集団検診などに用いられる。
アンダテーブルチューブタイプ透視撮影台は、スポット撮影装置を被検者に密着させることができ、より鮮明な画像が得られる。また、X線管装置とスポット撮影装置の距離がオーバテーブルチューブ式に比べ短いため、X線管装置の容量が小さくてすむ。そして、スポット撮影装置を被検者から遠ざけることにより拡大撮影が行いやすいという特徴がある。そのため、近接操作式透視撮影台として用いられる。
いずれのタイプの透視撮影台でも、消化管診断に用いられる場合は、天板に載せられて造影剤を飲んだ被検者の上部から、胃などの患部を圧迫して診断する圧迫法がもちいられ、上部に圧迫筒が位置するように構成され、診断部位に圧迫される。
【0003】
従来、バリウムなどの造影剤を用いた消化管の造影検査で使用する透視撮影台では、天板の起倒動作を行う機構には駆動モータを1台用いる場合と、2台用いる場合があった。駆動モータを2台用いる場合には、モータを天板の昇降動作駆動と天板回転動作駆動とに各1台を用い、天板起倒動作にはこの二つの駆動軸の連動動作にて行うことが一般的である。2つの駆動軸の連動動作にて天板起倒動作を実現する場合の利点としては、起倒角度が0度、つまり天板が水平な場合に天板昇降駆動軸だけを駆動して床面‐天板表面間が低くなるようにした場合に被検者の乗降が容易になる点が挙げられる。
【0004】
図5に、オーバテーブルチューブタイプのX線透視撮影装置を示す。X線透視撮影装置は、透視撮影台15と操作卓20から構成され、操作卓20は内部に制御部16を、上面に操作盤17を備えている。透視撮影台15は、基台6に主支柱5が立てられ、その主支柱5上を保持部5aが保持部駆動機構5bによって上下に移動し、保持部5aが前方水平に取り付けられた金具を介して装置全体を保持し、その軸を中心にして天板4が天板回転機構4aによって起倒回転する。そして、天板4を挟んで支柱2の上部にX線管装置1とそれに対向して下部にX線像検出部3が取り付けられ、支柱駆動機構2a及びX線像検出部駆動機構3aにより天板4の長手方向に移動することができる。天板4は独立して天板上下左右移動機構4bによって平面状で移動することができる。さらに、X線管装置1をX線管回転機構1aによって回転させ、X線像検出部3をX線像検出部駆動機構3aによって移動させ、斜めからのX線照射を行うこともできる。そして、支柱2の側面に筐体11aが取り付けられおり、内部に圧迫筒8が収納され、必要により被検者側に倒しだされて被検者の診断部位を、操作卓20の操作盤17から操作して、圧迫することができる。
【0005】
天板起倒動作を行う場合には、従来から透視撮影台15が保持するX線管装置1やX線像検出部3、天板4の長手方向の端部が床面や天井などに衝突しないように各部の動作に制限をかけて駆動するのが一般的である。この動作制限の範囲内で、対向するX線管装置1とX線像検出部3で構成する映像系の移動範囲をできるだけ広く取るようにすることが一般的である。
【0006】
図6に、従来の透視撮影台15の(a)水平位の状態、(b)傾斜位の状態を示す。透視撮影台15は主支柱5の昇降可能な回転中心20を中心にして、天板4が回転し(a)水平位(θ)の状態から(b)傾斜位(θ)の状態にすることができる。そして、X線管装置1とX線像検出部3とからなる映像系を天板に平行に移動させることができる。その移動量は水平位でy、傾斜位でyとすると、y=yにするためには、X線像検出部3のイメージインテンシファイアやCCDカメラが床面と干渉するのを回避するために、回転中心20の床からの高さを水平位のhから、傾斜位のhに高くしなければならない。即ち、h>hとなる。このような関係を保ちながら天板4の傾斜を、映像系(X線管装置1‐X線像検出部3)の移動量y(y=y)を優先した回転軌跡で透視撮影台15が駆動される。
【0007】
図7に、透視撮影台15の天板回転角度(起倒角度)θと回転中心20の天板昇降高さhとの関係を示す。映像系(X線管装置1‐X線像検出部3)の移動量yを優先し、透視撮影台15が起倒しても映像系の下部が床につかえないように回転中心20が上方に駆動される。その駆動関係式は図7に示すように所定の制限高さまで直線的に変化して上昇される。
【0008】
【発明が解決しようとする課題】
従来のX線透視撮影装置は以上のように構成されているが、検査の多様化に伴って透視撮影台15の検査対象が、消化管の造影検査以外の検査などに拡大してくると共に、天板起倒動作の動作軌跡にも、検査者の意向に添わないことが起きるようになってきた。例えば、被検者に検査器具を取り付けている場合や、介助の必要のある被検者の場合には、透視撮影台15の側に検査者や介助者や検査器具を支えて介助を行っている状態で、被検者の載った天板4を起倒する場合がある。このとき、起倒動作に伴って検査器具や被検者の位置(床からの高さ)が、水平位置から起倒動作の起きる方向への動作をするに従って、大きく位置が変わってしまい、介助が困難になってしまうという問題がある。
これは、床面や天井に衝突しない範囲で映像系の移動範囲をできるだけ広く取るように起倒動作の制限や起倒動作の軌跡を制御していることに起因するものである。
【0009】
本発明は、このような事情に鑑みてなされたものであって、被検者の載った天板を水平位置から起倒動作させるにしたがって、被検者の床からの高さ位置が大きく変化しないようにしたX線透視撮影装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の目的を達成するため、本発明のX線透視撮影装置は、X線管装置とX線像検出部からなる映像系を、被検者を載せた天板を挟んで対向配置し、映像系を天板に平行移動させ、天板又は映像系を起倒回転させてX線透視・撮影を行うX線透視撮影装置であって、操作盤に優先動作切替スイッチと、制御部に起倒軌跡動作制御プログラム及び軌跡データを記憶したメモリと、透視撮影台に回転角度検出器及び昇降高さ検出器とを設け、前記優先動作切替スイッチをONすることで起倒軌跡に制限される動作軸の前記軌跡データを切り替え、起倒回転中心の床からの高さと起倒回転角度を変化できるようにしたものである。
【0011】
本発明のX線透視撮影装置は上記のように構成されており、制御部のメモリに起倒軌跡動作プログラム及び軌跡データを記憶させ、透視撮影台に回転角度検出器及び昇降高さ検出器を設け、操作盤に設けられた優先動作切替スイッチをONすることで、設定された軌跡データをメモリから読み出し、起倒軌跡動作制御プログラムに沿って、回転角度検出器及び昇降高さ検出器からの信号を帰還して自動制御し、透視撮影台を起倒させる。そのため、制限される動作軸の軌跡データを切り替えて起倒回転中心の床からの高さと起倒回転角度を変化させるので、被検者の載った天板を水平位置から起倒動作させるにしたがって、被検者の床からの高さ位置を大きく変化させることなく起倒することができる。
そして、映像系の移動範囲をできるだけ広く取るようにする従来通りの動作制御を許して天板起倒動を行う方法と、映像系の移動範囲を制限することで、天板昇降動作の移動量を少なく抑えて天板起倒を行う方法とを、検査対象(検査内容)に応じて切り替えることができる。
また、優先動作切替スイッチをONすることで、映像系の動作可能範囲が制限されるため、天板回転角度によっては起倒動作時の天板昇降動作を実行しないため、天板の高さが変わらなくなる。そのため、課題に合ったような介護の場合に、介護者に無理がかからなくなる。
【0012】
【発明の実施の形態】
本発明のX線透視撮影装置の一実施例を、図1を参照しながら説明する。図1は本発明のX線透視撮影装置の制御系統を示す図である。
本発明のX線透視撮影装置は、操作盤17に設けられた、天板起倒操作スイッチ17aと、映像系の移動量yを制限し天板回転角度θに応じて天板昇降高さhを低く優先動作させる優先動作切替スイッチ17bと、制御部16に設けられた、CPU16a及びハードディスク16bと、起倒の軌跡データ19aとそれを実行するための起倒軌跡動作制御プログラム19bとを記憶したメモリ19と、透視撮影台15に設けられた、映像系を駆動する映像系駆動モータ15eと、天板を回転させる天板回転駆動モータ15aと、天板を昇降させる天板昇降駆動モータ15cと、天板回転角度θを検出する天板回転角度検出器15bと、天板昇降高さhを検出する天板昇降高さ検出器15dとから構成される。
【0013】
本X線透視撮影装置は、図5で示すものと外観は同じで、基台6上に主支柱5を立て保持部5aに、天板4と先端にX線管装置1を具備した支柱2と、天板4の下方に設けられたX線像検出部3とが保持されている。保持部5aは、図1に示す天板昇降駆動モータ15cによる保持部駆動機構5bにより矢印のように移動する。保持部5aが保持する天板4は、図1に示す天板回転駆動モータ15aによる天板回転機構4aにより矢印のように回転する。
本X線透視撮影装置は、天板昇降方向の動作と天板回転方向の動作を組み合わせることで起倒動作を行っている。起倒動作は、天板4が床面に対して水平方向から垂直方向に、あるいはその逆に、動作することである。起倒動作は天板回転機構4aで行うことができるが、天板4の床面からの高さによって、回転が進むと天板4と床面との干渉が生じる。このため、起倒動作は、天板4を回転させると同時に、干渉が生じないように、天板回転角度θに応じて天板昇降高さhを変えるように動作させる。
【0014】
本X線透視撮影装置と従来の装置と異なる点は、水平位の天板4の高さが、従来の装置では、装置が起倒するに応じてリニアに増加し高くなるが、本装置では、操作盤17に設けられた優先動作切替スイッチ17bをONすることで、所定の角度まで変化することなく水平位の高さを保ち、それ以上起倒するに応じてリニアに増加するが、従来の装置よりも同一の角度では天板4の高さが低くなる点である。また、優先動作切替スイッチ17bをOFFすることで、従来の装置と同じ操作をすることが出来る。
【0015】
本X線透視撮影装置の制御系統の各構成部について機能及び動作を説明する。
天板起倒操作スイッチ17aは、操作盤17に設けられ、このスイッチを押すことにより天板回転駆動モータ15aが回転し、透視撮影台15を起倒させる。通常、このスイッチは左右に倒す操作レバーが用いられ、左に倒すと透視撮影台15が水平方向に、右に倒すと立位方向に起倒する。
優先動作切替スイッチ17bは、本X線透視撮影装置の固有のもので、押しボタン式のスイッチが操作盤17に設けられ、このスイッチを押すことによって映像系の移動量yを制限し、天板回転角度θに応じて天板昇降高さhを低く優先動作させる。
図2に、(a)本装置と(b)従来装置を比較するために、同一の天板回転角度θ=θのときの、天板昇降高さhと映像系の移動量yの相違を示す。
本装置は、図1に示す操作盤17の優先動作切替スイッチ17bをONし、天板起倒操作スイッチ17aを操作して、水平位の状態(天板回転角度θ)から図2(a)に示す天板回転角度θに起倒すると、天板昇降高さhはhとなる。これに対して、従来装置では天板回転角度θを同一の天板回転角度θ=θに起倒すると、天板昇降高さhはh>hとなり、本装置の天板昇降高さhより高くなる。本装置では映像系の移動量yを小さくして、天板昇降高さhを低く制御している。これに対し従来装置では映像系の移動量yを水平位の移動量yと同一にし、天板昇降高さhを高くして、本装置の移動量yよりも大きく制御している。その移動量yの比は、y:y=3:2程度の大きさで、昇降制限の軌跡を実現する。すなわち、イメージインテンシファイアやCCDカメラとの干渉を回避できる天板回転角度θは、天板昇降高さhをhで保つことができる角度まで可能となる。
【0016】
図3に、天板回転角度(起倒角度)θと天板昇降高さhの関係を示す。
本装置では天板昇降高さhを優先した回転軌跡で装置を制御する昇降制限制御を採用し、従来装置では映像系(X線管装置1‐X線像検出部3)の移動量yを優先した回転軌跡で装置を制御する映像系優先制御を採用している。本装置の昇降制限制御では、天板回転角度(起倒角度)θが22度までは、昇降動作することなく天板昇降高さhが水平位の高さhと同じに制御され、その状態から67度まではリニアに増加し、それ以上の天板回転角度θでは一定の高さに保持される。これに対し従来装置の映像系優先制御では、天板昇降高さhは水平位の高さhからリニアに増加し、67度以上の天板回転角度θでは一定の高さに保持される。この制御の違いにより、特に天板回転角度θが小さい時は天板昇降高さhが従来の装置よりも低くなり、被検者の介助も楽な姿勢で低い位置で行うことができる。
そして、本装置では図1に示す操作盤17に設けられた優先動作切替スイッチ17bをONすると装置を昇降制限制御によって操作することができ、OFFして解除することで従来装置と同じ映像系優先制御を行うことができる。
【0017】
CPU16a及びハードディスク16bは、制御部16に設けられ、ハードディスク16bに制御プログラムを収納し、X線高電圧発生装置(図示せず)及び透視撮影台15を制御する。
メモリ19は、軌跡データ19aと起倒軌跡動作制御プログラム19bを記憶し、軌跡データ19aは、透視撮影台15が起倒回転する軌跡のデータであり、起倒軌跡動作制御プログラム19bは、軌跡データ19aを実行するプログラムである。
透視撮影台15の駆動系には、映像系を駆動する映像系駆動モータ15eと、天板を回転させる天板回転駆動モータ15aと、天板を昇降させる天板昇降駆動モータ15cが透視撮影台15に設けられている。
また、透視撮影台15の検出系には、天板回転角度θを検出する天板回転角度検出器15bと、天板昇降高さhを検出する天板昇降高さ検出器15dとが設けられている。
【0018】
そして、操作者が検査対象に応じて操作盤17の優先動作切替スイッチ17bをONすることで、選択された起倒動作に応じて軌跡データ19a及び起倒軌跡動作制御プログラム19bがメモリ19から読み出される。そして、天板起倒操作スイッチ17aの操作を行うことで、選択された起倒軌跡動作制御プログラム19bが実行され、映像系駆動モータ15eと天板昇降駆動モータ15cと天板回転駆動モータ15aに出力される信号が切り替えられ、図3に示す昇降制限制御の軌跡特性のデータに沿って制御される。この動作では天板昇降高さhを検出する天板昇降高さ検出器15dと天板回転角度θを検出する天板回転検出器15bが透視撮影台15に取り付けられており、CPU16aがその位置(移動量)の検出データを取り込むことで位置を認識しながら、予めメモリ19に記憶されている軌跡データ19aの位置になるようにモータ駆動を行っている。
【0019】
また、映像系の位置が動作可能範囲の移動量yを超えている場合に、優先動作切替スイッチ17bをONした時は、このスイッチ動作を受け付けられないというメッセージ、あるいは映像系を動作可能な範囲まで動作させるよう促すメッセージを操作盤17に表示するようにする。
【0020】
上記の実施例では、優先動作切替スイッチ17bを単独で動作させたが、操作盤17に検査する内容を選択するスイッチを設け、そのスイッチと連動させてもよい。例えば、X線撮影条件が肺や腹部など検査部位ごとに予め制御部16のメモリ19に記憶させてあり、これらのX線撮影条件を検査時に読み出すときに、使う検査部位ごとの撮影条件選択スイッチの機能に対応して、起倒軌跡動作制御プログラム19bを予め記憶させておいてもよい。
【0021】
また、実施例では、図5で示す透視撮影台15で説明したが、図4で示すCアーム透視台についても適用することができる。本装置は、ベース部25に主支柱26が固定され、X線管装置21とX線像検出部22が上下端に取り付けられたCアーム27aを保持するCアーム保持部27と、天板23が天板回転支持部28aを介して取り付けられた天板昇降支持部28とが、スライド板26aに取り付けられ、スライド板26aが主支柱26上を上下に昇降する。そして、遠隔操作卓24及び近接操作卓24aから各部の駆動部、及び、ケーブル29を介して映像系が制御される。
そして、本装置は、(1)起倒動、(2)テーブル昇降動、(3)天板左右動、(4)天板長手動、(5)天板ローリング、(6)天板昇降動、(7)Cアーム回転、(8)Cアームスライド、(9)Cアーム長手動、(10)X線像検出部前後動などの動作機構を有している。特に、(2)テーブル昇降動と映像系の(1)起倒動と(7)Cアーム回転の関係は、本X線透視撮影装置の天板昇降高さhと天板回転角度θとの関係に相当し、同様に適用することができる。
【0022】
【発明の効果】
本発明のX線透視撮影装置は上記のように構成されており、多目的かつ多様な術式に対応し検査内容に応じて、操作盤に設けられた優先動作スイッチを切り替えて、映像系の移動範囲を制限して天板昇降動作の移動量を少なく抑え、天板の高さを低くした新しい天板起倒方法と、映像系の移動範囲をできるだけ広く取るように動作制御した従来の天板起倒方法とを選択することができる。
そして、優先動作スイッチをONすることで、制限される動作軸の軌跡データを切り替え、起倒回転中心の床からの高さと起倒回転角度を変化させ、映像系の動作可能範囲を制限し、天板起倒角度によっては起倒動作時の天板昇降動作を実行しないため、天板の高さが変化しない。そのため、被検者の介護者の負担や周囲に配置された検査器具の位置を大きく変えることなく、介助を容易にし、検査効果をあげることができる。
【図面の簡単な説明】
【図1】本発明のX線透視撮影装置の一実施例を示す図である。
【図2】本発明のX線透視撮影装置の天板昇降高さhと映像系移動量yの関係を示す図である。
【図3】本発明のX線透視撮影装置の制御方法を示す図である。
【図4】本発明のX線透視撮影装置の他の実施例を示す図である。
【図5】従来のオーバテーブルチューブ方式のX線透視撮影装置を示す図である。
【図6】従来のX線透視撮影装置の天板昇降高さhと映像系移動量yの関係を示す図である。
【図7】従来のX線透視撮影装置の制御方法を示す図である。
【符号の説明】
1…X線管装置
1a…X線管回転機構
2…支柱
2a…支柱駆動機構
3…X線像検出部
3a…X線像検出部駆動機構
4…天板
4a…天板回転機構
4b…天板上下左右移動機構
5…主支柱
5a…保持部
5b…保持部駆動機構
6…基台
8…圧迫筒
11a…筐体
15…透視撮影台
15a…天板回転駆動モータ
15b…天板回転角度検出器
15c…天板昇降駆動モータ
15d…天板昇降高さ検出器
15e…映像系駆動モータ
16…制御盤
16a…CPU
16b…ハードディスク
17…操作盤
17a…天板起倒操作スイッチ
17b…優先動作切替スイッチ
19…メモリ
19a…軌跡データ
19b…起倒軌跡動作制御プログラム
20…回転中心
21…X線管装置
22…X線像検出部
23…天板
24…遠隔操作卓
24a…近接操作卓
25…ベース部
26…主支柱
26a…スライド板
27…Cアーム保持部
28…天板昇降支持部
28a…天板回転支持部
29…ケーブル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an X-ray fluoroscopic imaging apparatus that performs an X-ray fluoroscopic imaging by moving an image system including an X-ray tube apparatus and an X-ray image detecting unit in parallel to a top plate and rotating the image system up and down. The present invention relates to an X-ray fluoroscopic apparatus whose operation range is limited by rotation.
[0002]
[Prior art]
The X-ray fluoroscopy apparatus includes a control unit and a fluoroscopy table, and includes an X-ray tube apparatus that emits X-rays and an X-ray image detection unit that receives an X-ray transmission image of a subject placed on a top plate ( Spot imaging device, imaging system, etc.) are placed opposite each other with the top plate interposed therebetween, and the X-rays radiated from the X-ray tube device pass through the diagnostic part of the subject placed on the top plate, and the X-rays The transmitted image is received by an X-ray image detecting unit such as an image intensifier, and is transmitted through and photographed.
The fluoroscopy table has an over-table tube type in which the X-ray tube device is located on the top plate and the X-ray image detecting unit is located below the top plate. There is an under-table tube type in which a line image detecting unit is provided on a top plate.
Since the X-ray tube device is located farther from the tabletop, the overtable tube type fluoroscopy table has a large space above the tabletop, making it easy to observe the subject, and changing the position of the subject. Also easy to do. Therefore, it is convenient when performing various types of diagnosis (for example, myelography or IVR) for the subject, or when using another diagnosis (for example, endoscopic diagnosis or ultrasonic diagnosis) in combination. Another feature is that it is easy to hold a heavy spot photographing device. Then, during operation of the apparatus, it is not necessary to pay much attention to the interference between the subject and the X-ray tube apparatus. Therefore, the apparatus is used as a remote-controlled fluoroscopic imaging table for a group examination or the like.
The under table tube type fluoroscopic imaging table allows the spot imaging device to be in close contact with the subject, and a clearer image can be obtained. Further, since the distance between the X-ray tube device and the spot photographing device is shorter than that of the over-table tube type, the capacity of the X-ray tube device can be small. Further, there is a feature that it is easy to perform enlarged imaging by moving the spot imaging device away from the subject. Therefore, it is used as a close-up operation type fluoroscopic imaging table.
In any type of fluoroscopy table, when used for gastrointestinal diagnosis, a compression method is used in which the affected part, such as the stomach, is diagnosed by pressing the affected part such as the stomach from the upper part of the subject who has taken the contrast agent on the tabletop. Then, the compression unit is configured to be located at the upper part, and is compressed at the diagnosis site.
[0003]
2. Description of the Related Art Conventionally, in a fluoroscopy table used for a contrast examination of a digestive tract using a contrast agent such as barium, a mechanism for performing a top-down operation includes one drive motor and two drive motors. . When two drive motors are used, one motor is used for each of the top and bottom drive operation and the top plate rotation operation drive, and the top and bottom operation is performed by the interlocking operation of these two drive shafts. That is common. The advantage of realizing the top plate raising / lowering operation by the interlocking operation of the two drive shafts is that when the top / bottom angle is 0 degree, that is, when the top plate is horizontal, only the top plate raising / lowering drive shaft is driven to drive the floor surface. -It is easy to get on and off the subject when the height between the top surfaces is reduced.
[0004]
FIG. 5 shows an overtable tube type X-ray fluoroscopic apparatus. The X-ray fluoroscopic apparatus includes a fluoroscopic table 15 and a console 20. The console 20 includes a control unit 16 inside and an operation panel 17 on the upper surface. In the fluoroscopy table 15, the main support 5 is erected on the base 6, the holding unit 5a is moved up and down on the main support 5 by the holding unit driving mechanism 5b, and the holding unit 5a is mounted on the front horizontally. The top plate 4 is rotated up and down about its axis by the top plate rotation mechanism 4a. Then, the X-ray tube device 1 is mounted on the upper part of the column 2 with the top plate 4 interposed therebetween, and the X-ray image detector 3 is mounted on the lower part opposite to the X-ray tube device. It can move in the longitudinal direction of the plate 4. The top plate 4 can be independently moved in a plane by the top plate up / down / left / right moving mechanism 4b. Further, the X-ray tube device 1 can be rotated by the X-ray tube rotating mechanism 1a, and the X-ray image detecting section 3 can be moved by the X-ray image detecting section driving mechanism 3a to perform oblique X-ray irradiation. A housing 11a is attached to the side surface of the column 2, and the compression unit 8 is housed therein. If necessary, the compression unit 8 is tilted down to the subject side, and the diagnosis part of the subject is moved to the operation panel 17 of the console 20. You can operate from and press.
[0005]
When performing the top-up operation, the longitudinal ends of the X-ray tube apparatus 1, the X-ray image detection unit 3, and the top 4 conventionally held by the fluoroscopy table 15 collide with the floor or ceiling. In general, the operation of each part is restricted so as not to be performed. It is general that the moving range of the image system formed by the opposed X-ray tube apparatus 1 and the X-ray image detecting unit 3 is set as large as possible within the range of the operation limitation.
[0006]
FIG. 6 shows (a) the horizontal position and (b) the inclined position of the conventional perspective imaging table 15. In the fluoroscopic imaging table 15, the top plate 4 rotates about the rotation center 20 at which the main support 5 can be moved up and down, and the top plate 4 rotates from (a) the horizontal position (θ 0 ) to (b) the inclined position (θ 1 ). can do. Then, the image system including the X-ray tube device 1 and the X-ray image detection unit 3 can be moved in parallel with the top plate. The movement amount y 0 in a horizontal position, when y 1 in an inclined position, in order to y 0 = y 1, the image intensifier and CCD camera of the X-ray image detector 3 is interfering with the floor surface in order to avoid, from h 0 of the height of the horizontal position from the floor of the center of rotation 20, it must be increased to h 1 of the inclined position. In other words, the h 1> h 0. While maintaining such a relationship, the inclination of the tabletop 4 is perspectively photographed with a rotation locus giving priority to the movement amount y 1 (y 1 = y 0 ) of the image system (X-ray tube apparatus 1 -X-ray image detecting unit 3). The table 15 is driven.
[0007]
FIG. 7 shows a relationship between the top plate rotation angle (the tilt angle) θ of the fluoroscopic imaging table 15 and the top plate height h of the rotation center 20. Video system giving priority to the movement amount y 1 of (X-ray tube apparatus 1-X-ray image detecting section 3), the lower is the rotation center 20 so as not lodged in the floor above the fluoroscopic imaging table 15 the video system be defeated electromotive Is driven. As shown in FIG. 7, the driving relational expression linearly changes and rises up to a predetermined limit height.
[0008]
[Problems to be solved by the invention]
The conventional X-ray fluoroscopic apparatus is configured as described above, but with the diversification of examinations, the examination target of the fluoroscopic examination table 15 is expanded to examinations other than the contrast examination of the digestive tract, and the like. In the movement trajectory of the top plate raising / lowering operation, what does not comply with the intention of the inspector has come to occur. For example, in the case where a test instrument is attached to the subject, or in the case of a subject who needs assistance, the examiner, the assistant, and the test instrument are supported on the fluoroscopy table 15 to provide assistance. In some cases, the top 4 on which the subject is placed may be turned upside down. At this time, the position (height from the floor) of the test instrument or the subject changes significantly from the horizontal position to the direction in which the tilting motion occurs, and the position of the test instrument or the subject changes greatly. There is a problem that it becomes difficult.
This is due to the restriction of the tilting motion and the control of the trajectory of the tilting motion so that the moving range of the video system is made as large as possible without colliding with the floor or ceiling.
[0009]
The present invention has been made in view of such circumstances, and the height position of the subject from the floor greatly changes as the top plate on which the subject is placed is moved up and down from the horizontal position. It is an object of the present invention to provide an X-ray fluoroscopic apparatus that does not perform this operation.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an X-ray fluoroscopic apparatus according to the present invention is configured such that an image system including an X-ray tube apparatus and an X-ray image detecting unit is arranged to face each other with a top plate on which a subject is placed interposed therebetween. An X-ray fluoroscopy apparatus for performing X-ray fluoroscopy / imaging by moving the system in parallel to the tabletop and rotating the tabletop or image system up and down. A memory storing a trajectory operation control program and trajectory data, a rotation angle detector and an elevation height detector provided on a fluoroscopic table, and an operation axis limited to a falling trajectory by turning on the priority operation switch. The above-mentioned trajectory data is switched so that the height of the center of the up-down rotation from the floor and the up-down rotation angle can be changed.
[0011]
The X-ray fluoroscopic apparatus according to the present invention is configured as described above, stores the up-down trajectory operation program and the trajectory data in the memory of the control unit, and sets the rotation angle detector and the elevation height detector on the fluoroscopic table. By turning on the priority operation changeover switch provided on the operation panel, the set trajectory data is read out from the memory, and the rotation angle detector and the elevation height detector are read in accordance with the up-down trajectory operation control program. The signal is returned and automatically controlled, and the fluoroscopy table is moved up and down. Therefore, the trajectory data of the restricted motion axis is switched to change the height of the center of the tilting rotation from the floor and the tilting rotation angle, so that the top plate on which the subject is placed is tilted from the horizontal position. In addition, the subject can be turned up and down without greatly changing the height position from the floor.
Then, the method of performing the top-down movement by allowing the conventional operation control to make the moving range of the video system as wide as possible, and the movement amount of the top lifting operation by limiting the moving range of the video system. Can be switched according to the inspection target (inspection content).
Also, by turning on the priority operation changeover switch, the operable range of the video system is limited, so that the top plate elevating operation during the tilting operation is not performed depending on the top plate rotation angle, so that the height of the top plate is reduced. It will not change. Therefore, in the case of nursing care that meets the task, the caregiver does not have to be overwhelmed.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
One embodiment of the fluoroscopic apparatus according to the present invention will be described with reference to FIG. FIG. 1 is a diagram showing a control system of the X-ray fluoroscopic apparatus according to the present invention.
The X-ray fluoroscopic apparatus according to the present invention includes a top plate raising / lowering operation switch 17 a provided on the operation panel 17, a moving amount y of the image system, and a top plate height h depending on the top plate rotation angle θ. , A CPU 16a and a hard disk 16b provided in the control unit 16, a trajectory data 19a, and a trajectory motion control program 19b for executing the data. A memory 19, a video system driving motor 15e provided on the fluoroscopic imaging table 15, for driving a video system, a top rotation driving motor 15a for rotating the top, and a top lifting drive motor 15c for lifting and lowering the top. , A top plate rotation angle detector 15b that detects the top plate rotation angle θ, and a top plate elevation height detector 15d that detects the top plate elevation height h.
[0013]
This X-ray fluoroscopic apparatus has the same appearance as that shown in FIG. 5, and has a main support 5 erected on a base 6, a support 5 a, a top plate 4, and a support 2 having an X-ray tube device 1 at the tip. And an X-ray image detector 3 provided below the top 4. The holding unit 5a is moved as indicated by an arrow by a holding unit driving mechanism 5b using a top plate elevating drive motor 15c shown in FIG. The top plate 4 held by the holding unit 5a is rotated as shown by an arrow by a top plate rotation mechanism 4a by a top plate rotation drive motor 15a shown in FIG.
The X-ray fluoroscopy apparatus performs a raising / lowering operation by combining an operation in the top-plate elevating direction and an operation in the top-plate rotating direction. The raising / lowering operation is that the top board 4 moves from the horizontal direction to the vertical direction with respect to the floor surface, or vice versa. The raising and lowering operation can be performed by the top rotating mechanism 4a. However, depending on the height of the top 4 from the floor, as the rotation proceeds, interference between the top 4 and the floor occurs. For this reason, in the raising / lowering operation, the top plate 4 is rotated and, at the same time, the top plate elevation height h is changed according to the top plate rotation angle θ so as not to cause interference.
[0014]
The difference between the present X-ray fluoroscopic apparatus and the conventional apparatus is that the height of the horizontal top plate 4 linearly increases and rises as the apparatus is tilted in the conventional apparatus. By turning on the priority operation changeover switch 17b provided on the operation panel 17, the height of the horizontal position is maintained without changing to a predetermined angle, and the height increases linearly as the vehicle tilts further. The point is that the height of the top plate 4 becomes lower at the same angle as that of the apparatus described above. By turning off the priority operation changeover switch 17b, the same operation as that of the conventional device can be performed.
[0015]
The function and operation of each component of the control system of the X-ray fluoroscopic apparatus will be described.
The top plate raising / lowering operation switch 17a is provided on the operation panel 17, and when this switch is pressed, the top plate rotation drive motor 15a is rotated, and the fluoroscopic imaging table 15 is raised / lowered. Normally, this switch uses an operation lever which is tilted left and right. When the switch is tilted left, the fluoroscopic imaging table 15 is tilted in the horizontal direction, and when tilted right, it is tilted in the upright position.
The priority operation changeover switch 17b is unique to the present X-ray fluoroscopic apparatus, and a push button type switch is provided on the operation panel 17, and by pressing this switch, the moving amount y of the image system is limited, The priority operation is performed by lowering the height h of the top board according to the rotation angle θ.
In FIG. 2, in order to compare (a) the present apparatus and (b) the conventional apparatus, when the top rotation angle θ 2 = θ 1 is the same, the top lifting height h and the moving amount y of the image system are calculated. Show the differences.
In this apparatus, the priority operation changeover switch 17b of the operation panel 17 shown in FIG. 1 is turned on, and the top plate raising / lowering operation switch 17a is operated to change from the horizontal position (top plate rotation angle θ 0 ) to FIG. When raised or lowered to the top plate rotation angle theta 2 shown in), the top plate lifting height h becomes h 2. In contrast, when the conventional device for raisably top plate rotation angle theta in the same top plate rotation angle θ 1 = θ 2, the top plate lifting height h h 1> h 2, and the top plate lifting of the device It is higher than the height h 2. In the apparatus by reducing the amount of movement y 2 video system is controlled lower top plate lifting height h 2. In contrast with conventional apparatus the same as the movement amount y 0 of the horizontal position of the shift amount y 1 video system, by raising the top plate lifting height h 1, is controlled larger than the movement amount y 2 of the apparatus I have. The ratio of the amount of movement y is, y 1: y 2 = 3: 2 about size, realizes the locus of lifting restrictions. That is, the top plate rotation angle θ that can avoid interference with the image intensifier and CCD camera is enabled to an angle that can keep the top plate lifting height h 2 by h 0.
[0016]
FIG. 3 shows the relationship between the top-plate rotation angle (tilt angle) θ and the top-height height h.
In this apparatus employs a lift limit control for controlling the apparatus in rotation locus giving priority to the top plate lifting height h 2, the movement amount y of video system in the conventional apparatus (X-ray tube apparatus 1-X-ray image detecting section 3) A video system priority control for controlling the apparatus with a rotation locus giving priority to 1 is adopted. In the elevation limit control of the device, until the top plate rotation angle (electromotive tilt angle degree) theta is 22 degrees, the top plate lifting height h without lifting operation is the same controlled the height h 0 of the horizontal position, the It increases linearly from the state to 67 degrees, and is kept at a constant height at a top plate rotation angle θ larger than that. In contrast in the video system priority control in the conventional device, the top plate lifting height h increases linearly from the height h 0 of the horizontal position, is held on the top plate rotation angle θ at a constant height above 67 degrees . Due to this difference in control, especially when the rotation angle θ of the tabletop is small, the tabletop elevation height h is lower than that of the conventional apparatus, and the subject can be assisted at a low position in a comfortable posture.
In this apparatus, when the priority operation changeover switch 17b provided on the operation panel 17 shown in FIG. 1 is turned on, the apparatus can be operated by the lifting / lowering restriction control. Control can be performed.
[0017]
The CPU 16a and the hard disk 16b are provided in the control unit 16, store a control program in the hard disk 16b, and control the X-ray high voltage generator (not shown) and the fluoroscopic table 15.
The memory 19 stores the trajectory data 19a and the up-down trajectory operation control program 19b. The trajectory data 19a is data of the trajectory of the fluoroscopic table 15 rotating up and down. 19a.
The driving system of the fluoroscopic imaging table 15 includes a video system driving motor 15e for driving an image system, a top rotating motor 15a for rotating the top, and a top lifting drive motor 15c for raising and lowering the top. 15.
The detection system of the fluoroscopic imaging table 15 is provided with a top rotation angle detector 15b for detecting the top rotation angle θ and a top elevation detector 15d for detecting the top elevation h. ing.
[0018]
When the operator turns on the priority operation changeover switch 17b of the operation panel 17 according to the inspection target, the locus data 19a and the up-down locus operation control program 19b are read out from the memory 19 according to the selected up-down operation. It is. Then, by operating the top-up / down operation switch 17a, the selected up / down trajectory operation control program 19b is executed, and the image-system drive motor 15e, the top-plate elevation drive motor 15c, and the top-plate rotation drive motor 15a are operated. The output signal is switched, and is controlled according to the trajectory characteristic data of the elevation control shown in FIG. In this operation, a table height detector 15d for detecting the table height h and a table rotation detector 15b for detecting the table rotation angle θ are attached to the fluoroscopic imaging table 15, and the CPU 16a determines the position thereof. The motor is driven so as to be at the position of the trajectory data 19a stored in the memory 19 in advance while recognizing the position by taking in the detection data of (movement amount).
[0019]
Further, when the priority operation switch 17b is turned on when the position of the video system exceeds the movement amount y of the operable range, a message indicating that this switch operation cannot be accepted, or the range in which the video system can be operated. Is displayed on the operation panel 17.
[0020]
In the above embodiment, the priority operation changeover switch 17b is operated independently. However, the operation panel 17 may be provided with a switch for selecting the content to be inspected, and may be linked with the switch. For example, X-ray imaging conditions are stored in advance in the memory 19 of the control unit 16 for each examination site such as a lung and abdomen, and when these X-ray imaging conditions are read out at the time of the inspection, an imaging condition selection switch for each inspection site to be used. The up-and-down locus motion control program 19b may be stored in advance in correspondence with the function of (1).
[0021]
Further, in the embodiment, the explanation has been made on the fluoroscopic imaging table 15 shown in FIG. 5, but the present invention can also be applied to the C-arm fluoroscopic table shown in FIG. In this apparatus, a main support 26 is fixed to a base 25, and a C-arm holding unit 27 that holds a C-arm 27 a having an X-ray tube device 21 and an X-ray image detection unit 22 attached to upper and lower ends, and a top plate 23. Is attached to the slide plate 26a, and the slide plate 26a moves up and down on the main support 26. Then, the video system is controlled from the remote operation console 24 and the proximity operation console 24 a via the drive unit of each unit and the cable 29.
Then, the present apparatus includes (1) up and down movement, (2) table up and down movement, (3) top and left movement, (4) top length manual operation, (5) top plate rolling, and (6) top and bottom movement , (7) C-arm rotation, (8) C-arm slide, (9) C-arm length manual operation, (10) X-ray image detection unit longitudinal movement. In particular, the relationship between (2) table lifting and lowering and video system (1) tilting and (7) C-arm rotation is based on the relationship between the height h of the top plate of the X-ray fluoroscopic apparatus and the rotation angle θ of the top plate. It corresponds to a relationship and can be similarly applied.
[0022]
【The invention's effect】
The X-ray fluoroscopic apparatus according to the present invention is configured as described above, and switches the priority operation switch provided on the operation panel according to the examination contents in accordance with the versatile and various surgical procedures to move the video system. A new top-down method that lowers the height of the tabletop by limiting the range of movement of the tabletop movement by limiting the range, and a conventional tabletop that is operated to control the moving range of the video system as wide as possible You can select the method of raising and lowering.
Then, by turning on the priority operation switch, the trajectory data of the operation axis to be restricted is switched, the height of the rotation center of the tilt from the floor and the rotation angle of the tilt are changed, and the operable range of the video system is limited, Depending on the top plate tilting angle, the top plate elevating operation at the time of the tilting operation is not performed, so that the height of the top plate does not change. Therefore, the assistance can be facilitated and the test effect can be improved without greatly changing the burden on the caregiver of the subject and the position of the test instruments arranged around the subject.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of an X-ray fluoroscopic apparatus according to the present invention.
FIG. 2 is a diagram showing the relationship between the height h of the top board and the moving amount y of the image system in the X-ray fluoroscopic apparatus of the present invention.
FIG. 3 is a diagram illustrating a control method of the X-ray fluoroscopic apparatus according to the present invention.
FIG. 4 is a diagram showing another embodiment of the X-ray fluoroscopic apparatus according to the present invention.
FIG. 5 is a view showing a conventional over-table tube type X-ray fluoroscopic apparatus.
FIG. 6 is a diagram showing the relationship between the height h of the top board and the moving amount y of the video system in the conventional X-ray fluoroscopic apparatus.
FIG. 7 is a diagram showing a control method of a conventional X-ray fluoroscopic apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... X-ray tube apparatus 1a ... X-ray tube rotation mechanism 2 ... support | pillar 2a ... support | pillar drive mechanism 3 ... X-ray image detection part 3a ... X-ray image detection part drive mechanism 4 ... Top plate 4a ... Top plate rotation mechanism 4b ... Top Plate up / down / left / right movement mechanism 5 Main support 5a Holder 5b Holder drive 6 Base 8 Compression cylinder 11a Housing 15 Perspective imaging table 15a Top plate rotation drive motor 15b Top plate rotation angle detection Device 15c: Top-plate elevating drive motor 15d: Top-plate elevating height detector 15e: Video system driving motor 16: Control panel 16a: CPU
16b Hard disk 17 Operation panel 17a Top-top operation switch 17b Priority operation switch 19 Memory 19a Path data 19b Elevation path operation control program 20 Center of rotation 21 X-ray tube apparatus 22 X-ray Image detection unit 23 ... Top 24 ... Remote console 24a ... Proximity console 25 ... Base unit 26 ... Main support 26a ... Slide plate 27 ... C arm holding unit 28 ... Top plate elevating support unit 28a ... Top plate rotation support unit 29 …cable

Claims (1)

X線管装置とX線像検出部からなる映像系を被検者を載せた天板を挟んで対向配置し、映像系を天板に平行移動させ、天板又は映像系を起倒回転させてX線透視・撮影を行うX線透視撮影装置であって、操作盤に優先動作切替スイッチと、制御部に起倒軌跡動作制御プログラム及び軌跡データを記憶したメモリと、透視撮影台に回転角度検出器及び昇降高さ検出器とを設け、前記優先動作切替スイッチをONすることで起倒軌跡に制限される動作軸の前記軌跡データを切り替え、起倒回転中心の床からの高さと起倒回転角度を変化できるようにしたことを特徴とするX線透視撮影装置。An image system consisting of an X-ray tube device and an X-ray image detection unit is arranged opposite to a top plate on which a subject is placed, and the image system is moved in parallel with the top plate, and the top plate or the image system is rotated upside down. An X-ray fluoroscopic apparatus for performing X-ray fluoroscopy and imaging by using a priority operation changeover switch on an operation panel, a memory storing a tilting trajectory operation control program and trajectory data in a control unit, and a rotation angle on a fluoroscopic imaging table A trajectory data of an operating axis limited to a trajectory by turning on the priority operation changeover switch. An X-ray fluoroscopic apparatus characterized in that a rotation angle can be changed.
JP2002193318A 2002-07-02 2002-07-02 X-ray fluoroscopic equipment Expired - Lifetime JP4461666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002193318A JP4461666B2 (en) 2002-07-02 2002-07-02 X-ray fluoroscopic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002193318A JP4461666B2 (en) 2002-07-02 2002-07-02 X-ray fluoroscopic equipment

Publications (2)

Publication Number Publication Date
JP2004033420A true JP2004033420A (en) 2004-02-05
JP4461666B2 JP4461666B2 (en) 2010-05-12

Family

ID=31702310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002193318A Expired - Lifetime JP4461666B2 (en) 2002-07-02 2002-07-02 X-ray fluoroscopic equipment

Country Status (1)

Country Link
JP (1) JP4461666B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151607A (en) * 2005-11-30 2007-06-21 Toshiba Corp X-ray diagnostic apparatus
WO2014041725A1 (en) * 2012-09-13 2014-03-20 株式会社島津製作所 Radiography apparatus
JP2015223245A (en) * 2014-05-27 2015-12-14 株式会社島津製作所 X-ray fluoroscopic apparatus
JP5954442B2 (en) * 2013-01-31 2016-07-20 株式会社島津製作所 Radiation imaging device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151607A (en) * 2005-11-30 2007-06-21 Toshiba Corp X-ray diagnostic apparatus
WO2014041725A1 (en) * 2012-09-13 2014-03-20 株式会社島津製作所 Radiography apparatus
JP5945991B2 (en) * 2012-09-13 2016-07-05 株式会社島津製作所 Radiography equipment
US10058291B2 (en) 2012-09-13 2018-08-28 Shimadzu Corporation Radiographic apparatus
JP5954442B2 (en) * 2013-01-31 2016-07-20 株式会社島津製作所 Radiation imaging device
JP2015223245A (en) * 2014-05-27 2015-12-14 株式会社島津製作所 X-ray fluoroscopic apparatus

Also Published As

Publication number Publication date
JP4461666B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
US7300204B2 (en) X-ray diagnostic apparatus
JP2014155620A (en) Movable x-ray generation apparatus
JP2002028155A (en) Table for x-ray fluoroscopic radiography
WO2006006601A1 (en) X-ray image diagnosing system
JP2004033420A (en) Fluoroscopic imaging apparatus
JP4503385B2 (en) X-ray equipment
JP4269307B2 (en) X-ray diagnostic equipment
JP4016713B2 (en) X-ray diagnostic equipment
JP3432270B2 (en) Digital X-ray equipment
JP3638353B2 (en) X-ray diagnostic equipment
JP4016636B2 (en) Arm-mounted X-ray equipment
JPH10179563A (en) X-ray radioscopic photographing device
JP2004033421A (en) Fluoroscopic imaging apparatus
JP4314013B2 (en) X-ray fluoroscopic equipment
JP7468370B2 (en) X-ray fluoroscopy apparatus and X-ray fluoroscopy method
JP3931567B2 (en) X-ray fluoroscopic equipment
JP4490982B2 (en) X-ray diagnostic equipment
JP4489086B2 (en) X-ray diagnostic equipment
JP4928780B2 (en) X-ray diagnostic equipment
JP2004181114A (en) Fluoroscopic imaging apparatus
JP3993588B2 (en) X-ray diagnostic equipment
JPH0771554B2 (en) Control system of X-ray fluoroscopy platform
JP2017035325A (en) Console and radiographic apparatus including the same
JP2001000428A (en) Apparatus for close operation of x-ray camera
JP4490981B2 (en) X-ray diagnostic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4461666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

EXPY Cancellation because of completion of term