JP2004028582A - Temperature confirmation method and temperature confirmation device of temperature distribution measuring instrument - Google Patents

Temperature confirmation method and temperature confirmation device of temperature distribution measuring instrument Download PDF

Info

Publication number
JP2004028582A
JP2004028582A JP2002178276A JP2002178276A JP2004028582A JP 2004028582 A JP2004028582 A JP 2004028582A JP 2002178276 A JP2002178276 A JP 2002178276A JP 2002178276 A JP2002178276 A JP 2002178276A JP 2004028582 A JP2004028582 A JP 2004028582A
Authority
JP
Japan
Prior art keywords
temperature
optical fiber
distribution measuring
measuring instrument
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002178276A
Other languages
Japanese (ja)
Inventor
Takujiyu Kanetani
金谷 拓樹
Shunsuke Kubota
久保田 俊輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OCC Corp
Original Assignee
OCC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OCC Corp filed Critical OCC Corp
Priority to JP2002178276A priority Critical patent/JP2004028582A/en
Publication of JP2004028582A publication Critical patent/JP2004028582A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature confirmation method and a temperature confirmation device of a temperature distribution measuring instrument capable of precise inspection with a simple device. <P>SOLUTION: This temperature confirmation device 2 of an optical fiber type temperature distribution measuring instrument 1 is equipped with a hose 5 installed on an optical fiber cable 4 of the optical fiber type temperature distribution measuring instrument 1, and a water-feeding means including a fluidization means for feeding a fluid 9 into the hose 5. The water-feeding means is characterized by utilizing the principle of siphon and by having a tank 11 provided on the upper side, a tank 12 provided on the lower side, and a recovery means for recovering the fluid 9. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバ式温度分布計測器の温度確認方法および温度確認装置に関する。
【0002】
【従来の技術】
光ファイバを用いた温度分布計測器(光ファイバ式温度分布計測器)は、光ファイバ自体が温度センサとなり、敷設可能な場所があれば、広範囲に亘って温度分布の測定ができる。この温度分布計測器は、将来的には高温,高圧プラント、電力ケーブル、ガスタンク等の温度分布検知に使用されることが予想される。
【0003】
また、光ファイバ式温度分布計測器は、メンテナンス等において、光ファイバによる計測温度と実温度との違いが判定評価される温度確認が行われる。
【0004】
従来、光ファイバ式温度分布計測器の温度確認装置としては、温度の長手方向の位置関係を明確にするためには一定長の安定した加熱が必要であるが、この場合には通常ヒートガン、ドライヤー、テープヒータ等が用いられる。また、冷却時においては光ファイバに冷水を直接吹きかけるが、光ファイバの敷設環境においてこれを行う。
【0005】
また、特開平10―291838号公報に開示された温度確認方法がある。光ファイバ式温度分布計測器は、光源から光ファイバの入力端に光パルスを入射し、この光パルスにより光ファイバ内で発生するラマン散乱の後方散乱光が戻ってくるまでの時間と、戻ってきた信号の強さを解析することで測定位置までの距離と温度とを測定する。温度確認検査は、温度測定区域ごとに敷設された光ファイバの一部分をボックスで囲み、このボックス内に加熱又は冷却用の熱源を設置して光ファイバの温度と測定位置の判定評価の検査を行う。そして、加熱用の熱源としては赤熱電球、熱風ドライヤー及び使い捨てカイロ等が使用され、冷却用の熱源としてはドライアイス、急冷スプレー等が使用される。
【0006】
【発明が解決しようとする課題】
しかしながら、加熱時においてはヒートガン、ドライヤー、テープヒータ等は、電源を必要とすることから爆発を伴う虞があり使用可能な環境が限定される。また使用可能な環境であってもヒートガンやドライヤーでは、加熱部の温度の安定性が低く、全長での温度均一性に欠けるため加熱部の正確な温度測定が困難な場合がある。
【0007】
また、冷却時においては、加熱と同様に温度安定性が低く、全長での温度均一性に欠けるため冷却部の正確な温度測定が困難な場合がある。
【0008】
また、特開平10―291838号公報に開示された温度確認装置は、過熱又は冷却用の熱源を設置するボックスを用意しなければならず作業が煩雑であり、さらに、ボックス内の温度均一性,温度安定性に欠けるため正確な温度測定が困難な場合がある。
【0009】
本発明は、上述した事情に鑑みて為されたもので、簡易な装置で的確な検査が可能な温度分布計測器の温度確認方法および温度確認装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
このような従来技術における問題点を解決するために、請求項1記載の光ファイバ式温度分布計測器の温度確認方法の要旨は、光ファイバ式温度分布計測器の光ファイバケーブルにホースを取り付け、該ホース内に流体を流す流動手段を用いて前記光ファイバケーブルの温度を変化させることを特徴とする。
請求項2記載の光ファイバ式温度分布計測器の温度確認方法の要旨は、請求項1記載の光ファイバ式温度分布計測器の温度確認方法において、上方のタンクから前記流体を流す流動手段を用いて、下方のタンクにおいて前記流体を回収することを特徴とする。
請求項3記載の光ファイバ式温度分布計測器の温度確認方法の要旨は、請求項1又は請求項2記載の光ファイバ式温度分布計測器の温度確認方法において、前記光ファイバケーブル及び前記ホースに断熱材を被せて保温することを特徴とする。
請求項4記載の発明の光ファイバ式温度分布計測器の温度確認方法の要旨は、請求項1〜請求項3のいずれかに記載の光ファイバ式温度分布計測器の温度確認方法において、温度計を挿入し、光ファイバケーブルの実温度を計測することを特徴とする。
請求項5記載の発明の光ファイバ式温度分布計測器の温度確認装置の要旨は、請求項1〜請求項4のいずれかに記載の光ファイバ式温度分布計測器の温度確認方法において、前記流動手段は、サイホンの原理であることを特徴とする。
請求項6記載の光ファイバ式温度分布計測器の温度確認装置の要旨は、光ファイバ式温度分布計測器の光ファイバケーブルに取り付けられたホースと、該ホース内に流体を流す流動手段を含む送水手段とを備えたことを特徴とする。
請求項7記載の光ファイバ式温度分布計測器の温度確認装置の要旨は、請求項6記載の光ファイバ式温度分布計測器の温度確認装置において、送水手段は、上方に設けられたタンクと、下方に設けられたタンクと、前記流体を流す流動手段と、前記流体を回収する回収手段とを有することを特徴とする。
請求項8記載の光ファイバ式温度分布計測器の温度確認装置の要旨は、請求項6又は請求項7のいずれかに記載の光ファイバ式温度分布計測器の温度確認装置において、前記光ファイバケーブル及び前記ホースに被せた断熱材を備えることを特徴とすることを特徴とする。
請求項9記載の光ファイバ式温度分布計測器の温度確認装置の要旨は、請求項6〜請求項8のいずれかに記載の光ファイバ式温度分布計測器の温度確認装置において、前記光ファイバケーブル近傍に挿入された温度計が設けられたことを特徴とする。
請求項10記載の光ファイバ式温度分布計測器の温度確認装置の要旨は、請求項6〜請求項9のいずれかに記載の光ファイバ式温度分布計測器の温度確認装置において、前記流動手段は、サイホンの原理であることを特徴とする。
【0011】
なお、流体は、温水又は冷水に限らず、熱を媒介することができる流体である。
【0012】
【発明の実施の形態】
以下、本発明に係る第1の実施形態について図1乃至図3を参照して詳細に説明する。図1は、本発明の実施形態における光ファイバ式温度分布計測器1の温度確認装置2の設置概要図である。
【0013】
光ファイバ式温度分布計測器1の温度確認装置2は、図1に示すように、温度分布測定器3に接続された温度測定用光ファイバケーブル4の途中に設けられている。
【0014】
温度確認装置2は、図2に示すように、温度測定用光ファイバケーブル4に近接してホース5が設けられており、温度測定用光ファイバケーブル4及びホース5は、内面に樹脂チューブ6が備えられた保温材7に覆われている。保温材7は、保温性を要求されるため一般的なパイプ用保温材(断熱材)を使用してもよい。本実施形態において、ホース5は、可撓性、柔軟性、強度、熱伝導性を考慮しウレタンで形成し、肉厚1mmで外径約8mmである。又、樹脂チューブ6の内径は約16mm、温度測定用光ファイバケーブル4の外径は被覆径で0.15mmである。
【0015】
図3に示すように、温度測定用光ファイバケーブル4に接した状態でホース5は圧迫、変形され、ホース5が潰れ、断面形状が横方向に長い楕円形状となる。これで温度測定用光ファイバケーブル4が固定され、温度測定用光ファイバケーブル4とホース5の設置面積も大きくなる。ホース5の反発力により樹脂チューブ6の切り口が開いてしまう箇所ができる場合は、例えば、テープやインシュロックで樹脂チューブ6を締め付けて対応する。
【0016】
なお、温度測定用光ファイバケーブル4は、図4に示すように、光ファイバ4aが、外径約18mmの金属管4bに収納されている。
【0017】
保温材7内部の温度を計測する温度計8が保温材7と挿通され、検温部が温度測定用光ファイバケーブル4に近接して配設されている。温度計8は、所定長さごとに3箇所配設されており各計測温度の平均値が算出される。なお、本実施形態では、温度計を3箇所配設したが、これに限らず適宜変更してもよい。
【0018】
温水又は冷水9を送る送水手段10は、サイホンの原理を採用する。なお、サイホンの原理とは、段差のある2つの水面を水で充填した管で繋ぐと大気圧により管の一部が上の水面よりも高い位置を経由しても水はこの管を通って下の水面に移動する仕組みをいう。本例の温度確認装置2は、人力で保温タンクB12を上下させ温水又は冷水9をサイホンの原理により移動させるので、電力は使用しない。ホース5の各端部に保温タンクA11及び保温タンクB12が設けられており、保温タンクB12の直前には小型で手動のポンプ13が備えられている。また、温水又は冷水9は、測定後に保温タンクB12ごと回収する。
【0019】
ホース5は、保温材7の中で折り返されており、保温材7は、両端が開口された円筒状をなし、図3に示すように、周方向1箇所に縦断する切り口14が設けられている。
【0020】
ついで、本実施形態による試験方法について説明する。
【0021】
まず、温度測定用光ファイバケーブル4の判定評価する部位を選択し、温度確認装置2の下部に設けられた切り口14を開き、その空隙に温度測定用光ファイバケーブル4を挿通して、温度確認装置2を上方から設置する。その後保温性を保持するために、マジックテープ(登録商標)、固定テープ等で切り口14を塞ぐ。そして、温度確認装置2に温度計8を設置する。
【0022】
つぎに、保温タンクA11内に温水又は冷水を充填する。充填された保温タンクA11の位置を相対的に空の保温タンクB12よりも高く設置すると、サイホンの原理により温水又は冷水9はホース5を流れ、保温タンクA11から保温タンクB12へと流出する。この場合、サイホンの原理を利用するので確認箇所の光ファイバの位置(高さ)は考慮する必要がない。また、保温タンクA11及び保温タンクB12の高低差を、大きくすると流量は増大し、小さくすると流量は減少する。
【0023】
送水を開始する場合には、前述したように、ホース5内を温水又は冷水9で満たさなければならない。そのため、例えば手動ポンプ13により、保温タンクA11から温水又は冷水9を引いてホース5内を温水又は冷水9で満たす。
【0024】
また、保温温度を持続させるには、昇降装置に保温タンクA11及び保温タンクB12を設置し、保温タンクA11及び保温タンクB12の上下の位置を変えることにより、温水又は冷水9を逆流させてやればよい。
【0025】
熱伝導により、温水の熱がホース5を介して温度測定用光ファイバケーブル4に伝達し、又は冷水がホース5を介して温度測定用光ファイバケーブル4に熱を伝達する。
【0026】
水を流動させない場合、温度変化の上限が低くなるか、又は所定温度に達するまでの時間が長くなる。特に、加熱又は冷却初期は温度測定用光ファイバケーブル4に奪われる熱量が大きい。また、水の流動がなければ、ポイントごとの水の温度にばらつきがでてしまうため、加熱又は冷却部全域の温度が均一でなくなる。さらに、試験が長時間に亘った場合に、光ファイバ式温度分布計測器1の温度確認装置2内の温度が変動してしまう。
【0027】
この対策として水を流動させることにより、温時均一性、温度変化の高速化、温度保持を保つ構成としている。
【0028】
熱伝導により、温水の熱がホース5を介して光ファイバに伝達し、又は冷水がホース5を介して温度測定用光ファイバケーブル4の熱を奪う。
【0029】
水を流動させない場合、温度変化の上限が低くなるか、又は所定温度に達するまでの時間が長くなる。特に、加熱又は冷却初期は温度測定用光ファイバケーブル4に奪われる熱量が大きい。また、水の流動が無ければ、ポイントごとの水の温度にばらつきがでてしまうため、加熱または冷却部全域の温度が均一でなくなる。さらに、試験が長時間に亘った場合に、温度確認装置2内の温度が変動してしまう。
【0030】
この対策として水を流動させることにより、温度均一性、温度変化の高速化、温度保持を保つ構成としている。
【0031】
ついで、温度上昇試験について説明する。
【0032】
例えば、室温20℃において約90℃の温水を流動させると、温度確認装置2内を約70℃に保温できる。
【0033】
つぎに、光ファイバ式温度分布計測器の温度確認装置2内の温度が変動する要因について説明する。
【0034】
光ファイバに、例えば、メッセンジャ(支持鋼線)、ラッシングワイヤ等の固定具が装着されている場合、固定具が熱を奪うため温度確認装置2内の温度は低下する。
【0035】
また、ホースの流量により温度確認装置2内の温度は変化し、流水ホースの流量は前述したとおり2つのタンクの高低差に依存する。すなわち、流量が多いと温度確認装置2内の温度は早く変化する。例えば、2つの保温タンクA11及び保温タンクB12の高低差を1mとした場合の流量では、温度確認装置2内の温度を70℃〜80℃に保持できるが、高低差を1mよりも小さくして流量を減少させても、保持温度に達するまでの時間は長くなるが、温度確認装置2内の温度を70℃〜80℃に維持できる。
【0036】
また、例えば、室温20℃、固定具装着なしの場合、0℃〜5℃の冷水を送水すると、温度確認装置2内を約10℃まで冷却することが可能である。
【0037】
本発明者が、実際に温度上昇試験を行ったところ、結果は以下のようであった。室温20℃、温水約90℃、保温タンクの容量が6l、高低差が約1mのとき、送水持続時間は8分〜10分であった。送水開始後、温度測定用光ファイバケーブル4の温度が約70℃まで上昇するのに要する時間は、固定具が装着されない金属管光ファイバケーブルの場合、約1分であった。
【0038】
本発明者が、実際に温度下降昇試験を行ったところ、結果は以下のようであった。温度20℃、冷水約0℃〜5℃、保温タンクの容量が6l、高低差が約1mのとき、送水持続時間は8分〜10分であった。送水開始後、温度測定用光ファイバケーブル4の温度が約10℃まで下降するのに要する時間は、固定具が装着されない金属管光ファイバケーブルの場合、約30秒であった。
【0039】
このように、本実施形態の光ファイバ式の温度確認方法および温度確認装置によれば、以下の利点が挙げられる。
1.温度確認箇所を均一に温度保持する事ができる、2.一定時間温度を安定して保持する事ができる、3.電源が不要である、4.サイホンの原理を用いるので流量調整のためのタンクの位置は、光ファイバの位置(高さ)に依存しない。
【0040】
これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
【0041】
【発明の効果】
以上説明したように、請求項1乃至請求項10に記載された温度分布計測器の温度確認方法および温度確認装置によれば、特別な装置を用意することなく、安定した検査を行うことができるので、コストの低減化、作業時間の短縮化等を実現できる。
【図面の簡単な説明】
【図1】本発明の実施形態における光ファイバ式温度分布計測器の温度確認装置の設置概要図である。
【図2】本発明の実施形態における光ファイバ式温度分布計測器の温度確認装置の設置概略図である。
【図3】本発明の実施形態における光ファイバ式温度分布計測器の温度確認装置の斜視断面図である。
【図4】本発明の実施形態における光ファイバ式温度分布計測器の光ファイバケーブルの縦断面図である。
【符号の説明】
1 光ファイバ式温度分布計測器
2 温度確認装置
3 温度分布測定器
4 温度測定用光ファイバケーブル
4a 光ファイバ
5 ホース
6 樹脂チューブ
7 保温材
8 温度計
9 温水または冷水
10 送水手段
11 保温タンクA
12 保温タンクB
13 手動ポンプ
14 切り口
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a temperature confirmation method and a temperature confirmation device for an optical fiber type temperature distribution measuring instrument.
[0002]
[Prior art]
A temperature distribution measuring device using an optical fiber (optical fiber type temperature distribution measuring device) can measure the temperature distribution over a wide range if there is a place where the optical fiber itself can be laid. This temperature distribution measuring instrument is expected to be used in the future for detecting temperature distribution in high-temperature, high-pressure plants, power cables, gas tanks, and the like.
[0003]
In addition, in the optical fiber type temperature distribution measuring device, a temperature check is performed to determine and evaluate a difference between the measured temperature by the optical fiber and the actual temperature during maintenance or the like.
[0004]
Conventionally, as a temperature checking device of an optical fiber type temperature distribution measuring instrument, a constant length of stable heating is necessary to clarify the positional relationship in the longitudinal direction of the temperature, but in this case, usually a heat gun, a dryer , A tape heater or the like is used. In addition, during cooling, cold water is directly blown onto the optical fiber, but this is performed in an environment where the optical fiber is laid.
[0005]
Also, there is a temperature checking method disclosed in Japanese Patent Application Laid-Open No. 10-291838. The optical fiber type temperature distribution measuring instrument emits a light pulse from the light source to the input end of the optical fiber, and the time until the backscattered light of Raman scattering generated in the optical fiber due to the light pulse returns, and returns. The distance to the measurement position and the temperature are measured by analyzing the strength of the signal. In the temperature confirmation inspection, a part of the optical fiber laid in each temperature measurement area is surrounded by a box, and a heat source for heating or cooling is installed in this box, and the temperature of the optical fiber and the evaluation of the measurement position are evaluated. . As a heat source for heating, an incandescent lamp, a hot air dryer, a disposable body warmer, or the like is used, and as a heat source for cooling, dry ice, quench spray, or the like is used.
[0006]
[Problems to be solved by the invention]
However, at the time of heating, a heat gun, a dryer, a tape heater, and the like require a power source, and thus may be accompanied by an explosion, and the usable environment is limited. Further, even in a usable environment, in a heat gun or a dryer, accurate temperature measurement of the heating section may be difficult due to low temperature stability of the heating section and lack of temperature uniformity over the entire length.
[0007]
Further, at the time of cooling, the temperature stability is low similarly to the heating, and the temperature uniformity over the entire length is lacking, so that it may be difficult to accurately measure the temperature of the cooling unit.
[0008]
Further, the temperature checking device disclosed in Japanese Patent Application Laid-Open No. 10-291838 has to prepare a box for installing a heat source for overheating or cooling, the operation is complicated, and the temperature uniformity in the box is further improved. Accurate temperature measurement may be difficult due to lack of temperature stability.
[0009]
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a temperature check method and a temperature check device of a temperature distribution measuring instrument capable of performing an accurate inspection with a simple device.
[0010]
[Means for Solving the Problems]
In order to solve such problems in the prior art, the gist of the method for confirming the temperature of the optical fiber type temperature distribution measuring instrument according to claim 1 is to attach a hose to an optical fiber cable of the optical fiber type temperature distribution measuring instrument. The temperature of the optical fiber cable is changed by using a flow means for flowing a fluid into the hose.
The gist of the method for confirming the temperature of the optical fiber type temperature distribution measuring device according to the second aspect is that, in the method for confirming the temperature of the optical fiber type temperature distribution measuring device according to the first aspect, a flow means for flowing the fluid from an upper tank is used. And collecting the fluid in a lower tank.
The gist of the method for confirming the temperature of the optical fiber type temperature distribution measuring device according to claim 3 is that, in the method for confirming the temperature of the optical fiber type temperature distribution measuring device according to claim 1 or 2, the optical fiber cable and the hose are connected to each other. It is characterized by covering with heat insulating material and keeping the temperature.
The gist of the method for confirming the temperature of the optical fiber type temperature distribution measuring instrument of the invention according to claim 4 is that in the method for confirming the temperature of the optical fiber type temperature distribution measuring instrument according to any one of claims 1 to 3, And measuring the actual temperature of the optical fiber cable.
The gist of the temperature confirmation device for an optical fiber type temperature distribution measuring instrument according to the invention of claim 5 is that in the method for confirming temperature of an optical fiber type temperature distribution measuring instrument according to any one of claims 1 to 4, The means is characterized by the principle of a siphon.
The gist of the temperature checking device for an optical fiber type temperature distribution measuring instrument according to claim 6 is that the water supply includes a hose attached to an optical fiber cable of the optical fiber type temperature distribution measuring instrument, and a flow means for flowing a fluid through the hose. Means.
The gist of the temperature checking device of the optical fiber type temperature distribution measuring device according to claim 7 is that, in the temperature checking device of the optical fiber type temperature distribution measuring device according to claim 6, the water supply means includes a tank provided above, It has a tank provided below, a flow means for flowing the fluid, and a recovery means for recovering the fluid.
The gist of the temperature checking device for an optical fiber type temperature distribution measuring instrument according to claim 8 is that in the temperature checking device for an optical fiber type temperature distribution measuring device according to any one of claim 6 or claim 7, And a heat insulating material covering the hose.
The gist of the temperature checking device for an optical fiber type temperature distribution measuring device according to claim 9 is that in the temperature checking device for an optical fiber type temperature distribution measuring device according to any one of claims 6 to 8, A thermometer inserted in the vicinity is provided.
The gist of the temperature checking device of the optical fiber type temperature distribution measuring device according to claim 10 is that in the temperature checking device of the optical fiber type temperature distribution measuring device according to any one of claims 6 to 9, , Characterized by the principle of siphon.
[0011]
The fluid is not limited to hot water or cold water, and is a fluid capable of transmitting heat.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a first embodiment according to the present invention will be described in detail with reference to FIGS. FIG. 1 is an installation schematic diagram of a temperature checking device 2 of an optical fiber type temperature distribution measuring instrument 1 according to an embodiment of the present invention.
[0013]
As shown in FIG. 1, the temperature checking device 2 of the optical fiber type temperature distribution measuring instrument 1 is provided in the middle of a temperature measuring optical fiber cable 4 connected to the temperature distribution measuring instrument 3.
[0014]
As shown in FIG. 2, the temperature checking device 2 is provided with a hose 5 near the temperature measuring optical fiber cable 4, and the temperature measuring optical fiber cable 4 and the hose 5 have a resin tube 6 on the inner surface. It is covered with the heat insulating material 7 provided. Since the heat insulating material 7 is required to have heat insulating properties, a general heat insulating material for pipes (heat insulating material) may be used. In the present embodiment, the hose 5 is formed of urethane in consideration of flexibility, flexibility, strength, and heat conductivity, and has a thickness of 1 mm and an outer diameter of about 8 mm. The inner diameter of the resin tube 6 is about 16 mm, and the outer diameter of the optical fiber cable 4 for temperature measurement is 0.15 mm in coating diameter.
[0015]
As shown in FIG. 3, the hose 5 is pressed and deformed in contact with the optical fiber cable 4 for temperature measurement, the hose 5 is crushed, and the cross-sectional shape becomes an elliptical shape long in the lateral direction. Thus, the temperature measuring optical fiber cable 4 is fixed, and the installation area of the temperature measuring optical fiber cable 4 and the hose 5 is also increased. When there is a place where the cut of the resin tube 6 is opened due to the repulsive force of the hose 5, the resin tube 6 is tightened with, for example, a tape or an insulation lock.
[0016]
As shown in FIG. 4, the optical fiber cable 4 for temperature measurement has an optical fiber 4a housed in a metal tube 4b having an outer diameter of about 18 mm.
[0017]
A thermometer 8 for measuring the temperature inside the heat insulating material 7 is inserted through the heat insulating material 7, and a temperature detecting section is arranged close to the temperature measuring optical fiber cable 4. The thermometers 8 are provided at three locations for each predetermined length, and the average value of each measured temperature is calculated. In the present embodiment, three thermometers are provided. However, the present invention is not limited to this, and may be changed as appropriate.
[0018]
The water sending means 10 for sending hot or cold water 9 employs the principle of siphon. In addition, the principle of the siphon is that if two water surfaces with steps are connected by a pipe filled with water, water will pass through this pipe even if a part of the pipe passes through a position higher than the upper water surface due to atmospheric pressure. A mechanism that moves to the surface below. The temperature checking device 2 of the present embodiment does not use electric power because the warming tank B12 is moved up and down by human power to move the hot or cold water 9 according to the siphon principle. A heat retention tank A11 and a heat retention tank B12 are provided at each end of the hose 5, and a small-sized and manual pump 13 is provided immediately before the heat retention tank B12. The hot or cold water 9 is collected together with the heat retaining tank B12 after the measurement.
[0019]
The hose 5 is folded back in the heat insulating material 7, and the heat insulating material 7 has a cylindrical shape with both ends opened. As shown in FIG. I have.
[0020]
Next, the test method according to the present embodiment will be described.
[0021]
First, a part of the temperature-measuring optical fiber cable 4 to be determined and evaluated is selected, a cutout 14 provided at the lower portion of the temperature checking device 2 is opened, and the temperature-measuring optical fiber cable 4 is inserted into the gap to check the temperature. The device 2 is installed from above. Thereafter, in order to maintain heat retention, the cutout 14 is closed with a magic tape (registered trademark), a fixing tape, or the like. Then, the thermometer 8 is installed in the temperature checking device 2.
[0022]
Next, the warming tank A11 is filled with hot or cold water. If the filled heat retaining tank A11 is positioned relatively higher than the empty heat retaining tank B12, the hot or cold water 9 flows through the hose 5 and flows out of the heat retaining tank A11 to the heat retaining tank B12 according to the siphon principle. In this case, since the principle of the siphon is used, there is no need to consider the position (height) of the optical fiber at the confirmation position. Also, when the height difference between the heat retaining tanks A11 and B12 is increased, the flow rate increases, and when the difference is reduced, the flow rate decreases.
[0023]
When water supply is started, the hose 5 must be filled with hot or cold water 9 as described above. Therefore, hot water or cold water 9 is drawn from the heat retaining tank A11 by, for example, the manual pump 13 to fill the hose 5 with hot or cold water 9.
[0024]
In order to maintain the heat retaining temperature, the warming tank A11 and the warming tank B12 are installed in the elevating device, and the hot or cold water 9 is caused to flow backward by changing the upper and lower positions of the warming tank A11 and the warming tank B12. Good.
[0025]
By the heat conduction, the heat of the hot water is transmitted to the optical fiber cable for temperature measurement 4 via the hose 5, or the cold water is transmitted to the optical fiber cable 4 for temperature measurement via the hose 5.
[0026]
If water is not allowed to flow, the upper limit of the temperature change will be lower, or the time required to reach the predetermined temperature will be longer. In particular, a large amount of heat is taken by the temperature-measuring optical fiber cable 4 in the initial stage of heating or cooling. In addition, if there is no flow of water, the temperature of the water at each point varies, so that the temperature of the entire heating or cooling unit is not uniform. Further, when the test is performed for a long time, the temperature in the temperature checking device 2 of the optical fiber type temperature distribution measuring instrument 1 fluctuates.
[0027]
As a countermeasure, water is made to flow to maintain uniformity at the time of temperature, speed up of temperature change, and maintain temperature.
[0028]
By the heat conduction, the heat of the hot water is transmitted to the optical fiber via the hose 5, or the cold water removes the heat of the optical fiber cable for temperature measurement 4 via the hose 5.
[0029]
If water is not allowed to flow, the upper limit of the temperature change will be lower, or the time required to reach the predetermined temperature will be longer. In particular, a large amount of heat is taken by the temperature-measuring optical fiber cable 4 in the initial stage of heating or cooling. In addition, if there is no flow of water, the temperature of the water at each point varies, so that the temperature of the entire heating or cooling unit is not uniform. Further, when the test is performed for a long time, the temperature in the temperature checking device 2 fluctuates.
[0030]
As a countermeasure, by flowing water, the temperature uniformity, the speed of temperature change, and the temperature maintenance are maintained.
[0031]
Next, the temperature rise test will be described.
[0032]
For example, when warm water of about 90 ° C. is flowed at a room temperature of 20 ° C., the temperature inside the temperature checking device 2 can be kept at about 70 ° C.
[0033]
Next, a description will be given of factors that cause the temperature in the temperature checking device 2 of the optical fiber type temperature distribution measuring instrument to fluctuate.
[0034]
When a fixture such as a messenger (supporting steel wire) or a lashing wire is attached to the optical fiber, the temperature in the temperature check device 2 decreases because the fixture takes away heat.
[0035]
Further, the temperature in the temperature checking device 2 changes according to the flow rate of the hose, and the flow rate of the flowing water hose depends on the height difference between the two tanks as described above. That is, if the flow rate is large, the temperature in the temperature checking device 2 changes quickly. For example, with a flow rate when the height difference between the two heat retaining tanks A11 and B12 is 1 m, the temperature in the temperature checking device 2 can be maintained at 70 ° C. to 80 ° C., but the height difference is made smaller than 1 m. Even if the flow rate is reduced, the time until reaching the holding temperature becomes longer, but the temperature in the temperature checking device 2 can be maintained at 70 ° C to 80 ° C.
[0036]
Further, for example, in the case where the room temperature is 20 ° C. and the fixture is not mounted, the inside of the temperature checking device 2 can be cooled to about 10 ° C. by supplying cold water of 0 ° C. to 5 ° C.
[0037]
When the present inventor actually performed a temperature rise test, the results were as follows. When the room temperature was 20 ° C., the temperature of the hot water was about 90 ° C., the capacity of the heat retaining tank was 6 l, and the height difference was about 1 m, the water supply duration was 8 minutes to 10 minutes. The time required for the temperature of the temperature-measuring optical fiber cable 4 to rise to about 70 ° C. after the start of water supply was about 1 minute in the case of a metal tube optical fiber cable in which no fixture was attached.
[0038]
When the present inventor actually performed a temperature decrease / rise test, the results were as follows. When the temperature was 20 ° C., the temperature of the cold water was about 0 ° C. to 5 ° C., the capacity of the heat retaining tank was 6 l, and the height difference was about 1 m, the water supply duration was 8 minutes to 10 minutes. The time required for the temperature of the temperature-measuring optical fiber cable 4 to drop to about 10 ° C. after the start of water supply was about 30 seconds in the case of a metal tube optical fiber cable in which no fixture was attached.
[0039]
As described above, according to the optical fiber type temperature checking method and the temperature checking apparatus of the present embodiment, the following advantages can be obtained.
1. 1. The temperature can be uniformly maintained at the temperature check point. 2. The temperature can be stably maintained for a certain period of time. 3. No power supply is required. Since the siphon principle is used, the position of the tank for adjusting the flow rate does not depend on the position (height) of the optical fiber.
[0040]
Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention may be embodied in various forms within the scope of the technical idea.
[0041]
【The invention's effect】
As described above, according to the temperature checking method and the temperature checking device of the temperature distribution measuring device according to the first to tenth aspects, a stable inspection can be performed without preparing a special device. Therefore, it is possible to reduce the cost, shorten the operation time, and the like.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating an installation of a temperature checking device of an optical fiber type temperature distribution measuring instrument according to an embodiment of the present invention.
FIG. 2 is a schematic diagram illustrating an installation of a temperature checking device of an optical fiber type temperature distribution measuring instrument according to an embodiment of the present invention.
FIG. 3 is a perspective sectional view of a temperature checking device of the optical fiber type temperature distribution measuring device according to the embodiment of the present invention.
FIG. 4 is a longitudinal sectional view of an optical fiber cable of the optical fiber type temperature distribution measuring device according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Optical fiber type temperature distribution measuring device 2 Temperature confirmation device 3 Temperature distribution measuring device 4 Optical fiber cable 4a for temperature measurement Optical fiber 5 Hose 6 Resin tube 7 Insulation material 8 Thermometer 9 Hot or cold water 10 Water supply means 11 Insulation tank A
12 Insulation tank B
13 Manual pump 14 Cut end

Claims (10)

光ファイバ式温度分布計測器の光ファイバケーブルにホースを取り付け、該ホース内に流体を流す流動手段を用いて前記光ファイバケーブルの温度を変化させることを特徴とする、光ファイバ式温度分布計測器の温度確認方法。An optical fiber type temperature distribution measuring instrument, wherein a hose is attached to an optical fiber cable of an optical fiber type temperature distribution measuring instrument, and the temperature of the optical fiber cable is changed using a flow means for flowing a fluid into the hose. Temperature check method. 上方のタンクから前記流体を流す流動手段を用いて、下方のタンクにおいて前記流体を回収することを特徴とする、請求項1記載の光ファイバ式温度分布計測器の温度確認方法。The method for confirming the temperature of an optical fiber type temperature distribution measuring instrument according to claim 1, wherein the fluid is collected in a lower tank using a flow means for flowing the fluid from an upper tank. 前記光ファイバケーブル及び前記ホースに断熱材を被せて保温することを特徴とする、請求項1又は請求項2記載の光ファイバ式温度分布計測器の温度確認方法。The method for confirming the temperature of an optical fiber type temperature distribution measuring instrument according to claim 1 or 2, wherein a heat insulating material is put on the optical fiber cable and the hose to keep the temperature. 温度計を挿入し、光ファイバケーブルの実温度を計測することを特徴とする、請求項1〜請求項3のいずれかに記載の光ファイバ式温度分布計測器の温度確認方法。The method for confirming a temperature of an optical fiber type temperature distribution measuring instrument according to any one of claims 1 to 3, wherein a thermometer is inserted to measure an actual temperature of the optical fiber cable. 前記流動手段は、サイホンの原理であることを特徴とする、請求項1〜請求項4のいずれかに記載の光ファイバ織温度分布計測器の温度確認方法。The method according to claim 1, wherein the flow unit is based on a siphon principle. 光ファイバ式温度分布計測器の光ファイバケーブルに取り付けられたホースと、該ホース内に流体を流す流動手段を含む送水手段とを備えたことを特徴とする、光ファイバ式温度分布計測器の温度確認装置。A hose attached to the optical fiber cable of the optical fiber type temperature distribution measuring instrument, and a water supply means including a flow means for flowing a fluid into the hose, wherein the temperature of the optical fiber type temperature distribution measuring instrument is Confirmation device. 前記送水手段は、上方に設けられたタンクと、
下方に設けられたタンクと、
前記流体を流す流動手段と、
前記流体を回収する回収手段とを有することを特徴とする、請求項6記載の光ファイバ式温度分布計測器の温度確認装置。
The water supply means, a tank provided above,
A tank provided below,
Flow means for flowing the fluid,
7. The temperature checking device for an optical fiber type temperature distribution measuring device according to claim 6, further comprising a collecting means for collecting the fluid.
前記光ファイバケーブル及び前記ホースに被せた断熱材を備えることを特徴とする、請求項6又は請求項7記載の光ファイバ式温度分布計測器の温度確認装置。The temperature checking device for an optical fiber type temperature distribution measuring instrument according to claim 6, further comprising a heat insulating material covering the optical fiber cable and the hose. 前記光ファイバケーブル近傍に挿入された温度計が設けられたことを特徴とする、請求項6〜請求項8のいずれかに記載の光ファイバ式温度分布計測器の温度確認装置。9. The temperature checking device for an optical fiber type temperature distribution measuring instrument according to claim 6, wherein a thermometer inserted near the optical fiber cable is provided. 前記流動手段は、サイホンの原理であることを特徴とする、請求項6〜請求項9のいずれかに記載の光ファイバ式温度分布計測器の温度確認装置。The temperature check device of an optical fiber type temperature distribution measuring instrument according to any one of claims 6 to 9, wherein the flow means is based on a siphon principle.
JP2002178276A 2002-06-19 2002-06-19 Temperature confirmation method and temperature confirmation device of temperature distribution measuring instrument Pending JP2004028582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178276A JP2004028582A (en) 2002-06-19 2002-06-19 Temperature confirmation method and temperature confirmation device of temperature distribution measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178276A JP2004028582A (en) 2002-06-19 2002-06-19 Temperature confirmation method and temperature confirmation device of temperature distribution measuring instrument

Publications (1)

Publication Number Publication Date
JP2004028582A true JP2004028582A (en) 2004-01-29

Family

ID=31176046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178276A Pending JP2004028582A (en) 2002-06-19 2002-06-19 Temperature confirmation method and temperature confirmation device of temperature distribution measuring instrument

Country Status (1)

Country Link
JP (1) JP2004028582A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048065A (en) * 2012-12-18 2013-04-17 苏州热工研究院有限公司 Portable type temperature sensing cable testing apparatus
WO2016201880A1 (en) * 2015-06-19 2016-12-22 河海大学 System and method for calibrating distributed optical fiber for health perception of a water-adjacent building

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048065A (en) * 2012-12-18 2013-04-17 苏州热工研究院有限公司 Portable type temperature sensing cable testing apparatus
WO2016201880A1 (en) * 2015-06-19 2016-12-22 河海大学 System and method for calibrating distributed optical fiber for health perception of a water-adjacent building
GB2554331A (en) * 2015-06-19 2018-03-28 Univ Hohai System and method for calibrating distributed optical fiber for health perception of a water-adjacent building
GB2554331B (en) * 2015-06-19 2020-02-26 Univ Hohai Wading structure health sensing distributed optical fiber calibration system and method.

Similar Documents

Publication Publication Date Title
CN102401465B (en) Liquid heating unit, liquid processing apparatus including the same, and liquid processing method
US4722610A (en) Monitor for deposition on heat transfer surfaces
US20160047694A1 (en) Line &amp; Pipe Flexible Temperature Sensor Assembly
ES2432317T3 (en) Device for determining the volume of the exhaust gas
US8510075B2 (en) Emmissivity test instrument for overhead electrical transmission and distribution
ES2430990T3 (en) Exhaust gas generating installation, particularly a vessel, with a determination of the volume of the exhaust gas
US20150085896A1 (en) Method and equipment for measuring the heat flow through constructions
BR112016003060B1 (en) gas sampling probe and method for operating a gas sampling probe
KR102317216B1 (en) Measurement apparatus of ice adhesion properties and measurement method ice adhesion properties using the same
JP2004028582A (en) Temperature confirmation method and temperature confirmation device of temperature distribution measuring instrument
CN104197146A (en) Pipeline anti-freezing and defreezing device making use of hot air recirculation
US6325535B1 (en) In-situ radiant heat flux probe cooled by suction of ambient air
JP5070570B2 (en) Thermal expansion coefficient measuring method and measuring apparatus
US20050111519A1 (en) Simple high accuracy high energy calorimeter
Ji et al. Experimental investigation on the ice melting heat transfer with a steam jet impingement method
JP2008185403A (en) Testing device
CA2058904C (en) Apparatus for measuring heating temperature in high electric field of microwaves
JP6161327B2 (en) Four-terminal resistance measuring device and four-terminal measuring probe
JP5976988B2 (en) Ash removal system and combustion furnace
KR20060120159A (en) Method and apparatus for measurement of terminal solid solubility temperature in alloys capable of forming hydrides
CN104483182B (en) A kind of sample gas humidity control method and device
KR102493453B1 (en) High temperature and high pressure gas cooling device for performance verification of heat pipes
KR101915532B1 (en) Fire-fighting water supply equipment for preventing winter-sowing
JP4334164B2 (en) Sprinkler fire extinguishing equipment
CN204359591U (en) A kind of sample gas humidity conditioner

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040603

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050125