JP2004028036A - ガスタービン静翼及びガスタービン - Google Patents

ガスタービン静翼及びガスタービン Download PDF

Info

Publication number
JP2004028036A
JP2004028036A JP2002188951A JP2002188951A JP2004028036A JP 2004028036 A JP2004028036 A JP 2004028036A JP 2002188951 A JP2002188951 A JP 2002188951A JP 2002188951 A JP2002188951 A JP 2002188951A JP 2004028036 A JP2004028036 A JP 2004028036A
Authority
JP
Japan
Prior art keywords
cooling medium
cooling
gas turbine
stationary blade
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002188951A
Other languages
English (en)
Inventor
Nobuaki Kitsuka
木塚 宣明
Shunichi Anzai
安斎 俊一
Saneyuki Ueno
上野 実行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002188951A priority Critical patent/JP2004028036A/ja
Publication of JP2004028036A publication Critical patent/JP2004028036A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

【課題】ホイールスペース温度監視用熱電対プローブを構造上設置し難いクローズドガスタービン静翼において、静翼自体の信頼性を損なわないで設置可能な構造とすることにある。
【解決手段】ガスタービン静翼において、内部に複数の冷却媒体流通パスを設けるとともに、該冷却媒体流通パスの内少なくとも一つの第一の冷却媒体流通パスは、外部より供給された冷却媒体が流通して静翼を冷却し冷却後は回収され、他の第二の冷却媒体流通パスは、外部より供給された冷却媒体が流通して静翼を冷却し、冷却後はその一部の冷却媒体が前記主流ガス中に放出されるよう構成し、ホイールスペースの温度を測定する温度測定手段を第二の冷却媒体流通パスを通して配置し、該第二の冷却媒体流通パスより外部へ導き出す部分において該温度測定手段を固定し、入口部で拘束しないよう構成したことを特徴とする。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、ガスタービン静翼及びガスタービンに関するものである。
【0002】
【従来の技術】
一般に、冷媒の回収を前提とするクローズド冷却方式を採用するガスタービンの場合、その静翼および静翼周辺の構造は、クローズド冷却媒体を外部に漏らさないようシール性を上げなければならない。このシール構成の点で、冷媒を主流ガス中に放出するオープン冷却方式の構造とは大きく異なってくる。例えば、特開平2001−98905号公報には、翼内のクローズド冷却流路内にホイールスペース温度監視用熱電対プローブ及び保護管を熱伸びを吸収するために蛇行させて配置した構造が示されている。
【0003】
【発明が解決しようとする課題】
クローズド冷却媒体は、昇圧されて翼に供給され周囲雰囲気に比べ高圧であるため、当然のことながら、熱電対プローブ保護管が破損すれば、翼内部のクローズド冷却媒体が外部に多量に漏れ出し、タービン全体性能を低下させるだけでなく、冷却媒体供給不足により翼冷却性能が低下し、翼メタル温度は上昇し、状況次第によっては翼の溶損を引き起こし、タービン部全体の破壊を引き起こす可能性もある。シール機構を損なわずに、ホイールスペース温度監視用熱電対プローブを設けることが困難であった。
【0004】
本発明の目的は、ホイールスペース温度監視用熱電対プローブを構造上設置し難いクローズドガスタービン静翼において、静翼自体の信頼性を損なわないで設置可能な構造を提供することにある。
【0005】
【課題を解決するための手段】
ホイールスペースの温度を測定する温度測定手段を冷却媒体流通パスを通して配置し、その冷却媒体流通パスより外部へ導き出す部分において該温度測定手段を固定し、入口部で拘束しないよう構成する。
【0006】
【発明の実施の形態】
タービン静翼の内部に冷却媒体流通パスを有するとともに、この冷却媒体流通パスに冷却媒体が流通されて静翼が冷却され、かつ静翼冷却後の冷却媒体が、一部は回収され、かつ一部は主流ガス中に放出されるように形成されており、前記静翼に複数の冷却媒体流通パスを設けるとともに、該冷却媒体流通パスの内少なくとも一つの冷却媒体流通パスは、外部より供給された冷却媒体が流通して静翼を冷却し、冷却後は再び外部に回収され、かつ他の冷却媒体流通パスは、外部より供給された冷却媒体が流通して静翼を冷却し、冷却後は内周側エンドウォールのキャビティに導かれ、その一部の冷却媒体は内周側エンドウォールを冷却した後前記主流ガス中に放出され、かつ残部の冷却媒体は静翼の内周側に配置されている回転部にシール媒体として供給するように形成しているガスタービン静翼において、ホイールスペース温度監視用熱電対プローブ及び保護管を前記主流ガス中に放出される冷却媒体流通パス及び前記内周側エンドウォールキャビティを通して配置するようにしたものである。
【0007】
ホイールスペースの温度を測定する温度測定手段を冷却媒体流通パスを通して配置し、その冷却媒体流通パスより外部へ導き出す部分において該温度測定手段を固定し、入口部で拘束しないよう構成することにより、ホイールスペース温度監視用熱電対プローブを構造上設置し難いクローズドガスタービン静翼において、静翼自体の信頼性を損なわないで設置可能な構造とすることができる。
【0008】
また、この場合、ホイールスペース温度監視用熱電対プローブ保護管が前記内周側エンドウォールキャビティから外部に出る部分にプラグをして溶接等により隙間を封止し、内部の冷却媒体が外部に漏れ出ないようにしたものである。また、ホイールスペース温度監視用熱電対プローブ保護管を固定するために、外周側エンドウォールの前記主流ガス中に放出される冷却媒体流通パスの入口部にコの字型ブラケットを配置し、前記コの字型ブラケットの穴に前記保護管を通すようにしたものである。また、前記コの字型ブラケットの穴と前記保護管との間に間隙を設け、前記保護管がガスタービン回転中心軸から見て半径方向に伸縮可能となるようにしたものである。
【0009】
すなわちこのように形成されたガスタービン静翼であると、静翼と保護管とのシール箇所は1箇所のみとすることができ、運転時に保護管と静翼との間に発生する熱伸び差の問題はなくなり、すなわち熱伸び差による発生する応力からくる保護管の破損が防止でき、信頼性を向上させることができる。
【0010】
さらに、静翼の保護管貫通部において内部にある媒体は、最終的に主流ガスパス中に放出する冷却媒体であるため、内外圧力差は小さく、シール部に多少のクラックが生じても外部に漏れ出す量は少ないため、翼冷却に与える影響は小さく、またガスタービン全体の効率低下に及ぼす影響も小さい。
【0011】
さらに、保護管が外周側エンドウォール付近でブラケットにより支持されるため、運転時に周囲の冷却媒体の流れに揺さぶられたりして破損するのを防ぐことができる。また、保護管は熱伸び方向に自由に動くことが出来るため、熱伸び差を逃がすことができ、より信頼性の高い構造を提供することが出来る。
【0012】
(実施例)
以下図示した実施例に基づいて本発明を詳細に説明する。図1には、そのガスタービンの要部(翼段落部)が断面で示されている。図中矢印20が、主流ガスの流れ方向を示しており、1が第1段静翼、3が第2段静翼、また2が第1段動翼、4が第2段動翼、5が第2段静翼ダイヤフラム、6がディスタントピース、7が第1段動翼ロータディスク、8がディスクスペーサ、9が第2段動翼ロータディスクである。
【0013】
第1段動翼2はロータディスク7に、また第2段動翼4はロータディスク9にそれぞれ固定され、ディスタントピース6とロータディスク7,ディスクスペーサ8,ロータディスク9は、スタブシャフト10により一体に固定され回転体を形成している。
【0014】
このように構成されたガスタービンの作動原理について簡単に説明すると、圧縮機と燃焼器により高温・高圧となった作動流体、すなわち主流ガス20は、第1段静翼1および第2段静翼3によりその高圧のエネルギーを流速のエネルギーに変換し、第1段動翼2および第2段動翼4を回転させる。その回転エネルギーで発電機を回して電気を得るが、一部の回転エネルギーは圧縮機駆動にも用いられる。主流ガス温度は、翼材の許容温度以上であるから高温のガスにさらされる翼部は冷却されなければならない。
【0015】
ここで、第2段静翼3を例に取ってみると、第2段静翼の冷却媒体には、圧縮機吐出流体を冷却器とブースト圧縮機によりそれぞれ冷却および昇圧された冷媒と圧縮途中段抽気流体の2つがあり、前者がクローズド冷却媒体、後者がオープン冷却媒体である。前者のクローズド冷却媒体22は、第2段静翼3の外周側に配置された配管30により供給され、第2段静翼3の冷却を終えた後、外周側の配管31に回収され、ガスタービンケーシング11内を通して最終的には燃焼器入口に供給され圧縮機吐出流体に合流する。
【0016】
一方、後者のオープン冷却媒体23は、外部配管により第2段静翼3の外周とケーシング11で形成されるキャビティ12に供給され、さらにキャビティ12より第2段静翼3の冷却流路に供給され、第2段静翼3の一部を冷却した後、最終的には主流ガス中に放出されるが、そのオープン冷却媒体23の一部は、第2段静翼3の内周側に配置されるダイヤフラム5へ導かれ、第1段動翼2のシャンク部13とダイヤフラム5とのホイールスペース14aに放出される。
【0017】
すなわち、ホイールスペース用シール媒体23b及び23dとして用いられ、この隙間すなわちホイールスペース14a及び14bに主流ガス20が進入してくるのを防ぐ。万が一、このホイールスペース14a及び14bに高温の主流ガス20が進入して雰囲気温度を上昇させるようなことがあると動翼シャンク部13やダイヤフラム5が高温ガスにより損傷を受けるばかりでなく、ロータディスク7および9やディスクスペーサ8に過剰な熱負荷がかかり、それによる熱応力で寿命の低下を招き、さらには熱変形の発生によりガスタービンの運転を妨げる可能性がある。そこで、ホイールスペース14a及び14bの雰囲気温度を測定するために、周方向の数カ所において、外周のガスタービンケーシング11よりダイヤフラム5に向けて、保護管付きのホイールスペース温度監視用熱電対プローブ35a及び35bが挿入されており、ガスタービン運転時に常時温度を監視している。
【0018】
図2に第2段静翼3の軸方向断面図を示し、さらに詳細な構造を示す。第2段静翼3の外周側エンドウォール40には、カバー41とクローズド冷却媒体の外周側キャビティ42が形成され、その外周側キャビティ42内には複数のインピンジメント冷却孔を有するインピンジプレート58が配置されている。30は外周側キャビティ42にクローズド冷却媒体を供給する配管、31はクローズド冷却媒体回収配管である。
【0019】
一方、内周エンドウォール48には、カバー49とオープン冷却媒体キャビティ50が形成され、キャビティ50内には、複数のインピンジメント冷却孔を有するインピンジプレート51が配置され、また、内周側エンドウォールの部分には、キャビティ50と主流ガスパスとを連通する対流冷却孔52および53が設けられている。ここで、オープン冷却媒体流路44は外周側エンドウォールカバー41の外側とエンドウォールの内周側のキャビティ50とを連通するように形成されている。
【0020】
このように構成された静翼において、クローズド冷却媒体22は、供給配管30により外周側キャビティ42に供給され、インピンジプレート58により外周エンドウォールを冷却する。外周側エンドウォール冷却の後、翼プロファイル部45を冷却した後に回収56を通り、回収配管31に回収される。
【0021】
一方、オープン冷却媒体23は、翼の中間部のオープン冷却媒体流路44に挿入されているコアプラグ61内に供給され、オープン冷却媒体流路44をインピンジメント冷却する。オープン冷却媒体流路44を冷却し終えたオープン冷却媒体23は、内周側キャビティ50に導かれる。内周側エンドウォールキャビティ内の一部のシール冷却媒体23bは、インピンジプレート51により、内周エンドウォール48をインピンジメント冷却し、さらには内周エンドウォール48の対流冷却孔52および53により内周エンドウォール48を冷却し、最終的には主流ガス中に放出される。また、内周側キャビティ50内の一部のシール媒体23cはシール媒体としてホイールスペースに供給される。
【0022】
ここで、ホイールスペース温度監視用熱電対プローブ35を内包する保護管36は、外周側エンドウォール40の外より前記翼中間部のオープン冷却媒体流路44内のコアプラグ61内及び内周側キャビティ50内を通り、内周側エンドウォールカバー49を貫通するように配置され、保護管36の先端には熱電対プローブ35の先端感温部保護のために設けられている熱電対ウェル37が取り付けられる構造となっている。保護管36の内周側エンドウォールカバー49には、シールのためにプラグ38が取り付けられ、キャビティ50内のオープン冷却媒体が外部に漏れ出さないようになっている。
【0023】
ホイールスペースの温度を測定する温度測定手段を冷却媒体流通パスを通して配置し、その冷却媒体流通パスより外部へ導き出す部分において該温度測定手段を固定し、入口部で拘束しないよう構成することにより、ホイールスペース温度監視用熱電対プローブを構造上設置し難いクローズドガスタービン静翼において、静翼自体の信頼性を損なわないで設置可能な構造とすることができる。
【0024】
このように構成された構造であると、外周エンドウォールカバー41と保護管36とのシール箇所は無くなり、保護管36と第2段静翼3との拘束部は内周側エンドウォールカバー49とのシール部1箇所のみとなり、保護管36と第2段静翼3との間に発生する熱伸び差の問題はなくなり、すなわち熱伸び差による発生する応力からくる保護管36あるいはエンドウォールカバー41破損の可能性は無くなり、信頼性を向上させることができる。
【0025】
さらに、保護管36貫通部のシール部は内周側エンドウォールカバー49側である。本構造において、内周側キャビティ50内は最終的に主流ガスパス中に放出するオープン冷却媒体であるため、内周側キャビティ50内と外部雰囲気との圧力差は、クローズド冷却媒体の供給キャビティである外周側キャビティ42とその外部雰囲気との圧力差に比べはるかに小さい。そのためシール部に多少のクラックが生じても外部に漏れ出す量は少ないため、内周エンドウォール冷却に与える影響は小さく、またガスタービン全体の効率低下に及ぼす影響も小さい。従って、翼全体がクローズド冷却媒体による圧力容器で、外周エンドウォールと内周エンドウォールの両方に保護管貫通部があり、両方ともシールしているような構造と比べると遥かに信頼性の高い構造とすることができる。
【0026】
以上、本発明の効果を説明してきたが、オープン冷却媒体冷却流路の配置は翼中間部にかかわらず、冷却上成立するならば前縁流路あるいは後縁流路でも問題なく、特に制限されるものではない。また、オープン冷却媒体流路の冷却方法は、コアプラグを用いたインピンジメント冷却方式にかかわらず、冷却上成立するならば対流冷却方式でも問題なく、特に制限されるものではない。さらに、本発明の構造は2連翼に限らず、単翼,3連翼,4連翼等外周及び内周エンドウォール内に翼をいくつも配置するものでも効果に変わりは無く、特に制限されるものではない。
【0027】
次に図3に示した本発明の発展例について説明する。この図は、第2段静翼3の斜視図を示す。ホイールスペース温度監視用熱電対プローブ35及び保護管36を配置しているオープン冷却媒体流路44の外周側エンドウォール40側開口部にコの字型固定ブラケット80を配置し、保護管36はブラケット80に設けられた穴83を貫通するように配置されている。さらに、図4にはA−A断面図を示す。翼側から伸びる保護管36cはブラケット80付近でケーシング側から伸びる保護管36dと分割されており、保護管36c端部にはスリーブ81が溶接により固定されていて、ケーシング側から伸びる保護管36dの端部がスリーブ81に入り固定されるように形成されている。ブラケット80の穴はスリーブ81との間に、ギャップ84をもたせるように形成されている。このように形成されていると、保護管が外周側エンドウォール付近で支持されるため、運転時に周囲のオープン冷却媒体の流れに揺さぶられたりして破損するのを防ぐことができる。このとき、保護管は熱伸び方向である保護管熱変形伸縮方向85の方向には、ギャップ84により自由に動くことが出来るため、熱伸び差を逃がすことができ、より信頼性の高い構造を提供することが出来る。
【0028】
以上本発明の実施例を説明してきたが、本発明の構造は第2段静翼にかかわらず、他の段の静翼にも適用可能かつ適用効果があり、いずれの場合においても、本発明の構造を用いれば、圧力容器構造となるクローズド冷却静翼にホイールスペース温度監視用熱電対プローブを特殊な手段を用いないで信頼性を損なうことなく配置することが可能となり、しいてはクローズド冷却を実施した利点を損なうことが無い信頼性の高いガスタービンとすることができるのである。
【0029】
【発明の効果】
本発明によれば、構造上ホイールスペース温度監視用熱電対プローブを設置し難いクローズド冷却ガスタービン静翼においても、静翼自体の信頼性を損なわないで設置できる構造を提供できる。
【図面の簡単な説明】
【図1】本発明の静翼を搭載したガスタービンの一実施例を示す要部断面図である。
【図2】本発明のガスタービン静翼の断面図である。
【図3】本発明のガスタービン静翼の外周側から見た斜視図である。
【図4】図3の要部断面図である。
【符号の説明】
1…第1段静翼、2…第1段動翼、3…第2段静翼、4…第2段動翼、5…第2段静翼ダイヤフラム、6…ディスタントピース、7…第1段動翼ロータディスク、8…ディスクスペーサ、9…第2段動翼ロータディスク、10…スタブシャフト、11…ガスタービンケーシング、12…キャビティ、13…第1段動翼シャンク部、14a,14b…ホイールスペース、20…主流ガス、22…クローズド冷却媒体、23…オープン冷却媒体、23b,23c,23d…シール媒体、30…クローズ冷却媒体供給配管、31…クローズド冷却媒体回収配管、35…熱電対プローブ、36,36c,36d…保護管、37…熱電対ウェル、38…プラグ、40…外周側エンドウォール、41…外周側エンドウォールカバー、42…外周側キャビティ、44…オープン冷却媒体流路、48…内周エンドウォール、49…内周側エンドウォールカバー、50…内周側キャビティ、51…内周側インピンジプレート、52,53…内周側エンドウォール対流冷却孔、58…外周側インピンジプレート、61…コアプラグ、80…ブラケット、83…穴、84…ギャップ、85…保護管熱変形伸縮方向。

Claims (4)

  1. 内部に複数の冷却媒体流通パスを設けるとともに、該冷却媒体流通パスの内少なくとも一つの第一の冷却媒体流通パスは、外部より供給された冷却媒体が流通して静翼を冷却し、冷却後は回収され、かつ他の第二の冷却媒体流通パスは、外部より供給された冷却媒体が流通して静翼を冷却し、冷却後はその一部の冷却媒体が前記主流ガス中に放出されるよう構成し、
    ホイールスペースの温度を測定する温度測定手段を第二の冷却媒体流通パスを通して配置し、
    該第二の冷却媒体流通パスより外部へ導き出す部分において該温度測定手段を固定し、入口部で拘束しないよう構成したことを特徴とするガスタービン静翼。
  2. タービン静翼の内部に冷却媒体流通パスを有するとともに、この冷却媒体流通パスに冷却媒体が流通されて静翼が冷却され、かつ静翼冷却後の冷却媒体が、一部は回収され、かつ一部は主流ガス中に放出されるように形成されており、
    前記静翼に複数の冷却媒体流通パスを設けるとともに、該冷却媒体流通パスの内少なくとも一つの冷却媒体流通パスは、外部より供給された冷却媒体が流通して静翼を冷却し、冷却後は再び外部に回収され、かつ他の冷却媒体流通パスは、外部より供給された冷却媒体が流通して静翼を冷却し、冷却後は内周側エンドウォールのキャビティに導かれ、その一部の冷却媒体は内周側エンドウォールを冷却した後前記主流ガス中に放出され、かつ残部の冷却媒体は静翼の内周側に配置されている回転部にシール媒体として供給するように形成しているガスタービン静翼において、
    ホイールスペース温度監視用熱電対プローブ及び保護管を前記主流ガス中に放出される冷却媒体流通パス及び前記内周側エンドウォールキャビティを通して配置していることを特徴とするガスタービン静翼。
  3. 請求項1又は請求項2に記載のガスタービン静翼において、前記保護管がガスタービン回転中心軸から見て半径方向に伸縮可能としていることを特徴とするガスタービン静翼。
  4. 静翼内部に複数の冷却媒体流通パスを設けるとともに、該冷却媒体流通パスの内少なくとも一つの第一の冷却媒体流通パスは、外部より供給された冷却媒体が流通して静翼を冷却し、冷却後は回収され、かつ他の第二の冷却媒体流通パスは、外部より供給された冷却媒体が流通して静翼を冷却し、冷却後はその一部の冷却媒体が前記主流ガス中に放出されるよう構成し、
    ホイールスペースの温度を測定する温度測定手段を第二の冷却媒体流通パスを通して配置し、
    該第二の冷却媒体流通パスより外部へ導き出す部分において該温度測定手段を固定し、入口部で拘束しないよう構成したことを特徴とするガスタービン。
JP2002188951A 2002-06-28 2002-06-28 ガスタービン静翼及びガスタービン Pending JP2004028036A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002188951A JP2004028036A (ja) 2002-06-28 2002-06-28 ガスタービン静翼及びガスタービン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002188951A JP2004028036A (ja) 2002-06-28 2002-06-28 ガスタービン静翼及びガスタービン

Publications (1)

Publication Number Publication Date
JP2004028036A true JP2004028036A (ja) 2004-01-29

Family

ID=31183493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002188951A Pending JP2004028036A (ja) 2002-06-28 2002-06-28 ガスタービン静翼及びガスタービン

Country Status (1)

Country Link
JP (1) JP2004028036A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053846A (ja) * 2008-08-29 2010-03-11 Toshiba Corp ガスタービン静翼
US9297308B2 (en) 2012-02-27 2016-03-29 Mitsubishi Hitachi Power Systems, Ltd. Temperature measurement in a gas turbine
US10876414B2 (en) 2016-04-21 2020-12-29 Siemens Aktiengesellschaft Guide vane having a connecting tube
US11504813B2 (en) 2020-05-18 2022-11-22 Rolls-Royce Plc Methods for health monitoring of ceramic matrix composite components in gas turbine engines

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053846A (ja) * 2008-08-29 2010-03-11 Toshiba Corp ガスタービン静翼
US9297308B2 (en) 2012-02-27 2016-03-29 Mitsubishi Hitachi Power Systems, Ltd. Temperature measurement in a gas turbine
US10876414B2 (en) 2016-04-21 2020-12-29 Siemens Aktiengesellschaft Guide vane having a connecting tube
US11504813B2 (en) 2020-05-18 2022-11-22 Rolls-Royce Plc Methods for health monitoring of ceramic matrix composite components in gas turbine engines

Similar Documents

Publication Publication Date Title
KR100229295B1 (ko) 개스터어빈용의 통합증기/공기냉각시스템 및 그 작동방법
CN101845996B (zh) 用于在燃气轮机中减少二次空气流的装置和系统
JP4662562B2 (ja) 蒸気タービンおよびその運転方法
US6217279B1 (en) Device for sealing gas turbine stator blades
EP3121382B1 (en) Gas turbine engines including channel-cooled hooks for retaining a part relative to an engine casing structure
KR100313822B1 (ko) 가스터빈
EP2607624B1 (en) Vane for a turbomachine
CA2480393C (en) Impingement cooling of gas turbine blades or vanes
JP5865204B2 (ja) 軸流タービン及び発電プラント
EP2534340B1 (en) Turbine vane hollow inner rail
JP4890142B2 (ja) 冷却式シュラウド組立体及びシュラウドの冷却方法
JPH02233802A (ja) 冷却式タービン羽根
JP2011179500A (ja) シール・スロット経路によるガス・タービン構成部品の冷却
JP2002242606A (ja) ガスタービン
JP2005513330A (ja) ガスタービンの高温ガス流路構造体
EP0902163B1 (en) Seal device between fastening bolt and bolthole in gas turbine disc
US5165848A (en) Vane liner with axially positioned heat shields
JPH0226042B2 (ja)
JP2004028036A (ja) ガスタービン静翼及びガスタービン
EP3043024A1 (en) Blade platform cooling and corresponding gas turbine
JP3182343B2 (ja) ガスタービン静翼及びガスタービン
JP3901828B2 (ja) 蒸気冷却ガスタービン
JP2004340126A (ja) 蒸気タービンとその運転方法
JP2006336464A (ja) ガスタービンの静翼、及びガスタービン
US11879347B2 (en) Turbine housing cooling device