JP2004027312A - Hot rolled steel sheet excellent in tight scale property and method for producing the same - Google Patents

Hot rolled steel sheet excellent in tight scale property and method for producing the same Download PDF

Info

Publication number
JP2004027312A
JP2004027312A JP2002187310A JP2002187310A JP2004027312A JP 2004027312 A JP2004027312 A JP 2004027312A JP 2002187310 A JP2002187310 A JP 2002187310A JP 2002187310 A JP2002187310 A JP 2002187310A JP 2004027312 A JP2004027312 A JP 2004027312A
Authority
JP
Japan
Prior art keywords
scale
steel sheet
rolled steel
hot
tight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002187310A
Other languages
Japanese (ja)
Other versions
JP4153734B2 (en
Inventor
Minoru Kodera
小寺 稔
Hiroshi Abe
阿部 博
Yasuhiro Miyatani
宮谷 康裕
Katsuyoshi Yamagami
山上 勝義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002187310A priority Critical patent/JP4153734B2/en
Publication of JP2004027312A publication Critical patent/JP2004027312A/en
Application granted granted Critical
Publication of JP4153734B2 publication Critical patent/JP4153734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot rolled steel sheet excellent in tight scale properties which has no defects in galvanizing and occurrence of Si scale, and has satisfactory scale adhesion over the whole length and whole width, and to provide a method for producing the same. <P>SOLUTION: The hot rolled steel sheet comprises, by mass, 0.02 to 0.20% C, 0.1 to 2.0% Mn, ≤0.3% Si, ≤0.03% P and ≤0.03% S, and further comprises one or more kinds of metals selected from 0.03 to 0.3% Ni, 0.04 to 0.5% Cu and 0.03 to 0.3% Cr, and the balance Fe with inevitable impurities. As the surface roughness of scale on the surface of the steel sheet and theinterface of the steel sheet, the counter of a rugged height of ≥0.5 μm per inch of a length is ≥300. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、表面スケールのタイトスケール化が要求される黒皮コイルのまま使用する塗装用等の熱間鋼板に関する。
【0002】
【従来の技術】
従来、スケール密着性、即ちタイトスケール性に優れた材料が求められており、Si、Crを添加した素材が主流であった。これまでのタイトスケール鋼板は、例えば特開平2−185915号公報にタイトスケール性の熱延鋼板の製造方法が開示されている。
しかし、この従来の鋼板は、Si添加のため溶融Znメッキ不良およびSiスケール発生による表面性状が劣り、これらの問題のない鋼材が要望されていた。
【0003】
【発明が解決しようとする課題】
近年では、タイトスケール化の要望は更に高まっており、溶融Znメッキ不良およびSiスケール発生がなく、全長・全幅のスケール密着性が良好な熱延鋼板が求められている。
特に、薄物のコイルエッジ部のスケール剥離、厚物コイルの全幅浮遊スケールによる外観不良、塗装時の耐食性低下、レーザー切断時の切断不良や、作業環境の悪化が問題指摘されている。
【0004】
黒皮コイルにおいては、成分、熱間圧延、熱間圧延後の鋼板の冷却パターン、巻き取り後の空冷等温度履歴の影響がスケールに影響する為剥離の改善は非常に難しい。
従って、特開平2−185915号公報で開示された成分や製造方法では仕様を満足できない。
本発明は、この課題を解決して、薄物、厚物共に、全長・全幅タイトスケール性を確保するとともに、色調の均一性を具備する鋼材およびその製造方法を提供するものである。
【0005】
【課題を解決するための手段】
上記課題を達成するための本発明の手段は、特許請求の範囲に記載した通りの下記内容である。
(1)質量%として、
C:0.02〜0.20%、
Mn:0.1〜2.0%、
Si:0.3%以下、
P:0.03%以下、
S:0.03%以下を含有し、
さらに、
Ni:0.03〜0.3%、
Cu:0.04〜0.5%、
Cr:0.03〜0.3%の内、1種または2種以上を含有し、
残部Feおよび不可避的不純物からなる熱延鋼板であって、鋼板表面スケールと鋼板地鉄界面の表面粗度として長さ1インチ当たりの0.5μm以上の凹凸高さの回数が300以上であることを特徴とするタイトスケール性に優れる熱延鋼板。
【0006】
(2)質量%として、
Ti:0.01〜0.1%、
Nb:0.01〜0.07%、
V :0.01〜0.07%、
B:0.0005〜0.0050%の1種または2種以上を含有することを特徴とする(1)に記載のタイトスケール性に優れる熱延鋼板。
(3)(1)或いは(2)に記載の成分のスラブを1100℃以上で加熱した後、800℃〜950℃の温度範囲で熱間圧延を終了させ、400℃〜650℃で捲き取ることを特徴とするタイトスケール性に優れる熱延鋼板の製造方法。
【0007】
【発明の実施の形態】
本発明者らは、上記課題の解決のために、多鋼種の鋼板製造の検討調査を行って、本発明に至ることができた。以下に、本発明の実施形態について詳細に説明する。
熱延鋼板は、一般的にスラブを加熱炉で加熱する際に表面に生成した初期スケール(1次スケール)をデスケーリング後、粗圧延、仕上げ圧延し、水冷却後に巻き取られる。
この仕上げ圧延〜水冷却〜巻き取り〜コイル冷却間で熱延鋼板のスケール(2次スケール)が生成される。
【0008】
このとき、発明者らは鋭意検討した結果、タイトスケール化には、Ni、CuおよびCrを有効に活用すれば、目的を達成できることを見出したのである。
即ち、成分としてNi、Crを含ませると地鉄とスケール界面が凹凸に乱れて密着面積の増加し、さらにスケールが地鉄に食い込んで「アンカー効果」によりタイトスケール性が向上することが判った。
また、Cuを含ませると1次スケール生成時にスケールと鋼板側の地鉄界面に液相のCuが生成し、この液相と接したスケールは濡れ性が良く密着性が高く2次スケール生成のベースとなり、2次スケールも地鉄に接着させる効果があることが判った。
【0009】
しかし、一方でCuは融点が低く熱間圧延前のスラブ加熱時に過度に鋼板組織中の粒界に溶けこむと、それが熱間圧延時に粒界割れとなり、得られた熱延鋼板はCuへゲとして悪影響をもたらす可能性もある。このため従来からCu添加鋼の製造においてはCuを溶解させないように圧延前の加熱炉におけるスラブを比較的低温で抽出して圧延していたが、加熱温度制約で熱間圧延時に生産障害が発生すると共に、品質的にもCuへゲが散発し不安定となる課題があった。
そこで、鋼材表面の凹凸状況である表面粗度として、スケールの剥離評点との関係を調査した。図1にその結果を示す。調査に用いた鋼板は、成分を質量%として、C=0.7%、Mn=1.45%、Si=0.01%、P=0.015%、S=0.01%をベース成分とし、さらにNi=0.01〜0.25%、Cu=0.01〜0.37%、Cr=0.01〜0.28%の範囲に各成分を変更したスラブを、1150℃に加熱し、粗圧延を経て、仕上げ圧延を900℃で終了させ、550℃で巻き取ったものである。
【0010】
なお、図1の縦軸は熱間圧延後の鋼板を90度曲げ試験(半径R(mm)=1.5×板厚としたポンチを押しつけて90度に曲げた鋼板ピースの曲がり外面にテープを貼着した後剥離し、スケール剥離面積率(%)を求め、これを9区分の評点付けしたもの)を行い、タイトスケール性の評価として剥離評点の結果を示したものである。ここで剥離評点が小さいほどテープに転写したスケール量が小さく、タイトスケール性に優れたものとなり、特に評点3以下では、ユーザーの品質合格水準を著しく超えるレベルであり、評点4〜6であり、少しスケ−ル剥離がみられる場合はあるがユーザーの品質合格水準をやや越えた合格レベル、評点7〜9であり、スケ−ル剥離が著しく品質不合格なレベルである。また図1の横軸は同じ条件で得られた鋼板を酸洗して表面スケールを完全剥離した後に、表面粗度計を用いて鋼板地鉄の表面で長さ1インチ当たりの0.5μm以上の凹凸高さの回数を表面粗度PPI(Peak per inch)として測定した結果を示したものである。
【0011】
図1に示すように表面粗度PPIが大きく、凹凸が大きい程、剥離評点が小さくなり、特に表面粗度PPIが300回以上では、ユーザーでの鋼品質合格基準である評点66以下を達成することが明らかになった。さらに、表面粗度PPIが300回以上を満足する条件として、少なくともNi、Cu、Crの各成分の内1成分または2成分以上が、質量%としてNi≧0.03%、Cu≧0.04%、Cr≧0.03%を満足するものであった。なお、従来課題であったCuヘゲについても、Niを適正に添加することにより、表面粗度PPIが300回以上では発生しないことが確認できた。
また、表面のスケール厚としては、3〜12μmが好ましいことが判った。これよりもスケール厚が薄いと耐食性が劣りし易く、一方厚い場合には逆に鋼板を加工時にスケールが割れやすくなり剥離しやすくなるからである。
さらに、スケール組成としては、Feが85〜100%の範囲が好ましい。即ち他のスケール組成であるFeが多くなるとスケールの延性が劣り剥離しやすくなるからである。
【0012】
次に、前記Ni、Cu、Crも含む本発明の添加元素の限定理由について、以下に詳細に記す。なお、以降の成分の単位は%と記載しているが、全て質量%を意味するものである。
<C>
Cは強度を高める元素として、活用される。固溶強化としての活用の他、TiやNbと炭化物を作り、析出強化としても活用できる。しかし、多用すると加工性を低下させる。鋼材強度が高くなる程、加工性が低下するため、C量は低い方がよい。下限を0.02%としたのは、これより低いとスリットやシャー時のカエリが問題になるためである。また、0.20%以下にしたのは、加工による割れを防止するためである。
【0013】
<Mn>
Mnは、鋼材の強度上昇に必要な元素である。0.1%より少ないと、強度上およびAR3点がアップするために加工組織の問題がある。また、2.0%を越えて添加すると加工性を保つことが難しくなるため、0.1〜2.0%の範囲とした。
<Si>
Siは、鋼板表面でファイアライト(2FeO・SiO)となり最表面に微細なFeを残存させ赤スケールを発生させやすい元素である。赤スケールが鋼板表面にできると、まだら模様となり、ユーザーから敬遠される。また、溶融Znメッキ時にメッキ不良になるため、Si含有量は、0.3%を上限とした。
【0014】
<P>
Pは、鋼材脆化の起因となり、加工性、溶接性が劣化する。極力添加しない方が良く、上限を0.03%とした。
<S>
Sは、Mnと硫化物MnSを形成する。この硫化物は変形しやすく、圧延によって伸張し鋼材中に存在する。MnSは鋼材の加工性を劣化させる。できるだけ減らした方がよいが加工レベルに応じ上限を0.03%とした。
【0015】
<Ni>
Niは、上述のように地鉄とスケール界面が凹凸に乱れ密着面積の増加、およびスケールが地鉄に食い込みアンカー効果によりスケールの密着性が向上する。この効果を有効に活用するためには、上述のように0.03%以上の添加が必要である。反面、Niは高価な金属であり、0.3%程度を越えるとその効果が飽和するため、上限を0.3%とした。
【0016】
<Cu>
Cuは上述のように1次スケール生成時にスケールと地鉄界面に液相のCuが生成する。この液相と接したスケールは濡れ性が良く密着性が高く2次スケール生成のベースとなり、2次スケールも地鉄に接着させる。この効果を有効に活用するためには、上述のように0.04%以上の添加が必要である。反面、添加しすぎるとCuへゲの問題が発生し、対策として高価なNiの添加量をアップする必要が生じてくる。0.5%程度で十分効果が得られるため、上限を0.5%とした。
<Cr>
CrもNiと同様に地鉄とスケール界面が凹凸に乱れ密着面積の増加、およびスケールが地鉄に食い込みアンカー効果によりタイトスケール性の形成に有効な元素である。この効果を有効に活用するためには、上述のように0.03%以上が必要である。しかし、0.3%を越えても効果は変わらなくなるため、0.03〜0.3%とした。
さらに、高強度鋼板を製造するためには、析出強度の活用が有効である。以下の析出効果を活用可能な4元素については、強度不足分を補うものであり、1種または2種以上の利用で目的を達することができる。
【0017】
<Ti>
Tiは、C、Nと炭化物、窒化物を形成し、鋼材の強度を向上させる。0.01%以上の添加で効果が発現し、0.1%以上添加しても効果は変わらなくなる。
<Nb>
NbもC、Nと炭化物、窒化物を形成し、鋼材の強度を向上させる。0.01%以上の添加で効果が発現し、0.07%以上添加しても効果は変わらなくなる。
【0018】
<V>
Vも、C、Nと炭化物、窒化物を形成し、鋼材の強度を向上させる。0.01%以上の添加で効果が発現し、0.07%以上添加しても効果は変わらなくなる。
<B>
Bは、炭化物、窒化物を形成するとともに、焼き入れ性の向上にも有効で強度向上に有効な元素である。0.0005%以上の添加で効果が発現し、0.0050%以上添加しても効果は変わらない。
次に、製造条件の限定理由について延べる。
加熱温度を1100℃以上にしたのは、仕上げ圧延温度確保の観点から設定した。
【0019】
Ti、Nb、V、Bを添加する場合には析出効果を活用するためには、スラブ段階で炭化物・窒化物を固溶させることにより、鋼板製造時に微細な析出物を生成させて析出効果を充分活用できるようにするために添加量に応じ1200℃以上の設定とする。
仕上げ圧延温度は、Ar点以上を確保することために800℃とした。析出物を微細にするためには、850℃以上が必要であるが、950℃を越えると、結晶粒の粗大化・スケール疵が発生しやすくなるなどの問題があり、温度範囲を800℃〜950℃とした。
捲き取り温度は、析出物のサイズに影響を及ぼし、析出効果の度合いが異なってくる。高温で捲き取ると、析出物が成長し、大きくなりすぎて強度効果が小さくなる。また、低すぎると析出物生成が不十分になって強度上昇が望めない。このため、強度上昇が望める適度な温度規制範囲を、400℃〜650℃とした。
【0020】
【実施例】
表1に本発明例である実施例1〜8および比較例1〜5を示す。
実施例1〜3は鋼板の強度レベルはTS=320MPaクラス、実施例4〜5はTS400MPaクラス、実施例6〜7はTS=590MPaクラス、実施例8はTS=690MPaクラスである。
表1に示す成分のスラブを加熱炉で1100℃以上に加熱し、粗圧延を経て圧延温度はAr以上、巻き取り温度は450〜630℃の水準で製造した。
【0021】
ここで、タイトスケール性は前記に示したように90度曲げ試験(R=1.5×板厚)後テープ転写による剥離評点を9段階で評価した。表1中では表面粗度PPIに剥離評点を示し、凡例の◎は評点1〜3であり、ユーザーの品質合格水準を著しく超えるレベルであり、○は評点4〜6であり、少しスケ−ル剥離がみられる場合はあるがユーザーの品質合格水準をやや越えた合格レベル、×は評点7〜9であり、スケ−ル剥離が著しく品質不合格なレベルである。
本発明例である実施例1〜実施例8は、いずれもスケール厚は3〜12μmの、スケール組成もFeが85〜98%の範囲にあり、タイトスケール性は剥離評点1〜3の◎レベルまたは剥離評点4〜6の品質合格基準をクリアしており、さらにCuへゲも発生していなかった。
一方、比較例1〜5は、いずれもCu、Ni、Crが何れも本発明範囲よりも低く、スケール厚も3μm未満や12μm以上の場合もあり、更にスケール組成もFeが85%未満の場合もあり、タイトスケール性は剥離評点7〜8の×レベルであり、Cuへゲも発生していていた。
【表1】

Figure 2004027312
【0022】
【発明の効果】
本発明によって、スケールの剥離し難い熱間圧延鋼材を供給することができる。
また、鋼材保管中の結露、水濡れによる錆びに対しても有効であり、色調も均一な鋼材としての用途拡大も期待でき、産業上有用な著しい効果を奏する。
【図面の簡単な説明】
【図1】酸洗後の表面粗度PPIと剥離評点の関係を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a hot steel sheet for painting or the like that is used as a black scale coil that requires a tight scale of a surface scale.
[0002]
[Prior art]
Heretofore, there has been a demand for a material having excellent scale adhesion, that is, tight scale property, and a material to which Si and Cr are added has been mainly used. As a conventional tight-scale steel sheet, for example, Japanese Patent Application Laid-Open No. 2-185915 discloses a method of manufacturing a hot-rolled steel sheet having tight scale properties.
However, the conventional steel sheet is poor in hot-dip Zn plating due to the addition of Si and has poor surface properties due to the generation of Si scale, and a steel material free from these problems has been demanded.
[0003]
[Problems to be solved by the invention]
In recent years, the demand for tight scale has been further increased, and there is a demand for a hot-rolled steel sheet which has no defective hot-dip Zn plating and does not generate Si scale, and has good scale adhesion over the entire length and width.
In particular, problems have been pointed out, such as scale peeling of the coil edge portion of a thin material, poor appearance due to a floating scale of a full thickness coil, deterioration of corrosion resistance at the time of coating, poor cutting at the time of laser cutting, and deterioration of the working environment.
[0004]
In the black scale coil, it is very difficult to improve the peeling because the influence of the components, hot rolling, the cooling pattern of the steel sheet after hot rolling, and the temperature history such as air cooling after winding affect the scale.
Therefore, the specifications cannot be satisfied with the components and the production method disclosed in JP-A-2-185915.
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems and to provide a steel material having a full-length and full-width tight scale property for both thin and thick materials and having uniform color tone and a method for producing the same.
[0005]
[Means for Solving the Problems]
Means of the present invention for achieving the above object are as described below in the claims.
(1) As mass%,
C: 0.02 to 0.20%,
Mn: 0.1 to 2.0%,
Si: 0.3% or less,
P: 0.03% or less,
S: contains 0.03% or less,
further,
Ni: 0.03 to 0.3%,
Cu: 0.04 to 0.5%;
Cr: contains one or more of 0.03 to 0.3%,
A hot-rolled steel sheet consisting of a balance of Fe and unavoidable impurities, and having a surface roughness of 0.5 μm or more per inch of surface roughness between the steel sheet surface scale and the steel plate interface of 300 or more. A hot-rolled steel sheet with excellent tight-scale properties.
[0006]
(2) As mass%,
Ti: 0.01-0.1%,
Nb: 0.01 to 0.07%,
V: 0.01 to 0.07%,
B: The hot-rolled steel sheet excellent in tight scale property according to (1), containing one or more of 0.0005 to 0.0050%.
(3) After heating the slab of the component described in (1) or (2) at 1100 ° C. or higher, finish hot rolling in a temperature range of 800 ° C. to 950 ° C., and wind up at 400 ° C. to 650 ° C. A method for producing a hot-rolled steel sheet having excellent tight-scale properties.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to solve the above-mentioned problems, the present inventors have conducted studies and investigations on the production of steel sheets of various steel types, and have reached the present invention. Hereinafter, embodiments of the present invention will be described in detail.
The hot-rolled steel sheet is generally rolled after initial scale (primary scale) formed on the surface when the slab is heated in a heating furnace, after descaling, rough rolling and finish rolling, and water cooling.
A scale (secondary scale) of the hot-rolled steel sheet is generated between the finish rolling, water cooling, winding, and coil cooling.
[0008]
At this time, as a result of intensive studies, the inventors have found that the purpose can be achieved by effectively utilizing Ni, Cu and Cr for tight scale formation.
In other words, it was found that when Ni and Cr were included as components, the interface between the base iron and the scale was disturbed by irregularities to increase the adhesion area, and further, the scale penetrated into the base iron to improve the tight scale property by the “anchor effect”. .
In addition, when Cu is contained, Cu in the liquid phase is generated at the interface between the scale and the steel plate on the steel sheet side when the primary scale is formed, and the scale in contact with this liquid phase has good wettability and high adhesion, and the scale of the secondary scale is formed. As a base, it was found that the secondary scale also had an effect of adhering to the base steel.
[0009]
However, on the other hand, when Cu has a low melting point and excessively melts into the grain boundaries in the steel sheet structure during heating of the slab before hot rolling, it becomes grain boundary cracks during hot rolling, and the obtained hot-rolled steel sheet is converted to Cu. It can also have a negative effect as a game. For this reason, conventionally, in the production of Cu-added steel, slabs in a heating furnace before rolling were extracted and rolled at a relatively low temperature so as not to dissolve Cu. At the same time, there is a problem that spatter on the Cu spatters and becomes unstable in terms of quality.
Therefore, the relationship between the surface roughness, which is the unevenness state of the steel material surface, and the scale peeling score was investigated. FIG. 1 shows the results. The steel sheet used in the investigation is based on the following components: C = 0.7%, Mn = 1.45%, Si = 0.01%, P = 0.015%, S = 0.01%, with the components as mass%. Further, the slab in which each component is changed in the range of Ni = 0.01 to 0.25%, Cu = 0.01 to 0.37%, and Cr = 0.01 to 0.28% is heated to 1150 ° C. Then, after rough rolling, finish rolling is completed at 900 ° C., and the film is wound at 550 ° C.
[0010]
The vertical axis in FIG. 1 is a 90 ° bending test of a steel plate after hot rolling (radius R (mm) = 1.5 × a punch having a thickness of 1.5 mm), and a tape is applied to a bent outer surface of a steel plate piece bent to 90 °. And then peeled off, the scale peeling area ratio (%) was determined, and this was rated in 9 categories), and the result of the peeling score was shown as an evaluation of tight scale properties. Here, the smaller the peeling score is, the smaller the amount of scale transferred to the tape is, the better the tight scale property is, and particularly, when the rating is 3 or less, the level is significantly higher than the quality acceptance level of the user, and the rating is 4 to 6, Although there is a case where some scale peeling is observed, it is a pass level slightly exceeding the user's quality passing level, and a score of 7 to 9, indicating that the scale peeling is remarkably rejected. In addition, the horizontal axis in FIG. 1 is that the steel sheet obtained under the same conditions is pickled, the surface scale is completely peeled off, and then, using a surface roughness meter, the surface of the steel sheet is 0.5 μm or more per inch in length. 3 shows the result of measuring the number of times of the uneven height as the surface roughness PPI (peak per inch).
[0011]
As shown in FIG. 1, the larger the surface roughness PPI and the larger the unevenness, the smaller the peeling score. In particular, when the surface roughness PPI is 300 times or more, a score of 66 or less, which is a steel quality acceptance standard for users, is achieved. It became clear. Furthermore, as a condition that the surface roughness PPI satisfies 300 times or more, at least one or more of Ni, Cu, and Cr components is Ni ≧ 0.03% and Cu ≧ 0.04 as mass%. %, Cr ≧ 0.03%. In addition, it was confirmed that the surface roughness PPI did not occur even when the Cu roughness was 300 or more times by properly adding Ni to the conventional problem of Cu barge.
Moreover, it turned out that 3-12 micrometers is preferable as a scale thickness of a surface. If the scale thickness is thinner than this, the corrosion resistance is liable to be inferior, while if it is thicker, the scale is easily cracked and peeled when processing the steel sheet.
Furthermore, as the scale composition, Fe 3 O 4 is preferably in the range 85 to 100%. That is, when Fe 2 O 3 as another scale composition is increased, the ductility of the scale is inferior and the scale is easily peeled.
[0012]
Next, the reasons for limiting the additional elements of the present invention including Ni, Cu and Cr will be described in detail below. In addition, the unit of the following components is described as%, but all means mass%.
<C>
C is used as an element for increasing the strength. In addition to solid solution strengthening, carbides can be formed with Ti and Nb and used as precipitation strengthening. However, excessive use lowers workability. Since the workability decreases as the steel material strength increases, the C content is preferably as low as possible. The reason why the lower limit is set to 0.02% is that if it is lower than this, burrs at the time of slitting or shearing become a problem. The reason why the content is set to 0.20% or less is to prevent cracking due to processing.
[0013]
<Mn>
Mn is an element necessary for increasing the strength of a steel material. If the amount is less than 0.1%, there is a problem in the processed structure because the strength and the AR3 point are increased. Further, if it is added in excess of 2.0%, it becomes difficult to maintain workability, so the content is set in the range of 0.1 to 2.0%.
<Si>
Si is an element that becomes firelite (2FeO.SiO 2 ) on the surface of the steel sheet, leaves fine Fe 2 O 3 on the outermost surface, and easily generates red scale. When red scale is formed on the surface of the steel plate, it becomes mottled and is shunned by users. Further, since plating failure occurs during hot-dip Zn plating, the upper limit of the Si content is 0.3%.
[0014]
<P>
P causes embrittlement of the steel material, and deteriorates workability and weldability. It is better not to add as much as possible, and the upper limit was made 0.03%.
<S>
S forms sulfide MnS with Mn. These sulfides are easily deformed, are elongated by rolling, and exist in the steel material. MnS deteriorates the workability of a steel material. It is better to reduce as much as possible, but the upper limit was made 0.03% according to the processing level.
[0015]
<Ni>
Ni, as described above, causes the interface between the base iron and the scale to be uneven, so that the adhesion area increases, and the scale bites into the base iron to improve the adhesion of the scale due to the anchor effect. In order to effectively utilize this effect, it is necessary to add 0.03% or more as described above. On the other hand, Ni is an expensive metal, and its effect is saturated when it exceeds about 0.3%, so the upper limit is set to 0.3%.
[0016]
<Cu>
As described above, liquid Cu is generated at the interface between the scale and the iron base when the primary scale is generated as described above. The scale in contact with this liquid phase has good wettability and high adhesion, and serves as a base for forming a secondary scale, and the secondary scale is also adhered to the base iron. In order to effectively utilize this effect, it is necessary to add 0.04% or more as described above. On the other hand, if it is added too much, a problem of Cu diffusion occurs, and it is necessary to increase the amount of expensive Ni as a countermeasure. Since a sufficient effect can be obtained with about 0.5%, the upper limit is set to 0.5%.
<Cr>
Like Ni, Cr is also an element effective for forming tight scale due to the unevenness of the interface between the base iron and the scale, which increases the adhesion area, and the scale penetrates the base iron to form an anchor effect. In order to effectively utilize this effect, 0.03% or more is necessary as described above. However, the effect does not change even if it exceeds 0.3%, so it was set to 0.03 to 0.3%.
Furthermore, in order to manufacture a high-strength steel sheet, it is effective to utilize precipitation strength. The four elements that can utilize the following precipitation effects compensate for the lack of strength, and can achieve their purpose by using one or more of them.
[0017]
<Ti>
Ti forms carbides and nitrides with C and N, and improves the strength of the steel material. The effect is exhibited by adding 0.01% or more, and the effect is not changed by adding 0.1% or more.
<Nb>
Nb also forms carbides and nitrides with C and N, and improves the strength of the steel material. The effect is exhibited by adding 0.01% or more, and the effect is not changed by adding 0.07% or more.
[0018]
<V>
V also forms carbides and nitrides with C and N, and improves the strength of the steel material. The effect is exhibited by adding 0.01% or more, and the effect is not changed by adding 0.07% or more.
<B>
B is an element that forms carbides and nitrides, is also effective in improving hardenability, and is effective in improving strength. The effect is exhibited when 0.0005% or more is added, and the effect is not changed even when 0.0050% or more is added.
Next, the reasons for limiting the manufacturing conditions will be described.
The reason why the heating temperature was set to 1100 ° C. or higher was set from the viewpoint of securing the finish rolling temperature.
[0019]
In the case of adding Ti, Nb, V, and B, in order to utilize the precipitation effect, carbides and nitrides are dissolved in the slab stage to generate fine precipitates at the time of steel sheet production, thereby reducing the precipitation effect. The temperature is set to 1200 ° C. or more in accordance with the amount of addition in order to make full use.
The finish rolling temperature was 800 ° C. in order to secure three or more Ar points. In order to make the precipitates finer, 850 ° C. or higher is necessary. However, if the temperature exceeds 950 ° C., there is a problem that crystal grains become coarse and scale flaws are easily generated. It was 950 ° C.
The winding temperature affects the size of the precipitate and the degree of the precipitation effect varies. When wound up at a high temperature, precipitates grow and become too large to reduce the strength effect. On the other hand, if it is too low, the formation of precipitates becomes insufficient, so that an increase in strength cannot be expected. For this reason, the appropriate temperature regulation range in which an increase in strength can be expected is set to 400 to 650 ° C.
[0020]
【Example】
Table 1 shows Examples 1 to 8 and Comparative Examples 1 to 5, which are examples of the present invention.
In Examples 1 to 3, the strength level of the steel sheet is TS = 320 MPa class, Examples 4 to 5 are TS 400 MPa class, Examples 6 to 7 are TS = 590 MPa class, and Example 8 is TS = 690 MPa class.
A slab having the components shown in Table 1 was heated to 1100 ° C. or higher in a heating furnace, and subjected to rough rolling to produce a rolling temperature of Ar 3 or higher and a winding temperature of 450 to 630 ° C.
[0021]
Here, the tight scale property was evaluated by a nine-point evaluation of the peeling score by tape transfer after a 90-degree bending test (R = 1.5 × plate thickness) as described above. In Table 1, the peeling score is shown for the surface roughness PPI. In the legend, ◎ is a rating of 1 to 3, which is a level significantly exceeding the quality acceptance level of the user, ○ is a rating of 4 to 6, and slightly scaled. Although peeling may be observed, a pass level slightly exceeding the user's quality passing level, and x is a score of 7 to 9, indicates that scale peeling is remarkably poor.
Examples 1 to 8 which are examples of the present invention all have a scale thickness of 3 to 12 μm, a scale composition of Fe 3 O 4 in the range of 85 to 98%, and a tight scale property of peeling scores 1 to 3. ◎ The product passed the quality acceptance criteria of the level or peeling score of 4 to 6, and further no Cu burrs occurred.
On the other hand, in each of Comparative Examples 1 to 5, Cu, Ni, and Cr were all lower than the range of the present invention, the scale thickness was sometimes less than 3 μm or 12 μm or more, and the scale composition was 85% Fe 3 O 4. In some cases, the tight scale property was at an X level of a peeling score of 7 to 8, and Cu off was also generated.
[Table 1]
Figure 2004027312
[0022]
【The invention's effect】
According to the present invention, it is possible to supply a hot-rolled steel material in which the scale is not easily peeled.
In addition, it is effective against dew condensation during storage of steel materials and rust due to water wetting, and can be expected to expand the use as a steel material having a uniform color tone, and has a remarkable industrially useful effect.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the surface roughness PPI after pickling and the peeling score.

Claims (3)

質量%として、
C:0.02〜0.20%、
Mn:0.1〜2.0%、
Si:0.3%以下、
P:0.03%以下、
S:0.03%以下を含有し、
さらに、
Ni:0.03〜0.3%、
Cu:0.04〜0.5%、
Cr:0.03〜0.3%の内、1種または2種以上を含有し、
残部Feおよび不可避的不純物からなる熱延鋼板であって、鋼板表面スケールと鋼板地鉄界面の表面粗度として長さ1インチ当たりの0.5μm以上の凹凸高さの回数が300以上であることを特徴とするタイトスケール性に優れる熱延鋼板。
As mass%,
C: 0.02 to 0.20%,
Mn: 0.1 to 2.0%,
Si: 0.3% or less,
P: 0.03% or less,
S: contains 0.03% or less,
further,
Ni: 0.03 to 0.3%,
Cu: 0.04 to 0.5%;
Cr: contains one or more of 0.03 to 0.3%,
A hot-rolled steel sheet consisting of a balance of Fe and unavoidable impurities, wherein the number of irregularities of 0.5 μm or more per inch in length is 300 or more per inch in surface roughness between the steel sheet surface scale and the steel sheet interface. Hot-rolled steel sheet with excellent tight-scale properties.
質量%として、
Ti:0.01〜0.1%、
Nb:0.01〜0.07%、
V :0.01〜0.07%、
B:0.0005〜0.0050%の1種または2種以上を含有することを特徴とする請求項1に記載のタイトスケール性に優れる熱延鋼板。
As mass%,
Ti: 0.01-0.1%,
Nb: 0.01 to 0.07%,
V: 0.01 to 0.07%,
B: The hot-rolled steel sheet having excellent tight-scale properties according to claim 1, comprising one or more of 0.0005 to 0.0050%.
請求項1或いは請求項2に記載の成分のスラブを1100℃以上で加熱した後、800℃〜950℃の温度範囲で熱間圧延を終了させ、400℃〜650℃で捲き取ることを特徴とするタイトスケール性に優れる熱延鋼板の製造方法。After heating the slab of the component according to claim 1 or 2 at a temperature of 1100 ° C. or more, hot rolling is completed in a temperature range of 800 ° C. to 950 ° C., and the slab is wound up at a temperature of 400 ° C. to 650 ° C. Of hot-rolled steel sheet with excellent tight-scale properties.
JP2002187310A 2002-06-27 2002-06-27 Hot-rolled steel sheet having excellent tight scale property and method for producing the same Expired - Lifetime JP4153734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002187310A JP4153734B2 (en) 2002-06-27 2002-06-27 Hot-rolled steel sheet having excellent tight scale property and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002187310A JP4153734B2 (en) 2002-06-27 2002-06-27 Hot-rolled steel sheet having excellent tight scale property and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004027312A true JP2004027312A (en) 2004-01-29
JP4153734B2 JP4153734B2 (en) 2008-09-24

Family

ID=31182384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002187310A Expired - Lifetime JP4153734B2 (en) 2002-06-27 2002-06-27 Hot-rolled steel sheet having excellent tight scale property and method for producing the same

Country Status (1)

Country Link
JP (1) JP4153734B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434200C (en) * 2006-12-31 2008-11-19 山西太钢不锈钢股份有限公司 Method for preventing surface oxide film of nichrome roller from being peeling-off
KR101204845B1 (en) * 2010-09-29 2012-11-27 현대제철 주식회사 Steel sheet with reduced surface defect and method of manufacturing the same
JP2013239335A (en) * 2012-05-15 2013-11-28 Sharp Corp Backlight unit and liquid crystal display device
KR101714909B1 (en) * 2015-10-23 2017-03-10 주식회사 포스코 Hot rolled steel sheet having high surface quality and high strength, and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434200C (en) * 2006-12-31 2008-11-19 山西太钢不锈钢股份有限公司 Method for preventing surface oxide film of nichrome roller from being peeling-off
KR101204845B1 (en) * 2010-09-29 2012-11-27 현대제철 주식회사 Steel sheet with reduced surface defect and method of manufacturing the same
JP2013239335A (en) * 2012-05-15 2013-11-28 Sharp Corp Backlight unit and liquid crystal display device
KR101714909B1 (en) * 2015-10-23 2017-03-10 주식회사 포스코 Hot rolled steel sheet having high surface quality and high strength, and method for producing the same

Also Published As

Publication number Publication date
JP4153734B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP5884210B1 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5839152B1 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP2007070659A (en) Hot dip galvanized steel sheet and alloyed hot dip galvanized steel sheet having excellent corrosion resistance, elongation and hole expandability, and method for producing them
JP6692432B2 (en) High manganese hot-dip aluminum coated steel sheet with excellent plating adhesion
JP2009263715A (en) Hot-rolled steel plate superior in hole expandability and manufacturing method therefor
JP5967318B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4751152B2 (en) Hot-dip galvanized high-strength steel sheet excellent in corrosion resistance and hole expansibility, alloyed hot-dip galvanized high-strength steel sheet, and methods for producing them
JP6202234B1 (en) Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate
WO2017169562A1 (en) Thin steel plate, galvanized steel plate, hot rolled steel plate production method, cold rolled full hard steel plate production method, heat treated plate production method, thin steel plate production method, and galvanized steel plate production method
JP4360319B2 (en) High tensile hot dip galvanized steel sheet and its manufacturing method
JP3322157B2 (en) Method for producing ferritic stainless steel strip containing Cu
JP5176599B2 (en) Ultra-thin cold-rolled steel sheet for building materials and manufacturing method thereof
KR960013481B1 (en) Surface treated steel sheet and method thereof
JP2004027312A (en) Hot rolled steel sheet excellent in tight scale property and method for producing the same
JP7322932B2 (en) Thick steel plate, manufacturing method thereof, and structure
JP3373983B2 (en) Method for producing ferritic stainless steel strip excellent in press formability, ridging resistance and surface properties
JP4969954B2 (en) Alloyed hot-dip galvanized steel sheet with excellent appearance quality and method for producing the same
JPH06320234A (en) Production of coastal high weather resistant clad steel sheet
JP4267284B2 (en) Al-Mg alloy rolled sheet tempered material with excellent bending workability
JPH07286240A (en) High corrosion resistant surface treated steel sheet excellent in workability and its production
JP3146839B2 (en) High corrosion resistant cold rolled steel sheet excellent in workability and method for producing the same
JP2010077482A (en) Ultrathin cold-rolled steel sheet for building material, and method for manufacturing the same
JP4681476B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent surface properties
JP3273383B2 (en) Cold rolled steel sheet excellent in deep drawability and method for producing the same
JPS63290222A (en) Manufacture of hot-dipped steel sheet excellent in deep drawability by thin cc

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080704

R151 Written notification of patent or utility model registration

Ref document number: 4153734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term