JP2004023471A - 光送信装置 - Google Patents

光送信装置 Download PDF

Info

Publication number
JP2004023471A
JP2004023471A JP2002176166A JP2002176166A JP2004023471A JP 2004023471 A JP2004023471 A JP 2004023471A JP 2002176166 A JP2002176166 A JP 2002176166A JP 2002176166 A JP2002176166 A JP 2002176166A JP 2004023471 A JP2004023471 A JP 2004023471A
Authority
JP
Japan
Prior art keywords
wavelength
optical filter
optical
light
laser diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002176166A
Other languages
English (en)
Inventor
Takeshi Komiya
小宮 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002176166A priority Critical patent/JP2004023471A/ja
Publication of JP2004023471A publication Critical patent/JP2004023471A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】FSRより狭い波長間隔で発振する光波長を制御する。
【解決手段】光フィルタ3aは波長軸に対して周期的な透過特性を持ちレーザダイオード1からの光波長に対応した透過光出力強度を出力し、光フィルタ3bは光フィルタ3aの透過特性から最大透過波長がFSRの1/4ずれている波長軸に対して周期的な透過特性を持ち、レーザダイオード1からの光波長に対応した透過光出力強度を出力し、波長制御部5はフォトダイオード4a,4bからの光電変換された出力に基づきレーザダイオード1が発振する光波長を制御する。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
この発明は光波長多重通信に使用する光送信装置に関するものである。
【0002】
【従来の技術】
近年、飛躍的な情報量の増大に伴い、大容量の通信システムが必要になってきている。大容量の通信システムとしては光通信システムが最も有望であり、現在では1波長あたり10Gb/s程度の光通信システムが実用化されている。
【0003】
しかし、一層の情報量の増加に伴い、光通信システムの更なる大容量化が望まれている。光通信システムの大容量化の方法としては、TDM(Time Division Multiplex)のような伝送速度の高速技術を用いた大容量化や、FDM(Frequency Division Multiplex)、WDM(Wavelength Division Multiplex)のような波長分割多重技術を用いた大容量化が考えられる。
【0004】
伝送速度の高速化については、送信側及び受信側の電子回路の高速化が必要であり、現在では数十Gb/sが限界であると考えられている。一方、光ファイバの広帯域性を用いるFDM、WDMのような多重化は、ある程度の伝送速度の高速化と併用すれば、数十Gb/sから数Tb/sの大容量化が可能であり、光カプラ、光フィルタを用いて多重・分離が光領域で簡単に行なわれるために、電子回路に対する負担が少なく将来有望な通信システムである。
【0005】
FDM、WDMといった光波長多重通信では、ファイバ1本あたりの容量を多くするために、搬送波波長の多重間隔を狭くする必要があり、そのため搬送波の源発振を行なうレーザダイオードには、発振する光波長が高い精度と安定度を有していることが要求される。しかしながら、レーザダイオード単体での光波長の精度と安定度を高めることは極めて困難であるが、レーザダイオード、光フィルタ、その透過光出力強度を検出するフォトダイオード、そして光波長制御の電子回路により、光波長の精度と安定度の性能を高めることは可能である。
【0006】
レーザダイオードが発振する光波長の精度と安定度を高める技術としては、レーザダイオードからの光波長を波長軸に対して周期的な透過特性を持つ光フィルタに入力し、光フィルタの透過光出力強度をフォトダイオードにて検出し、光フィルタの透過特性の片側のスロープや、光フィルタの透過特性のピークやボトムに発振する光波長を固定する技術が知られている。
【0007】
従来例1.
図6は従来例1(F.Favre,D.Le Guen,“High Frequency Stability Of Laserdiode for Heterodyne Communication Systems”,Electronics Letters Vol.16,No.18,pp709−−710,1980,Aug.)の光送信装置の構成を示すブロック図であり、光フィルタの透過特性の片側のスロープを用いてレーザダイオードが発振する光波長を制御し光波長の精度と安定度を高める技術を示している。図において、11は所定の光波長を発振するレーザダイオード、13は波長軸に対して周期的な透過特性を持つ光フィルタ、14は光フィルタ13の出力を光電変換するフォトダイオード、15はフォトダイオード14からの出力に基づきレーザダイオード11が発振する光波長を制御する波長制御部、16は光出力端子、17はレーザダイオード11、光フィルタ13、フォトダイオード14により構成されたレーザダイオードモジュールである。
【0008】
次に従来例1の動作について説明する。
レーザダイオード11の背面からの光波長は、波長軸に対して周期的な透過特性を持つ光フィルタ13に入力され、光フィルタ13の出力はフォトダイオード14に入力される。フォトダイオード14からの出力は波長制御部15に入力され、波長制御部15はレーザダイオード11が発振する光波長を制御する。
【0009】
図7は従来例1の光送信装置の光波長制御方法を説明する図である。ここでは、波長軸に対して周期的な透過特性を持つ光フィルタ13の透過特性の右側のスロープを用いて光波長をロックする動作を説明する。図において、λcはロックしたい光波長を示しており、このときの透過光出力強度はPcである。
【0010】
ロックしたい光波長よりも短い光波長λ1にレーザダイオード11が発振する光波長がある場合、光フィルタ13の透過光出力強度は例えばP1となり、必ずPc<P1の関係になる。よって、光フィルタ13の透過光出力強度がPc<P1の関係にある場合には、現在発振している光波長を更に長くし、光フィルタ13の出力がPcとなった場合に、ロックしたい光波長とレーザダイオード11が発振する光波長が一致していることとなる。
【0011】
また、同様にロックしたい光波長よりも長い光波長λ2にレーザダイオード11が発振する光波長がある場合、光フィルタ13の透過光出力強度は例えばP2となり、必ずPc>P2の関係にある。よって、光フィルタ13の透過光出力強度がPc>P2の関係にある場合には、現在発振している光波長を更に短くし、光フィルタ13の透過光出力強度がPcとなった場合に、ロックしたい光波長とレーザダイオード11が発振する光波長が一致していることとなる。
【0012】
このように、Pc<光フィルタ13の透過光出力強度の場合は、発振する光波長を現在発振している光波長より長い方に制御し、光フィルタ13の光出力強度<Pcの場合は、発振する光波長を現在発振している光波長より短い方に制御すると、レーザダイオード11が発振する光波長がロックしたい光波長λcに制御される。
【0013】
従来例1では、レーザダイオード11が発振する光波長を図7のλc”に制御するには、光波長をλcに制御する場合と異なり、Pc<光フィルタ13の透過光出力強度の場合は、レーザダイオード11が発振する光波長を現在発振している光波長より短くなるように制御し、光フィルタ13の透過光出力強度<Pcの場合は、レーザダイオード11が発振する光波長を現在発振している光波長より長くなるように制御すると、レーザダイオード11が発振する光波長がロックしたい光波長λcに制御されるといったように、発振する光波長のλcへの制御方向が逆になるという問題がある。
【0014】
また、λcの次にロックできる波長はλc’となり、波長軸に対して周期的な透過特性を持つ光フィルタのFSR(Free Spectral Range)分だけ離れた光波長のみ制御できるが、発振する光波長をFSRより狭い間隔で制御ができない。ここで、FSRとは、波長軸に対して周期的な透過特性を持つ光フィルタの最大透過波長の周期を示している。
【0015】
従来例2.
図8は従来例2(H.Toba,K.Oda,K.Nosu,“A 16 Channel Optical FDM Distribution/Transmission Experiment”,Technical Digest International Conference on Integrated Optics and Optical fibre Communications,20D1−1,1989,Jul.)の光送信装置の構成を示すブロック図であり、光フィルタの透過特性のピーク又はボトムにレーザダイオードが発振する光波長を固定する技術を示している。図において、11は所定の光波長を発振するレーザダイオード、12はレーザダイオード11からの光波長を入力し分岐して出力する光分岐器、13は波長軸に対して周期的な透過特性を持つ光フィルタ、14は光フィルタ13の出力を光電変換するフォトダイオード、15はフォトダイオード14の出力に基づきレーザダイオード11が発振する光波長を制御する波長制御部、16は光出力端子である。
【0016】
また、図8の波長制御部15において、151は低周波信号を発振する発振器、152はフォトダイオード14の出力と発振器151からの低周波信号を同期検波する同期検波部、153は同期検波部152の出力を増幅する増幅器、154は増幅器153の出力の高周波成分を除去してレーザダイオード11が発振する光波長とロックしたい光波長との誤差信号を出力するローパスフィルタ、155はローパスフィルタ154からの誤差信号と発振器151からの低周波信号を重畳してレーザダイオード11に出力する加算器である。
【0017】
次に従来例2の動作について説明する。
図9は従来例2の光送信装置の光波長制御方法を説明する図である。図9(A),(B),(C)に示すように、発振器151からの低周波信号の波長101でレーザダイオード11が発振する光波長102を微少に変動させる。もし、図9(A)に示すように、レーザダイオード11が発振する光波長102が光フィルタ13の最大透過波長103から短い方にずれると、光フィルタ13の透過特性の左側のスロープにより、フォトダイオード14の出力に図9(A)(a)のような強度変調がかかった信号が得られる。
【0018】
また、図9(B)に示すように、レーザダイオード11が発振する光波長102が光フィルタ13の最大透過波長103から長い方にずれると、光フィルタ13の透過特性の右側のスロープにより、フォトダイオード14の出力に図9(B)(a)に示すように、図9(A)(a)とは逆の強度変調がかかった信号が得られる。
【0019】
さらに、図9(C)に示すように、レーザダイオード11が発振する光波長102が光フィルタ13の最大透過波長103と一致する場合には、光フィルタ13の透過特性の両肩のスロープの影響により、フォトダイオード14の出力に図9(C)(a)に示すように、両波整流型の強度変調信号が検出される。
【0020】
フォトダイオード14からのこれらの強度変調信号と発振器151の低周波信号を同期検波部152で同期検波する。図9では理解の容易のため、発振器151の低周波信号を方形波に波形変換して記述している。
【0021】
図9(A)の場合は、(a)に示す強度変調信号と(b)に示す発振器151の低周波信号の方形波の半周期毎がそれぞれ同符号となるため、これらを掛け算した同期検波部152の出力は、(c)に示すように、どの時間でも正となる。この信号をローパスフィルタ154を通過させて余分な高周波成分を除去すると、(d)に示すように正の誤差信号が得られる。
【0022】
また、図9(B)の場合は、(a)に示す強度変調信号と(b)に示す方形波の半周期毎がそれぞれ異符号となるため、これらを掛け算した同期検波部152の出力は、(c)に示すように、どの時間でも負となる。この信号をローパスフィルタ154を通過させて余分な高周波成分を除去すると、(d)に示すように負の誤差信号が得られる。
【0023】
さらに、図9(C)の場合は、(a)に示す強度変調信号と(b)に示す方形波の半周期毎がそれぞれ同符合と異符号を繰り返すため、これらを掛け算した同期検波部152の出力は、(c)に示すように、半周期毎に符号が反対で大きさの等しい波形となる。従って、この信号をローパスフィルタ154を通すと、(d)に示すように、誤差信号はゼロになる。
【0024】
このように、レーザダイオード11に発振器151からの低周波信号を重畳させ、同期検波部152によりフォトダイオード14からの出力と発振器151からの元の低周波信号を適当な位相関係で同期検波し、ローパスフィルタ154を通過させると、上記のような各状態に応じた誤差信号が得られる。
【0025】
しかし、この方法では、レーザダイオード11に低周波信号を重畳し、レーザダイオード11の発振波長を微小に変化させなければならず、低周波信号の波長より低い周期の変動成分しか追従できない。
【0026】
【発明が解決しようとする課題】
従来例1の光送信装置は、以上のように構成され、波長軸に対して周期的な透過特性を持つ光フィルタ13を用いて、FSR周期での光波長間隔にて、レーザダイオード11が発振する光波長を制御しているが、光フィルタ13の透過特性のスロープを使用して光波長をロックする場合、ロックできる光波長間隔がFSRと同じであるため、さらに狭い光波長間隔にて光波長をロックするには、FSRの狭い光フィルタ13を作成しなければならず、従来の光フィルタ13と比較してサイズが大きくなるという課題があった。
【0027】
また、従来例2の光送信装置は、以上のように構成され、光フィルタ13を用いて、光フィルタ13の透過特性のピーク又はボトムにレーザダイオード11が発振する光波長を合わせることで、レーザダイオード11が発振する光波長を制御しているが、レーザダイオード11が発振する光波長を微小変調する必要があり、微少変調周波数以上の応答速度にて波長制御できないという課題があった。
【0028】
この発明は、上記のような課題を解決するためになされたもので、光フィルタの透過特性のスロープを使用して光波長を制御する場合に、FSRの狭い光フィルタを作ることなく、FSRより狭い波長間隔でレーザダイオードが発振する光波長を制御することができる光送信装置を得ることを目的とする。
【0029】
また、この発明は、光フィルタの透過特性のピーク又はボトムを使用して光波長を制御する場合に、レーザダイオードが発振する光波長に微小変調をかけることなく、レーザダイオードが発振する光波長を制御することができる光送信装置を得ることを目的とする。
【0030】
【課題を解決するための手段】
この発明に係る光送信装置は、所定の光波長を発振する半導体素子と、波長軸に対して周期的な透過特性を持ち、半導体素子からの光波長に対応した透過光出力強度を出力する第1の光フィルタと、第1の光フィルタからの出力を光電変換する第1の光電変換素子と、第1の光フィルタの透過特性から最大透過波長がフリースペクトラルレンジの1/4ずれている波長軸に対して周期的な透過特性を持ち、半導体素子からの光波長に対応した透過光出力強度を出力する第2の光フィルタと、第2の光フィルタからの出力を光電変換する第2の光電変換素子と、第1の光電変換素子からの出力と第2の光電変換素子からの出力に基づき半導体素子が発振する光波長を制御する波長制御部とを備えたものである。
【0031】
この発明に係る光送信装置は、波長制御部が第1の光フィルタの透過特性のスロープを使用して半導体素子が発振する光波長を制御するものである。
【0032】
この発明に係る光送信装置は、波長制御部が第1の光フィルタの透過特性のピーク又はボトムを使用して半導体素子が発振する光波長を制御するものである。
【0033】
この発明に係る光送信装置は、第1の光フィルタ及び第2の光フィルタが半導体素子の前面からの光波長に対応した透過光出力強度を出力するものである。
【0034】
この発明に係る光送信装置は、第1の光フィルタが半導体素子の背面からの光波長に対応した透過光出力強度を出力し、半導体素子、第1の光フィルタ及び第1の光電変換素子を1つのモジュールに納めるものである。
【0035】
この発明に係る光送信装置は、第1の光フィルタ及び第2の光フィルタが半導体素子の背面からの光波長に対応した透過光出力強度を出力し、半導体素子、第1の光フィルタ、第1の光電変換素子、第2の光フィルタ及び第2の光電変換素子を1つのモジュールに納めるものである。
【0036】
【発明の実施の形態】
以下、この発明の実施の一形態を説明する。
実施の形態1.
図1はこの発明の実施の形態1による光送信装置の構成を示すブロック図である。図において、1は所定の光波長を発振するレーザダイオード(半導体素子)、2はレーザダイオード1の前面からの光波長を入力し分岐して出力する光分岐器、3aは波長軸に対して周期的な透過特性を持つ光フィルタ(第1の光フィルタ)、3bは光フィルタ3aの透過特性から最大透過波長がFSRの1/4だけずれている波長軸に対して周期的な透過特性を持つ光フィルタ(第2の光フィルタ)である。
【0037】
また、図1において、4aは光フィルタ3aの出力を光電気変換するフォトダイオード(第1の光電変換素子)、4bは光フィルタ3bの出力を光電変換するフォトダイオード(第2の光電変換素子)、5はフォトダイオード4a,4bの出力に基づきレーザダイオード1が発振する光波長を制御する波長制御部、6は光出力端子である。
【0038】
次に動作について説明する。
図2はこの発明の実施の形態1による光送信装置の光波長制御方法を説明する図であり、図2(A)は光フィルタ3aの透過特性を示し、図2(B)は光フィルタ3aから最大透過波長がFSRの1/4だけずれている光フィルタ3bの透過特性を示している。
【0039】
図2(A)に示す光フィルタ3aの右側のスロープを用いて、レーザダイオード1が発振する光波長をλc’にロックする動作を説明する。レーザダイオード1が発振する光波長がλc’より短い波長λ1’のときに、光分岐器2を通って光フィルタ3aを透過した後、フォトダイオード4aで受光される透過光出力強度はP1’となる。このときPc’<P1’の関係にある。また、レーザダイオード1が発振する光波長がλc’のときには、フォトダイオード4aで受光される透過光出力強度はPc’である。
【0040】
そこで、フォトダイオード4aからの出力がPc’<P1’の関係にあるときは、波長制御部5がフォトダイオード4aの出力がPc’となるまで光波長を長くする制御を行なうことで、レーザダイオード1が発振する光波長をλc’に合わせることができる。
【0041】
また、レーザダイオード1が発振する光波長がλc’より長い光波長λ2’のときに、フォトダイオード4aで受光される透過光出力強度はP2’となり、P2’<Pc’の関係にある。このときは、波長制御部5がフォトダイオード4aの出力がPc’になるまで発振する光波長を短くするように制御する。
【0042】
この一連の光波長制御動作しているときには、光フィルタ3bの出力は図2(B)に示すようになり、常に光フィルタ3bからの透過光出力強度Pd2は、Pd2<Pdth2の関係にある。ここで、Pdth2は、次の(1)式に示すように、光フィルタ3bの最大透過光出力強度Pd2maxと最小透過光出力強度Pd2minとの差の半分の透過光出力強度である。
Pdth2=(|Pd2max−Pd2min|)/2      (1)
【0043】
このように、光フィルタ3bの透過光出力強度Pd2がPdth2よりも常に小さい場合で、光フィルタ3aの透過光出力強度Pd1が、Pd1>Pc’にある場合には、波長制御部5はレーザダイオード1が発振する光波長を長くする制御を行ない、光フィルタ3aの透過光出力強度Pd1が、Pd1<Pc’にある場合は、波長制御部5はレーザダイオード1が発振する光波長を短くする制御を行なうことにより、レーザダイオード1が発振する光波長をλc’に制御することができる。
【0044】
次に光フィルタ3aの透過特性の左側のスロープを使用してレーザダイオード1が発振する光波長をλcにロックする制御方法について説明する。従来例では、先に説明したλc’へロックする光波長の制御方向が異なっているため、発振する光波長をλc’へ制御することが不可能であった。しかし、光フィルタ3bの透過光出力強度Pd2が、Pd2>Pdth2の関係にあるときは、光波長をλc’にロックする手順と逆の制御方法をとることにより、発振する光波長をλcにもロックすることが可能となる。つまり、光フィルタ3aと光フィルタ3bを同時に用いることによって、光フィルタ3aの透過特性の右側又は左側のスロープに光波長をロックすることが可能となり、FSRより狭いFSRの1/2の波長間隔のロックが可能となる。
【0045】
このように、波長制御部5が、光フィルタ3bの透過光出力強度Pd2<Pdth2の場合で、光フィルタ3aの透過光出力強度Pd1>Pc’のときは、レーザダイオード1が発振する光波長を更に長くするよう制御し、光フィルタ3aの透過光出力強度Pd1<Pc’のときは、レーザダイオード1が発振する光波長を更に短くするよう制御し、光フィルタ3bの透過光出力強度Pd2>Pdth2の場合で、光フィルタ3aの透過光出力強度Pd1<Pcのときは、レーザダイオード1が発振する光波長を更に長くするよう制御し、光フィルタ3aの透過光出力強度Pd1>Pcのときは、レーザダイオード1が発振する光波長を更に短くするよう制御する。
【0046】
図2では、光フィルタ3bの透過特性として、光フィルタ3aの透過特性から最大透過波長がFSRの1/4だけ遅らせているが、光フィルタ3aの透過特性から最大透過波長がFSRの1/4だけ進ませて、同様にして条件を設定することで、レーザダイオード1が発振する光波長を制御することもできる。
【0047】
以上のように、この実施の形態1によれば、レーザダイオード1が発振した光波長を波長軸に対して周期的な透過特性を持つ光フィルタ3aに入力し、光フィルタ3aが光波長に対応した透過光出力強度を出力し、フォトダイオード4aが光フィルタ3aの出力を光電変換し、光フィルタ3aの透過特性のスロープを使用してレーザダイオード1の発振波長を固定する際に、レーザダイオード1が発振した光波長を光フィルタ3aの透過特性から最大透過波長がFSRの1/4だけずれている波長軸に対して周期的な透過特性を持つ光フィルタ3bに入力し、光フィルタ3bが光波長に対応した透過光出力強度を出力し、フォトダイオード4bが光フィルタ3bの出力を光電変換し、波長制御部5が、フォトダイオード4a,4bの出力に基づきレーザダイオード1が発振する光波長を制御することにより、FSRの狭い光フィルタを作ることなく、FSRより狭い波長間隔でレーザダイオード1が発振する光波長を制御できるという効果が得られる。
【0048】
実施の形態2.
図3はこの発明の実施の形態2による光送信装置の構成を示すブロック図である。図において、レーザダイオード1、光分岐器2、光フィルタ3a,3b、フォトダイオード4a,4b、波長制御部5、光出力端子6は、実施の形態1の図1に示す構成と同等であり、7はレーザダイオード1、光フィルタ3a、フォトダイオード4aにより構成されたレーザダイオードモジュールである。
【0049】
次に動作について説明する。
光フィルタ3aがレーザダイオード1の背面からの光波長を入力している以外は、実施の形態1の動作とほぼ同等である。そのため、光分岐器2で分岐する出力光を少なくすることができ、光出力端子6への出力光のパワーを実施の形態1よりも増加させることができる。
【0050】
また、図3の構成を使用することにより、従来例1の図6に示す構成に、外付けの光フィルタ3bとフォトダイオード4bを付加することにより、FSRの1/2間隔の光波長制御が可能となることを示している。
【0051】
以上のように、この実施の形態2によれば、実施の形態1と同様の効果が得られると共に、出力光のパワーを増加させることができるという効果が得られる。
【0052】
実施の形態3.
図4はこの発明の実施の形態3による光送信装置の構成を示すブロック図である。図において、レーザダイオード1、光分岐器2、光フィルタ3a,3b、フォトダイオード4a,4b、波長制御部5、光出力端子6は、実施の形態1の図1に示す構成と同等で、8はレーザダイオード1、光分岐器2、光フィルタ3a,3b、フォトダイオード4a,4bにより構成されたレーザダイオードモジュールである。
【0053】
次に動作について説明する。
レーザダイオード1が発振した光波長を光出力端子6に直接出力し、光分岐器2がレーザダイオード1の背面からの光波長を入力して光フィルタ3a,3bに出力する以外は、実施の形態1の動作とほぼ同等である。そのため、実施の形態2よりも更に大きいパワーの出力光パワーが得られる。
【0054】
また、レーザダイオード1、光分岐器2、光フィルタ3a,3b、フォトダイオード4a,4bの光学系を全て1つのレーザダイオードモジュール8に納めているので、光送信装置を小型にすることができる。
【0055】
以上のように、この実施の形態3によれば、実施の形態1と同様の効果が得られると共に、出力光のパワーを増加させることができ、光送信装置を小型にすることができるという効果が得られる。
【0056】
実施の形態4.
この発明の実施の形態4による光送信装置の構成を示すブロック図は実施の形態1の図1と同等であるが、波長制御部5の光波長制御方法が異なっている。実施の形態1の光波長制御方法では、光フィルタ3aの透過特性の右側又は左側のスロープを用いて光波長制御をしていたが、この実施の形態4では、光フィルタ3aの透過特性のピーク又はボトムを使用して光波長制御を行なう。
【0057】
次に動作について説明する。
従来例2に示すように、光フィルタの透過特性のピーク又はボトムを使用して光波長制御するには、光フィルタの透過光出力強度のみでは、制御方向すなわち、光波長を長くすべきなのか、短くすべきなのかという情報がわからないため、発振する光波長に微小変調をかけ、光フィルタの出力と同期検波を行なうことにより、制御方向の情報を得ていた。
【0058】
図5はこの発明の実施の形態4による光送信装置の光波長制御方法を説明する図であり、図5(A)は光フィルタ3aの透過特性を示し、図5(B)は光フィルタ3aの透過特性から最大透過波長がFSRの1/4だけずれている光フィルタ3bの透過特性を示している。図において、Pd1は光フィルタ3aの透過光出力強度を示し、Pd2は光フィルタ3bの透過光出力強度を示している。
【0059】
また、図5において、Pdth1は、次の(2)式に示すように、光フィルタ3aの最大透過光出力強度Pd1maxと最小透過光出力強度Pd1minとの差の半分の透過光出力強度である。
Pdth1=(|Pd1max−Pd1min|)/2      (2)
また、Pdth2は、実施の形態1で示した(1)式に示すように、光フィルタ3bの最大透過光出力強度Pd2maxと最小透過光出力強度Pd2minとの差の半分の透過光出力強度である。
【0060】
まず、レーザダイオード1が発振する光波長を光フィルタ3aの透過特性のピークとなる最大透過波長λc’にロックさせることを説明する。光フィルタ3aの出力がPdth1<Pd1かつPdth2>Pd2となる範囲にレーザダイオード1が発振する光波長がある場合、発振する光波長をλc’に合わせるために光波長を短い方に制御すれば良い。また、光フィルタ3aの出力がPdth1<Pd1かつPdth2<Pd2となる範囲にレーザダイオード1が発振する光波長がある場合、光波長を長い方に制御すれば良い。このような制御により、レーザダイオード1が発振する光波長を光フィルタ3aの透過特性のピークとなる最大透過波長λc’に合わせることができる。
【0061】
次に、レーザダイオード1が発振する波長を光フィルタ3aの透過特性のボトムとなる最小透過波長λcにロックさせることを説明する。光フィルタ3aの出力がPdth1>Pd1かつPdth2>Pd2となる範囲にレーザダイオード1が発振する波長がある場合、発振する光波長をλcに合わせるために光波長を長い方に制御すれば良い。また、光フィルタ3aの出力がPdth1>Pd1かつPdth2<Pd2となる範囲にレーザダイオード1が発振する光波長がある場合、光波長を短い方に制御すれば良い。このような制御により、レーザダイオード1が発振する光波長を光フィルタ3aの透過特性のボトムとなる最小透過波長λcに合わせることができる。
【0062】
図5では、光フィルタ3bの透過特性として、光フィルタ3aの透過特性から最大透過波長がFSRの1/4だけ遅らせているが、光フィルタ3aの透過特性から最大透過波長がFSRの1/4だけ進ませて、同様にして条件を設定することで、レーザダイオード1が発振する光波長を制御することもできる。
【0063】
以上のように、この実施の形態4によれば、レーザダイオード1が発振した光波長を波長軸に対して周期的な透過特性を持つ光フィルタ3aに入力し、光フィルタ3aが光波長に対応した透過光出力強度を出力し、フォトダイオード4aが光フィルタ3aの出力を光電変換し、光フィルタ3aの透過特性のピーク又はボトムを使用してレーザダイオード1の発振波長を固定する際に、レーザダイオード1が発振した光波長を光フィルタ3aの透過特性から最大透過波長がFSRの1/4だけずれている波長軸に対して周期的な透過特性を持つ光フィルタ3bに入力し、光フィルタ3bが光波長に対応した透過光出力強度を出力し、フォトダイオード4bが光フィルタ3bの出力を光電変換し、波長制御部5が、フォトダイオード4a,4bの出力に基づきレーザダイオード1が発振する光波長を制御することにより、レーザダイオード1が発振する光波長に微小変調をかけることなく制御方向を把握し、レーザダイオード1が発振する光波長を制御できるという効果が得られる。
【0064】
実施の形態5.
この発明の実施の形態5による光送信装置の構成を示すブロック図は実施の形態2の図3と同等であるが、波長制御部5の光波長制御方法が実施の形態4と同一のものである。
【0065】
以上のように、この実施の形態5によれば、実施の形態4と同様の効果が得られると共に、出力光のパワーを増加させることができるという効果が得られる。
【0066】
実施の形態6.
この発明の実施の形態6による光送信装置の構成を示すブロック図は実施の形態3の図4と同等であるが、波長制御部5の光波長制御方法が実施の形態4と同一のものである。
【0067】
以上のように、この実施の形態6によれば、実施の形態4と同様の効果が得られると共に、出力光のパワーを増加させることができ、光送信装置を小型にすることができるという効果が得られる。
【0068】
【発明の効果】
以上のように、この発明によれば、フリースペクトラルレンジの狭い光フィルタを作ることなく、フリースペクトラルレンジより狭い波長間隔で半導体素子が発振する光波長を制御することができるという効果が得られる。
【0069】
この発明によれば、半導体素子が発振する光波長に微小変調をかけることなく、半導体素子が発振する光波長を制御することができるという効果が得られる。
【図面の簡単な説明】
【図1】この発明の実施の形態1及び実施の形態4による光送信装置の構成を示すブロック図である。
【図2】この発明の実施の形態1から実施の形態3による光送信装置の光波長制御方法を説明する図である。
【図3】この発明の実施の形態2及び実施の形態5による光送信装置の構成を示すブロック図である。
【図4】この発明の実施の形態3及び実施の形態6による光送信装置の構成を示すブロック図である。
【図5】この発明の実施の形態4から実施の形態6による光送信装置の光波長制御方法を説明する図である。
【図6】従来例1の光送信装置の構成を示すブロック図である。
【図7】従来例1の光送信装置の光波長制御方法を説明する図である。
【図8】従来例2の光送信装置の構成を示すブロック図である。
【図9】従来例2の光送信装置の光波長制御方法を説明する図である。
【符号の説明】
1 レーザダイオード、2 光分岐器、3a,3b 光フィルタ、4a,4bフォトダイオード、5 波長制御部、6 光出力端子、7 レーザダイオードモジュール、8 レーザダイオードモジュール。

Claims (6)

  1. 所定の光波長を発振する半導体素子と、
    波長軸に対して周期的な透過特性を持ち、上記半導体素子からの光波長に対応した透過光出力強度を出力する第1の光フィルタと、
    上記第1の光フィルタからの出力を光電変換する第1の光電変換素子と、
    上記第1の光フィルタの透過特性から最大透過波長がフリースペクトラルレンジの1/4ずれている波長軸に対して周期的な透過特性を持ち、上記半導体素子からの光波長に対応した透過光出力強度を出力する第2の光フィルタと、
    上記第2の光フィルタからの出力を光電変換する第2の光電変換素子と、
    上記第1の光電変換素子からの出力と上記第2の光電変換素子からの出力に基づき上記半導体素子が発振する光波長を制御する波長制御部とを備えた光送信装置。
  2. 波長制御部が第1の光フィルタの透過特性のスロープを使用して半導体素子が発振する光波長を制御することを特徴とする請求項1記載の光送信装置。
  3. 波長制御部が第1の光フィルタの透過特性のピーク又はボトムを使用して半導体素子が発振する光波長を制御することを特徴とする請求項1記載の光送信装置。
  4. 第1の光フィルタ及び第2の光フィルタが半導体素子の前面からの光波長に対応した透過光出力強度を出力することを特徴とする請求項2又は請求項3記載の光送信装置。
  5. 第1の光フィルタが半導体素子の背面からの光波長に対応した透過光出力強度を出力し、上記半導体素子、上記第1の光フィルタ及び第1の光電変換素子を1つのモジュールに納めることを特徴とする請求項2又は請求項3記載の光送信装置。
  6. 第1の光フィルタ及び第2の光フィルタが半導体素子の背面からの光波長に対応した透過光出力強度を出力し、上記半導体素子、上記第1の光フィルタ、第1の光電変換素子、上記第2の光フィルタ及び第2の光電変換素子を1つのモジュールに納めることを特徴とする請求項2又は請求項3記載の光送信装置。
JP2002176166A 2002-06-17 2002-06-17 光送信装置 Pending JP2004023471A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002176166A JP2004023471A (ja) 2002-06-17 2002-06-17 光送信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002176166A JP2004023471A (ja) 2002-06-17 2002-06-17 光送信装置

Publications (1)

Publication Number Publication Date
JP2004023471A true JP2004023471A (ja) 2004-01-22

Family

ID=31174603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002176166A Pending JP2004023471A (ja) 2002-06-17 2002-06-17 光送信装置

Country Status (1)

Country Link
JP (1) JP2004023471A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019029623A (ja) * 2017-08-03 2019-02-21 富士通オプティカルコンポーネンツ株式会社 波長可変光源、光モジュール及び波長可変光源の制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019029623A (ja) * 2017-08-03 2019-02-21 富士通オプティカルコンポーネンツ株式会社 波長可変光源、光モジュール及び波長可変光源の制御方法
JP7225528B2 (ja) 2017-08-03 2023-02-21 富士通オプティカルコンポーネンツ株式会社 波長可変光源、光モジュール及び波長可変光源の制御方法

Similar Documents

Publication Publication Date Title
US6594070B2 (en) Optical communication system, optical receiver and wavelength converter
CA2598891C (en) Wavelength variable laser
CN110011174B (zh) 基于微波光子分频的光学锁相方法及装置
JP2007163941A (ja) 4相位相変調回路
JPH10163961A (ja) 光pll回路
JP6805687B2 (ja) 光モジュールおよび光変調器のバイアス制御方法
JP2011035895A (ja) 光ホモダイン受信機の同期回路及び光ホモダイン受信機
JP6706205B2 (ja) 振幅変調と周波数変調とを組み合わせた信号のデコード
JP2001296506A (ja) Rz光送信器
WO2014043590A1 (en) Optically balanced opto-electrical oscillator
WO2016161638A1 (zh) 一种相干光源频偏估计和补偿的相干接收机、方法和系统
US6940638B2 (en) Optical frequency conversion systems and methods
JP4821912B2 (ja) 光ホモダイン受信機の同期回路及び光ホモダイン受信機
JP4889951B2 (ja) 光周波数安定化装置
EP1128593A2 (en) Optical receiver
JP2007266688A (ja) 光受信装置および光干渉計の制御方法
JP3743626B2 (ja) 超高速クロック抽出回路
JP2004023471A (ja) 光送信装置
JP2006060794A (ja) 光クロック信号抽出装置
WO2005125058A1 (ja) 超広帯域通信システム、ならびにそれに用いられる送信装置、受信装置、および中継装置
CN106483685B (zh) 一种光调制器偏置控制装置及方法
JP4828447B2 (ja) 周波数変調器
JP2004301965A (ja) 光変調器のバイアス制御装置および該バイアス制御装置を用いた光変調装置
JP6202442B2 (ja) 高精度光周波数安定化法および高精度光周波数安定化装置
JPH10148801A (ja) 外部変調方式による光変調装置