JP2004022982A - Stacked-layer type semiconductor device - Google Patents

Stacked-layer type semiconductor device Download PDF

Info

Publication number
JP2004022982A
JP2004022982A JP2002178821A JP2002178821A JP2004022982A JP 2004022982 A JP2004022982 A JP 2004022982A JP 2002178821 A JP2002178821 A JP 2002178821A JP 2002178821 A JP2002178821 A JP 2002178821A JP 2004022982 A JP2004022982 A JP 2004022982A
Authority
JP
Japan
Prior art keywords
fuse
chip
semiconductor device
stacked
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002178821A
Other languages
Japanese (ja)
Inventor
Osamu Ara
荒 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002178821A priority Critical patent/JP2004022982A/en
Publication of JP2004022982A publication Critical patent/JP2004022982A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01066Dysprosium [Dy]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10157Shape being other than a cuboid at the active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stacked-layer type semiconductor device which is improved in the reliability of package by improving a humidity-proof characteristic at the fuse aperture of a lower side chip. <P>SOLUTION: The stacked-type semiconductor device comprises a first semiconductor chip which is formed by stacking a plurality of semiconductor chips and has at least one fuse aperture, at least a bonding film stuck to the first semiconductor chip so as to seal the fuse aperture, and a second semiconductor chip arranged at the upper part of the first semiconductor chip via the bonding film. Moreover, a plurality of fuse apertures are sealed with a plurality of bonding films. The plurality of fuse apertures are formed adjacent to the center area of the first semiconductor chip, and these are sealed with a single bonding film. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、複数の半導体チップを積層して1つのパッケージ内に収納した積層型半導体装置に関する。
【0002】
【従来の技術】
近年の携帯電話などの情報通信機器が軽量小型化および高性能化するのに伴い、組み込まれる半導体装置に対するいっそうの小型化および高機能化が強く求められている。これに応えるために、異なるシステムを有する複数の半導体チップを組み合わせて、1つのパッケージ内に収納するパッケージ方式(MCP:Multi Chip Package)による半導体装置が広く用いられている。このMCP方式の中でも、リードフレームの表面および裏面に半導体チップを搭載する表裏搭載方式、および大面積の半導体チップ上に別の小面積の半導体チップを直接的に積層するチップ積層方式がある。さらに、チップ積層方式の積層型半導体装置にも、リードフレームを有する積層型半導体装置(リードフレーム型)と、表面実装可能なバンプメタルを含む基板を有する積層型半導体装置(基板型)とがある。
【0003】
ここで図8ないし図10を参照しながら、一例として、従来式のチップ積層方式の積層型半導体装置(基板型)について説明する。この積層型半導体装置101は、概略、ガラスエポキシ樹脂などで構成された配線基板110、この配線基板110上に下側ダイボンドフィルム112を介して接着された、より大きい面積を有する半導体チップ120(単に、「下側チップ」ともいう。)、および下側チップ120上に同様の材料からなる上側ダイボンドフィルム122を介して接着された、より小さい面積を有する半導体チップ130(単に、「上側チップ」ともいう。)を備えている。
【0004】
下側チップ120および上側チップ130は、通常、異なるシステムを有し、例えば、SRAM、擬似SRAM、DRAM、またはフラッシュメモリチップなどであり、エンドユーザのニーズに合わせて、これらの半導体チップを任意に組み合わせて、パッケージ化された1つの積層型半導体装置101が設計される。
【0005】
配線基板110、下側チップ120、および上側チップ130は、その上面において、ワイヤボンディング可能な複数の電極パッド114,124,134を有し、下側チップ120および上側チップ130は、金線ワイヤ115を介して配線基板110と接続されている。また、この積層型半導体装置101を周辺装置(図示せず)に表面実装することができるように、配線基板110の下面において、複数のバンプメタル116が設けられている。さらに、配線基板110の上方において、トランスファモールド樹脂が下側チップ120および上側チップ130全体を包囲して、これらチップ120,130を保護している。(図9では、分かりやすくするために、モールド樹脂140のハッチングを省略した。)
【0006】
上述したSRAM、擬似SRAM、DRAM、またはフラッシュメモリなどの半導体メモリチップは、一般に、形成されたメモリ回路の上方にパッシベーション層125,135を一面に有し、チップ周辺部の所定の領域においてパッシベーション層が取り除かれたヒューズ開口部126,136を有する。モールド樹脂140を省略した図8において、下側チップ120は、破線で示す領域においてヒューズ開口部126を有し、上側チップ120は、実線で示す領域においてヒューズ開口部136を有する。また、各ヒューズ開口部126,136の底面には、複数のヒューズライン(図示せず)が形成されている。そして、ヒューズ開口部126,136を通じて、所定のヒューズラインにレーザ光を照射して、切断することにより、製造時の欠陥などで正常に動作しないメモリ回路を冗長回路に置き換えたり、基準電圧に対する電位のばらつきを抑制するように電位のチューニングを行う。こうして、上側および下側チップ120,130の製造歩留まりを向上させる。
【0007】
上述のように、モールド樹脂140が上側チップ130および下側チップ120の全体を包むように成型されているので、図10の拡大図で示すように、上側チップ130のヒューズ開口部136aには、モールド樹脂140が隙間なく入り込み、パッシベーション層135が形成されないヒューズラインおよびその近傍の回路素子を保護する。
【0008】
【発明が解決しようとする課題】
しかしながら、上述のように、上側チップ130と下側チップ120の組み合わせは、最終的な所望する積層型半導体装置の仕様に応じて決定され、下側チップ120に対する上側チップ130の配置位置、および上側ダイボンドフィルム122に対する下側チップ120のヒューズ開口部126の配置位置などは、上側チップ130と下側チップ120の組み合わせに依存する。このとき、図9および図10に示すように、上側ダイボンドフィルム122が下側チップ120のヒューズ開口部126の一部の領域だけをカバーするように配置された場合、モールド樹脂140が下側チップ120のヒューズ開口部126に完全に充填されず、密閉された間隙部150が生じることがある。こうした間隙部150に封入された空気、とりわけ水分は、HAST試験を含む温度サイクル試験およびリフロー半田実装時において、膨張・収縮を繰り返し、パッシベーション層135が形成されないヒューズラインおよびその近傍の回路素子に多大なダメージを与え、耐湿性などのパッケージ信頼性が著しく損なわれる。
【0009】
そこで本発明は、こうした問題を解消するためになされたもので、下側チップのヒューズ開口部内に水分が入り込まないように、下側チップのヒューズ開口部の上方には必ずダイボンドフィルムを配置することにより、下側チップのヒューズ開口部における耐湿性を向上させ、パッケージ信頼性の改善された積層型半導体装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
この目的を達成するために、請求項1に記載の本発明は、複数の半導体チップを積層して形成された積層型半導体装置であって、少なくとも1つのヒューズ開口部を有する第1の半導体チップと、ヒューズ開口部を封止するように第1の半導体チップ上に貼付された少なくとも1つの接着フィルムと、接着フィルムを介して第1の半導体チップの上方に配置された第2の半導体チップとを備える。これにより、第1の半導体チップのヒューズ開口部は、接着フィルムにより確実に封止され、モールド樹脂がヒューズ開口部内に侵入することを防止し、モールド成型時、ヒューズ開口部内への湿気の侵入を阻止し、ヒューズ開口部の耐湿性を実質的に改善することができる。
【0011】
請求項2に記載の本発明によれば、複数のヒューズ開口部が、複数の接着フィルムにより封止される。これにより、一般にチップ周辺部に配置されたヒューズ開口部の配置位置に合わせて、複数の接着フィルムを用いて複数のヒューズ開口部を封止することができる。
【0012】
請求項3に記載の本発明によれば、複数のヒューズ開口部が、第1の半導体チップの中央部において互いに隣接して配置され、1つの接着フィルムにより封止される。こうして、1つの接着フィルムを用いて、複数のヒューズ開口部を確実に、かつ容易に封止することができる。また、複数のヒューズ開口部を封止するために、より面積の小さい1つの接着フィルムを用いることができ、接着フィルムのコストを低減できる。
【0013】
請求項4に記載の本発明によれば、接着フィルムは、第2の半導体チップの面積と同一もしくは小さい面積を有し、第1の半導体チップ上のヒューズ開口部すべてを覆う。したがって、上述した先行技術のように、ヒューズ開口部の一部領域だけがカバーされて、密閉された間隙部が生じることを防ぐことができる。
【0014】
【発明の実施の形態】
以下、添付図面を参照して本発明に係る積層型半導体装置の実施の形態を説明する。各実施の形態の説明において、理解を容易にするために方向を表す用語(例えば、「上側」、「下側」、「右側」、「左側」、「x方向」、および「y方向」など)を適宜用いるが、これは説明のためのものであって、これらの用語は本発明を限定するものでない。
【0015】
実施の形態1.
図1および図2を参照しながら、本発明の第1の実施の形態によるチップ積層方式の積層型半導体装置(基板型)について説明する。この積層型半導体装置1は、概略、ガラスエポキシ樹脂などで構成された配線基板10、この配線基板10上に下側ダイボンドフィルム12を介して接着された、より大きい面積を有する半導体チップ20(単に、「下側チップ」ともいう。)、および下側チップ20上に同様の材料からなる2本の上側ダイボンドフィルム22a,22bを介して接着された、より小さい面積を有する半導体チップ30(単に、「上側チップ」ともいう。)を備えている。
【0016】
下側チップ20および上側チップ30は、例えば、SRAM、擬似SRAM、DRAM、またはフラッシュメモリチップなどであり、その組み合わせは、エンドユーザの所望する仕様・機能に依存する。こうして任意に組み合わされたメモリチップを積層し、パッケージ化して1つの積層型半導体装置1が構成される。
【0017】
配線基板10、下側チップ20、および上側チップ30は、その上面において、ワイヤボンディング可能な複数の電極パッド14,24,34を有し、下側チップ20および上側チップ30は、金線ワイヤ15を介して配線基板10と接続されている(図1においては金線ワイヤ15を省略している)。また、この積層型半導体装置1を周辺装置(図示せず)に表面実装することができるように、配線基板10の下面において、複数のバンプメタル16が設けられている。さらに、配線基板10の上方において、トランスファモールド樹脂40が下側チップ20および上側チップ30全体を包囲するように成型され、これらチップ20,30を保護している。(分かりやすくするために、図1においてはモールド樹脂40を省略し、図2においてはそのハッチングを省略した。)なお、モールド樹脂40が2本の上側ダイボンドフィルム22a,22bの間にも隙間なく充填されやすくするために、上側ダイボンドフィルム22a,22bの膜厚を、下側ダイボンドフィルム12よりも厚くすることが好ましい。
【0018】
この実施の形態1において、上側チップ20および上側チップ30は、形成されたメモリ回路(図示せず)の上方にパッシベーション層25,35を一面に有し、それぞれ図1の破線および実線で示すように、チップ周辺部の所定の領域においてパッシベーション層25,35をエッチングして形成されたヒューズ開口部26,36を有する。また、ヒューズ開口部26,36の底面には、複数のヒューズライン(図示せず)が形成されている。そして、ヒューズ開口部26,36を通じて、レーザトリミングすることにより、製造時の欠陥などで正常に動作しないメモリ回路を冗長回路に置き換えたり、基準電圧に対する電位のばらつきを抑制するように電位のチューニングを行う。こうして、上側および下側チップ20,30の製造歩留まりを向上させる。
【0019】
この実施の形態1の積層型半導体装置1において、2本のダイボンドフィルム22a,22bのそれぞれは、下側チップ20の2つのヒューズ開口部26a,26bを完全に封止するように、下側チップ20上に貼付される。換言すると、下側チップ20のヒューズ開口部26a,26bの上方には、これを蓋するように配置されたダイボンドフィルム22a,22bが必ず存在する。したがって、モールド樹脂40が上側チップ30および下側チップ20の周囲全体にモールドされるとき、下側チップ20のヒューズ開口部26a,26b内へのモールド樹脂の侵入が防止され、モールド成型時、湿気がヒューズ開口部26a,26b内に侵入することはない。このように、実施の形態1によれば、下側チップ20のヒューズ開口部26a,26bを封止するように、複数のダイボンドフィルム22a,22bがヒューズ開口部26a,26bの配置位置に合わせて貼付されるので、ヒューズ開口部26a,26bにおける耐湿性を改善することができ、積層型半導体装置1の信頼性を向上させることができる。
【0020】
実施の形態2.
図3ないし図7を参照しながら、本発明の第2の実施の形態によるチップ積層方式の積層型半導体装置について説明する。実施の形態2による積層型半導体装置1は、1本のダイボンドフィルムを用いる点、および下側チップの複数のヒューズ開口部を中央部において互いに隣接して配置する点を除いて、第1の実施の形態による積層型半導体装置1と同様の構成を有するので、重複する内容については説明を省略する。
【0021】
実施の形態2による積層型半導体装置1において、図3から明らかなように、下側チップ20のヒューズ開口部27aないし27d(破線で示す)は、x方向およびy方向においてそれぞれ2つずつ互いに隣接するように設けられている。しかも、これらのヒューズ開口部27aないし27dは、下側チップ20の中央部(中央領域)に集中して配置されている。このように、複数のヒューズ開口部27aないし27dが互いに隣接して中央部に配置されていると、1本のダイボンドフィルム23を用いて、複数のヒューズ開口部27aないし27dを確実に、かつ容易に封止することができる。すなわち、上述した先行技術のように、ヒューズ開口部の一部領域だけがカバーされて、密閉された間隙部が生じることを防ぐことができる。
【0022】
換言すると、複数のヒューズ開口部27aないし27dが互いに隣接して中央部に配置されている場合、面積のより小さい1本のダイボンドフィルムを用いて、複数のヒューズ開口部27aないし27dを容易に封止することができる。複数のヒューズ開口部27aないし27dが1本のダイボンドフィルムで封止されるとき、図5に示すヒューズ開口部27aのx方向における最左端28Lから、その右側に隣接して配置された別のヒューズ開口部27cのx方向における最右端28Rまでの距離(dx)は、x方向におけるダイボンドフィルム23自体の長さ(Lx)よりも短い。同様に、1本のダイボンドフィルム23を用いて、複数のヒューズ開口部27aないし27dを封止するためには、y方向において、隣接するヒューズ開口部27aおよび27bの互いに最も離れた端部の間の距離(dy)が、接着フィルムのy方向の長さ(Ly)より短いことが必要である。すなわち、この実施の形態2による積層型半導体装置1によれば、複数のヒューズ開口部27aないし27dが互いに隣接して中央部に配置され、x方向およびy方向などの任意の方向において、隣接するヒューズ開口部の互いに最も離れた端部の間の距離が、接着フィルム23の長さより短い(dx<Lx,dy<Ly)。
【0023】
さらに好適には、上述の端部間距離dx,dyが、ダイボンドフィルム23の半分の長さLx,Lyよりも小さくなるように(すなわち、dx<1/2×Lx,dy<1/2×Ly)、ヒューズ開口部を中央部に集中配置する(互いに隣接させて構成する)。
【0024】
図3ないし図5に示す積層型半導体装置1は、そのヒューズ開口部26aないし26dがx方向に長辺、y方向に短辺を有する一方、図6および図7に示す積層型半導体装置1は、そのヒューズ開口部26aないし26dがx方向に短辺、y方向に長辺を有する以外は同様の積層型半導体装置である。図6に示す積層型半導体装置1においても同様に、任意の方向において、下側チップ20の隣接するヒューズ開口部26の互いに最も離れた端部の間の距離が、ダイボンドフィルム23の長さより短い。
【0025】
こうして、各ヒューズ開口部26aないし26dは、下側ダイボンドフィルム23により確実に封止され、ヒューズ開口部26aないし26dにおける耐湿性を改善し、積層型半導体装置1のパッケージ信頼性を向上させることができる。
【0026】
なお、本発明について、表面実装可能なバンプメタルを含む基板を有する積層型半導体装置(基板型)を参照しながら、これまで説明してきたが、当業者ならば容易に理解されるように、本発明は、リードフレームを有する積層型半導体装置(リードフレーム型)などにも同様に適用することができる。
【0027】
【発明の効果】
【課題を解決するための手段】
請求項1に記載の本発明によれば、第1の半導体チップのヒューズ開口部は、接着フィルムにより確実に封止され、モールド樹脂がヒューズ開口部内に侵入することを防止し、モールド成型時、ヒューズ開口部内への湿気の侵入を阻止し、ヒューズ開口部の耐湿性を実質的に改善することができる。
【0028】
請求項2に記載の本発明によれば、一般にチップ周辺部に配置されたヒューズ開口部の配置位置に合わせて、複数の接着フィルムを用いて複数のヒューズ開口部を封止して、ヒューズ開口部の耐湿性を実質的に改善することができる。
【0029】
請求項3に記載の本発明によれば、1つの接着フィルムを用いて、複数のヒューズ開口部を確実に、かつ容易に封止して、ヒューズ開口部の耐湿性を実質的に改善することができる。また、複数のヒューズ開口部を封止するために、より面積の小さい1つの接着フィルムを用いることができ、接着フィルムのコストを低減できる。
【0030】
請求項4に記載の本発明によれば、上述した先行技術のように、ヒューズ開口部の一部領域だけがカバーされて、密閉された間隙部が生じることを防ぐことができる。
【図面の簡単な説明】
【図1】図1は、本発明の実施の形態1による集積型半導体装置の平面図であって、モールド樹脂を省略している。
【図2】図2は、図1のII−II線からみた集積型半導体装置の断面図である。
【図3】図3は、本発明の実施の形態2による集積型半導体装置の平面図であって、モールド樹脂を省略している。
【図4】図4は、図3のIV−IV線からみた集積型半導体装置の断面図である。
【図5】図5は、図3に示す下側チップとボンディングフィルムの配置関係を示す平面図である。
【図6】図6は、図3の集積型半導体装置の変形例を示す平面図であって、モールド樹脂を省略している。
【図7】図7は、図6のVII−VII線からみた集積型半導体装置の断面図である。
【図8】図8は、従来式の集積型半導体装置の平面図であって、モールド樹脂を省略している。
【図9】図9は、図8のIX−IX線からみた集積型半導体装置の断面図である。
【図10】図10は、従来式の集積型半導体装置の間隙部を示す拡大図である。
【符号の説明】
1…積層型半導体装置、10…配線基板、12…下側ダイボンドフィルム、14,24,34…電極パッド、15…金線ワイヤ、16…バンプメタル、20…下側チップ、22a,22b,23…上側ダイボンドフィルム、30…上側チップ、40…モールド樹脂、25,35…パッシベーション層、26,27,36…ヒューズ開口部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a stacked semiconductor device in which a plurality of semiconductor chips are stacked and housed in one package.
[0002]
[Prior art]
2. Description of the Related Art As information communication devices such as mobile phones have become lighter and smaller and have higher performance in recent years, there is a strong demand for further miniaturization and higher functionality of semiconductor devices to be incorporated. In order to respond to the demand, a semiconductor device of a package system (MCP: Multi Chip Package) in which a plurality of semiconductor chips having different systems are combined and housed in one package is widely used. Among the MCP methods, there are a front-back mounting method in which semiconductor chips are mounted on the front and back surfaces of a lead frame, and a chip stacking method in which another small-area semiconductor chip is directly stacked on a large-area semiconductor chip. Further, chip-stacked stacked semiconductor devices include a stacked semiconductor device having a lead frame (lead frame type) and a stacked semiconductor device having a substrate including a surface mountable bump metal (substrate type). .
[0003]
Here, with reference to FIGS. 8 to 10, a description will be given of a conventional stacked semiconductor device (substrate type) of a conventional chip stacking system as an example. The stacked semiconductor device 101 includes a wiring board 110 made of glass epoxy resin or the like, and a semiconductor chip 120 having a larger area (simply attached to the wiring board 110 via a lower die bond film 112). , And “lower chip”), and a semiconductor chip 130 having a smaller area adhered to the lower chip 120 via an upper die bond film 122 made of a similar material (also simply referred to as “upper chip”). ).
[0004]
The lower chip 120 and the upper chip 130 typically have different systems, for example, SRAM, pseudo SRAM, DRAM, or flash memory chips, and any of these semiconductor chips can be arbitrarily adapted to the needs of the end user. In combination, one packaged stacked semiconductor device 101 is designed.
[0005]
The wiring board 110, the lower chip 120, and the upper chip 130 have a plurality of electrode pads 114, 124, 134 that can be wire-bonded on the upper surface, and the lower chip 120 and the upper chip 130 include gold wire 115. Is connected to the wiring board 110 via the. A plurality of bump metals 116 are provided on the lower surface of the wiring board 110 so that the stacked semiconductor device 101 can be surface-mounted on a peripheral device (not shown). Further, above the wiring board 110, the transfer mold resin surrounds the entire lower chip 120 and the upper chip 130 to protect the chips 120 and 130. (In FIG. 9, hatching of the mold resin 140 is omitted for easy understanding.)
[0006]
A semiconductor memory chip such as the above-described SRAM, pseudo SRAM, DRAM, or flash memory generally has passivation layers 125 and 135 all over the formed memory circuit, and has a passivation layer in a predetermined region around the chip. Have fuse openings 126 and 136 removed. In FIG. 8 where the mold resin 140 is omitted, the lower chip 120 has a fuse opening 126 in a region shown by a broken line, and the upper chip 120 has a fuse opening 136 in a region shown by a solid line. Further, a plurality of fuse lines (not shown) are formed on the bottom surfaces of the fuse openings 126 and 136. Then, a predetermined fuse line is irradiated with laser light through the fuse openings 126 and 136 and cut, so that a memory circuit that does not operate normally due to a defect at the time of manufacture or the like can be replaced with a redundant circuit, or a potential with respect to a reference voltage can be replaced. Tuning is performed so as to suppress variations in the potential. Thus, the manufacturing yield of the upper and lower chips 120 and 130 is improved.
[0007]
As described above, since the molding resin 140 is molded so as to cover the entire upper chip 130 and the lower chip 120, as shown in the enlarged view of FIG. The resin 140 penetrates without gaps and protects the fuse line where the passivation layer 135 is not formed and the circuit elements in the vicinity thereof.
[0008]
[Problems to be solved by the invention]
However, as described above, the combination of the upper chip 130 and the lower chip 120 is determined according to the final desired specification of the stacked semiconductor device, and the arrangement position of the upper chip 130 with respect to the lower chip 120 and The position of the fuse opening 126 of the lower chip 120 with respect to the die bond film 122 depends on the combination of the upper chip 130 and the lower chip 120. At this time, as shown in FIGS. 9 and 10, when the upper die bond film 122 is disposed so as to cover only a part of the fuse opening 126 of the lower chip 120, the molding resin 140 is The fuse openings 126 of the 120 may not be completely filled, resulting in a sealed gap 150. The air, especially moisture, sealed in the gap 150 repeatedly expands and contracts during the temperature cycle test including the HAST test and the reflow solder mounting, and is greatly applied to the fuse line where the passivation layer 135 is not formed and the circuit elements in the vicinity thereof. Package reliability, such as moisture resistance, is significantly impaired.
[0009]
Therefore, the present invention has been made to solve such a problem, and a die bond film must be disposed above the fuse opening of the lower chip so that moisture does not enter the fuse opening of the lower chip. Accordingly, an object of the present invention is to provide a stacked semiconductor device in which the moisture resistance in the fuse opening of the lower chip is improved and the package reliability is improved.
[0010]
[Means for Solving the Problems]
In order to achieve this object, the present invention according to claim 1 is a stacked semiconductor device formed by stacking a plurality of semiconductor chips, the first semiconductor chip having at least one fuse opening. And at least one adhesive film attached on the first semiconductor chip so as to seal the fuse opening, and a second semiconductor chip disposed above the first semiconductor chip via the adhesive film. Is provided. As a result, the fuse opening of the first semiconductor chip is securely sealed by the adhesive film, preventing the mold resin from entering the fuse opening, and preventing moisture from entering the fuse opening during molding. This can substantially improve the moisture resistance of the fuse opening.
[0011]
According to the second aspect of the present invention, the plurality of fuse openings are sealed with the plurality of adhesive films. Thus, a plurality of fuse openings can be sealed with a plurality of adhesive films in accordance with the arrangement position of the fuse openings generally arranged in the periphery of the chip.
[0012]
According to the third aspect of the present invention, the plurality of fuse openings are arranged adjacent to each other at the center of the first semiconductor chip and are sealed with one adhesive film. Thus, a plurality of fuse openings can be reliably and easily sealed using one adhesive film. Moreover, in order to seal the plurality of fuse openings, one adhesive film having a smaller area can be used, and the cost of the adhesive film can be reduced.
[0013]
According to the present invention, the adhesive film has an area equal to or smaller than the area of the second semiconductor chip, and covers all the fuse openings on the first semiconductor chip. Therefore, it is possible to prevent the formation of a sealed gap by covering only a part of the fuse opening as in the prior art described above.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a stacked semiconductor device according to the present invention will be described with reference to the accompanying drawings. In the description of each embodiment, terms indicating directions (for example, “upper”, “lower”, “right”, “left”, “x direction”, and “y direction” for easy understanding) ) Is used as appropriate, but this is only for explanation, and these terms do not limit the present invention.
[0015]
Embodiment 1 FIG.
A stacked semiconductor device (substrate type) of a chip stacking type according to a first embodiment of the present invention will be described with reference to FIGS. The stacked semiconductor device 1 includes a wiring board 10 made of glass epoxy resin or the like, and a semiconductor chip 20 having a larger area (simply attached to the wiring board 10 via a lower die bond film 12). , "Lower chip"), and a semiconductor chip 30 having a smaller area (simply referred to as a "lower chip"), which is bonded on the lower chip 20 via two upper die bond films 22a and 22b made of the same material. Also referred to as an "upper chip."
[0016]
The lower chip 20 and the upper chip 30 are, for example, an SRAM, a pseudo SRAM, a DRAM, a flash memory chip, or the like, and a combination thereof depends on specifications and functions desired by an end user. The memory chips arbitrarily combined in this manner are stacked and packaged to form one stacked semiconductor device 1.
[0017]
The wiring board 10, the lower chip 20, and the upper chip 30 have a plurality of electrode pads 14, 24, 34 that can be wire-bonded on the upper surface. (The gold wire 15 is omitted in FIG. 1). Further, a plurality of bump metals 16 are provided on the lower surface of the wiring board 10 so that the stacked semiconductor device 1 can be surface-mounted on a peripheral device (not shown). Further, a transfer mold resin 40 is molded above the wiring board 10 so as to surround the lower chip 20 and the upper chip 30 as a whole, thereby protecting the chips 20 and 30. (For the sake of simplicity, the mold resin 40 is omitted in FIG. 1 and the hatching is omitted in FIG. 2.) The mold resin 40 has no gap between the two upper die bond films 22a and 22b. It is preferable that the upper die-bonding films 22a and 22b have a greater thickness than the lower die-bonding film 12 in order to facilitate the filling.
[0018]
In the first embodiment, the upper chip 20 and the upper chip 30 have passivation layers 25 and 35 all over the formed memory circuit (not shown), as shown by broken lines and solid lines in FIG. 1, respectively. And fuse openings 26 and 36 formed by etching the passivation layers 25 and 35 in a predetermined region around the chip. A plurality of fuse lines (not shown) are formed on the bottom surfaces of the fuse openings 26 and 36. Then, by performing laser trimming through the fuse openings 26 and 36, a memory circuit that does not operate normally due to a defect at the time of manufacturing or the like is replaced with a redundant circuit, or the potential is tuned so as to suppress variation in potential with respect to a reference voltage. Do. Thus, the production yield of the upper and lower chips 20, 30 is improved.
[0019]
In the stacked semiconductor device 1 according to the first embodiment, the two die bonding films 22a and 22b are respectively connected to the lower chip so that the two fuse openings 26a and 26b of the lower chip 20 are completely sealed. 20. In other words, above the fuse openings 26a, 26b of the lower chip 20, there are always the die bond films 22a, 22b arranged to cover the fuse openings 26a, 26b. Therefore, when the molding resin 40 is molded over the entire periphery of the upper chip 30 and the lower chip 20, the intrusion of the molding resin into the fuse openings 26a, 26b of the lower chip 20 is prevented. Does not enter the fuse openings 26a and 26b. As described above, according to the first embodiment, the plurality of die bond films 22a and 22b are aligned with the positions of the fuse openings 26a and 26b so as to seal the fuse openings 26a and 26b of the lower chip 20. Since it is attached, the moisture resistance in the fuse openings 26a and 26b can be improved, and the reliability of the stacked semiconductor device 1 can be improved.
[0020]
Embodiment 2 FIG.
A stacked semiconductor device of a chip stacking type according to a second embodiment of the present invention will be described with reference to FIGS. The stacked semiconductor device 1 according to the second embodiment is similar to the first embodiment except that a single die bond film is used and a plurality of fuse openings of the lower chip are arranged adjacent to each other at the center. Since the configuration is the same as that of the stacked semiconductor device 1 according to the embodiment, the description of the same content will not be repeated.
[0021]
In the stacked semiconductor device 1 according to the second embodiment, as is apparent from FIG. 3, two fuse openings 27a to 27d (shown by broken lines) of the lower chip 20 are adjacent to each other in the x direction and the y direction. It is provided to be. In addition, these fuse openings 27a to 27d are arranged in a concentrated manner in the central portion (central region) of the lower chip 20. As described above, when the plurality of fuse openings 27a to 27d are arranged adjacent to each other at the center, the plurality of fuse openings 27a to 27d can be reliably and easily formed using one die bond film 23. Can be sealed. That is, as in the above-described prior art, only a partial area of the fuse opening is covered, so that a sealed gap can be prevented from being generated.
[0022]
In other words, when a plurality of fuse openings 27a to 27d are arranged adjacent to each other in the center, the plurality of fuse openings 27a to 27d can be easily sealed using one die bond film having a smaller area. Can be stopped. When the plurality of fuse openings 27a to 27d are sealed with one die bond film, another fuse disposed adjacent to the right side from the leftmost end 28L in the x direction of the fuse opening 27a shown in FIG. The distance (dx) to the rightmost end 28R in the x direction of the opening 27c is shorter than the length (Lx) of the die bond film 23 itself in the x direction. Similarly, in order to seal the plurality of fuse openings 27a to 27d using one die-bonding film 23, the distance between the ends of the adjacent fuse openings 27a and 27b which are farthest from each other in the y-direction. Is required to be shorter than the length (Ly) of the adhesive film in the y direction. That is, in the stacked semiconductor device 1 according to the second embodiment, the plurality of fuse openings 27a to 27d are arranged at the center adjacent to each other, and are adjacent to each other in an arbitrary direction such as the x direction and the y direction. The distance between the farthest ends of the fuse openings is shorter than the length of the adhesive film 23 (dx <Lx, dy <Ly).
[0023]
More preferably, the distances dx and dy between the ends are smaller than half the lengths Lx and Ly of the die bond film 23 (that is, dx <1/2 × Lx and dy <1/2 ×). Ly), the fuse openings are centrally arranged (configured adjacent to each other).
[0024]
In the stacked semiconductor device 1 shown in FIGS. 3 to 5, the fuse openings 26a to 26d have long sides in the x direction and short sides in the y direction, while the stacked semiconductor devices 1 shown in FIGS. , Except that the fuse openings 26a to 26d have short sides in the x direction and long sides in the y direction. Similarly, in the stacked semiconductor device 1 illustrated in FIG. 6, the distance between the ends of the adjacent fuse openings 26 of the lower chip 20 that are farthest from each other in any direction is shorter than the length of the die bond film 23. .
[0025]
Thus, each of the fuse openings 26a to 26d is securely sealed by the lower die bond film 23, the moisture resistance in the fuse openings 26a to 26d is improved, and the package reliability of the stacked semiconductor device 1 is improved. it can.
[0026]
Although the present invention has been described above with reference to a stacked semiconductor device (substrate type) having a substrate including a bump metal that can be surface-mounted, as will be easily understood by those skilled in the art, The invention can be similarly applied to a stacked semiconductor device (lead frame type) having a lead frame.
[0027]
【The invention's effect】
[Means for Solving the Problems]
According to the first aspect of the present invention, the fuse opening of the first semiconductor chip is securely sealed by the adhesive film to prevent the mold resin from entering the fuse opening. Moisture can be prevented from entering the fuse opening, and the moisture resistance of the fuse opening can be substantially improved.
[0028]
According to the present invention as set forth in claim 2, the plurality of fuse openings are generally sealed with a plurality of adhesive films in accordance with the arrangement positions of the fuse openings arranged around the chip. The moisture resistance of the part can be substantially improved.
[0029]
According to the third aspect of the present invention, the plurality of fuse openings are securely and easily sealed using one adhesive film, and the moisture resistance of the fuse openings is substantially improved. Can be. Moreover, in order to seal the plurality of fuse openings, one adhesive film having a smaller area can be used, and the cost of the adhesive film can be reduced.
[0030]
According to the present invention, only a partial area of the fuse opening is covered as in the above-described prior art, and it is possible to prevent a sealed gap from being generated.
[Brief description of the drawings]
FIG. 1 is a plan view of an integrated semiconductor device according to a first embodiment of the present invention, in which a mold resin is omitted.
FIG. 2 is a sectional view of the integrated semiconductor device taken along line II-II of FIG. 1;
FIG. 3 is a plan view of an integrated semiconductor device according to a second embodiment of the present invention, in which a mold resin is omitted.
FIG. 4 is a sectional view of the integrated semiconductor device taken along line IV-IV in FIG. 3;
FIG. 5 is a plan view showing an arrangement relationship between a lower chip and a bonding film shown in FIG. 3;
FIG. 6 is a plan view showing a modified example of the integrated semiconductor device of FIG. 3, in which a mold resin is omitted.
FIG. 7 is a sectional view of the integrated semiconductor device taken along line VII-VII in FIG. 6;
FIG. 8 is a plan view of a conventional integrated semiconductor device, omitting a mold resin.
FIG. 9 is a sectional view of the integrated semiconductor device taken along line IX-IX in FIG. 8;
FIG. 10 is an enlarged view showing a gap portion of a conventional integrated semiconductor device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Laminated semiconductor device, 10 ... Wiring board, 12 ... Lower die bond film, 14, 24, 34 ... Electrode pad, 15 ... Gold wire, 16 ... Bump metal, 20 ... Lower chip, 22a, 22b, 23 ... upper die bonding film, 30 ... upper chip, 40 ... mold resin, 25, 35 ... passivation layer, 26, 27, 36 ... fuse opening.

Claims (4)

複数の半導体チップを積層して形成された積層型半導体装置であって、
少なくとも1つのヒューズ開口部を有する第1の半導体チップと、
ヒューズ開口部を封止するように第1の半導体チップ上に貼付された少なくとも1つの接着フィルムと、
接着フィルムを介して第1の半導体チップの上方に配置された第2の半導体チップとを備えることを特徴とする積層型半導体装置。
A stacked semiconductor device formed by stacking a plurality of semiconductor chips,
A first semiconductor chip having at least one fuse opening;
At least one adhesive film affixed on the first semiconductor chip to seal the fuse opening;
A second semiconductor chip disposed above the first semiconductor chip with an adhesive film interposed therebetween.
請求項1に記載の積層型半導体装置であって、
複数のヒューズ開口部が、複数の接着フィルムにより封止されることを特徴とする積層型半導体装置。
The stacked semiconductor device according to claim 1, wherein:
A stacked semiconductor device, wherein a plurality of fuse openings are sealed with a plurality of adhesive films.
請求項1に記載の積層型半導体装置であって、
複数のヒューズ開口部が、第1の半導体チップの中央部において互いに隣接して配置され、1つの接着フィルムにより封止されることを特徴とする積層型半導体装置。
The stacked semiconductor device according to claim 1, wherein:
A stacked semiconductor device, wherein a plurality of fuse openings are arranged adjacent to each other at a central portion of a first semiconductor chip and are sealed with one adhesive film.
請求項3に記載の積層型半導体装置であって、
接着フィルムは、第2の半導体チップの面積と同一もしくは小さい面積を有し、第1の半導体チップ上のヒューズ開口部すべてを覆うことを特徴とする積層型半導体装置。
The stacked semiconductor device according to claim 3, wherein:
A stacked semiconductor device, wherein the adhesive film has an area equal to or smaller than the area of the second semiconductor chip and covers all the fuse openings on the first semiconductor chip.
JP2002178821A 2002-06-19 2002-06-19 Stacked-layer type semiconductor device Pending JP2004022982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178821A JP2004022982A (en) 2002-06-19 2002-06-19 Stacked-layer type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178821A JP2004022982A (en) 2002-06-19 2002-06-19 Stacked-layer type semiconductor device

Publications (1)

Publication Number Publication Date
JP2004022982A true JP2004022982A (en) 2004-01-22

Family

ID=31176427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178821A Pending JP2004022982A (en) 2002-06-19 2002-06-19 Stacked-layer type semiconductor device

Country Status (1)

Country Link
JP (1) JP2004022982A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140042589A1 (en) * 2012-08-10 2014-02-13 Elpida Memory, Inc. Semiconductor device
KR20190025097A (en) * 2017-08-28 2019-03-11 삼성전자주식회사 Semiconductor package and method of fabricating the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140042589A1 (en) * 2012-08-10 2014-02-13 Elpida Memory, Inc. Semiconductor device
US9117741B2 (en) * 2012-08-10 2015-08-25 Ps4 Luxco S.A.R.L. Semiconductor device
KR20190025097A (en) * 2017-08-28 2019-03-11 삼성전자주식회사 Semiconductor package and method of fabricating the same
KR102419154B1 (en) * 2017-08-28 2022-07-11 삼성전자주식회사 Semiconductor package and method of fabricating the same

Similar Documents

Publication Publication Date Title
US6798049B1 (en) Semiconductor package and method for fabricating the same
KR100477020B1 (en) Multi chip package
US6700187B2 (en) Semiconductor package and method for manufacturing the same
US8183092B2 (en) Method of fabricating stacked semiconductor structure
JP3916854B2 (en) Wiring board, semiconductor device, and package stack semiconductor device
US8710647B2 (en) Semiconductor device having a first conductive member connecting a chip to a wiring board pad and a second conductive member connecting the wiring board pad to a land on an insulator covering the chip and the wiring board
US7763964B2 (en) Semiconductor device and semiconductor module using the same
US6982485B1 (en) Stacking structure for semiconductor chips and a semiconductor package using it
JP2002222889A (en) Semiconductor device and method of manufacturing the same
WO2004004005A1 (en) Semiconductor device and its manufacturing method
KR20020060558A (en) Semiconductor device
US6876087B2 (en) Chip scale package with heat dissipating part
JP2003318360A (en) Semiconductor device and method of manufacturing the same
JP2004022982A (en) Stacked-layer type semiconductor device
US7009304B2 (en) Resin-sealed semiconductor device
JP2002016193A (en) Packaged semiconductor device and manufacturing method thereof
WO2001026146A1 (en) Semiconductor device and method of manufacture thereof
JP2885786B1 (en) Semiconductor device manufacturing method and semiconductor device
JPH0582672A (en) Semiconductor device and manufacturing method thereof
JP2005150771A (en) Wiring board, semiconductor device, and package stacks semiconductor device
KR100549312B1 (en) Semiconductor package and its manufacturing method
JP5234703B2 (en) Manufacturing method of semiconductor device
KR20020029251A (en) Semiconductor package and its manufacturing method
JP4892418B2 (en) Semiconductor device
KR20050100461A (en) Multi chip package