JP2004022890A - Multilayer circuit board - Google Patents

Multilayer circuit board Download PDF

Info

Publication number
JP2004022890A
JP2004022890A JP2002177386A JP2002177386A JP2004022890A JP 2004022890 A JP2004022890 A JP 2004022890A JP 2002177386 A JP2002177386 A JP 2002177386A JP 2002177386 A JP2002177386 A JP 2002177386A JP 2004022890 A JP2004022890 A JP 2004022890A
Authority
JP
Japan
Prior art keywords
signal line
layer
conductor layer
ground conductor
characteristic impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002177386A
Other languages
Japanese (ja)
Inventor
Yuichi Haruzono
春園 祐一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002177386A priority Critical patent/JP2004022890A/en
Publication of JP2004022890A publication Critical patent/JP2004022890A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive multilayer circuit board which is suited for the prevention of noise intrusion from outside, high-density wiring and increased pins in the multilayer circuit board on which a plurality of signal conductors having different characteristic impedances are formed. <P>SOLUTION: On the main surface of an insulating substrate 2, a lower grounding conductor layer 3, a first signal conductor layer 4, an inner layer grounding conductor layer 5, a second signal conductor layer 6 and an upper grounding conductor layer 7 are laminated in order, respectively, via an insulating layer 8. The first and second signal conductor layers 4 and 6 are composed of a plurality of signal conductors including signal conductors 4a to 4c and 6a to 6c having different characteristic impedances. The inner layer grounding conductor layer 5 has conductor non-forming parts 5b and 5c formed at sites immediately over or under the signal conductors 4a and 6c having characteristic impedances larger than 70Ω among the plurality of signal conductors 4a to 4c and 6a to 6c. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、幅の異なる複数の信号線路から成る信号線路層と、信号線路層の上方および下方に形成された接地導体層とを具備した多層配線基板に関する。
【0002】
【従来の技術】
従来の多層配線基板の断面図を図2に示す。図2において、11は多層配線基板、12は絶縁基板、13は絶縁基板12基板の一方の主面に形成された下部接地導体層、14は下部接地導体層13の上方に積層された第一の信号線路層、14aは信号線路層14中の第一の信号線路、14bは信号線路層14中の第二の信号線路、15は信号線路層14の上方に積層された内層接地導体層、16は内層接地導体層15の上方に積層された第二の信号線路層、17は第二の信号線路層16の上方に積層された上部接地導体層である。また、下部接地導体層13、第一の信号線路層14、内層接地導体層15、第二の信号線路層16および上部接地導体層17は、それぞれ絶縁層18を介して積層されている。また、18aは第一の絶縁層、18bは第二の絶縁層、18cは第三の絶縁層、18dは第四の絶縁層である。
【0003】
なお、この場合第二の信号線路層16は1本の第三の信号線路16aから成る。
【0004】
また、多層配線基板11の上面にはIC,LSI等の半導体素子が、その入出力用の電極パッドが第一の信号線路14a,第二の信号線路14b,第三の信号線路16aに電気的に接続されて搭載される。
【0005】
図2に示すように、第一,第二の信号線路層14,16の上方および下方に絶縁層18を介して下部接地導体層13、内層接地導体層15、上部接地導体層17が設けられており、ストリップライン構造となっている。この場合、一つの信号線路層内に異なる特性インピーダンスの信号線路を複数形成しようとすると、特性インピーダンス値が大きい信号線路は特性インピーダンス値が小さい信号線路よりもその幅を小さくする必要がある。例えば、一つの信号線路層内に50Ωの特性インピーダンスを有する信号線路Aと60Ωの特性インピーダンスを有する信号線路Bとを形成する場合、信号線路Aの幅が31μmとなるのに対して信号線路Bの幅は18μmとなり、信号線路Aの幅より小さくしなければならない。
【0006】
また、異なる特性インピーダンスを有する複数の信号線路が一つの信号線路層に形成された構造の多層配線基板を図3に示す(特開2001−284827参照)。図3において、21は多層配線基板、22は絶縁基板、23は下部接地導体層、24は信号線路層、24aは第一の信号線路、24bは第二の信号線路、24cは第三の信号線路、27は上部接地導体層、27aは導体非形成部、28は絶縁層、28aは第一の絶縁層、28bは第二の絶縁層である。
【0007】
図3のように、一つの信号線路層に異なる特性インピーダンスを持つ信号線路を複数設ける構成として、高い特性インピーダンス値を要求される第一の信号線路24aの直上の上部接地導体層27の部位に、導体非形成部27aを設けることが提案されている。
【0008】
【発明が解決しようとする課題】
しかしながら、上記従来の図2の配線基板11においては、より大きな特性インピーダンスを持つ信号線路を形成しようとすると、信号線路の幅が微細になるため、信号線路の形成が製造上困難となってしまうという問題点があった。また、信号線路の幅が微細になると、特性インピーダンスの制御が困難になるため、特性インピーダンスの値にばらつきが生じ、高周波信号の伝送効率が低下するという問題点があった。
【0009】
また、特性インピーダンス値の異なる信号線路を別々の信号線路層に設け、信号線路層の上方および下方の接地導体層との間にある絶縁層の厚みを調整する構成もあるが、この場合、信号線路層数が増加して多層配線基板が厚くなるという問題点があった。また、絶縁層の厚みも厚くなるため、製造コストが高くなるという問題点があった。
【0010】
そこで、上述の問題点を解消するために図3のような構成の多層配線基板21が提案されている。この構成では、一つの信号線路層24に異なる特性インピーダンスの信号線路24a〜24cを形成することが可能となるが、従来のストリップライン構造の多層配線基板11に対し、上部接地導体層27に導体非形成部27aがあるため、第一の信号線路24aを外部からのノイズから保護することが不可能となる。その結果、第一〜第三の信号線路24a〜24cに接続された半導体素子にノイズが影響して、半導体素子の動作速度の高速化に対応できないという問題点があった。
【0011】
また、信号線路層24が一層しかないことから、クロス配線のジャンパ層を設けることができないため、即ち信号線路層を複数層設けて上層の信号線路と下層の信号線路とが交差する場合等に上層の信号線路と下層の信号線路とを貫通導体を介して接続させるといったことができないため、半導体素子の多ピン化や高速演算処理化に対応するのが困難となるという問題点があった。
【0012】
従って、本発明は、上記従来の問題点に鑑みて完成されたものであり、その目的は、異なる特性インピーダンスの信号線路を複数有する多層配線基板において、外部からのノイズの侵入防止、高密度配線化、多ピン化を可能とした低コストの多層配線基板を提供することにある。
【0013】
【課題を解決するための手段】
本発明の多層配線基板は、絶縁基板の主面に下部接地導体層と第一の信号線路層と内層接地導体層と第二の信号線路層と上部接地導体層とがそれぞれ絶縁層を介して順次積層されており、前記第一および第二の信号線路層は、それぞれ特性インピーダンスの異なるものを含む複数の信号線路から成り、前記内層接地導体層は、前記複数の信号線路のうち特性インピーダンスが70Ωよりも大きい前記信号線路の直上または直下の部位に導体非形成部が設けられていることを特徴とする。
【0014】
本発明の多層配線基板は、異なる特性インピーダンスの複数の信号線路を一つの信号線路層に形成しているため、信号線路の高密度配線化が可能となる。また、クロス配線のジャンパ線を設けることが可能になり、即ち信号線路層を複数層設けて上層の信号線路と下層の信号線路とが交差する場合等に上層の信号線路と下層の信号線路とを貫通導体を介して接続させるといったことができ、半導体素子の多ピン化に対応することができる。
【0015】
また、複数の信号線路のうち特性インピーダンスが70Ωよりも大きい信号線路の直上または直下の部位に導体非形成部が設けられていることにより、その導体非形成部の上方の上部接地導体層または下方の下部接地導体層と特性インピーダンスが70Ωよりも大きい信号線路とによってその信号線路はストリップライン構造になる。これにより、特性インピーダンスが70Ωよりも大きい信号線路と上部接地導体層または下部接地導体層との間隔が大きくなり、電気的な容量が小さくなって特性インピーダンス値が大きくなる。この場合、導体非形成部がない場合に比べて同じ特性インピーダンス値を得ようとすると信号線路の幅が大きくなる。従って、特性インピーダンスの大きい信号線路の幅を従来に比べて大きくすることができる。その結果、特性インピーダンスの制御が容易になり、特性インピーダンスのばらつきの小さい信号線路を形成することができる。
【0016】
さらに、第一の信号線路層、内層接地導体層および第二の信号線路層の上方および下方には、上部接地導体層と下部接地導体層とが積層されているため、外部からのノイズの影響を受けない信号線路を形成することができる。従って、信号線路に接続される半導体素子の動作速度の高速化に対応することができる。
【0017】
本発明の多層配線基板において、好ましくは、前記内層接地導体層は、前記複数の信号線路のうち特性インピーダンスが40Ω以下の前記信号線路の直上または直下で前記信号線路との間隔を小さくした部位を有していることを特徴とする。
【0018】
本発明の多層配線基板は、内層接地導体層は複数の信号線路のうち特性インピーダンスが40Ω以下の信号線路の直上または直下で信号線路との間隔を小さくした部位を有していることから、その部位では特性インピーダンスが40Ω以下の信号線路との電気的な容量が大きくなって特性インピーダンス値が小さくなる。この場合、間隔が小さい部位がない場合に比べて同じ特性インピーダンス値を得ようとすると信号線路の幅が小さくなる。従って、特性インピーダンスの小さい信号線路の幅を従来に比べて小さくして、より特性インピーダンスの大きい信号線路の幅に近づけることができる。その結果、上記のように導体非形成部を設けることによる作用効果と相俟って、特性インピーダンスの異なる複数の信号線路においてそれらの幅がきわめて近似したり略同じになるため、さらなる高密度配線が可能となる。
【0019】
【発明の実施の形態】
本発明の多層配線基板について以下に詳細に説明する。図1は、本発明の多層配線基板について実施の形態の例の断面図である。図1において、1は多層配線基板、2は絶縁基板、3は下部接地導体層、4は第一の信号線路層、4aは第一の信号線路、4bは第二の信号線路、4cは第三の信号線路、5は内層接地導体層、5aは内部接地導体、5bは第一の導体非形成部、5cは第二の導体非形成部、5dは内部接地導体5aの小間隔部である。また、6は第二の信号線路層、6aは第四の信号線路、6bは第五の信号線路、6cは第六の信号線路、7は上部接地導体層、8は絶縁層、8aは第一の絶縁層、8bは第二の絶縁層、8cは第三の絶縁層、8dは第四の絶縁層である。
【0020】
なお、本発明の多層配線基板1の上部にはICやLSI等の半導体素子(不図示)が、その電極に信号配線4a〜4c,6a〜6c等が電気的に接続されて搭載されるが、多層配線基板1には半導体素子を搭載しなくてもよい。
【0021】
絶縁基板2は、アルミナ(Al)セラミックス、ムライト(3Al・2SiO)セラミックス、窒化アルミニウム(AlN)セラミックス、ガラスセラミックス等のセラミック基板などが、スルーホール導体等の貫通導体を同時焼成によって形成できるため好ましい。また、四ふっ化エチレン樹脂(ポリテトラフルオロエチレン;PTFE)、四ふっ化エチレン・エチレン共重合樹脂(テトラフルオロエチレン−エチレン共重合樹脂;ETFE)、四ふっ化エチレン・パーフルオロアルコキシエチレン共重合樹脂(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合樹脂;PFA)等のフッ素樹脂よりなる基板、ガラスエポキシ樹脂よりなる基板、ポリイミド等の樹脂よりなる基板などでもよい。
【0022】
絶縁基板2の上面に形成する、下部接地導体層3、第一の信号線路層4、内層接地導体層5の内部接地導体5a、第二の信号線路層6および上部接地導体層7の導体層は、薄膜形成法、印刷ペーストによるメタライズ法、金属箔法またはメッキ法等によって形成される。また、これらの形成法を組み合わせてもよい。
【0023】
薄膜形成法の場合、スパッタリング法、蒸着法、CVD法等により導体層を形成する。例えば、下層側からTi層、Ti−W合金層、Cu層、Cr層の4層構成からなる導体層を形成する。その後、この導体層は、フォトリソグラフィ法およびエッチング法によりパターン加工することにより、所定パターンに形成される。メタライズ法の場合、W、Mo、MnまたはCuのうち少なくとも1種を含む金属ペーストをスクリーン印刷法により所望のパターンに印刷塗布し、焼結させることにより形成する。金属箔法の場合、絶縁基板2に予め被着されたCu等の金属箔をドライフィルム等を用いたフォトリソグラフィ法およびエッチング法によって導体層をパターン形成する。または、予めパターン加工した金属箔を絶縁基板2上に転写することによって形成する。メッキ法の場合、無電解メッキ法または電解メッキ法によりCuメッキ層等を形成し、パターン加工して形成する。
【0024】
導体層の厚みは0.5〜50μmがよく、0.5μm未満では、導体層の導通抵抗値が大きくなる傾向にあり、50μmを超えると、微細な信号線路に加工するのが困難となる。
【0025】
第一の信号線路層4および第二の信号線路層6における各信号線路4a〜4c,6a〜6cの幅は10〜50μmが良い。10μmより小さいと、信号線路4a〜4c,6a〜6cの断線が発生し易くなり、50μmより大きいと、信号線路4a〜4c,6a〜6cの高密度配線が困難となる。
【0026】
本発明において、第一および第二の信号線路層4,6は、それぞれ特性インピーダンスの異なる信号線路4a〜4c,6a〜6cを含む複数の信号線路から成り、内層接地導体層5は、複数の信号線路4a〜4c,6a〜6cのうち特性インピーダンスが70Ωよりも大きい信号線路4a,6cの直上または直下の部位に導体非形成部5b,5cが設けられている。また本発明において、好ましくは、内層接地導体層5は、複数の信号線路のうち特性インピーダンスが40Ω以下の信号線路4bの直上(または直下)で信号線路4bとの間隔を小さくした部位を有している。
【0027】
本発明の第一の導体非形成部5bおよび第二の導体非形成部5cは、その幅は対応する信号線路層4a,6cの幅と略同じであるが、要求される特性インピーダンスにより信号線路層4a,6cの幅よりも小さくしたり大きくすることができる。好ましくは、第一の導体非形成部5bおよび第二の導体非形成部5cは、その幅は対応する信号線路層4a,6cの幅よりも若干大きいことがよい。この場合、信号線路層4a,6cの端部と第一の導体非形成部5bおよび第二の導体非形成部5cの端部との間で容量成分がほとんど発生せず、信号線路層4a,6cの幅を小さくせずに特性インピーダンスをより大きくすることができる。
【0028】
第一の信号線路4aおよび第六の信号線路6cの特性インピーダンスは70Ω以上であるが、50Ωを超え70Ω未満の場合、第一および第二の導体非形成部5b,5cを設けて直上または直下の絶縁層の厚みを大きくすると、本来幅が大きい第一の信号線路4aおよび第六の信号線路6cの幅がさらに大きくなり、高密度実装が困難になるため、第一および第二の導体非形成部5b,5cを設ける必要はない。
【0029】
また、第二の信号線路4bの特性インピーダンスは40Ω以下であるが、50Ω以下で40Ωを超える場合、直上または直下の絶縁層の厚みを小さくすると、第二の信号線路4bの幅が必要以上に小さくなり、特性インピーダンスの制御が困難に成るため、内層接地導体層5の第二の信号線路4bの直上で信号線路4bとの間隔を小さくした部位(小間隔部5d)を設ける必要はない。
【0030】
小間隔部5dの間隔は3〜50μmが好ましい。3μm未満では、絶縁不良が発生し易くなる。50μmを超えると、導体層間を導通させる貫通導体のコンタクト抵抗が大きくなり電気信号の伝送速度が遅くなる傾向にある。
【0031】
導体非形成部5b,5cおよび小間隔部5dは、信号線路の全長にわたって形成してもよいし、信号線路の一部に対して設けてもよい。
【0032】
下部接地導体層3および上部接地導体層7は、第一および第二の信号線路層4,6の複数の信号線路4a〜4c,6a〜6cの全体を覆うように形成される。この構成により、外部からのノイズの侵入を防止することができる。上部接地導体層7は、全ての信号線路4a〜4c,6a〜6cを覆うように形成される。その結果、全ての信号線路4a〜4c,6a〜6cは、上部接地導体層7と下部接地導体層3と内部接地導体5aとによりストリップライン構造となり、また外部からのノイズの侵入を防ぐことができる。
【0033】
また、下部接地導体層3は絶縁基板2の上面に略全面に形成されていてもよく、この場合、信号線路4a〜4c,6a〜6cを下部接地導体層3の大きさの制約を受けることなく形成できる。また上部接地導体層7は、第四の絶縁層8dの上面の略全面を覆うように形成してもよい。
【0034】
絶縁層8は、ポリイミド、BCB(ベンゾシクロブテン)、エポキシ樹脂、フッ素系樹脂などからなり、スピンコート法、ロールコート法、ダイコート法または印刷法等により塗布して形成する。また、フィルム状に加工された樹脂を被着させることによって形成してもよい。各絶縁層8a〜8dの厚みは3〜50μmが好ましい。3μm未満では絶縁不良が発生し易くなる。また、50μmを超えると導体層間の導通用のスルーホール(不図示)のコンタクト抵抗が大きくなり電気信号の伝送速度が遅くなる傾向にある。
【0035】
また絶縁層8は、製造工程でのピンホール発生による絶縁不良を防ぐために、2層または3層に分けて形成することが好ましい。加工方法としては、樹脂そのものに感光性を付与してフォトリソグラフィ法によって露光、現像することにより、スルーホールを含むパターンを形成する方法がよい。また、絶縁層8上にレジスト層を塗布し、それをフォトリソグラフィ法によってパターン加工し、エッチング法によりスルーホールを含むパターンを形成してもよい。また、印刷法によって形成してもかまわない。またエキシマレーザなどによってパターン加工しても良い。また、上記の加工方法を組み合わせても良い。各絶縁層8a〜8dは、同じ種類の樹脂を用いても良いし、違うものを用いても良い。
【0036】
【実施例】
本発明の多層配線基板1の実施例を以下に説明する。
【0037】
(実施例1)
多層配線基板1を以下のように構成した。アルミナセラミックスから成る絶縁基板2の上面の略全面に、下層側からTi層、Ti−W合金層、Cu層、Cr層の4層構成の導体層から成る厚さ3.3μmの下部接地導体層3をスパッタリング法によって形成した。下部接地導体層3上にポリイミドから成る厚さ20μmの第一の絶縁層8aをフォトリソグラフィ法により形成し、第一の絶縁層8a上に下層側からTi層、Ti−W合金層、Cu層、Cr層の4層構成の導体層から成る厚さ3.2μmの第一の信号線路層4をスパッタリング法により形成した。同様にして、第二の絶縁層8bおよび内層接地導体層5、第三の絶縁層8cおよび第二の信号線路層6、第四の絶縁層8dおよび上部接地導体層7を形成した。上部接地導体層7は第四の絶縁層8dの上面の略全面に形成した。
【0038】
そして、特性インピーダンスが70Ωである幅が20μmの第一の信号線路4aの直上には、その全長(約10mm)にわたって幅が80μmの第一の導体非形成部5bが形成されており、これにより、第一の導体非形成部5bがない場合の第一の信号線路4aの幅10μmよりも第一の信号線路4aの幅が大きくなった。同様に、特性インピーダンスが70Ωである幅が20μmの第六の信号線路6cの直下には、その全長(約10mm)にわたって幅が80μmの第二の導体非形成部5cが形成されており、これにより、第二の導体非形成部5cがない場合の第六の信号線路6cの幅10μmよりも第六の信号線路6cの幅が大きくなった。
【0039】
従って、第一の導体非形成部5bおよび第二の導体非形成部5cがない場合には、第一の信号線路4aおよび第六の信号線路6cの幅が小さいため特性インピーダンスが不安定になり、1GHzの高周波信号を伝送させた際の伝送損失(透過損失)が−2dB程度であったものが、本実施例の上記構成により−1dB程度に改善された。
【0040】
(実施例2)
上記実施例1の構成に加えて、特性インピーダンスが35Ωである幅が30μmの第二の信号線路4bの直上に、内層接地導体層5に第二の信号線路4bの幅と同じ幅の小間隔部5d(間隔10μm)を、第二の信号線路4bの全長(10mm)にわたって形成した。これにより、小間隔部5dがない場合の第二の信号線路4bの幅50μmよりも第二の信号線路4bの幅が小さくなった。
【0041】
従って、特性インピーダンスが70Ωの第一の信号線路4aの幅が20μm、特性インピーダンスが35Ωの第二の信号線路4bの幅が30μm、特性インピーダンスが50Ωの第三の信号線路4cの幅が20μmとなり、それらの幅の差が小さくなった。これは、第一の導体非形成部5b、第二の導体非形成部5cおよび小間隔部5dがない場合の第一の信号線路4aの幅10μm、第二の信号線路4bの幅50μm、第三の信号線路4cの幅20μmに比べて、きわめて均一化されたものとなった。これにより、上記実施例2の構成とすることにより、図1の構成の多層配線基板1の場合、0.8倍に小型化された。即ち、1.25倍に高集積化された。また、小型化されたことによって低コストに製造可能となった。
【0042】
なお、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を行うことは何等差し支えない。例えば、上記実施の形態では信号線路層は2層設けられているが、3層以上設けてもかまわない。
【0043】
【発明の効果】
本発明の多層配線基板は、絶縁基板の主面に下部接地導体層と第一の信号線路層と内層接地導体層と第二の信号線路層と上部接地導体層とがそれぞれ絶縁層を介して順次積層されており、第一および第二の信号線路層は、それぞれ特性インピーダンスの異なるものを含む複数の信号線路から成り、内層接地導体層は、複数の信号線路のうち特性インピーダンスが70Ωよりも大きい信号線路の直上または直下の部位に導体非形成部が設けられていることにより、信号線路の高密度配線化が可能となるとともに、クロス配線のジャンパ線を設けることが可能になり、半導体素子の多ピン化に対応することができる。
【0044】
また、特性インピーダンスが70Ωよりも大きい信号線路と上部接地導体層または下部接地導体層との間隔が大きくなり、電気的な容量が小さくなって特性インピーダンス値が大きくなって、導体非形成部がない場合に比べて同じ特性インピーダンス値を得ようとすると信号線路の幅が大きくなる。従って、特性インピーダンスの大きい信号線路の幅を従来に比べて大きくすることができ、特性インピーダンスの制御が容易になり、特性インピーダンスのばらつきの小さい信号線路を形成することができる。さらに、第一の信号線路層および第二の信号線路層は、外部からのノイズの影響を受けないものとなり、信号線路に接続される半導体素子の動作速度の高速化に対応することができる。
【0045】
本発明の多層配線基板は、好ましくは、内層接地導体層は複数の信号線路のうち特性インピーダンスが40Ω以下の信号線路の直上または直下で信号線路との間隔を小さくした部位を有していることにより、内層接地導体層と特性インピーダンスが40Ω以下の信号線路との電気的な容量が大きくなって特性インピーダンス値が小さくなり、間隔が小さい部位がない場合に比べて同じ特性インピーダンス値を得ようとすると信号線路の幅が小さくなる。従って、特性インピーダンスの小さい信号線路の幅を従来に比べて小さくして、より特性インピーダンスの大きい信号線路の幅に近づけることができる。その結果、導体非形成部を設けることによる作用効果と相俟って、特性インピーダンスの異なる複数の信号線路においてそれらの幅がきわめて近似したり略同じになるため、さらなる高密度配線が可能となる。
【図面の簡単な説明】
【図1】本発明の多層配線基板について実施の形態の一例を示す断面図である。
【図2】従来の多層配線基板の断面図である。
【図3】従来の多層配線基板の他の例を示す断面図である。
【符号の説明】
1:多層配線基板
2:絶縁基板
3:下部接地導体層
4:第一の信号線路層
4a〜4c:第一〜第三の信号線路
5:内層接地導体層
5b,5c:第一,第二の導体非形成部
6:第二の信号線路層
6a〜6c:第四〜第六の信号線路
7:上部接地導体層
8:絶縁層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multilayer wiring board including a signal line layer including a plurality of signal lines having different widths, and a ground conductor layer formed above and below the signal line layer.
[0002]
[Prior art]
FIG. 2 is a sectional view of a conventional multilayer wiring board. In FIG. 2, 11 is a multilayer wiring board, 12 is an insulating substrate, 13 is a lower ground conductor layer formed on one main surface of the insulating substrate 12 substrate, and 14 is a first ground conductor layer laminated on the lower ground conductor layer 13. 14a is a first signal line in the signal line layer 14, 14b is a second signal line in the signal line layer 14, 15 is an inner ground conductor layer laminated above the signal line layer 14, Reference numeral 16 denotes a second signal line layer laminated above the inner ground conductor layer 15, and 17 denotes an upper ground conductor layer laminated above the second signal line layer 16. Further, the lower ground conductor layer 13, the first signal line layer 14, the inner ground conductor layer 15, the second signal line layer 16, and the upper ground conductor layer 17 are stacked with an insulating layer 18 interposed therebetween. 18a is a first insulating layer, 18b is a second insulating layer, 18c is a third insulating layer, and 18d is a fourth insulating layer.
[0003]
In this case, the second signal line layer 16 includes one third signal line 16a.
[0004]
A semiconductor element such as an IC or an LSI is provided on the upper surface of the multilayer wiring board 11, and its input / output electrode pads are electrically connected to the first signal line 14a, the second signal line 14b, and the third signal line 16a. It is connected to and mounted.
[0005]
As shown in FIG. 2, a lower ground conductor layer 13, an inner ground conductor layer 15, and an upper ground conductor layer 17 are provided above and below the first and second signal line layers 14, 16 via an insulating layer 18. And has a stripline structure. In this case, in order to form a plurality of signal lines having different characteristic impedances in one signal line layer, it is necessary to make the width of the signal line having a large characteristic impedance smaller than that of the signal line having a small characteristic impedance. For example, when a signal line A having a characteristic impedance of 50Ω and a signal line B having a characteristic impedance of 60Ω are formed in one signal line layer, the width of the signal line A is 31 μm, whereas the width of the signal line A is 31 μm. Is 18 μm, which must be smaller than the width of the signal line A.
[0006]
FIG. 3 shows a multilayer wiring board having a structure in which a plurality of signal lines having different characteristic impedances are formed in one signal line layer (see JP-A-2001-284827). In FIG. 3, 21 is a multilayer wiring board, 22 is an insulating substrate, 23 is a lower ground conductor layer, 24 is a signal line layer, 24a is a first signal line, 24b is a second signal line, and 24c is a third signal line. The line, 27 is an upper ground conductor layer, 27a is a conductor non-formed portion, 28 is an insulating layer, 28a is a first insulating layer, and 28b is a second insulating layer.
[0007]
As shown in FIG. 3, as one signal line layer is provided with a plurality of signal lines having different characteristic impedances, a portion of the upper ground conductor layer 27 immediately above the first signal line 24a requiring a high characteristic impedance value is provided. It is proposed to provide a conductor non-formed portion 27a.
[0008]
[Problems to be solved by the invention]
However, in the above-described conventional wiring board 11 of FIG. 2, if a signal line having a larger characteristic impedance is to be formed, the width of the signal line becomes fine, and it becomes difficult to form the signal line in manufacturing. There was a problem. In addition, when the width of the signal line is reduced, it becomes difficult to control the characteristic impedance, so that the value of the characteristic impedance varies, and there is a problem that the transmission efficiency of the high-frequency signal is reduced.
[0009]
There is also a configuration in which signal lines having different characteristic impedance values are provided on separate signal line layers and the thickness of an insulating layer between the signal line layer and the ground conductor layer above and below the signal line layer is adjusted. There has been a problem that the number of line layers increases and the multilayer wiring board becomes thicker. In addition, since the thickness of the insulating layer is increased, there is a problem that the manufacturing cost is increased.
[0010]
Therefore, in order to solve the above-mentioned problem, a multilayer wiring board 21 having a configuration as shown in FIG. 3 has been proposed. In this configuration, it is possible to form signal lines 24a to 24c having different characteristic impedances on one signal line layer 24. The presence of the non-formed portion 27a makes it impossible to protect the first signal line 24a from external noise. As a result, there is a problem that the noise affects the semiconductor elements connected to the first to third signal lines 24a to 24c, and it is not possible to cope with an increase in the operating speed of the semiconductor elements.
[0011]
Also, since there is only one signal line layer 24, a jumper layer for cross wiring cannot be provided, that is, when a plurality of signal line layers are provided and the upper signal line and the lower signal line intersect, etc. Since the upper signal line and the lower signal line cannot be connected via the through conductor, there is a problem that it is difficult to cope with an increase in the number of pins of the semiconductor element and a high-speed operation processing.
[0012]
Therefore, the present invention has been completed in view of the above-mentioned conventional problems, and an object of the present invention is to provide a multilayer wiring board having a plurality of signal lines having different characteristic impedances, preventing intrusion of noise from the outside and high-density wiring. An object of the present invention is to provide a low-cost multi-layer wiring board which can realize a higher number of pins and more pins.
[0013]
[Means for Solving the Problems]
In the multilayer wiring board of the present invention, the lower ground conductor layer, the first signal line layer, the inner layer ground conductor layer, the second signal line layer, and the upper ground conductor layer are respectively provided on the main surface of the insulating substrate via the insulating layer. Are sequentially laminated, the first and second signal line layers are each composed of a plurality of signal lines including those having different characteristic impedances, and the inner ground conductor layer has a characteristic impedance of the plurality of signal lines. A conductor-free portion is provided immediately above or immediately below the signal line, which is larger than 70Ω.
[0014]
In the multilayer wiring board of the present invention, since a plurality of signal lines having different characteristic impedances are formed in one signal line layer, high-density wiring of the signal lines becomes possible. In addition, it becomes possible to provide a jumper wire of cross wiring, that is, when a plurality of signal line layers are provided and the upper signal line and the lower signal line intersect, the upper signal line and the lower signal line are connected to each other. Can be connected via a through conductor, and the number of pins of the semiconductor element can be increased.
[0015]
In addition, since the conductor non-forming portion is provided immediately above or directly below the signal line having a characteristic impedance of more than 70Ω among the plurality of signal lines, the upper ground conductor layer above or below the conductor non-forming portion or The signal line has a stripline structure due to the lower ground conductor layer and the signal line having a characteristic impedance of more than 70Ω. As a result, the distance between the signal line having a characteristic impedance of greater than 70Ω and the upper ground conductor layer or the lower ground conductor layer increases, and the electrical capacitance decreases, thereby increasing the characteristic impedance value. In this case, the width of the signal line becomes larger when trying to obtain the same characteristic impedance value than when there is no conductor non-formed portion. Therefore, the width of the signal line having a large characteristic impedance can be increased as compared with the related art. As a result, control of the characteristic impedance is facilitated, and a signal line with small variation in the characteristic impedance can be formed.
[0016]
Further, since the upper ground conductor layer and the lower ground conductor layer are laminated above and below the first signal line layer, the inner ground conductor layer, and the second signal line layer, the influence of external noise is reduced. A signal line that is not affected by the signal can be formed. Therefore, it is possible to cope with an increase in the operating speed of the semiconductor element connected to the signal line.
[0017]
In the multilayer wiring board of the present invention, preferably, the inner-layer grounded conductor layer has a characteristic impedance of a portion of the plurality of signal lines immediately above or immediately below the signal line having a characteristic impedance of 40Ω or less and having a small interval with the signal line. It is characterized by having.
[0018]
In the multilayer wiring board of the present invention, since the inner ground conductor layer has a portion where the distance from the signal line is reduced immediately above or immediately below the signal line having a characteristic impedance of 40Ω or less among the plurality of signal lines, At the portion, the electrical capacitance with the signal line having the characteristic impedance of 40Ω or less increases, and the characteristic impedance value decreases. In this case, the width of the signal line becomes smaller when trying to obtain the same characteristic impedance value as compared with a case where there is no portion with a small interval. Therefore, the width of a signal line having a small characteristic impedance can be made smaller than that of a conventional signal line, and can be closer to the width of a signal line having a larger characteristic impedance. As a result, the width of a plurality of signal lines having different characteristic impedances is extremely close to or substantially equal to each other in combination with the operation and effect of providing the conductor non-formed portion as described above. Becomes possible.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The multilayer wiring board of the present invention will be described in detail below. FIG. 1 is a sectional view of an example of an embodiment of a multilayer wiring board of the present invention. In FIG. 1, 1 is a multilayer wiring board, 2 is an insulating substrate, 3 is a lower ground conductor layer, 4 is a first signal line layer, 4a is a first signal line, 4b is a second signal line, and 4c is a second signal line. Three signal lines, 5 is an inner ground conductor layer, 5a is an internal ground conductor, 5b is a first conductor non-formed portion, 5c is a second conductor non-formed portion, and 5d is a small interval portion of the internal ground conductor 5a. . Reference numeral 6 denotes a second signal line layer, 6a denotes a fourth signal line, 6b denotes a fifth signal line, 6c denotes a sixth signal line, 7 denotes an upper ground conductor layer, 8 denotes an insulating layer, and 8a denotes a One insulating layer, 8b is a second insulating layer, 8c is a third insulating layer, and 8d is a fourth insulating layer.
[0020]
A semiconductor element (not shown) such as an IC or an LSI is mounted on the upper part of the multilayer wiring board 1 of the present invention while its electrodes are electrically connected to the signal wirings 4a to 4c and 6a to 6c. The semiconductor element may not be mounted on the multilayer wiring board 1.
[0021]
The insulating substrate 2 is made of a ceramic substrate such as alumina (Al 2 O 3 ) ceramic, mullite (3Al 2 O 3 .2SiO 2 ) ceramic, aluminum nitride (AlN) ceramic, glass ceramic, or the like, and a through conductor such as a through-hole conductor. It is preferable because it can be formed by simultaneous firing. Also, ethylene tetrafluoride resin (polytetrafluoroethylene; PTFE), ethylene tetrafluoride / ethylene copolymer resin (tetrafluoroethylene-ethylene copolymer resin; ETFE), ethylene tetrafluoride / perfluoroalkoxyethylene copolymer resin A substrate made of a fluororesin such as (tetrafluoroethylene-perfluoroalkylvinylether copolymer resin; PFA), a substrate made of a glass epoxy resin, a substrate made of a resin such as polyimide, or the like may be used.
[0022]
Conductive layers of lower ground conductor layer 3, first signal line layer 4, internal ground conductor 5a of inner ground conductor layer 5, second signal line layer 6, and upper ground conductor layer 7 formed on the upper surface of insulating substrate 2. Are formed by a thin film forming method, a metallizing method using a printing paste, a metal foil method, a plating method, or the like. Further, these forming methods may be combined.
[0023]
In the case of a thin film formation method, a conductor layer is formed by a sputtering method, an evaporation method, a CVD method, or the like. For example, a conductor layer having a four-layer structure of a Ti layer, a Ti-W alloy layer, a Cu layer, and a Cr layer is formed from the lower side. Thereafter, this conductor layer is formed into a predetermined pattern by patterning by photolithography and etching. In the case of the metallization method, a metal paste containing at least one of W, Mo, Mn and Cu is formed by printing and applying a desired pattern by a screen printing method and sintering. In the case of the metal foil method, a conductor layer is formed by patterning a metal foil of Cu or the like previously attached to the insulating substrate 2 by a photolithography method using a dry film or the like and an etching method. Alternatively, it is formed by transferring a metal foil patterned in advance onto the insulating substrate 2. In the case of the plating method, a Cu plating layer or the like is formed by an electroless plating method or an electrolytic plating method, and is formed by pattern processing.
[0024]
The thickness of the conductor layer is preferably 0.5 to 50 μm, and if it is less than 0.5 μm, the conduction resistance of the conductor layer tends to increase, and if it exceeds 50 μm, it becomes difficult to process into a fine signal line.
[0025]
The width of each of the signal lines 4a to 4c and 6a to 6c in the first signal line layer 4 and the second signal line layer 6 is preferably 10 to 50 μm. If it is smaller than 10 μm, disconnection of the signal lines 4a to 4c and 6a to 6c tends to occur, and if it is larger than 50 μm, high-density wiring of the signal lines 4a to 4c and 6a to 6c becomes difficult.
[0026]
In the present invention, the first and second signal line layers 4 and 6 are composed of a plurality of signal lines including signal lines 4a to 4c and 6a to 6c having different characteristic impedances, respectively. Of the signal lines 4a to 4c and 6a to 6c, the conductor non-forming portions 5b and 5c are provided immediately above or directly below the signal lines 4a and 6c whose characteristic impedance is greater than 70Ω. In the present invention, preferably, the inner ground conductor layer 5 has a portion immediately above (or immediately below) the signal line 4b having a characteristic impedance of 40Ω or less in a plurality of signal lines and having a small interval with the signal line 4b. ing.
[0027]
The widths of the first conductor non-formed portion 5b and the second conductor non-formed portion 5c of the present invention are substantially the same as the widths of the corresponding signal line layers 4a and 6c. It can be smaller or larger than the width of the layers 4a, 6c. Preferably, the width of the first conductor non-formed portion 5b and the second conductor non-formed portion 5c is slightly larger than the width of the corresponding signal line layers 4a and 6c. In this case, almost no capacitance component occurs between the ends of the signal line layers 4a and 6c and the ends of the first conductor non-formed portion 5b and the second conductor non-formed portion 5c. The characteristic impedance can be increased without reducing the width of 6c.
[0028]
Although the characteristic impedance of the first signal line 4a and the sixth signal line 6c is 70Ω or more, if it is more than 50Ω and less than 70Ω, the first and second conductor non-formed portions 5b and 5c are provided and directly above or below. When the thickness of the insulating layer is increased, the widths of the first signal line 4a and the sixth signal line 6c, which are originally large, are further increased, and high-density mounting becomes difficult. It is not necessary to provide the forming parts 5b and 5c.
[0029]
In addition, the characteristic impedance of the second signal line 4b is 40Ω or less. However, if the characteristic impedance of the second signal line 4b is less than 50Ω and exceeds 40Ω, the width of the second signal line 4b becomes unnecessarily large if the thickness of the insulating layer immediately above or below is reduced. Since it becomes small and it becomes difficult to control the characteristic impedance, there is no need to provide a portion (small interval portion 5d) immediately above the second signal line 4b of the inner ground conductor layer 5 and having a small interval with the signal line 4b.
[0030]
The interval between the small interval portions 5d is preferably 3 to 50 μm. If it is less than 3 μm, insulation failure is likely to occur. If it exceeds 50 μm, the contact resistance of the penetrating conductor that conducts between the conductor layers tends to increase, and the transmission speed of electric signals tends to decrease.
[0031]
The conductor non-formed portions 5b and 5c and the small interval portions 5d may be formed over the entire length of the signal line, or may be provided on a part of the signal line.
[0032]
The lower ground conductor layer 3 and the upper ground conductor layer 7 are formed so as to cover the entirety of the plurality of signal lines 4 a to 4 c and 6 a to 6 c of the first and second signal line layers 4 and 6. With this configuration, intrusion of noise from the outside can be prevented. The upper ground conductor layer 7 is formed so as to cover all the signal lines 4a to 4c and 6a to 6c. As a result, all of the signal lines 4a to 4c and 6a to 6c have a stripline structure by the upper ground conductor layer 7, the lower ground conductor layer 3, and the internal ground conductor 5a, and prevent external noise from entering. it can.
[0033]
Further, the lower grounding conductor layer 3 may be formed on substantially the entire upper surface of the insulating substrate 2. In this case, the signal lines 4 a to 4 c and 6 a to 6 c are restricted by the size of the lower grounding conductor layer 3. It can be formed without. The upper ground conductor layer 7 may be formed so as to cover substantially the entire upper surface of the fourth insulating layer 8d.
[0034]
The insulating layer 8 is made of polyimide, BCB (benzocyclobutene), an epoxy resin, a fluorine-based resin, or the like, and is formed by applying a spin coating method, a roll coating method, a die coating method, a printing method, or the like. Alternatively, it may be formed by applying a resin processed into a film. The thickness of each of the insulating layers 8a to 8d is preferably 3 to 50 μm. If it is less than 3 μm, insulation failure is likely to occur. On the other hand, if it exceeds 50 μm, the contact resistance of a through hole (not shown) for conduction between the conductor layers tends to increase, and the transmission speed of an electric signal tends to decrease.
[0035]
The insulating layer 8 is preferably formed in two or three layers in order to prevent insulation failure due to the generation of pinholes in the manufacturing process. As a processing method, a method of forming a pattern including through holes by imparting photosensitivity to the resin itself and exposing and developing the resin by photolithography is preferable. Alternatively, a resist layer may be applied on the insulating layer 8, patterned by photolithography, and a pattern including through holes may be formed by etching. Further, it may be formed by a printing method. Also, pattern processing may be performed by an excimer laser or the like. Further, the above processing methods may be combined. The same type of resin may be used for each of the insulating layers 8a to 8d, or different insulating layers may be used.
[0036]
【Example】
An embodiment of the multilayer wiring board 1 of the present invention will be described below.
[0037]
(Example 1)
The multilayer wiring board 1 was configured as follows. A substantially 3.3 μm-thick lower grounding conductor layer composed of a four-layered conductor layer of a Ti layer, a Ti—W alloy layer, a Cu layer, and a Cr layer over substantially the entire upper surface of the insulating substrate 2 made of alumina ceramics. 3 was formed by a sputtering method. A first insulating layer 8a made of polyimide and having a thickness of 20 μm is formed on the lower grounding conductor layer 3 by photolithography, and a Ti layer, a Ti—W alloy layer, and a Cu layer are formed on the first insulating layer 8a from below. A first signal line layer 4 having a thickness of 3.2 μm and made of a four-layered conductor layer composed of a Cr layer was formed by a sputtering method. Similarly, a second insulating layer 8b and an inner ground conductor layer 5, a third insulating layer 8c and a second signal line layer 6, a fourth insulating layer 8d, and an upper ground conductor layer 7 were formed. The upper ground conductor layer 7 was formed on substantially the entire upper surface of the fourth insulating layer 8d.
[0038]
Immediately above the first signal line 4a having a characteristic impedance of 70Ω and a width of 20 μm, a first conductor non-forming portion 5b having a width of 80 μm is formed over the entire length (about 10 mm). The width of the first signal line 4a was larger than the width of 10 μm of the first signal line 4a without the first conductor non-formed portion 5b. Similarly, immediately below the sixth signal line 6c having a characteristic impedance of 70Ω and a width of 20 μm, a second conductor non-forming portion 5c having a width of 80 μm is formed over the entire length (about 10 mm). Accordingly, the width of the sixth signal line 6c is larger than the width 10 μm of the sixth signal line 6c when the second conductor non-formed portion 5c is not provided.
[0039]
Accordingly, when the first conductor non-formed portion 5b and the second conductor non-formed portion 5c are not provided, the characteristic impedance becomes unstable because the widths of the first signal line 4a and the sixth signal line 6c are small. The transmission loss (transmission loss) when a 1 GHz high-frequency signal was transmitted was about -2 dB, but the transmission loss (transmission loss) was improved to about -1 dB by the above configuration of the present embodiment.
[0040]
(Example 2)
In addition to the configuration of the first embodiment, a small gap having the same width as the width of the second signal line 4b is provided on the inner ground conductor layer 5 immediately above the second signal line 4b having a characteristic impedance of 35Ω and a width of 30 μm. The portion 5d (interval 10 μm) was formed over the entire length (10 mm) of the second signal line 4b. Thereby, the width of the second signal line 4b is smaller than the width of 50 μm of the second signal line 4b without the small interval portion 5d.
[0041]
Therefore, the width of the first signal line 4a having the characteristic impedance of 70Ω is 20 μm, the width of the second signal line 4b having the characteristic impedance of 35Ω is 30 μm, and the width of the third signal line 4c having the characteristic impedance of 50Ω is 20 μm. , The difference between their widths became smaller. This is because the first signal line 4a has a width of 10 μm, the second signal line 4b has a width of 50 μm, and the first conductor non-formed portion 5b, the second conductor non-formed portion 5c, and the small interval portion 5d are not provided. Compared to the width of the three signal lines 4c of 20 μm, it became extremely uniform. Thus, by adopting the configuration of the second embodiment, in the case of the multilayer wiring board 1 having the configuration of FIG. 1, the size is reduced to 0.8 times. In other words, the integration was 1.25 times higher. In addition, the miniaturization has made it possible to manufacture at low cost.
[0042]
Note that the present invention is not limited to the above-described embodiment, and various changes may be made without departing from the scope of the present invention. For example, in the above embodiment, two signal line layers are provided, but three or more signal line layers may be provided.
[0043]
【The invention's effect】
In the multilayer wiring board of the present invention, the lower ground conductor layer, the first signal line layer, the inner layer ground conductor layer, the second signal line layer, and the upper ground conductor layer are respectively provided on the main surface of the insulating substrate via the insulating layer. The first and second signal line layers are sequentially laminated, and each of the first and second signal line layers includes a plurality of signal lines including those having different characteristic impedances. The provision of the conductor non-formation portion directly above or directly below the large signal line enables high-density wiring of the signal line and the provision of jumper wires for cross wiring, thereby enabling the semiconductor element to be provided. Can be adapted to increase the number of pins.
[0044]
Further, the distance between the signal line having a characteristic impedance of more than 70Ω and the upper grounding conductor layer or the lower grounding conductor layer increases, the electric capacity decreases, the characteristic impedance value increases, and there is no conductor non-forming portion. In order to obtain the same characteristic impedance value as compared with the case, the width of the signal line becomes large. Therefore, the width of the signal line having a large characteristic impedance can be made larger than that of a conventional signal line, and the control of the characteristic impedance can be easily performed. Thus, a signal line having a small variation in the characteristic impedance can be formed. Further, the first signal line layer and the second signal line layer are not affected by external noise, and can cope with an increase in the operating speed of the semiconductor element connected to the signal line.
[0045]
In the multilayer wiring board according to the present invention, preferably, the inner-layer ground conductor layer has a portion in which a characteristic impedance is reduced immediately above or immediately below a signal line having a characteristic impedance of 40Ω or less among a plurality of signal lines. As a result, the electrical capacitance between the inner ground conductor layer and the signal line having the characteristic impedance of 40Ω or less increases, the characteristic impedance value decreases, and it is attempted to obtain the same characteristic impedance value as compared to a case where there is no portion with a small gap. Then, the width of the signal line becomes smaller. Therefore, the width of a signal line having a small characteristic impedance can be made smaller than that of a conventional signal line, and can be closer to the width of a signal line having a larger characteristic impedance. As a result, the width of the signal lines having different characteristic impedances is extremely close to or substantially equal to each other in combination with the function and effect of the provision of the non-conductor portion, so that further high-density wiring is possible. .
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of a multilayer wiring board of the present invention.
FIG. 2 is a cross-sectional view of a conventional multilayer wiring board.
FIG. 3 is a sectional view showing another example of a conventional multilayer wiring board.
[Explanation of symbols]
1: Multilayer wiring board 2: Insulating substrate 3: Lower ground conductor layer 4: First signal line layers 4a to 4c: First to third signal lines 5: Inner layer ground conductor layers 5b, 5c: First and second Conductor non-formed portion 6: second signal line layers 6a to 6c: fourth to sixth signal lines 7: upper ground conductor layer 8: insulating layer

Claims (2)

絶縁基板の主面に下部接地導体層と第一の信号線路層と内層接地導体層と第二の信号線路層と上部接地導体層とがそれぞれ絶縁層を介して順次積層されており、前記第一および第二の信号線路層は、それぞれ特性インピーダンスの異なるものを含む複数の信号線路から成り、前記内層接地導体層は、前記複数の信号線路のうち特性インピーダンスが70Ωよりも大きい前記信号線路の直上または直下の部位に導体非形成部が設けられていることを特徴とする多層配線基板。A lower ground conductor layer, a first signal line layer, an inner layer ground conductor layer, a second signal line layer, and an upper ground conductor layer are sequentially laminated on the main surface of the insulating substrate via an insulating layer, respectively. The first and second signal line layers each include a plurality of signal lines including those having different characteristic impedances, and the inner ground conductor layer has a characteristic impedance of the signal line larger than 70Ω among the plurality of signal lines. A multilayer wiring board, wherein a conductor-free portion is provided immediately above or immediately below. 前記内層接地導体層は、前記複数の信号線路のうち特性インピーダンスが40Ω以下の前記信号線路の直上または直下で前記信号線路との間隔を小さくした部位を有していることを特徴とする請求項1記載の多層配線基板。The said inner ground conductor layer has a part which reduced the space | interval with the said signal line immediately above or immediately below the said signal line whose characteristic impedance is 40 ohms or less among the said several signal lines, The characterized by the above-mentioned. 2. The multilayer wiring board according to 1.
JP2002177386A 2002-06-18 2002-06-18 Multilayer circuit board Pending JP2004022890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177386A JP2004022890A (en) 2002-06-18 2002-06-18 Multilayer circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177386A JP2004022890A (en) 2002-06-18 2002-06-18 Multilayer circuit board

Publications (1)

Publication Number Publication Date
JP2004022890A true JP2004022890A (en) 2004-01-22

Family

ID=31175431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177386A Pending JP2004022890A (en) 2002-06-18 2002-06-18 Multilayer circuit board

Country Status (1)

Country Link
JP (1) JP2004022890A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822441B1 (en) 2006-09-04 2008-04-16 대덕전자 주식회사 Method of manufacturing high-density printed circuit board having wide range of impedance
JP2009054876A (en) * 2007-08-28 2009-03-12 Sumitomo Bakelite Co Ltd Printed wiring board
JP2015073342A (en) * 2013-10-02 2015-04-16 株式会社デンソー Power conversion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822441B1 (en) 2006-09-04 2008-04-16 대덕전자 주식회사 Method of manufacturing high-density printed circuit board having wide range of impedance
JP2009054876A (en) * 2007-08-28 2009-03-12 Sumitomo Bakelite Co Ltd Printed wiring board
JP2015073342A (en) * 2013-10-02 2015-04-16 株式会社デンソー Power conversion device

Similar Documents

Publication Publication Date Title
JP3732927B2 (en) Multilayer wiring board
US6894228B2 (en) High performance dense wire for printed circuit board
TW200531608A (en) Printed circuit board with low cross-talk noise
JP2002252297A (en) Electronic circuit device using multilayer circuit board
JP5323435B2 (en) Multi-layer wiring board for differential transmission
JPH11112142A (en) Multilayered wiring board
JPH11163539A (en) Multilayer wiring board
JP4927993B2 (en) Composite wiring board
JP3878795B2 (en) Multilayer wiring board
JP2004022890A (en) Multilayer circuit board
JP2006042098A (en) High frequency wiring board
JP2007123798A (en) Wiring board and electronic device
JPS6116415A (en) Wiring unit
JP3935638B2 (en) Multilayer wiring board
JP2005317587A (en) Multilayer wiring board
JP4377725B2 (en) High frequency wiring board
JP2008235697A (en) Wiring circuit board and manufacturing method thereof
JP2002325004A (en) Circuit board for high frequency
JP2001284827A (en) Wiring board
JP2005286436A (en) Wiring board for high frequency
JP2002043762A (en) Multilayer wiring board
JP2001119138A (en) Method of manufacturing circuit board
JPH0774475A (en) Mesh pattern structure
JPH07307567A (en) Thin film multilayered wiring board and semiconductor device
JP2000277928A (en) Multilayer wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071026