JP2004022278A - Zinc alloy powder for alkaline battery - Google Patents

Zinc alloy powder for alkaline battery Download PDF

Info

Publication number
JP2004022278A
JP2004022278A JP2002174082A JP2002174082A JP2004022278A JP 2004022278 A JP2004022278 A JP 2004022278A JP 2002174082 A JP2002174082 A JP 2002174082A JP 2002174082 A JP2002174082 A JP 2002174082A JP 2004022278 A JP2004022278 A JP 2004022278A
Authority
JP
Japan
Prior art keywords
zinc alloy
alloy powder
battery
discharge characteristics
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002174082A
Other languages
Japanese (ja)
Inventor
Seiji Fuchino
渕野 誠治
Shigeo Hirayama
平山 成生
Mitsuo Shinoda
篠田 光男
Tadayoshi Odawara
小田原 忠良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2002174082A priority Critical patent/JP2004022278A/en
Publication of JP2004022278A publication Critical patent/JP2004022278A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Powder Metallurgy (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve battery discharge characteristics while maintaining an original corrosion resistance of zinc alloy powder. <P>SOLUTION: The zinc alloy powder for a battery includes 0.0001-0.01% alloyed Cr, in addition to known elements alloyed with zinc such as In, Bi, Pb, Ca, Al, Mg, and Sn. The battery using the zinc alloy powder is also obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリ電池用亜鉛合金粉末に関する。本発明の亜鉛合金粉末は、既知である亜鉛との合金化元素In、Bi、Pb、Ca、Al、Mg、Sn等に加えて、0.0001%〜0.01%のCrを合金化することを特徴とする。その結果、本発明の亜鉛合金粉末を使用した電池は、放電特性が向上する。
【0002】
【従来の技術】
これまでのアルカリマンガン一次電池に使用される負極亜鉛合金粉末は、負極自己放電を抑制するためHgとアマルガム化した亜鉛合金粉末、さらに近年では環境問題の点からHgを使用せず、In、Bi、Pb、Ca、Al、Mg、Sn等と合金化したHgフリー亜鉛合金粉末が用いられてきた。ここで負極の自己放電とは、負極内で亜鉛合金粉末と電解液が反応を起こし亜鉛合金粉末が腐食することである。この負極自己放電が進行すると、発生する水素ガスの蓄積により電池安全性の低下等の問題を生じる。
【0003】
上述のような電池安全性のために負極亜鉛粉末と合金化する元素等の研究は行われてきたが、電池放電特性に関する負極亜鉛合金粉末の研究はあまり進んでいない。電池放電特性に関する研究としては、微粒子を混合することによる放電特性向上等の報告がなされているが、また微粒子を混合することにより負極の自己放電が促進することも既知事実である。
【0004】
【発明が解決しようとする課題】
このように電池放電性能向上に関する負極亜鉛粉末の研究は、粒度調整による放電特性向上等の報告があるが、負極亜鉛との合金化元素等の研究はあまり報告されていない。また、現在の携帯型電子機器の発達およびその使用環境の多様化に伴い、それら機器に使用される頻度が増したアルカリマンガン一次電池のさらなる放電特性向上が求められている。本発明は、上述のような課題を改善する電池用亜鉛合金粉末の提供を目的とする。
【0005】
【課題を解決するための手段】
本発明者等は、電池放電特性の向上を実現する電池用亜鉛合金粉末の研究・開発を取り進めた結果、In やBi 等の亜鉛との合金化元素の他に、Cr を合金化することにより亜鉛合金粉末の耐食性はそのままで、放電特性が向上することを見いだし、本発明を完成させた。
【0006】
即ち、本発明は、電池用亜鉛合金粉末において、既知である亜鉛との合金化元素In、Bi、Pb、Ca、Al、Mg、Sn等に加えて、0.0001%〜0.01%のCrを合金化した亜鉛合金粉末である。また、上記の亜鉛合金粉末を使用した電池である。
【0007】
このCr 添加亜鉛合金粉末は、例えば既知合金化元素であるIn、Bi 等の他に0.0001%〜0.01%のCr を亜鉛と合金化することを特徴とする。尚、Cr の他に亜鉛と合金化させる元素はIn、Bi に限らず、電池用亜鉛合金粉末に用いられるその他の元素を用いても良い。
【0008】
【発明の実施の形態】
本発明のCr 添加亜鉛合金粉末に関する作用について、以下に推測も含め詳しく説明する。
【0009】
本発明の負極亜鉛合金粉末は、既知合金化元素であるIn、Bi 等の他に0.0001%〜0.01%のCr を亜鉛と合金化することで電池放電特性の向上を実現している。Cr濃度が0.0001%以下では放電特性向上の効果は得られず、また0.01%以上でも放電特性向上の効果は得られない。Cr添加による作用は次のように推察される。電池放電特性は、放電の進行に従って負極内に析出するZnOと大きな関係を持っている。一般的に、放電の進行に従って亜鉛合金粉末表面に析出するZnOが、亜鉛合金粉末表面を不活性化して電池放電反応を阻害すると考えられている。本発明の亜鉛合金粉末は、Cr添加によって放電とともに析出するZnOの亜鉛合金粉末表面への析出を妨げ、亜鉛合金粉末表面の活性さを維持することで電池放電特性の向上を実現していると推察される。本発明のCr 添加亜鉛合金粉末の電池放電評価の結果、電池放電特性の向上が確認出来た。
【0010】
【実施例】
本発明を実施例により具体的に説明する。本実施例のCr 添加亜鉛合金粉末は、以下の方法により作成した。尚、Cr 添加亜鉛合金粉末の作成方法に関しては、本実施例の方法に限らず、湿式法、乾式蒸着法等その他の方法にて作成しても良い。
【0011】
〔実施例1〜3及び比較例1〜2〕
まず高純度亜鉛地金を500℃にて溶解し、Cr、In、Biを所定量添加調整して合金化した溶湯を高圧空気噴霧法により粉末化する。得られた粉末を所定粒度に分級して、Cr 添加亜鉛合金粉末とする。実施例1〜3及び比較例1として、表1に作成したCr 添加亜鉛合金粉末A、B、C及びDのCr、In、Biの含有量、粉末粒度等の分析結果を示す。また比較例2として、現在一般的な電池用亜鉛合金粉末の1つである亜鉛合金粉末Eの分析結果もあわせて示す。ここで、亜鉛との合金化元素の含有量はICP発光分析装置、粒度は標準篩い網により分析した。
【0012】
【表1】

Figure 2004022278
【0013】
作成したCr 添加亜鉛合金粉末は、負極自己放電に関する評価として原粉ガス発生速度の測定、電池放電特性に関する評価としてJIS規格のLR6アルカリマンガン1次電池での1Ω定抵抗連続放電を実施した。原粉ガス発生速度の測定は、専用ガラス容器に評価する亜鉛合金粉末10gと酸化亜鉛を飽和させた40重量%水酸化カリウム水溶液5mlを入れて、45℃で3日間保持し発生した水素ガス量を測定して1日当たりに換算する。1Ω定抵抗連続放電は、評価する亜鉛合金粉末を用いて作成したJIS規格LR6アルカリマンガン1次電池にて、1Ω定抵抗連続放電を実施し、放電開始後から電池電圧0.9Vになるまでの到達時間を測定する。
【0014】
表1に作成したCr 添加亜鉛合金粉末の評価結果を示す。また比較例2として、現在一般的な電池用亜鉛合金粉末の1つである亜鉛合金粉末Eの評価結果もあわせて示す。
【0015】
表1に示すように、実施例1〜3であるCr 添加亜鉛合金粉末A、B、Cは、比較例2の亜鉛合金粉末Eと比べて、放電特性を示す1Ω定抵抗放電0.9V到達時間が長くなっている。比較例1であるCr 添加亜鉛合金粉末Dは、比較例2の亜鉛合金粉末Eと比べて、放電特性を示す1Ω定抵抗放電0.9V到達時間は同等となっている。また負極自己放電を示す原粉ガス発生速度の値はすべて比較例2の亜鉛合金粉末Eと同等となっている。このようにCrを0.0001%〜0.01% 添加した亜鉛合金粉末は、粉末の耐食性はそのままで、放電特性が向上していることを確認出来た。
【0016】
〔実施例4〜7及び比較例3〕
亜鉛合金粉末の合金化元素であるIn、Biの濃度を変えてもCr添加の効果があるか確認するために、実施例4〜7としてBi濃度を変更したCr 添加亜鉛合金粉末F、G、Hを作成した。表2に亜鉛合金粉末F、G、Hの分析結果、また実施例1と同方法にて測定した原粉ガス発生速度と1Ω定抵抗連続放電の評価結果を示す。また表2に比較例3として、現在一般的な電池用亜鉛合金粉末の1つである亜鉛合金粉末Iの分析結果、評価結果を示す。
【0017】
【表2】
Figure 2004022278
【0018】
表2に示すように、Cr 添加亜鉛合金粉末F、G、Hは、比較例の亜鉛合金粉末Iと比べ
て、放電特性を示す1Ω定抵抗放電0.9V到達時間が長くなっている。このようにCr以外の亜鉛合金化元素濃度が変わっても、Cr 添加することにより放電特性が向上することが確認出来た。
【0019】
また表2に示すCr 添加亜鉛合金粉末の原粉ガス発生速度の値は、Bi濃度が増えるにしたがって減少している。Bi濃度が増えると原粉ガス発生は抑制されるが、放電特性が悪化することがわかる。従ってCr 添加亜鉛合金粉末Hなどは、Bi濃度が高いので原粉ガス発生値は低くなるが放電特性は悪化することが予想される。しかし表2の評価結果では原粉ガス発生値は低くなりかつ放電特性は向上している。このように放電特性の悪化が予想されるサンプルにおいても、Cr 添加することにより放電特性が向上することが確認出来た。
【0020】
これらの結果をまとめると、Crを0.0001〜0.01% 添加した亜鉛合金粉末は、粉末の耐食性はそのままで、放電特性が向上していることを確認出来た。特にCr添加効果が高くなるのは、Cr濃度が50ppm程度である。また、放電特性の悪化が予想されるサンプルにおいてもCr 添加することにより放電特性が向上することが推察できる。
【0021】
【発明の効果】
以上の説明より、Cr 添加亜鉛合金粉末は、放電特性が向上していることが明らかである。よって、Cr 添加亜鉛合金粉末を使用する事により電池放電特性が向上する電池を提供することができる。
【図面の簡単な説明】
【図1】本発明で用いたアルカリマンガン電池を例示する断面図
【符号の説明】
1・・・正極缶、 2・・・正極、 3・・・セパレーター、 4・・・負極、5・・・負極集電子、 6・・・封口キャップ、 7・・・ガスケット、 8・・・負極端子。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a zinc alloy powder for an alkaline battery. The zinc alloy powder of the present invention alloys 0.0001% to 0.01% of Cr in addition to the known alloying elements with zinc, such as In, Bi, Pb, Ca, Al, Mg, and Sn. It is characterized by the following. As a result, the battery using the zinc alloy powder of the present invention has improved discharge characteristics.
[0002]
[Prior art]
The negative electrode zinc alloy powder used in the conventional alkaline manganese primary battery is a zinc alloy powder amalgamated with Hg in order to suppress the negative electrode self-discharge, and in recent years, Hg is not used from the viewpoint of environmental problems. Hg-free zinc alloy powder alloyed with Pb, Ca, Al, Mg, Sn and the like has been used. Here, the self-discharge of the negative electrode means that the zinc alloy powder reacts with the electrolytic solution in the negative electrode to corrode the zinc alloy powder. When the negative electrode self-discharge proceeds, problems such as a decrease in battery safety occur due to accumulation of generated hydrogen gas.
[0003]
Although research on elements and the like that are alloyed with the negative electrode zinc powder has been conducted for battery safety as described above, research on the negative electrode zinc alloy powder regarding battery discharge characteristics has not progressed much. As a study on battery discharge characteristics, it has been reported that the discharge characteristics are improved by mixing fine particles. However, it is a known fact that the self-discharge of the negative electrode is promoted by mixing fine particles.
[0004]
[Problems to be solved by the invention]
As described above, studies on the negative electrode zinc powder for improving the battery discharge performance include reports on the improvement of the discharge characteristics by adjusting the particle size, but few studies on the alloying element with the negative electrode zinc have been reported. Further, with the development of portable electronic devices and the diversification of their use environments, there is a demand for further improvement of the discharge characteristics of alkaline manganese primary batteries that have been used more frequently in such devices. An object of the present invention is to provide a zinc alloy powder for a battery that improves the above-described problems.
[0005]
[Means for Solving the Problems]
The present inventors have conducted research and development on zinc alloy powder for batteries that achieves improvement in battery discharge characteristics. As a result, it has been found that, in addition to alloying elements with zinc such as In and Bi, Cr can be alloyed. As a result, it has been found that the corrosion characteristics of the zinc alloy powder remain unchanged and the discharge characteristics are improved, thereby completing the present invention.
[0006]
That is, the present invention relates to a zinc alloy powder for a battery, which contains 0.0001% to 0.01% of a known alloying element with zinc, such as In, Bi, Pb, Ca, Al, Mg, and Sn. It is a zinc alloy powder obtained by alloying Cr. A battery using the above zinc alloy powder.
[0007]
The Cr-added zinc alloy powder is characterized in that 0.0001% to 0.01% of Cr 2 is alloyed with zinc in addition to known alloying elements such as In and Bi. Note that the element to be alloyed with zinc, other than Cr 2, is not limited to In and Bi, and other elements used in zinc alloy powder for batteries may be used.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The action of the Cr-added zinc alloy powder of the present invention will be described in detail below, including speculation.
[0009]
The negative electrode zinc alloy powder of the present invention achieves improved battery discharge characteristics by alloying 0.0001% to 0.01% of Cr 2 with zinc in addition to known alloying elements such as In and Bi. I have. If the Cr concentration is 0.0001% or less, the effect of improving the discharge characteristics cannot be obtained, and if the Cr concentration is 0.01% or more, the effect of improving the discharge characteristics cannot be obtained. The effect of adding Cr is presumed as follows. Battery discharge characteristics have a great relationship with ZnO that precipitates in the negative electrode as the discharge proceeds. In general, it is considered that ZnO that precipitates on the surface of the zinc alloy powder with the progress of discharge inactivates the surface of the zinc alloy powder and inhibits the battery discharge reaction. The zinc alloy powder of the present invention prevents the precipitation of ZnO, which precipitates along with the discharge due to the addition of Cr, on the surface of the zinc alloy powder, and maintains the activity of the surface of the zinc alloy powder, thereby improving the battery discharge characteristics. Inferred. As a result of battery discharge evaluation of the Cr-added zinc alloy powder of the present invention, improvement in battery discharge characteristics was confirmed.
[0010]
【Example】
The present invention will be specifically described with reference to examples. The Cr-added zinc alloy powder of this example was prepared by the following method. The method for preparing the Cr-added zinc alloy powder is not limited to the method of the present embodiment, but may be a wet method, a dry deposition method, or another method.
[0011]
[Examples 1-3 and Comparative Examples 1-2]
First, a high-purity zinc ingot is melted at 500 ° C., a predetermined amount of Cr, In, and Bi are added and adjusted, and the molten alloy is powderized by a high-pressure air spray method. The obtained powder is classified to a predetermined particle size to obtain a Cr-added zinc alloy powder. As Examples 1 to 3 and Comparative Example 1, Table 1 shows the results of analysis of the Cr-added zinc alloy powders A, B, C, and D, such as the content of Cr, In, and Bi, and the particle size of the powder. As Comparative Example 2, the analysis results of zinc alloy powder E, which is one of the zinc alloy powders for batteries at present, are also shown. Here, the content of the alloying element with zinc was analyzed by an ICP emission spectrometer, and the particle size was analyzed by a standard sieve mesh.
[0012]
[Table 1]
Figure 2004022278
[0013]
The prepared Cr-added zinc alloy powder was subjected to measurement of raw powder gas generation rate as evaluation for negative electrode self-discharge, and 1Ω constant resistance continuous discharge with LR6 alkaline manganese primary battery of JIS standard as evaluation for battery discharge characteristics. The raw powder gas generation rate was measured by placing 10 g of the zinc alloy powder to be evaluated and 5 ml of a 40% by weight aqueous potassium hydroxide solution saturated with zinc oxide in a dedicated glass container, and maintaining the mixture at 45 ° C. for 3 days to measure the amount of hydrogen gas generated. Is measured and converted per day. The 1Ω constant resistance continuous discharge is performed by performing a 1Ω constant resistance continuous discharge in a JIS standard LR6 alkaline manganese primary battery prepared using the zinc alloy powder to be evaluated, and from the start of the discharge until the battery voltage reaches 0.9V. Measure the arrival time.
[0014]
Table 1 shows the evaluation results of the prepared Cr-added zinc alloy powder. In addition, as Comparative Example 2, the evaluation results of zinc alloy powder E, which is one of the zinc alloy powders for batteries at present, are also shown.
[0015]
As shown in Table 1, the Cr-added zinc alloy powders A, B, and C of Examples 1 to 3 achieved a 1Ω constant resistance discharge of 0.9 V showing discharge characteristics as compared with the zinc alloy powder E of Comparative Example 2. Time is getting longer. The Cr-added zinc alloy powder D of Comparative Example 1 has the same time to reach 0.9 V of 1Ω constant resistance discharge showing the discharge characteristics as compared with the zinc alloy powder E of Comparative Example 2. Further, the values of the raw powder gas generation rate indicating the negative electrode self-discharge are all equal to those of the zinc alloy powder E of Comparative Example 2. As described above, it was confirmed that the zinc alloy powder to which Cr was added in an amount of 0.0001% to 0.01% had improved discharge characteristics while maintaining the corrosion resistance of the powder.
[0016]
[Examples 4 to 7 and Comparative Example 3]
In order to confirm whether the effect of Cr addition was obtained even when the concentrations of the alloying elements In and Bi of the zinc alloy powder were changed, as Examples 4 to 7, Cr-added zinc alloy powders F, G, and H was created. Table 2 shows the analysis results of the zinc alloy powders F, G, and H, the raw gas gas generation rate measured by the same method as in Example 1, and the evaluation results of 1Ω constant resistance continuous discharge. Table 2 shows, as Comparative Example 3, the analysis results and the evaluation results of zinc alloy powder I, which is one of the zinc alloy powders for battery currently used.
[0017]
[Table 2]
Figure 2004022278
[0018]
As shown in Table 2, the Cr-added zinc alloy powders F, G, and H have a longer time to reach 0.9 V of 1 Ω constant resistance discharge showing the discharge characteristics than the zinc alloy powder I of the comparative example. Thus, it was confirmed that even when the concentration of the zinc alloying element other than Cr changed, the discharge characteristics were improved by adding Cr.
[0019]
Further, the value of the raw powder gas generation rate of the Cr-added zinc alloy powder shown in Table 2 decreases as the Bi concentration increases. It can be seen that when the Bi concentration increases, the generation of raw powder gas is suppressed, but the discharge characteristics deteriorate. Therefore, since the Cr-added zinc alloy powder H has a high Bi concentration, the raw powder gas generation value is low, but the discharge characteristics are expected to deteriorate. However, according to the evaluation results in Table 2, the raw powder gas generation value was low and the discharge characteristics were improved. As described above, it was confirmed that even in a sample in which the discharge characteristics are expected to be deteriorated, the discharge characteristics are improved by adding Cr.
[0020]
Summarizing these results, it was confirmed that the zinc alloy powder to which Cr was added in an amount of 0.0001 to 0.01% had improved discharge characteristics while maintaining the corrosion resistance of the powder. In particular, the effect of adding Cr is enhanced when the Cr concentration is about 50 ppm. Further, it can be inferred that even in a sample in which the discharge characteristics are expected to be deteriorated, the discharge characteristics are improved by adding Cr.
[0021]
【The invention's effect】
From the above description, it is apparent that the Cr-added zinc alloy powder has improved discharge characteristics. Therefore, a battery with improved battery discharge characteristics can be provided by using a Cr-added zinc alloy powder.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an alkaline manganese battery used in the present invention.
DESCRIPTION OF SYMBOLS 1 ... Positive electrode can, 2 ... Positive electrode, 3 ... Separator, 4 ... Negative electrode, 5 ... Negative electrode collector, 6 ... Sealing cap, 7 ... Gasket, 8 ... Negative terminal.

Claims (2)

アルカリ電池用亜鉛合金粉末において、既知である亜鉛との合金化元素In、Bi、Pb、Ca、Al、Mg、Sn等に加えて、0.0001%〜0.01%のCrを合金化したアルカリ電池用亜鉛合金粉末。In the zinc alloy powder for alkaline batteries, 0.0001% to 0.01% of Cr was alloyed in addition to the known alloying elements with zinc, such as In, Bi, Pb, Ca, Al, Mg, and Sn. Zinc alloy powder for alkaline batteries. 請求項1の亜鉛合金粉末を使用したアルカリ電池。An alkaline battery using the zinc alloy powder according to claim 1.
JP2002174082A 2002-06-14 2002-06-14 Zinc alloy powder for alkaline battery Pending JP2004022278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002174082A JP2004022278A (en) 2002-06-14 2002-06-14 Zinc alloy powder for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174082A JP2004022278A (en) 2002-06-14 2002-06-14 Zinc alloy powder for alkaline battery

Publications (1)

Publication Number Publication Date
JP2004022278A true JP2004022278A (en) 2004-01-22

Family

ID=31173145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174082A Pending JP2004022278A (en) 2002-06-14 2002-06-14 Zinc alloy powder for alkaline battery

Country Status (1)

Country Link
JP (1) JP2004022278A (en)

Similar Documents

Publication Publication Date Title
JP3215448B2 (en) Zinc alkaline battery
JPH0684521A (en) Alkaline battery
JP4222488B2 (en) Alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JPH04284357A (en) Zinc alkaline battery
JP2004022278A (en) Zinc alloy powder for alkaline battery
JP4565222B2 (en) Zinc alloy powder for alkaline battery and alkaline battery using the same
JP3545985B2 (en) Zinc alloy powder and alkaline battery using the same
JPH04237952A (en) Manufacture of unamalgamated zinc alloy powder for alkaline dry battery
JP2832228B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2832227B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP3617743B2 (en) Negative electrode material for alkaline manganese battery and method for producing the same
JP2006032152A (en) Cylindrical alkaline battery
JPWO2019181538A1 (en) Alkaline battery
JP2003272615A (en) Zinc alloy powder and alkaline battery using the same
JP4327586B2 (en) Aluminum primary battery
JP2002373651A (en) Alkaline battery
JP2003317713A (en) Zinc alloy powder and alkaline battery using the same
JP3490708B1 (en) Zinc alloy powder for alkaline batteries
JP2832230B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPH07169463A (en) Alkaline battery
JP2832229B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2832231B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2832232B2 (en) Zinc alloy powder for alkaline batteries
JPH09259877A (en) Zinc-based alloy for negative electrode for alkaline battery