JP3490708B1 - Zinc alloy powder for alkaline batteries - Google Patents

Zinc alloy powder for alkaline batteries

Info

Publication number
JP3490708B1
JP3490708B1 JP2002343589A JP2002343589A JP3490708B1 JP 3490708 B1 JP3490708 B1 JP 3490708B1 JP 2002343589 A JP2002343589 A JP 2002343589A JP 2002343589 A JP2002343589 A JP 2002343589A JP 3490708 B1 JP3490708 B1 JP 3490708B1
Authority
JP
Japan
Prior art keywords
zinc alloy
component
less
average concentration
ppb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002343589A
Other languages
Japanese (ja)
Other versions
JP2004006223A (en
Inventor
正元 佐々木
成生 平山
昭 小山
誠治 渕野
光男 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2002343589A priority Critical patent/JP3490708B1/en
Priority to CA002418555A priority patent/CA2418555A1/en
Priority to US10/378,697 priority patent/US20030180607A1/en
Priority to CN03119850A priority patent/CN1442918A/en
Priority to DE10309402A priority patent/DE10309402A1/en
Publication of JP2004006223A publication Critical patent/JP2004006223A/en
Application granted granted Critical
Publication of JP3490708B1 publication Critical patent/JP3490708B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【要約】 【課題】 異常なガス発生を低コストで容易に抑制する
ことができる無水銀のアルカリ電池用亜鉛合金粉末を提
供する。 【解決手段】 亜鉛合金中の鉄成分の平均含有量が5p
pm以下であり、亜鉛合金粒子11の表面近傍部12中
の鉄成分14,16の平均濃度が10ppm以下である
と共に、亜鉛合金粒子の表面近傍部12に存在する不純
物15中の鉄成分16の合計含有量が当該粒子11全体
に対する割合で0.5ppm以下のアルカリ電池用亜鉛
合金粉末とした。
An object of the present invention is to provide a mercury-free zinc alloy powder for an alkaline battery which can easily suppress abnormal gas generation at low cost. SOLUTION: The average content of the iron component in the zinc alloy is 5 p.
pm or less, the average concentration of iron components 14 and 16 in the vicinity 12 of the surface of the zinc alloy particles 11 is 10 ppm or less, and the iron component 16 in the impurities 15 existing in the vicinity 12 of the surface of the zinc alloy particles. A zinc alloy powder for an alkaline battery having a total content of 0.5 ppm or less relative to the whole of the particles 11 was obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアルカリ電池用亜鉛
合金粉末に関し、詳しくは水素ガスの発生を抑制し、電
池の耐漏液性を向上させた無水銀化アルカリ電池用亜鉛
合金粉末に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc alloy powder for alkaline batteries, and more particularly to a zinc alloy powder for anhydrous mercury-free alkaline batteries which suppresses the generation of hydrogen gas and improves the leak resistance of the battery.

【0002】[0002]

【従来の技術】アルカリ電池の負極活物質に用いられる
亜鉛粉末から水銀を完全に追放して、無水銀アルカリ電
池が商業化されたのは1992年の日本が最初であっ
た。永年の懸案であったこの技術の完成に大きく貢献
し、その後の無水銀電池の世界的な普及に寄与した革新
的技術が特許文献1〜3等で提案されている。これらの
技術の核心は、環境にごく一般的に存在する不純物であ
る鉄を1ppm以下の低いレベルにまで制御して低下さ
せると同時に、特定の元素を添加して合金とした亜鉛合
金粉末をアルカリ電池の負極活物質に用いることにあ
る。
2. Prior Art In 1992, Japan was the first to commercialize a mercury-free alkaline battery by completely excluding mercury from zinc powder used as a negative electrode active material of an alkaline battery. Patent Documents 1 to 3 and the like propose innovative technologies that have contributed greatly to the completion of this technology, which has been a pending issue for many years, and subsequently contributed to the worldwide spread of the mercury-free battery. The core of these technologies is to control and reduce iron, which is an impurity that is generally present in the environment, to a low level of 1 ppm or less, and at the same time, add zinc alloy powder that is an alloy by adding a specific element to an alkali. It is used as a negative electrode active material for batteries.

【0003】[0003]

【特許文献1】特公平7−054704号公報[Patent Document 1] Japanese Patent Publication No. 7-054704

【特許文献2】米国特許第5108494号明細書[Patent Document 2] US Pat. No. 5,108,494

【特許文献3】欧州特許第0500313号明細書[Patent Document 3] European Patent No. 0500313

【0004】[0004]

【発明が解決しようとする課題】上記技術を基本にその
後のアルカリ電池は今日まで世界的に幅広く生産されて
いるが、商業的には以下のような問題があった。
Alkaline batteries thereafter, based on the above technology, have been widely produced all over the world until today, but they had the following problems commercially.

【0005】(1)上述した特許文献1〜3等のように
亜鉛合金粉末中の鉄を1ppm以下に維持するには、鉄
の濃度を1ppm以下に抑制した非常に純度の高い亜鉛
金属を原料として使用する必要がある。このような非常
に純度の高い亜鉛金属を用いることは、工業的に不可能
ではないが、製造設備や製造工程の高度な管理等が要求
され、その入手が相当程度限定されてしまう。
(1) In order to maintain the iron content in the zinc alloy powder at 1 ppm or less as in the above-mentioned Patent Documents 1 to 3, a very pure zinc metal having an iron concentration suppressed to 1 ppm or less is used as a raw material. Should be used as. Although it is not industrially impossible to use such a highly pure zinc metal, sophisticated management of manufacturing equipment and manufacturing processes is required, and the availability thereof is considerably limited.

【0006】(2)他方、鉄の濃度が2ppm以上の亜
鉛金属や亜鉛合金粉末を使用すると、製造されたアルカ
リ電池において、ある確率で異常なガス発生や漏液が発
生してしまう。
(2) On the other hand, if zinc metal or zinc alloy powder having an iron concentration of 2 ppm or more is used, abnormal gas generation or liquid leakage will occur with a certain probability in the manufactured alkaline battery.

【0007】(3)なお、上述した特許文献1〜3等の
ような非常に純度の高い亜鉛金属や亜鉛合金粉末を使用
したアルカリ電池においても、極めて稀に多量のガス発
生を引き起こしてしまう場合があった。
(3) In the rare cases where a large amount of gas is generated even in an alkaline battery using a highly pure zinc metal or zinc alloy powder as in the above-mentioned Patent Documents 1 to 3, etc. was there.

【0008】本発明は、かかる従来技術の課題を解決す
べくなされたもので、異常なガス発生を低コストで容易
に抑制することができる無水銀のアルカリ電池用亜鉛合
金粉末を提供することを目的とし、無水銀アルカリ電池
の耐漏液性を向上させることを最終的な目的とする。
The present invention has been made to solve the problems of the prior art, and it is an object of the present invention to provide a silver-free zinc alloy powder for alkaline batteries, which can easily suppress abnormal gas generation at low cost. The final purpose is to improve the leakage resistance of a mercury-free alkaline battery.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究の結果、亜鉛合金中の鉄成分の濃
度が5ppmと高くても、亜鉛合金粒子の表面近傍部中
の鉄成分の平均濃度及び亜鉛合金粒子の表面近傍部に存
在する不純物中の鉄製分の合計含有量を所定の濃度以下
に抑制することによって上記目的を達成できることを知
見し、本発明に到達した。
As a result of intensive studies to solve the above problems, the inventors of the present invention have found that even if the concentration of the iron component in the zinc alloy is as high as 5 ppm, the zinc alloy particles in the surface vicinity part The inventors have found that the above object can be achieved by suppressing the average concentration of iron components and the total content of iron components in the impurities present in the vicinity of the surface of zinc alloy particles to below a predetermined concentration, and arrived at the present invention.

【0010】[0010]

【0011】かかる知見に基づく第1の発明は、亜鉛合
金中の鉄成分の平均濃度が1ppmを超え5ppm以下
であり、亜鉛合金粒子の表面近傍部中の鉄成分の平均濃
度が10ppm以下であると共に、亜鉛合金粒子の表面
近傍部に存在する外部由来の鉄成分の含有量が当該粒子
全体に対する割合で0.5ppm以下であることを特徴
とするアルカリ電池用亜鉛合金粉末にある。
According to the first invention based on such knowledge, the average concentration of the iron component in the zinc alloy is more than 1 ppm and 5 ppm or less, and the average concentration of the iron component in the vicinity of the surface of the zinc alloy particles is 10 ppm or less. At the same time, the zinc alloy powder for alkaline batteries is characterized in that the content of the externally-derived iron component present in the vicinity of the surface of the zinc alloy particles is 0.5 ppm or less in the ratio with respect to the entire particles.

【0012】[0012]

【0013】第の発明は、第の発明において、アル
ミニウム、ビスマス、カルシウム、インジウム、鉛、マ
グネシウム、スズのうち1つ以上の元素をそれぞれ10
〜10000ppmの範囲で含有することを特徴とする
アルカリ電池用亜鉛合金粉末にある。
A second invention is the same as the first invention, except that at least one element selected from the group consisting of aluminum, bismuth, calcium, indium, lead, magnesium and tin is used.
The zinc alloy powder for alkaline batteries is characterized in that it is contained in the range of 10,000 ppm.

【0014】[0014]

【0015】[0015]

【0016】[0016]

【0017】[0017]

【0018】[0018]

【0019】[0019]

【0020】[0020]

【0021】[0021]

【0022】[0022]

【0023】[0023]

【0024】[0024]

【0025】[0025]

【0026】[0026]

【0027】[0027]

【0028】[0028]

【0029】[0029]

【0030】[0030]

【0031】[0031]

【0032】[0032]

【0033】[0033]

【0034】第の発明は、鉄成分の平均濃度が1pp
mを超え5ppm以下の亜鉛金属に、アルミニウム、ビ
スマス、カルシウム、インジウム、鉛、マグネシウム、
スズのうち1つ以上の元素をそれぞれ10〜10000
ppmの範囲となるように添加して溶解した熔湯をアト
マイズすることにより、第1又はの発明亜鉛合金
粉末を製造することを特徴とするアルカリ電池用亜鉛合
金粉末の製造方法にある。
In the third invention, the average concentration of iron component is 1 pp.
to 5ppm or less of zinc metal exceed m, aluminum, bismuth, calcium, indium, lead, magnesium,
Each of one or more elements of tin is 10 to 10,000
A method for producing a zinc alloy powder for an alkaline battery, which comprises producing the zinc alloy powder of the first or second invention by atomizing a molten metal which is added and melted in a range of ppm .

【0035】第の発明は、第の発明において、アト
マイズして得られた亜鉛合金粉末を磁力選別することを
特徴とするアルカリ電池用亜鉛合金粉末の製造方法にあ
る。
A fourth aspect of the present invention is the method for producing a zinc alloy powder for an alkaline battery according to the third aspect , which magnetically selects the zinc alloy powder obtained by atomizing.

【0036】第の発明は、第1又はの発明アル
カリ電池用亜鉛合金粉末が負極活物質として用いられて
いることを特徴するアルカリ電池にある。
[0036] The fifth invention is an alkaline battery that wherein a zinc alloy powder for Al <br/> potash cell of the first or second invention is used as a negative electrode active material.

【0037】[0037]

【発明の実施の形態】本発明によるアルカリ電池用亜鉛
合金粉末の実施の形態を以下に説明するが、本発明はこ
れらの実施の形態に限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the zinc alloy powder for alkaline batteries according to the present invention will be described below, but the present invention is not limited to these embodiments.

【0038】本発明にかかるアルカリ電池用亜鉛合金粉
末は、亜鉛合金中の鉄成分の平均濃度が5ppm以下で
あり、亜鉛合金粒子の表面近傍部中の鉄成分の平均濃度
が10ppm以下、亜鉛合金粒子の表面近傍部に存在す
る不純物中の鉄成分の合計含有量が当該粒子全体に対す
る割合で0.5ppm以下であることを特徴とするもの
である。
The zinc alloy powder for an alkaline battery according to the present invention has an average iron component concentration of 5 ppm or less in the zinc alloy, an average iron component concentration of 10 ppm or less in the vicinity of the surface of the zinc alloy particles, and a zinc alloy. It is characterized in that the total content of iron components in the impurities present in the vicinity of the surface of the particles is 0.5 ppm or less in proportion to the whole particles.

【0039】ここで、亜鉛合金粒子中の鉄成分の平均濃
度が5ppmを超えると、亜鉛合金粒子の表面近傍部中
の鉄成分の平均濃度がその絶対値として高くなり、アル
カリ電池のガス発生が許容量以上に大きくなり、好まし
くない。さらに、亜鉛合金粒子中の鉄成分の平均濃度が
1ppmを超え5ppm以下であると特に好ましい。な
ぜなら、亜鉛合金粒子中の鉄の平均濃度を1ppm以下
にすると、非常に純度の高い亜鉛金属を使用しなければ
ならず、製造設備や製造工程の高度な管理等が要求され
るからである。
Here, when the average concentration of the iron component in the zinc alloy particles exceeds 5 ppm, the average concentration of the iron component in the vicinity of the surface of the zinc alloy particles becomes high in absolute value, and gas generation in the alkaline battery occurs. It is unfavorable because it exceeds the allowable amount. Furthermore, it is particularly preferable that the average concentration of the iron component in the zinc alloy particles is more than 1 ppm and 5 ppm or less. This is because if the average concentration of iron in the zinc alloy particles is set to 1 ppm or less, zinc metal with a very high purity must be used, and high-level management of manufacturing equipment and manufacturing processes is required.

【0040】また、亜鉛合金粒子の表面近傍部に存在す
る不純物中の鉄成分の合計含有量が当該粒子全体に対す
る割合で0.5ppmを超えると、ガス発生中心の数が
増して、電池の耐漏液性の限界を超えることになり、好
ましくない。なお、この値は小さいほどよく、ガス発生
の減少につながる。
Further, when the total content of iron components in the impurities present in the vicinity of the surface of the zinc alloy particles exceeds 0.5 ppm in the ratio with respect to the whole particles, the number of gas generation centers increases and the leakage resistance of the battery is improved. It is not preferable because it exceeds the limit of liquidity. It should be noted that the smaller this value is, the better, which leads to a reduction in gas generation.

【0041】また、亜鉛合金粒子の表面近傍部中の鉄成
分の平均濃度が10ppmを越えると、亜鉛合金粒子の
表面近傍部に存在する不純物中の鉄成分の合計含有量が
当該粒子全体に対する割合で0.5ppm以下であって
も、ガス発生中心の数が増して、電池の耐漏液性の限界
を超えることになり、好ましくない。
When the average concentration of the iron component in the vicinity of the surface of the zinc alloy particles exceeds 10 ppm, the total content of the iron components in the impurities present in the vicinity of the surface of the zinc alloy particles is a proportion of the whole particles. Even if it is 0.5 ppm or less, the number of gas generation centers increases, which exceeds the liquid leakage resistance limit of the battery, which is not preferable.

【0042】ここで、上記「表面近傍部」とは、図1に
示すように、亜鉛合金粒子11の表面13を含むその近
傍の体積約1.5%の領域、すなわち、表面層体積比約
1.5%の領域であり、図1中、符合12の領域を表し
ている。
Here, as shown in FIG. 1, the above-mentioned "portion near the surface" is a region having a volume of about 1.5% in the vicinity including the surface 13 of the zinc alloy particles 11, that is, about a surface layer volume ratio. This is an area of 1.5%, which represents the area of reference numeral 12 in FIG.

【0043】また、亜鉛合金粒子11の表面近傍部12
中の鉄成分14とは、原料の亜鉛金属や添加する合金成
分金属等に当初から存在している鉄成分(例えば固溶体
分等)等のように、亜鉛合金の製造前から存在する内部
由来の鉄成分のうち、亜鉛合金粒子の表面近傍部に存在
するもののことである。また、亜鉛合金粒子11の表面
近傍部12に存在する不純物15中の鉄成分16とは、
亜鉛合金の製造中に、系外から亜鉛合金粒子に取り込ま
れて当該粒子の表面近傍部内に存在したり当該粒子の表
面から突出したりする不純物(例えば錆等の酸化鉄等)
の鉄成分や、亜鉛合金の製造後、系外から亜鉛合金粒子
の表面に付着したりする不純物の鉄成分等のように、亜
鉛合金粉末の製造中や製造後に亜鉛合金粒子の表面近傍
部に存在するようになった外部由来の鉄成分のことであ
る。
Further, the surface vicinity portion 12 of the zinc alloy particles 11
The iron component 14 in the inside is derived from an internal source that is present before the zinc alloy is produced, such as an iron component (such as a solid solution component) originally present in the raw material zinc metal or an alloy component metal to be added. Of the iron components, the iron components are present near the surface of the zinc alloy particles. Further, the iron component 16 in the impurities 15 present in the surface vicinity portion 12 of the zinc alloy particles 11 is
Impurities that are taken into the zinc alloy particles from the outside of the system during the production of the zinc alloy and are present in the vicinity of the surface of the particles or project from the surface of the particles (for example, iron oxide such as rust)
The iron component of, and the iron component of impurities that adhere to the surface of the zinc alloy particles from outside the system after the zinc alloy is produced, such as in the vicinity of the surface of the zinc alloy particles during or after the production of the zinc alloy powder. It is an iron component from the outside that has come to exist.

【0044】このような亜鉛合金中の鉄成分の平均濃度
が5ppm以下であれば、図1に示すように、亜鉛合金
粒子11の表面近傍部12中の鉄成分14,16の平均
濃度を10ppm以下にすると共に、亜鉛合金粒子11
の表面近傍部12に存在する不純物15中の鉄成分16
の合計含有量を当該粒子11に対する割合で0.5pp
m以下にすることにより、非常に純度の高い亜鉛金属を
原料に使用しなくても、異常なガス発生を抑制すること
ができるので、ガス発生の抑制を低コストで容易に実現
できる無水銀のアルカリ電池用亜鉛合金粉末を提供する
ことができ、最終的には無水銀アルカリ電池の耐漏液性
を向上させることができる。
If the average concentration of the iron component in such a zinc alloy is 5 ppm or less, as shown in FIG. 1, the average concentration of the iron components 14, 16 in the surface vicinity portion 12 of the zinc alloy particle 11 is 10 ppm. In addition to the following, zinc alloy particles 11
Of iron component 16 in impurities 15 existing in the vicinity 12 of the surface of
The total content of 0.5 pp as a ratio to the particles 11
By setting m or less, abnormal gas generation can be suppressed without using extremely high-purity zinc metal as a raw material. Therefore, suppression of gas generation can be easily realized at low cost. It is possible to provide a zinc alloy powder for an alkaline battery, and finally improve the leakage resistance of a mercury-free alkaline battery.

【0045】なお、亜鉛合金粒子の表面に付着する鉄成
分含有不純物は、亜鉛合金粉末の製造工程以降からアル
カリ電池の製造工程までのいずれの過程においても混入
する可能性があるものである。このため、亜鉛合金粉末
の製造工程では、磁選機を使用して、亜鉛合金粉末の表
面に付着する鉄成分含有不純物の低減化を図るようにし
ている。また、亜鉛合金粉末の製造工程の環境のみを極
めてクリーンに保持しても、鉄成分含有不純物をアルカ
リ電池の負極活物質から完全に排除することは困難であ
ることから、アルカリ電池の製造工程そのものの環境
を、必要な前工程を含めて、鉄成分含有不純物が混入し
ないように厳密に管理することも必要である。
The iron component-containing impurities attached to the surface of the zinc alloy particles may be mixed in any process from the zinc alloy powder manufacturing process to the alkaline battery manufacturing process. Therefore, in the manufacturing process of the zinc alloy powder, a magnetic separator is used to reduce the impurities containing iron components attached to the surface of the zinc alloy powder. Moreover, even if only the environment of the manufacturing process of the zinc alloy powder is kept extremely clean, it is difficult to completely remove the iron-containing impurities from the negative electrode active material of the alkaline battery, so the manufacturing process of the alkaline battery itself It is also necessary to strictly control the environment of 1) including the necessary pre-process so that impurities containing iron components are not mixed.

【0046】ところで、上述したようなガス発生の主原
因となるのは、従来の技術で説明したように、前記特許
文献1〜3等で述べられている通り、亜鉛粉末中に極く
僅かに存在する鉄であることが知られている。また、前
記特許文献1等では、亜鉛粒子の全体に対して1ppm
以上相当の鉄系の異物を亜鉛粉末に外部から添加するこ
とにより、亜鉛粒子の表面に存在する上記異物から水素
ガスが発生することが述べられている。しかしながら、
上記特許文献1〜3等においては、亜鉛合金粒子の表面
近傍部中の鉄成分の濃度や亜鉛合金粒子の表面近傍部に
存在する不純物中の鉄成分の合計含有量とガス発生との
相関関係等について何ら言及されていない。
By the way, the main cause of the above-mentioned gas generation is, as described in the prior art, as described in the above-mentioned Patent Documents 1 to 3, etc., only a slight amount is present in the zinc powder. It is known to be an existing iron. Further, in Patent Document 1 and the like, it is 1 ppm with respect to the entire zinc particles.
It has been described that hydrogen gas is generated from the foreign matter existing on the surface of the zinc particles by externally adding a considerable amount of iron-based foreign matter to the zinc powder. However,
In the above Patent Documents 1 to 3, etc., the correlation between the concentration of the iron component in the vicinity of the surface of the zinc alloy particles and the total content of the iron components in the impurities present in the vicinity of the surface of the zinc alloy particles and the gas generation. Etc. are not mentioned at all.

【0047】これに対し、本発明者らは、ガス発生に真
に影響するのは亜鉛合金粒子の表面近傍部に存在する鉄
成分であり、亜鉛合金粒子の表面近傍部の鉄成分の濃度
を極めて低いレベルに抑制すれば、亜鉛合金粒子の全体
の鉄成分の濃度を1ppm以下にしなくてもよく、これ
に伴って、原料に用いる亜鉛金属の全体の鉄成分の濃度
も1ppm以下にしなくてもよいのではないかと考え、
後述のような試験を行うことにより、亜鉛合金粒子の全
体の鉄成分の濃度が1ppmを超えても、上述した条件
であれば問題を生じないことを確認して、上述したよう
な特徴を有する本発明を完成したのである。
On the other hand, the present inventors have found that it is the iron component existing near the surface of the zinc alloy particles that has a real effect on the gas generation, and the concentration of the iron component near the surface of the zinc alloy particles is If it is suppressed to an extremely low level, the total iron component concentration of the zinc alloy particles does not have to be 1 ppm or less, and accordingly, the total iron component concentration of the zinc metal used as the raw material does not have to be 1 ppm or less. I thought it might be good,
By conducting a test as described below, it was confirmed that even if the total iron component concentration of the zinc alloy particles exceeds 1 ppm, no problem will occur under the above-mentioned conditions, and the zinc alloy particles have the above-described characteristics. The present invention has been completed.

【0048】なお、亜鉛合金粉末は、アルミニウム(A
l)、ビスマス(Bi)、カルシウム(Ca)、インジ
ウム(In)、鉛(Pb)、マグネシウム(Mg)、錫
(Sn)のうち1つ以上の元素をそれぞれ10〜100
00ppmの範囲で含有し、残部亜鉛(Zn)からなる
亜鉛合金粉末とするとよい。これは、いずれかの上記元
素が10ppm未満では、その添加の効果、すなわち水
素ガスの発生を抑制しても、実用的な放電性能を維持す
る効果が発揮できず好ましくないからである。また、1
0000ppmを超える場合には、それ以上添加効果が
発現されなく、亜鉛合金粉末のコスト増加となり、好ま
しくないからである。これらの上記元素は、亜鉛合金粉
末の製造工程で合金粉末として製造された成分や、アル
カリ電池の製造工程で添加されて亜鉛合金粉末と一体と
なった成分、すなわち、添加することにより亜鉛と置換
して析出した成分やメッキされた成分をも含むものであ
る。
The zinc alloy powder is aluminum (A
l), bismuth (Bi), calcium (Ca), indium (In), lead (Pb), magnesium (Mg), and tin (Sn), each containing one or more elements of 10 to 100.
It is preferable that the zinc alloy powder is contained in the range of 00 ppm and the balance is zinc (Zn). This is because if the content of any one of the above elements is less than 10 ppm, the effect of its addition, that is, the effect of maintaining practical discharge performance cannot be exhibited even if the generation of hydrogen gas is suppressed, which is not preferable. Also, 1
This is because when the content exceeds 0000 ppm, the effect of addition is not further exhibited and the cost of the zinc alloy powder increases, which is not preferable. These above-mentioned elements are components manufactured as alloy powder in the manufacturing process of zinc alloy powder or components added in the manufacturing process of alkaline battery and integrated with zinc alloy powder, that is, they are replaced with zinc by addition. It also includes the components deposited by plating and the plated components.

【0049】また、本発明にかかるアルカリ電池用亜鉛
合金粉末は、亜鉛合金中の鉄成分の平均濃度が5ppm
以下であり、Ge成分の平均濃度が20ppb以下、S
b成分の平均濃度が50ppb以下、As成分の平均濃
度が5ppb以下であることを一つの特徴とするもので
ある。
The zinc alloy powder for alkaline batteries according to the present invention has an average iron component concentration of 5 ppm in the zinc alloy.
And the average concentration of the Ge component is 20 ppb or less, S
One feature is that the average concentration of the b component is 50 ppb or less and the average concentration of the As component is 5 ppb or less.

【0050】ここで、Ge成分の平均濃度が20ppb
を超え、Sb成分の平均濃度が50ppbを超え、As
成分の平均濃度が5ppbを超える条件が同時に満たさ
れると、アルカリ電池のガス発生が抑制できず、好まし
くない。
Here, the average concentration of the Ge component is 20 ppb.
, The average concentration of Sb component exceeds 50 ppb,
If the conditions that the average concentration of the components exceeds 5 ppb are simultaneously satisfied, the gas generation of the alkaline battery cannot be suppressed, which is not preferable.

【0051】なお、Ge成分の平均濃度が15ppb以
下、Sb成分の平均濃度が30ppb以下、As成分の
平均濃度が2ppb以下であると好ましく、Ge成分の
平均濃度が10ppb以下、Sb成分の平均濃度が20
ppb以下、As成分の平均濃度が1ppb以下である
とさらに好ましい。
It is preferable that the Ge component has an average concentration of 15 ppb or less, the Sb component has an average concentration of 30 ppb or less, the As component has an average concentration of 2 ppb or less, and the Ge component has an average concentration of 10 ppb or less. Is 20
More preferably, it is ppb or less and the average concentration of the As component is 1 ppb or less.

【0052】また、Ge成分の平均濃度が1ppb以下
の場合、As成分の平均濃度が5ppb以下であれば、
Sb成分の平均濃度が50ppbを超えても当該濃度を
80ppb以下に抑制することにより、アルカリ電池の
ガス発生を抑制することができ、As成分の平均濃度が
1ppb以下の場合、Ge成分の平均濃度が20ppb
以下であれば、Sb成分の平均濃度が50ppbを超え
ても当該濃度を70ppb以下に抑制することにより、
アルカリ電池のガス発生を抑制することができ、As成
分の平均濃度が1ppb以下の場合、Sb成分の平均濃
度が50ppb以下であれば、Ge成分の平均濃度が2
0ppbを超えても当該濃度を27ppb以下に抑制す
ることにより、アルカリ電池のガス発生を抑制すること
ができ、Sb成分の平均濃度が10ppb以下の場合、
As成分の平均濃度が5ppb以下であれば、Ge成分
の平均濃度が20ppbを超えても当該濃度を25pp
b以下に抑制することにより、アルカリ電池のガス発生
を抑制することができる。
If the average concentration of the Ge component is 1 ppb or less, and if the average concentration of the As component is 5 ppb or less,
Even if the average concentration of the Sb component exceeds 50 ppb, by suppressing the concentration to 80 ppb or less, it is possible to suppress the gas generation of the alkaline battery, and when the average concentration of the As component is 1 ppb or less, the average concentration of the Ge component. Is 20 ppb
If the average concentration of the Sb component is below 50 ppb, by suppressing the concentration below 70 ppb,
Gas generation of an alkaline battery can be suppressed, and when the average concentration of As component is 1 ppb or less, when the average concentration of Sb component is 50 ppb or less, the average concentration of Ge component is 2 or less.
By suppressing the concentration to 27 ppb or less even if it exceeds 0 ppb, it is possible to suppress the gas generation of the alkaline battery, and when the average concentration of the Sb component is 10 ppb or less,
If the average concentration of the As component is 5 ppb or less, even if the average concentration of the Ge component exceeds 20 ppb, the concentration is 25 pp
By suppressing to b or less, gas generation of the alkaline battery can be suppressed.

【0053】さらに、Ge成分の平均濃度が1ppb以
下であると共に、As成分の平均濃度が1ppb以下で
ある場合には、Sb成分の平均濃度が50ppbを超え
ても110ppb以下であれば、アルカリ電池のガス発
生を抑制することができ、As成分の平均濃度が1pp
b以下であると共に、Sb成分の平均濃度が10ppb
以下である場合には、Ge成分の平均濃度が20ppb
を超えても29ppb以下であれば、アルカリ電池のガ
ス発生を抑制することができる。
Furthermore, when the average concentration of the Ge component is 1 ppb or less and the average concentration of the As component is 1 ppb or less, if the average concentration of the Sb component is 110 ppb or less even if it exceeds 50 ppb, the alkaline battery Gas generation can be suppressed, and the average concentration of As component is 1 pp
b or less and the average concentration of Sb component is 10 ppb
When it is below, the average concentration of Ge component is 20 ppb
Even if it exceeds, if it is 29 ppb or less, gas generation of the alkaline battery can be suppressed.

【0054】なお、Ge成分の平均濃度が4ppb以
下、As成分の平均濃度が1ppb以下、Sb成分の平
均濃度が100ppb以下となる条件が同時に満たされ
たときや、Ge成分の平均濃度が10ppb以下、As
成分の平均濃度が2ppb以下、Sb成分の平均濃度が
90ppb以下となる条件が同時に満たされたときや、
Ge成分の平均濃度が5ppb以下、As成分の平均濃
度が4ppb以下、Sb成分の平均濃度が90ppb以
下となる条件が同時に満たされたときにおいても、アル
カリ電池のガス発生を抑制することができる。
When the conditions that the average concentration of the Ge component is 4 ppb or less, the average concentration of the As component is 1 ppb or less, and the average concentration of the Sb component is 100 ppb or less are satisfied at the same time, or the average concentration of the Ge component is 10 ppb or less. , As
When the conditions that the average concentration of the component is 2 ppb or less and the average concentration of the Sb component is 90 ppb or less are satisfied at the same time,
Even when the conditions that the average concentration of the Ge component is 5 ppb or less, the average concentration of the As component is 4 ppb or less, and the average concentration of the Sb component is 90 ppb or less are satisfied at the same time, the gas generation of the alkaline battery can be suppressed.

【0055】ここで、亜鉛合金中の鉄成分の平均濃度が
5ppm以下であり、Ge成分の平均濃度が20ppb
以下、Sb成分の平均濃度が50ppb以下、As成分
の平均濃度が5ppb以下であると同時に、亜鉛合金粒
子の表面近傍部中の鉄成分の平均濃度が10ppm以下
であると共に、亜鉛合金粒子の表面近傍部に存在する不
純物中の鉄成分の合計含有量が当該粒子全体に対する割
合で0.5ppm以下であると、アルカリ電池のガス発
生を許容量以下にさらに抑制することができる。
Here, the average concentration of the iron component in the zinc alloy is 5 ppm or less, and the average concentration of the Ge component is 20 ppb.
Hereinafter, the average concentration of the Sb component is 50 ppb or less, the average concentration of the As component is 5 ppb or less, at the same time, the average concentration of the iron component in the vicinity of the surface of the zinc alloy particles is 10 ppm or less, and the surface of the zinc alloy particles When the total content of iron components in the impurities present in the vicinity is 0.5 ppm or less in terms of the ratio with respect to the whole particles, the gas generation of the alkaline battery can be further suppressed below the allowable amount.

【0056】なお、上述と同様に、Ge成分の平均濃度
が15ppb以下、Sb成分の平均濃度が30ppb以
下、As成分の平均濃度が2ppb以下であると好まし
く、Ge成分の平均濃度が10ppb以下、Sb成分の
平均濃度が20ppb以下、As成分の平均濃度が1p
pb以下であるとさらに好ましい。
As described above, it is preferable that the average concentration of the Ge component is 15 ppb or less, the average concentration of the Sb component is 30 ppb or less, the average concentration of the As component is 2 ppb or less, and the average concentration of the Ge component is 10 ppb or less. The average concentration of Sb component is 20 ppb or less, the average concentration of As component is 1 p
It is more preferable that it is pb or less.

【0057】また、上述と同様に、Ge成分の平均濃度
が1ppb以下の場合、As成分の平均濃度が5ppb
以下であれば、Sb成分の平均濃度が50ppbを超え
ても当該濃度を80ppb以下に抑制することにより、
アルカリ電池のガス発生を抑制することができ、As成
分の平均濃度が1ppb以下の場合、Ge成分の平均濃
度が20ppb以下であれば、Sb成分の平均濃度が5
0ppbを超えても当該濃度を70ppb以下に抑制す
ることにより、アルカリ電池のガス発生を抑制すること
ができ、As成分の平均濃度が1ppb以下の場合、S
b成分の平均濃度が50ppb以下であれば、Ge成分
の平均濃度が20ppbを超えても当該濃度を27pp
b以下に抑制することにより、アルカリ電池のガス発生
を抑制することができ、Sb成分の平均濃度が10pp
b以下の場合、As成分の平均濃度が5ppb以下であ
れば、Ge成分の平均濃度が20ppbを超えても当該
濃度を25ppb以下に抑制することにより、アルカリ
電池のガス発生を抑制することができる。
Further, as described above, when the average concentration of the Ge component is 1 ppb or less, the average concentration of the As component is 5 ppb.
If the average concentration of the Sb component is below 50 ppb, by suppressing the concentration below 80 ppb,
Gas generation in an alkaline battery can be suppressed, and when the average concentration of As component is 1 ppb or less, when the average concentration of Ge component is 20 ppb or less, the average concentration of Sb component is 5 or less.
Even if it exceeds 0 ppb, by suppressing the concentration to 70 ppb or less, the gas generation of the alkaline battery can be suppressed, and if the average concentration of the As component is 1 ppb or less, S
If the average concentration of the b component is 50 ppb or less, even if the average concentration of the Ge component exceeds 20 ppb, the concentration is 27 pp
By suppressing to b or less, gas generation of the alkaline battery can be suppressed, and the average concentration of Sb component is 10 pp.
In the case of b or less, if the average concentration of the As component is 5 ppb or less, even if the average concentration of the Ge component exceeds 20 ppb, by suppressing the concentration to 25 ppb or less, the gas generation of the alkaline battery can be suppressed. .

【0058】さらに、上述と同様に、Ge成分の平均濃
度が1ppb以下であると共に、As成分の平均濃度が
1ppb以下である場合には、Sb成分の平均濃度が5
0ppbを超えても110ppb以下であれば、アルカ
リ電池のガス発生を抑制することができ、As成分の平
均濃度が1ppb以下であると共に、Sb成分の平均濃
度が10ppb以下である場合には、Ge成分の平均濃
度が20ppbを超えても29ppb以下であれば、ア
ルカリ電池のガス発生を抑制することができる。
Further, as described above, when the average concentration of the Ge component is 1 ppb or less and the average concentration of the As component is 1 ppb or less, the average concentration of the Sb component is 5 or less.
If it is 110 ppb or less even if it exceeds 0 ppb, it is possible to suppress the gas generation of the alkaline battery, and if the average concentration of the As component is 1 ppb or less and the average concentration of the Sb component is 10 ppb or less, Ge Even if the average concentration of the components exceeds 20 ppb and is 29 ppb or less, gas generation in the alkaline battery can be suppressed.

【0059】なお、上述と同様に、Ge成分の平均濃度
が4ppb以下、As成分の平均濃度が1ppb以下、
Sb成分の平均濃度が100ppb以下となる条件が同
時に満たされたときや、Ge成分の平均濃度が10pp
b以下、As成分の平均濃度が2ppb以下、Sb成分
の平均濃度が90ppb以下となる条件が同時に満たさ
れたときや、Ge成分の平均濃度が5ppb以下、As
成分の平均濃度が4ppb以下、Sb成分の平均濃度が
90ppb以下となる条件が同時に満たされたときにお
いても、アルカリ電池のガス発生を抑制することができ
る。
As described above, the average concentration of the Ge component is 4 ppb or less, the average concentration of the As component is 1 ppb or less,
When the conditions that the average concentration of the Sb component is 100 ppb or less are satisfied at the same time, or the average concentration of the Ge component is 10 pp
b or less, the average concentration of the As component is 2 ppb or less and the average concentration of the Sb component is 90 ppb or less at the same time, or the average concentration of the Ge component is 5 ppb or less, As
Even when the conditions that the average concentration of the component is 4 ppb or less and the average concentration of the Sb component is 90 ppb or less are simultaneously satisfied, the gas generation of the alkaline battery can be suppressed.

【0060】このような上述した範囲を重相関でまとめ
ると、以下のような式(1)で表すことができる。すな
わち、下記の式(1)で表される関係が、ガスの発生の
抑制に好ましい上述した範囲となるのである。
If the above-mentioned range is summarized by multiple correlation, it can be expressed by the following equation (1). That is, the relationship represented by the following formula (1) is in the above-described range preferable for suppressing the generation of gas.

【0061】 V=−0.0950+0.1382×DGe+0.4052×DAs+0.0348×DSb (1) ただし、Vはガス発生速度(μl/g・d)、DGeは亜
鉛合金中のGe成分の平均濃度(ppb)、DAsは亜鉛
合金中のAs成分の平均濃度(ppb)、DSbは亜鉛合
金中のSb成分の平均濃度(ppb)である。
V = −0.0950 + 0.1382 × D Ge + 0.4052 × D As + 0.0348 × D Sb (1) where V is the gas generation rate (μl / g · d) and D Ge is the zinc alloy The average concentration of the Ge component (ppb), D As is the average concentration of the As component in the zinc alloy (ppb), and D Sb is the average concentration of the Sb component in the zinc alloy (ppb).

【0062】上記金属成分は、亜鉛合金粉末中に不可避
的に混入するものである。しかしながら、本発明者ら
は、亜鉛合金粉末中に不可避的に混入する上記金属であ
っても、上述した条件を満たすようにすれば、アルカリ
電池のガス発生を抑制できる知見を得て、本発明を完成
したのである。これにより、一般的な高純度の亜鉛金属
を原料として使用しても、アルカリ電池のガス発生を抑
制することができ、原料入手の制約が著しく減少され、
且つ、効率的に選択使用が可能となる。
The above metal components are inevitably mixed in the zinc alloy powder. However, the inventors of the present invention have found that even if the above-mentioned metal unavoidably mixed in the zinc alloy powder, the gas generation of the alkaline battery can be suppressed by satisfying the above-mentioned conditions. Was completed. As a result, even when general high-purity zinc metal is used as a raw material, it is possible to suppress gas generation in an alkaline battery, and the restriction on raw material acquisition is significantly reduced.
In addition, the selective use can be efficiently performed.

【0063】ここで、原料として使用可能な上記亜鉛金
属は、例えば、蒸留法、電解法、又は蒸留法及び電解法
の併用法等のような各種の製法から比較的容易に得られ
る一般的な高純度の亜鉛金属である。また、無水銀のア
ルカリ電池用亜鉛合金粉末の合金成分の範囲も従来の場
合よりも範囲を広げることができる。
Here, the zinc metal that can be used as a raw material is generally obtained relatively easily from various production methods such as a distillation method, an electrolysis method, or a combined method of the distillation method and the electrolysis method. It is a high-purity zinc metal. Further, the range of the alloy components of the anhydrous silver zinc alloy powder for alkaline batteries can be expanded as compared with the conventional case.

【0064】このような本発明にかかる無水銀のアルカ
リ電池用亜鉛合金粉末を製造するには、鉄成分の平均濃
度が0.009mg/m3 の雰囲気の室内において、鉄
成分の平均濃度が5ppm以下の亜鉛金属に、上記各元
素をそれぞれ所定量添加して溶解した熔湯を直接高圧空
気法(例えば噴出圧5kg/m2 )等でアトマイズして
粉末化し、篩い分け(例えば20−250メッシュの粒
度)して粒度を揃えると共に、必要に応じて磁石により
磁力選別して付着鉄成分を除去することにより、得るこ
とができる。
In order to produce such a zinc-free zinc alloy powder for alkaline batteries according to the present invention, the average concentration of iron components is 5 ppm in a room having an average concentration of iron components of 0.009 mg / m 3. A molten metal obtained by adding the respective amounts of the above-mentioned elements to the following zinc metal is directly atomized by a high pressure air method (for example, a jet pressure of 5 kg / m 2 ) or the like to be pulverized and sieved (for example, 20-250 mesh). Particle size) to make the particle sizes uniform, and if necessary, magnetic force is selected with a magnet to remove the adhering iron component.

【0065】なお、原料として用いる亜鉛金属は、電解
法あるいは蒸留法のいずれの方法で得られたものであっ
てもよい。また、粉末化するアトマイズ法は、上述した
ような空気アトマイズ法に限らず、例えば、不活性ガス
アトマイズ法や回転円板(ディスクアトマイズ)法等の
ような他のアトマイズ法を適用することも可能である
が、これに限定されるものではない。
The zinc metal used as a raw material may be one obtained by either an electrolytic method or a distillation method. Further, the atomizing method for pulverizing is not limited to the air atomizing method as described above, and it is also possible to apply other atomizing methods such as an inert gas atomizing method and a rotating disk (disc atomizing) method. However, the present invention is not limited to this.

【0066】そして、得られた亜鉛合金粉末の水素ガス
発生量を測定するには、常法に従い、酸化亜鉛を飽和さ
せた40℃の水酸化カリウム水溶液に亜鉛合金粉末を浸
漬することにより、発生した水素ガスの量を測定する。
また、亜鉛合金中の合金成分及び鉄成分の平均濃度は、
ICP分析法により分析して求めることができる。ま
た、亜鉛合金粒子の表面近傍部中の鉄成分の平均濃度
は、希硝酸水溶液で亜鉛合金粒子の表面近傍部を溶解さ
せた後、当該水溶液中の亜鉛分及び鉄成分の量を分析す
ることにより求めることができる。また、亜鉛合金粒子
の表面近傍部に存在する不純物中の鉄成分の合計含有量
は、希硝酸水溶液で表面近傍部を溶解された上記亜鉛合
金粒子をさらに希硝酸水溶液ですべて溶解した後、当該
水溶液中の亜鉛分及び鉄成分の量を分析して上記表面近
傍部中の鉄成分の平均濃度との差を算出することにより
求めることができる。
The amount of hydrogen gas generated in the obtained zinc alloy powder is measured by immersing the zinc alloy powder in a 40 ° C. potassium hydroxide aqueous solution saturated with zinc oxide according to a conventional method. Measure the amount of hydrogen gas produced.
Further, the average concentration of the alloy component and the iron component in the zinc alloy is
It can be determined by analysis by the ICP analysis method. Further, for the average concentration of the iron component in the vicinity of the surface of the zinc alloy particles, after dissolving the vicinity of the surface of the zinc alloy particles in a dilute nitric acid aqueous solution, analyze the amount of the zinc component and the iron component in the aqueous solution. Can be obtained by Further, the total content of iron components in the impurities present in the vicinity of the surface of the zinc alloy particles, after all the zinc alloy particles dissolved in the vicinity of the surface in a dilute nitric acid solution is further dissolved in a dilute nitric acid solution, It can be determined by analyzing the amounts of the zinc component and the iron component in the aqueous solution and calculating the difference from the average concentration of the iron component in the surface vicinity portion.

【0067】なお、亜鉛合金粒子の表面近傍部に存在す
る鉄成分含有不純物量は、製造工程での磁力選別の有
無、一般大気中への亜鉛合金粉末の放置、亜鉛合金粉末
への鉄粉の添加、亜鉛合金粉末を希薄塩化鉄水溶液に浸
漬して鉄を亜鉛と置換析出させる等により、容易に調整
することができる。
The amount of iron component-containing impurities existing in the vicinity of the surface of the zinc alloy particles depends on the presence or absence of magnetic force selection in the manufacturing process, leaving the zinc alloy powder in the general atmosphere, and determining the amount of iron powder in the zinc alloy powder. It can be easily adjusted by adding, immersing the zinc alloy powder in a dilute aqueous solution of iron chloride, and substituting iron for zinc.

【0068】次に、上記亜鉛合金粉末(3.0g)を負
極活物質として用いて電解液(1.5g)と混合してゲ
ル状化したものを負極材とすることにより、図2に示す
ようなアルカリマンガン電池を作製することができる。
ここで、上記電解液は、水酸化カリウム水溶液(濃度4
0%)に酸化亜鉛を飽和させたものに、ゲル化剤として
カルボキシメチルセルロースとポアリアクリル酸ソーダ
を添加(1.0%程度)したものである。
Next, the zinc alloy powder (3.0 g) was used as a negative electrode active material and mixed with an electrolytic solution (1.5 g) to form a gel, which was used as a negative electrode material, as shown in FIG. Such an alkaline manganese battery can be manufactured.
Here, the electrolytic solution is an aqueous solution of potassium hydroxide (concentration 4
(0%) saturated with zinc oxide, and carboxymethyl cellulose and sodium polyacrylate are added (about 1.0%) as gelling agents.

【0069】なお、図2中、符号21は正極缶、22は
正極、23は負極(ゲル化した亜鉛合金粉末)、24は
セパレータ、25は封口体、26は負極底板、27は負
極集電体、28はキャップ、29は熱収縮性樹脂チュー
ブ、30は絶縁リング、31は外装缶である。
In FIG. 2, reference numeral 21 is a positive electrode can, 22 is a positive electrode, 23 is a negative electrode (gelled zinc alloy powder), 24 is a separator, 25 is a sealing body, 26 is a negative electrode bottom plate, and 27 is a negative electrode current collector. A body, 28 is a cap, 29 is a heat-shrinkable resin tube, 30 is an insulating ring, and 31 is an outer can.

【0070】[0070]

【実施例】本発明によるアルカリ電池用亜鉛合金粉末の
効果を確認するため、前述した実施の形態に基づいて以
下のような実験を行った。
EXAMPLE In order to confirm the effect of the zinc alloy powder for alkaline batteries according to the present invention, the following experiment was conducted based on the above-described embodiment.

【0071】[実施例A1]合金成分をアルミニウム
(Al)100ppm、ビスマス(Bi)500pp
m、カルシウム(Ca)200ppm、インジウム(I
n)500ppm、鉛(Pb)500ppmとし、亜鉛
合金中の鉄成分の平均濃度(濃度1)を5ppmとし、
亜鉛合金粒子の表面近傍部に存在する不純物中の鉄成分
の合計含有量の当該粒子に対する割合(濃度2)を0.
5ppmとし、亜鉛合金粒子の表面近傍部中の鉄成分の
平均濃度(濃度3)を8ppmとした亜鉛合金粉末を製
造した。なお、不可避的不純物は、Ge成分の平均濃度
を20ppb以下、Sb成分の平均濃度を50ppb以
下、As成分の平均濃度を5ppb以下とした。
[Example A1] Aluminum (Al) 100 ppm and bismuth (Bi) 500 pp were used as alloy components.
m, calcium (Ca) 200 ppm, indium (I
n) 500 ppm, lead (Pb) 500 ppm, and the average concentration (concentration 1) of the iron component in the zinc alloy is 5 ppm,
The ratio (concentration 2) of the total content of iron components in the impurities present near the surface of the zinc alloy particles to the particles was 0.
A zinc alloy powder was produced in which the concentration was 5 ppm, and the average concentration (concentration 3) of the iron component in the vicinity of the surface of the zinc alloy particles was 8 ppm. As for the unavoidable impurities, the average concentration of Ge component was 20 ppb or less, the average concentration of Sb component was 50 ppb or less, and the average concentration of As component was 5 ppb or less.

【0072】[実施例A2]前記濃度3を10ppmと
し、それ以外を実施例A1と同一とした亜鉛合金粉末を
製造した。
[Example A2] A zinc alloy powder was produced in which the concentration 3 was set to 10 ppm and the other conditions were the same as in Example A1.

【0073】[実施例A3]前記濃度2を0.3ppm
とし、それ以外を実施例A2と同一とした亜鉛合金粉末
を製造した。
[Example A3] The concentration 2 was 0.3 ppm.
A zinc alloy powder was manufactured in the same manner as in Example A2 except for the above.

【0074】[実施例A4]前記濃度1を3ppmと
し、それ以外を実施例A2と同一とした亜鉛合金粉末を
製造した。
[Example A4] A zinc alloy powder was produced in which the concentration 1 was set to 3 ppm and the other conditions were the same as in Example A2.

【0075】[実施例A5]前記濃度1を2ppmと
し、それ以外を実施例A1と同一とした亜鉛合金粉末を
製造した。
[Example A5] A zinc alloy powder was produced in which the concentration 1 was set to 2 ppm and the other conditions were the same as in Example A1.

【0076】[実施例A6]前記濃度1を1.5ppm
とし、それ以外を実施例A1と同一とした亜鉛合金粉末
を製造した。
[Example A6] The concentration 1 was 1.5 ppm.
The zinc alloy powder was manufactured in the same manner as in Example A1 except for the above.

【0077】[実施例A7]合金成分としてマグネシウ
ム(Mg)100ppmを追加した以外は、実施例A1
と同一とした亜鉛合金粉末を製造した。
[Example A7] Example A1 except that 100 ppm of magnesium (Mg) was added as an alloy component.
Zinc alloy powder identical to

【0078】[実施例A8]合金成分としてスズ(S
n)100ppmを追加した以外は、実施例A1と同一
とした亜鉛合金粉末を製造した。
[Example A8] Tin (S
n) A zinc alloy powder identical to that of Example A1 was produced except that 100 ppm was added.

【0079】[実施例A9]合金成分としてマグネシウ
ム(Mg)100ppm及びスズ(Sn)100ppm
を追加した以外は、実施例A1と同一とした亜鉛合金粉
末を製造した。
[Example A9] Magnesium (Mg) 100 ppm and tin (Sn) 100 ppm as alloy components
A zinc alloy powder was produced in the same manner as in Example A1 except that was added.

【0080】[比較例A1]前記濃度3を15ppmと
し、それ以外を実施例A1と同一とした亜鉛合金粉末を
製造した。
[Comparative Example A1] A zinc alloy powder was produced in which the concentration 3 was set to 15 ppm and the other conditions were the same as in Example A1.

【0081】[比較例A2]前記濃度2を0.7ppm
とし、それ以外を比較例A1と同一とした亜鉛合金粉末
を製造した。
[Comparative Example A2] The concentration 2 was 0.7 ppm.
The zinc alloy powder was manufactured in the same manner as Comparative Example A1 except for the above.

【0082】[比較例A3]前記濃度1を6ppmと
し、それ以外を比較例A1と同一とした亜鉛合金粉末を
製造した。
[Comparative Example A3] A zinc alloy powder was produced in which the concentration 1 was set to 6 ppm and the other conditions were the same as those of Comparative Example A1.

【0083】[比較例A4]合金成分としてマグネシウ
ム(Mg)100ppmを追加した以外は、比較例A1
と同一とした亜鉛合金粉末を製造した。
[Comparative Example A4] Comparative Example A1 except that 100 ppm of magnesium (Mg) was added as an alloy component.
Zinc alloy powder identical to

【0084】[比較例A5]合金成分としてスズ(S
n)100ppmを追加した以外は、比較例A1と同一
とした亜鉛合金粉末を製造した。
[Comparative Example A5] Tin (S
n) A zinc alloy powder identical to that of Comparative Example A1 was produced except that 100 ppm was added.

【0085】[比較例A6]合金成分としてマグネシウ
ム(Mg)100ppm及びスズ(Sn)100ppm
を追加した以外は、比較例A1と同一とした亜鉛合金粉
末を製造した。
[Comparative Example A6] Magnesium (Mg) 100 ppm and tin (Sn) 100 ppm as alloy components
A zinc alloy powder identical to that of Comparative Example A1 was produced except that was added.

【0086】なお、亜鉛合金粉末の製造は、鉄分の平均
濃度が0.009mg/m3 の雰囲気の室内において、
鉄分の平均濃度が上記条件の亜鉛金属を溶解して上記各
元素をそれぞれ上記量添加した熔湯を直接高圧空気法
(噴出圧5kg/m2 )によりアトマイズして粉体化し
た後、篩い分け(粒度:20−250メッシュ)すると
共に、条件に応じて磁石により磁力選別して、表面に付
着する遊離鉄粉を除去することに行った。また、原料の
亜鉛金属は、電解法で得たものを用いた。
The zinc alloy powder was produced in a room with an average iron concentration of 0.009 mg / m 3 in a room.
Molten zinc metal having an average concentration of iron under the above conditions was melted and each of the above elements was added in the above amounts, and the molten metal was atomized directly by the high-pressure air method (jet pressure 5 kg / m 2 ) to form a powder, which was then sieved. (Particle size: 20-250 mesh), magnetic force was selected by a magnet according to the conditions, and free iron powder adhering to the surface was removed. The zinc metal used as the raw material was obtained by electrolysis.

【0087】亜鉛合金粉末の水素ガス発生量は、常法に
従い、酸化亜鉛を飽和させた40℃の苛性カリ水溶液に
当該亜鉛合金粉末を浸漬することにより測定した。亜鉛
合金中の合金成分および鉄成分の平均濃度は、ICP分
析法により分析して求めた。亜鉛合金粒子の表面近傍部
中の鉄成分の平均濃度は、希硝酸水溶液で亜鉛合金粒子
の表面近傍部を溶解させた後、当該水溶液中の亜鉛分及
び鉄分の量を分析して求めた。亜鉛合金粒子の表面近傍
部に存在する不純物中の鉄成分の合計含有量は、希硝酸
水溶液で表面近傍部を溶解された上記亜鉛合金粒子をさ
らに希硝酸水溶液ですべて溶解した後、当該水溶液中の
亜鉛分及び鉄分の量を分析して上記表面近傍部中の鉄成
分の平均濃度との差を算出することにより求めた。ま
た、亜鉛合金粒子の表面近傍部に存在する鉄成分の濃度
を増加する場合には、合金粉末に鉄粉を添加した。
The hydrogen gas generation amount of the zinc alloy powder was measured by immersing the zinc alloy powder in a 40 ° C. potassium hydroxide aqueous solution saturated with zinc oxide according to a conventional method. The average concentration of the alloy component and the iron component in the zinc alloy was determined by the ICP analysis method. The average concentration of the iron component in the vicinity of the surface of the zinc alloy particles was obtained by dissolving the vicinity of the surface of the zinc alloy particles in a dilute nitric acid aqueous solution and then analyzing the amounts of zinc and iron in the aqueous solution. The total content of iron components in the impurities present in the vicinity of the surface of the zinc alloy particles is determined by dissolving the zinc alloy particles in the vicinity of the surface with a dilute nitric acid aqueous solution and further dissolving them in the dilute nitric acid aqueous solution. The amount of zinc and iron was analyzed to calculate the difference from the average concentration of the iron component in the vicinity of the surface. Further, in the case of increasing the concentration of iron component existing near the surface of the zinc alloy particles, iron powder was added to the alloy powder.

【0088】以上のような条件で行った実施例A1〜A
9及び比較例A1〜A6の結果を下記の表1に示す。
Examples A1 to A conducted under the above conditions
The results of Sample No. 9 and Comparative Examples A1 to A6 are shown in Table 1 below.

【0089】[0089]

【表1】 [Table 1]

【0090】上記表1からわかるように、実施例A1〜
A9ではガス発生が抑制されたが、比較例A1〜A6に
おいては、ガス発生の抑制ができなかった。このよう
に、亜鉛合金粒子の表面近傍部に存在する鉄成分の濃度
が高くなると、ガス発生速度が大きくなるという関係に
あることがわかる。
As can be seen from Table 1 above, Examples A1 to A1
Although gas generation was suppressed in A9, gas generation could not be suppressed in Comparative Examples A1 to A6. As described above, it is understood that the gas generation rate increases as the concentration of the iron component existing near the surface of the zinc alloy particles increases.

【0091】[実施例B1]合金成分をアルミニウム
(Al)100ppm、ビスマス(Bi)500pp
m、カルシウム(Ca)200ppm、インジウム(I
n)500ppm、鉛(Pb)500ppm、マグネシ
ウム(Mg)50ppm、錫(Sn)50ppmとし、
Ge成分の平均濃度を20ppb、Sb成分の平均濃度
を50ppb、As成分の平均濃度を5ppbとし、亜
鉛合金中の鉄成分の平均濃度(濃度1)を5ppm以下
とし、亜鉛合金粒子の表面近傍部に存在する不純物中の
鉄成分の合計含有量の当該粒子に対する割合(濃度2)
を0.5ppm以下とし、亜鉛合金粒子の表面近傍部中
の鉄成分の平均濃度(濃度3)を10ppm以下とした
亜鉛合金粉末を製造した。
[Example B1] Alloy components were aluminum (Al) 100 ppm, bismuth (Bi) 500 pp.
m, calcium (Ca) 200 ppm, indium (I
n) 500 ppm, lead (Pb) 500 ppm, magnesium (Mg) 50 ppm, tin (Sn) 50 ppm,
The average concentration of the Ge component is 20 ppb, the average concentration of the Sb component is 50 ppb, the average concentration of the As component is 5 ppb, the average concentration of the iron component in the zinc alloy (concentration 1) is 5 ppm or less, and the surface vicinity of the zinc alloy particles Ratio of the total content of iron components in the impurities present in the particles to the particles (concentration 2)
Of 0.5 ppm or less and the average concentration (concentration 3) of the iron component in the vicinity of the surface of the zinc alloy particles was 10 ppm or less to produce a zinc alloy powder.

【0092】[実施例B2]Ge成分の平均濃度を15
ppb、Sb成分の平均濃度を30ppb、As成分の
平均濃度を2ppbとし、それ以外を実施例B1と同一
とした亜鉛合金粉末を製造した。
[Example B2] The average concentration of the Ge component was set to 15
A zinc alloy powder was produced in which the average concentration of the ppb and Sb components was 30 ppb, the average concentration of the As component was 2 ppb, and the other conditions were the same as in Example B1.

【0093】[実施例B3]Ge成分の平均濃度を10
ppb、Sb成分の平均濃度を20ppb、As成分の
平均濃度を1ppbとし、それ以外を実施例B1と同一
とした亜鉛合金粉末を製造した。
[Example B3] The average concentration of the Ge component was set to 10
A zinc alloy powder was produced in which the average concentration of the ppb and Sb components was 20 ppb, the average concentration of the As component was 1 ppb, and the other conditions were the same as in Example B1.

【0094】[実施例B4]Ge成分の平均濃度を3p
pb、Sb成分の平均濃度を10ppb、As成分の平
均濃度を1ppbとし、それ以外を実施例B1と同一と
した亜鉛合金粉末を製造した。
[Example B4] The average concentration of Ge component was set to 3 p.
A zinc alloy powder was produced in which the average concentration of the pb and Sb components was 10 ppb, the average concentration of the As component was 1 ppb, and the other conditions were the same as in Example B1.

【0095】[比較例B1]Ge成分の平均濃度を30
ppb、Sb成分の平均濃度を70ppb、As成分の
平均濃度を10ppbとし、それ以外を実施例B1と同
一とした亜鉛合金粉末を製造した。
[Comparative Example B1] The average concentration of the Ge component was set to 30.
A zinc alloy powder was produced in which the average concentration of the ppb and Sb components was 70 ppb, the average concentration of the As component was 10 ppb, and the other conditions were the same as in Example B1.

【0096】以上のような条件で行った実施例B1〜B
4及び比較例B1の結果を下記の表2に示す。
Examples B1 to B conducted under the above conditions
The results of Comparative Example 4 and Comparative Example B1 are shown in Table 2 below.

【0097】[0097]

【表2】 [Table 2]

【0098】上記表2からわかるように、実施例B1〜
B4ではガス発生が抑制されたが、比較例B1において
は、ガス発生の抑制ができなかった。
As can be seen from Table 2 above, Examples B1 to
In B4, gas generation was suppressed, but in Comparative Example B1, gas generation could not be suppressed.

【0099】[実施例C1〜C42]下記の表3に示す
ように、各元素を所定量ずつ添加して実施例C1〜C4
2の亜鉛合金粉末を求めた。それらの結果を下記の表3
に示す。
[Examples C1 to C42] As shown in Table 3 below, Examples C1 to C4 were prepared by adding each element in a predetermined amount.
2 zinc alloy powder was determined. The results are shown in Table 3 below.
Shown in.

【0100】[0100]

【表3】 [Table 3]

【0101】上記表3からわかるように、実施例C1〜
C42の亜鉛合金粉末はいずれも水素ガスの発生を抑制
することができ、電池の耐漏液性を向上させた無水銀化
アルカリ電池用亜鉛合金粉末に適用できることが判明し
た。
As can be seen from Table 3 above, Examples C1 to
It has been found that all of the C42 zinc alloy powders can suppress the generation of hydrogen gas and can be applied to zinc alloy powders for anhydrous silver-alkali alkaline batteries with improved leakage resistance of the batteries.

【0102】[実施例D1〜D14及び比較例D1〜D
6]下記の表4に示すように、各元素を所定量ずつ添加
して実施例D1〜D14及び比較例D1〜D6の亜鉛合
金粉末を求めた。なお、これらの亜鉛合金中の鉄成分の
平均濃度はすべて5ppm以下である。それらの結果を
下記の表4に示す。
[Examples D1 to D14 and Comparative Examples D1 to D]
6] As shown in Table 4 below, predetermined amounts of each element were added to obtain zinc alloy powders of Examples D1 to D14 and Comparative Examples D1 to D6. The average concentrations of iron components in these zinc alloys are all 5 ppm or less. The results are shown in Table 4 below.

【0103】[0103]

【表4】 [Table 4]

【0104】上記表4からわかるように、比較例D1〜
D6においては、ガス発生の抑制ができず、無水銀化ア
ルカリ電池用亜鉛合金粉末に適用することができないも
のの、本実施例D1〜D14の亜鉛合金粉はいずれも水
素ガスの発生を抑制することができ、電池の耐漏液性を
向上させた無水銀化アルカリ電池用亜鉛合金粉末に適用
できることが判明した。
As can be seen from Table 4 above, Comparative Examples D1 to D1
In D6, generation of gas could not be suppressed, and although it could not be applied to the zinc alloy powder for anhydrous silver halide batteries, the zinc alloy powders of Examples D1 to D14 all suppressed generation of hydrogen gas. It was found that the present invention can be applied to a zinc alloy powder for an anhydrous silver-alkaline battery which has improved liquid leakage resistance.

【0105】[実施例E1及び比較例E1]下記の表5
に示すように、各元素を所定量ずつ添加して実施例E1
(磁力選別あり)及び比較例E1(磁力選別なし)の亜
鉛合金粉末を求めた。なお、これらの亜鉛合金中の鉄成
分の平均濃度はすべて5ppm以下である。それらの結
果を下記の表5に示す。
Example E1 and Comparative Example E1 Table 5 below
As shown in Example 1, each element was added in a predetermined amount, and Example E1 was added.
Zinc alloy powders (with magnetic force selection) and Comparative Example E1 (without magnetic force selection) were obtained. The average concentrations of iron components in these zinc alloys are all 5 ppm or less. The results are shown in Table 5 below.

【0106】[0106]

【表5】 [Table 5]

【0107】上記表5からわかるように、比較例E1に
おいては、ガス発生の抑制ができず、無水銀化アルカリ
電池用亜鉛合金粉末に適用することができないものの、
本実施例E1の亜鉛合金粉はいずれも水素ガスの発生を
抑制することができ、電池の耐漏液性を向上させた無水
銀化アルカリ電池用亜鉛合金粉末に適用できることが判
明した。
As can be seen from Table 5 above, in Comparative Example E1, although the generation of gas could not be suppressed and it could not be applied to the zinc alloy powder for anhydrous silver halide alkaline batteries,
It was found that all of the zinc alloy powders of this Example E1 were able to suppress the generation of hydrogen gas and could be applied to the zinc alloy powders for anhydrous silver-alkaline batteries with improved liquid leakage resistance.

【0108】[電池ガス特性]上述した実施例A1〜
3,B1〜2,C1〜3,D1〜3,E1及び比較例A
1〜3,B1,D1〜3,E1で使用した亜鉛合金粉末
を負極に用いてアルカリマンガン電池(日本工業規格
「LR6」形式)を作製し、放電後ガス量(電池ガス特
性)を測定した。具体的には、作製した上記アルカリマ
ンガン電池を20℃の環境下で7日間保持した後、一定
の放電抵抗(1Ω)で規定の終止(Cut)電圧(0.2
V)まで連続放電したら、60℃の環境下で3日間保持
した後、当該電池内に発生したガス量を測定した。その
結果を下記の表6に示す。
[Battery Gas Characteristics] The above-mentioned Examples A1 to A1
3, B1-2, C1-3, D1-3, E1 and Comparative Example A
1 to 3, B1, D1 to 3 and E1 were used for the negative electrode to prepare an alkaline manganese battery (Japanese Industrial Standards “LR6” type), and the amount of gas after discharge (battery gas characteristics) was measured. . Specifically, the prepared alkaline manganese battery was kept in an environment of 20 ° C. for 7 days, and then a specified cut voltage (0.2) with a constant discharge resistance (1Ω).
After continuous discharge to V), the gas amount generated in the battery was measured after holding for 3 days in an environment of 60 ° C. The results are shown in Table 6 below.

【0109】[0109]

【表6】 [Table 6]

【0110】上記表6からわかるように、実施例A1〜
3,B1〜2,C1〜3,D1〜3,E1で使用した亜
鉛合金粉末を負極に用いて作製したアルカリマンガン電
池は、比較例A1〜3,B1,D1〜3,E1で使用し
た亜鉛合金粉末を負極に用いて作製したアルカリマンガ
ン電池と比べて、放電後ガス量を抑制することができ、
電池の耐漏液性を向上させた無水銀化アルカリ電池用亜
鉛合金粉末に適用できることが判明した。
As can be seen from Table 6 above, Examples A1 to A1
Alkaline manganese batteries prepared by using the zinc alloy powders used in No. 3, B1-2, C1-3, D1-3, and E1 as the negative electrode are zinc used in Comparative Examples A1 to 3, B1, D1 to 3, and E1. Compared with the alkaline manganese battery produced by using the alloy powder for the negative electrode, the amount of gas after discharge can be suppressed,
It has been found that the present invention can be applied to zinc alloy powder for anhydrous silver-alkali battery having improved leakage resistance of the battery.

【0111】[0111]

【発明の効果】本発明のアルカリ電池用亜鉛合金粉末に
よれば、亜鉛合金中の鉄成分の平均濃度が5ppm以下
であり、亜鉛合金粒子の表面近傍部中の鉄成分の平均濃
度が10ppm以下であると共に、亜鉛合金粒子の表面
近傍部に存在する不純物中の鉄成分の合計含有量が当該
粒子全体に対する割合で0.5ppm以下であることか
ら、非常に純度の高い亜鉛金属を原料に使用しなくても
異常なガス発生を抑制することができるので、低コスト
で製造の容易な無水銀のアルカリ電池用亜鉛合金粉末を
提供することができ、最終的には無水銀アルカリ電池の
耐漏液性を低コストで簡単に向上させることができる。
According to the zinc alloy powder for alkaline batteries of the present invention, the average concentration of the iron component in the zinc alloy is 5 ppm or less, and the average concentration of the iron component in the vicinity of the surface of the zinc alloy particles is 10 ppm or less. In addition, since the total content of iron components in the impurities present in the vicinity of the surface of the zinc alloy particles is 0.5 ppm or less with respect to the entire particles, zinc metal of extremely high purity is used as a raw material. Since it is possible to suppress abnormal gas generation without doing so, it is possible to provide a zinc alloy powder for anhydrous alkaline batteries which is easy to manufacture at low cost, and finally provides a leak-proof liquid-resistant solution for anhydrous alkaline batteries. Can be easily improved at low cost.

【0112】[0112]

【図面の簡単な説明】[Brief description of drawings]

【図1】亜鉛合金粒子の説明図である。FIG. 1 is an explanatory diagram of zinc alloy particles.

【図2】アルカリマンガン電池の概略構造を表す断面図
である。
FIG. 2 is a sectional view showing a schematic structure of an alkaline manganese battery.

【符号の説明】[Explanation of symbols]

11 亜鉛合金粒子 12 表面近傍部 13 表面 14 鉄成分 15 不純物 16 鉄成分 21 正極缶 22 正極 23 負極 24 セパレータ 25 封口体 26 負極底板 27 負極集電体 28 キャップ 29 熱収縮性樹脂チューブ 30 絶縁リング 31 外装缶 11 Zinc alloy particles 12 Surface vicinity 13 surface 14 Iron component 15 impurities 16 Iron component 21 Positive electrode can 22 Positive electrode 23 Negative electrode 24 separator 25 Sealed body 26 Negative electrode bottom plate 27 Negative electrode current collector 28 caps 29 Heat-shrinkable resin tube 30 insulation ring 31 Exterior can

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01M 6/08 H01M 6/08 A (56)参考文献 特開 平5−86430(JP,A) 特開 平5−299086(JP,A) 特開 平5−299087(JP,A) 特開 平8−315816(JP,A) 特開 平7−245103(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/42 B22F 9/00 - 9/30 C22C 18/00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI H01M 6/08 H01M 6/08 A (56) Reference JP-A-5-86430 (JP, A) JP-A-5-299086 ( JP, A) JP-A 5-299087 (JP, A) JP-A 8-315816 (JP, A) JP-A 7-245103 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/42 B22F 9/00-9/30 C22C 18/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 亜鉛合金中の鉄成分の平均濃度が1pp
mを超え5ppm以下であり、 亜鉛合金粒子の表面近傍部中の鉄成分の平均濃度が10
ppm以下であると共に、 亜鉛合金粒子の表面近傍部に存在する外部由来の鉄成分
含有量が当該粒子全体に対する割合で0.5ppm以
下であることを特徴とするアルカリ電池用亜鉛合金粉
末。
1. The average concentration of iron in a zinc alloy is 1 pp.
m is 5 ppm or less, and the average concentration of the iron component in the vicinity of the surface of the zinc alloy particles is 10
Zinc alloy powder for alkaline batteries, characterized in that the content of the externally-derived iron component existing in the vicinity of the surface of the zinc alloy particles is 0.5 ppm or less in proportion to the whole of the particles.
【請求項2】 請求項において、 アルミニウム、ビスマス、カルシウム、インジウム、
鉛、マグネシウム、スズのうちの1つ以上の元素をそれ
ぞれ10〜10000ppmの範囲で含有することを特
徴とするアルカリ電池用亜鉛合金粉末。
2. The method according to claim 1, wherein aluminum, bismuth, calcium, indium,
A zinc alloy powder for an alkaline battery, which contains one or more elements of lead, magnesium and tin in a range of 10 to 10,000 ppm, respectively.
【請求項3】 鉄成分の平均濃度が1ppmを超え5p
pm以下の亜鉛金属に、アルミニウム、ビスマス、カル
シウム、インジウム、鉛、マグネシウム、スズのうち1
つ以上の元素をそれぞれ10〜10000ppmの範囲
となるように添加して溶解した熔湯をアトマイズするこ
とにより、請求項1又は請求項の亜鉛合金粉末を製造
することを特徴とするアルカリ電池用亜鉛合金粉末の製
造方法。
3. The average concentration of iron component exceeds 1 ppm and exceeds 5 p.
One of aluminum, bismuth, calcium, indium, lead, magnesium and tin for zinc metal of pm or less
One or more elements are added so as to be in the range of 10 to 10,000 ppm, and the melt is melted and atomized to produce the zinc alloy powder according to claim 1 or 2 . Method for producing zinc alloy powder.
【請求項4】 請求項において、 アトマイズして得られた亜鉛合金粉末を磁力選別するこ
とを特徴とするアルカリ電池用亜鉛合金粉末の製造方
法。
4. The method for producing a zinc alloy powder for an alkaline battery according to claim 3, wherein the zinc alloy powder obtained by atomizing is magnetically selected.
【請求項5】 請求項1又は請求項のアルカリ電池用
亜鉛合金粉末が負極活物質として用いられていることを
特徴するアルカリ電池。
5. An alkaline battery, wherein the zinc alloy powder for an alkaline battery according to claim 1 or 2 is used as a negative electrode active material.
JP2002343589A 2002-03-05 2002-11-27 Zinc alloy powder for alkaline batteries Expired - Fee Related JP3490708B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002343589A JP3490708B1 (en) 2002-03-05 2002-11-27 Zinc alloy powder for alkaline batteries
CA002418555A CA2418555A1 (en) 2002-03-05 2003-02-06 Zinc alloy powder for alkaline manganese dioxide cell, and negative electrode for alkaline manganese dioxide cell, and alkaline manganese dioxide cell using same
US10/378,697 US20030180607A1 (en) 2002-03-05 2003-03-04 Zinc alloy powder for alkaline manganese dioxide cell, and negative electrode for alkaline manganese dioxide cell, and alkaline manganese dioxide cell using same
CN03119850A CN1442918A (en) 2002-03-05 2003-03-04 Zinc alloy powder, negative electrode used for alkaline manganese dioxide battery and said battery
DE10309402A DE10309402A1 (en) 2002-03-05 2003-03-04 Zinc alloy powder for alkaline manganese dioxide cells and negative electrodes for alkaline manganese dioxide cells and alkaline manganese dioxide cells using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-58290 2002-03-05
JP2002058290 2002-03-05
JP2002343589A JP3490708B1 (en) 2002-03-05 2002-11-27 Zinc alloy powder for alkaline batteries

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003192856A Division JP3643584B2 (en) 2002-03-05 2003-07-07 Negative electrode active material for mercury-free alkaline battery and anhydrous mercury alkaline battery using the same

Publications (2)

Publication Number Publication Date
JP2004006223A JP2004006223A (en) 2004-01-08
JP3490708B1 true JP3490708B1 (en) 2004-01-26

Family

ID=30445740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343589A Expired - Fee Related JP3490708B1 (en) 2002-03-05 2002-11-27 Zinc alloy powder for alkaline batteries

Country Status (1)

Country Link
JP (1) JP3490708B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494382B (en) * 2018-12-10 2020-11-27 杭州长命电池有限公司 Mercury-free high-power zinc-manganese battery, electric core powder, zinc cylinder and mercury-free pulp laminated paper thereof

Also Published As

Publication number Publication date
JP2004006223A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
US5312476A (en) Zinc alloy powder for alkaline cell and method for production of the same
US5108494A (en) Zinc alloy powder for alkaline cell and method for production of the same
EP0503287A1 (en) Zinc alkaline cells
JPH04284357A (en) Zinc alkaline battery
US20030180607A1 (en) Zinc alloy powder for alkaline manganese dioxide cell, and negative electrode for alkaline manganese dioxide cell, and alkaline manganese dioxide cell using same
JPH04284358A (en) Zinc alkaline battery
JP3490708B1 (en) Zinc alloy powder for alkaline batteries
JP3643584B2 (en) Negative electrode active material for mercury-free alkaline battery and anhydrous mercury alkaline battery using the same
JPH04237952A (en) Manufacture of unamalgamated zinc alloy powder for alkaline dry battery
JP2832228B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPS62123656A (en) Zinc-alkaline battery
JP2832227B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPS6164076A (en) Electrochemical battery
JP2004014306A (en) Electrolytic solution for alkaline battery and alkaline battery using this electrolytic solution
JPH04289661A (en) Zinc alloy powder for alkaline battery and manufacture thereof
JP3053070B2 (en) Anode zinc-based alloy for alkaline batteries
JP3163006B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JP3155201B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JP2003272615A (en) Zinc alloy powder and alkaline battery using the same
JPH06318456A (en) Manufacture of non-amalgamated negative electrode zinc alloy powder for alkaline battery
JP2832230B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2832232B2 (en) Zinc alloy powder for alkaline batteries
JP2002373651A (en) Alkaline battery
JP3163007B2 (en) Method for producing negative electrode zinc-based alloy powder for alkaline battery
JP2832231B2 (en) Zinc alloy powder for alkaline battery and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031028

LAPS Cancellation because of no payment of annual fees