JPH07169463A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JPH07169463A
JPH07169463A JP5313309A JP31330993A JPH07169463A JP H07169463 A JPH07169463 A JP H07169463A JP 5313309 A JP5313309 A JP 5313309A JP 31330993 A JP31330993 A JP 31330993A JP H07169463 A JPH07169463 A JP H07169463A
Authority
JP
Japan
Prior art keywords
zinc
mercury
discharge
alkaline battery
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5313309A
Other languages
Japanese (ja)
Inventor
Kiyohide Tsutsui
清英 筒井
Akihide Izumi
彰英 泉
Masatake Nishio
昌武 西尾
Kuniyoshi Nishida
国良 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP5313309A priority Critical patent/JPH07169463A/en
Publication of JPH07169463A publication Critical patent/JPH07169463A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To further improve the discharge characteristic of a mercury-free alkaline battery, and particularly enhance the capacity at low temperature discharge and high load discharge. CONSTITUTION:This battery contains no mercury and has, a negative electrode active material, a zinc-based alloy to which a trace amount of one kinds or more of lead, indium, aluminum, gallium, tin, calcium, magnesium, bismuth, lithium, sodium, etc., are added. The particle size of the zinc-based alloy powder ranges from 75 to 540mum, and those having particle sizes less than 300mum account for 90% or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、亜鉛粉末(正確には
微量の合金元素を添加した亜鉛基合金粉末である)を負
極活物質とするアルカリ電池に関し、特に、亜鉛粉末を
水銀でアマルガム化することを廃止したいわゆる無水銀
アルカリ電池の特性改善技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline battery using a zinc powder (to be exact, a zinc-based alloy powder to which a trace amount of alloying elements is added) as a negative electrode active material, and in particular, zinc powder is amalgamated with mercury. The present invention relates to a technique for improving characteristics of a so-called silver-free alkaline battery, which has been eliminated.

【0002】[0002]

【従来の技術】良く知られているように、アルカリ電池
用の亜鉛粉末は通常アトマイズ法により製造され、粒径
は75〜450μm程度であり、多くはイモ状の粒子形
状をしている(比較的丸いジャガイモ状のものや、細長
いサツマイモ状のものが混じっているのが普通であ
る)。表面積の大きい粉末の形の亜鉛を負極に使用して
いるので、電解液中での反応性に優れ、そのためこの種
アルカリ電池は大電流放電に適している。その反面、表
面積が大きいことから負極亜鉛が電解液中で腐食されや
すく、従来は多量の水銀を用いて耐食性を維持してき
た。ところが、廃乾電池中の水銀による環境汚染問題に
対する懸念から、アルカリ電池の低水銀化そして無水銀
化へと技術改良が進められてきた。
2. Description of the Related Art As is well known, zinc powder for alkaline batteries is usually produced by an atomizing method and has a particle size of about 75 to 450 μm, and most of them have a potato-like particle shape (comparison). It is usually a mixture of potato-shaped and round sweet potato-shaped ones). Since zinc in the form of powder having a large surface area is used for the negative electrode, it has excellent reactivity in the electrolytic solution, and therefore this type of alkaline battery is suitable for high current discharge. On the other hand, because of the large surface area, the negative electrode zinc is easily corroded in the electrolytic solution, and conventionally, a large amount of mercury has been used to maintain the corrosion resistance. However, due to concern over the environmental pollution problem of mercury in waste dry batteries, technical improvements have been made to reduce mercury in alkaline batteries and to make them silver-free.

【0003】亜鉛粉末を水銀でアマルガム化することを
廃止し、代りに、適当な合金元素を微量添加した亜鉛基
合金の粉末を負極活物質とするで、その耐食性および電
池特性を改善する。このような観点で盛んに研究が行わ
れ、腐食防止に効果的な合金元素がいくつも見いだされ
ている。例えば鉛、インジウム、アルミニウム、ガリウ
ム、スズ、カルシウム、マグネシウム、ビスマス、リチ
ウム、ナトリウムなどである(ただし鉛については環境
汚染問題の懸念があり、できるだけ使用しない方向にあ
る)。これら合金元素のどれをどの程度添加すると効果
的かとか、どの元素とどの元素を複合添加すると大きな
相乗効果が得られるかといった事項について、多くの有
意義なデータが蓄積されきた。その結果ほぼ実用に耐え
る無水銀アルカリ電池が実現されつつある。
The amalgamation of zinc powder with mercury is abolished, and instead, a zinc-based alloy powder containing a trace amount of a suitable alloying element is used as the negative electrode active material, thereby improving its corrosion resistance and battery characteristics. From this point of view, extensive research has been conducted and a number of alloying elements effective for corrosion prevention have been found. For example, lead, indium, aluminum, gallium, tin, calcium, magnesium, bismuth, lithium, sodium, etc. (However, there is a concern about environmental pollution problems with lead, so it is being used as little as possible). A lot of meaningful data has been accumulated on matters such as what and how much of these alloy elements should be added, and which elements and which elements should be added together to obtain a large synergistic effect. As a result, a mercury-free alkaline battery that is practically practical is being realized.

【0004】[0004]

【発明が解決しようとする課題】現状の無水銀アルカリ
電池については、水銀を使用した従来のアルカリ電池と
比較して、その特性上いくつかの不十分な点がある。そ
の1つは、低温での放電性能が常温時に比べて大きく低
下することである。また、高負荷放電時の容量も小さい
という問題がある。250ppmの水銀を含むアマルガ
ム化亜鉛粉末を使用した従来のアルカリ電池(以下、有
水銀アルカリ電池という)と、アルミニウムとビスマス
とインジウムを適量添加した亜鉛基合金粉末を使用した
無水銀アルカリ電池との放電性能を比較試験した。常温
下での放電容量は無水銀アルカリ電池も有水銀アルカリ
電池とそれほど遜色はなかった。しかし、低温下での放
電容量を比較すると(−10℃、10Ω連続放電、終止
電圧0.9V)、有水銀アルカリ電池の容量を100と
したとき、無水銀アルカリ電池のそれは56と非常に小
さかった。また高負荷放電時の容量も有水銀アルカリ電
池に対して相当小さい。つまり亜鉛粉末をアマルガム化
することは、亜鉛の耐食性を向上させるという効果だけ
でなく、低温時および高負荷の放電特性を良好に保つ上
でも大きな効果をあげていることになる。
The current mercury-free alkaline battery has some inadequacies in characteristics as compared with the conventional alkaline battery using mercury. One of them is that the discharge performance at low temperature is much lower than that at normal temperature. Further, there is a problem that the capacity at the time of high load discharge is small. Discharge between a conventional alkaline battery (hereinafter referred to as a mercury-containing alkaline battery) that uses zinc amalgamated zinc powder containing 250 ppm of mercury and an anhydrous silver alkaline battery that uses a zinc-based alloy powder to which aluminum, bismuth, and indium are added in appropriate amounts. The performance was comparatively tested. The discharge capacity at room temperature was comparable to that of mercury-free alkaline batteries and mercury-containing alkaline batteries. However, comparing the discharge capacities at low temperature (-10 ° C, 10Ω continuous discharge, final voltage 0.9V), when the capacity of the mercury-containing alkaline battery was set to 100, that of the mercury-free alkaline battery was 56, which was very small. It was Moreover, the capacity at the time of high load discharge is considerably smaller than that of the mercury-containing alkaline battery. That is, converting the zinc powder into an amalgam has a great effect not only on improving the corrosion resistance of zinc but also on maintaining good discharge characteristics at low temperature and under high load.

【0005】この発明は前述した従来の問題点に鑑みな
されたもので、その目的は、水銀を含まず、鉛、インジ
ウム、アルミニウム、ガリウム、スズ、カルシウム、マ
グネシウム、ビスマス、リチウム、ナトリウムなどを微
量添加した亜鉛基合金粉末を負極活物質とする無水銀ア
ルカリ電池の放電特性をさらに改善することであり、特
に、低温放電時および高負荷放電時の容量を大きくする
ことにある。
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to contain no trace amount of lead, indium, aluminum, gallium, tin, calcium, magnesium, bismuth, lithium, sodium and the like without containing mercury. Another object is to further improve the discharge characteristics of a mercury-free alkaline battery that uses the added zinc-based alloy powder as a negative electrode active material, and particularly to increase the capacity during low-temperature discharge and high-load discharge.

【0006】[0006]

【課題を解決するための手段】そこでこの発明では、前
記の亜鉛基合金粉末の粒径分布に着目した。まず従来の
無水銀アルカリ電池用亜鉛基合金粉末の粒径分布を測定
したところ、75〜450μmの範囲であり、その中で
300μm以下の小粒径の粉末は80%以下しかなかっ
た。つまり300μm以上の大粒径の粉末が20%以上
含まれていた。一方、75〜450μmの粒径分布の亜
鉛基合金粉末で、300μm以下の小粒径の粉末の割り
合いを従来より多くして無水銀アルカリ電池を試作し、
放電性能がどのように変化するかを調べた。
In the present invention, therefore, attention has been paid to the particle size distribution of the zinc-based alloy powder. First, when the particle size distribution of the conventional zinc-based alloy powder for a mercury-free alkaline battery was measured, it was in the range of 75 to 450 μm, and only 80% or less of the powder having a small particle size of 300 μm or less was found. That is, 20% or more of powder having a large particle size of 300 μm or more was contained. On the other hand, with a zinc-based alloy powder having a particle size distribution of 75 to 450 μm, the proportion of powder having a small particle size of 300 μm or less was made larger than that of the conventional one, and an anhydrous silver alkaline battery was prototyped.
It was investigated how the discharge performance changes.

【0007】その結果、水銀を含まず、鉛、インジウ
ム、アルミニウム、ガリウム、スズ、カルシウム、マグ
ネシウム、ビスマス、リチウム、ナトリウムなどの1種
以上を微量添加した亜鉛基合金からなり、粒径分布が7
5〜450μmの範囲であり、かつ300μm以下の小
粒径のものが90%以上を占めた粉末を負極活物質とし
て使用してアルカリ電池を構成すると、低温時でも良好
な放電特性を示すことを見いだした。つまり、300μ
m以上の粒径の配合率が従来は20%以上であったのに
対し、この発明では10%以下にした。
As a result, it is made of a zinc-based alloy which does not contain mercury and is added with a trace amount of one or more of lead, indium, aluminum, gallium, tin, calcium, magnesium, bismuth, lithium and sodium, and has a particle size distribution of 7.
When an alkaline battery is constructed by using, as a negative electrode active material, a powder having a small particle size of 5 to 450 μm and having a small particle size of 300 μm or less occupying 90% or more, good discharge characteristics are exhibited even at low temperature. I found it. That is, 300μ
In the present invention, the compounding ratio of the particle diameter of m or more was 20% or more, whereas in the present invention, it was 10% or less.

【0008】[0008]

【作用】亜鉛基合金粉末の粒径分布が75〜450μm
の範囲と同じであっても、従来のものは300μm以上
の大粒径の配合率が20%以上と大きいのに対し、この
発明では300μm以上の大粒径の配合率を10%以下
と少なくしたので、従来より本発明の方が細かい粒子が
多くなっている。従って亜鉛基合金粉末の全体の表面積
が増え、そのため電解液中での反応性が向上し、低温下
および高負荷の放電でも反応が継続して活物質の利用率
が向上し、大きな放電容量を示すことになる。300μ
m以上の大粒径の亜鉛基合金粉末はより小粒径の粉末に
比べて体積当たりの表面積が小さいので、電解液中での
反応性が低く、低温下および高負荷での放電時には活物
質の利用率が非常に悪くなる。そのような好ましくない
300μm以上の大粒径の粉末の配合率を減らすこと
で、活物質の利用率が向上し、放電容量が増大する。
[Function] The particle size distribution of the zinc-based alloy powder is 75 to 450 μm
Even if the range is the same as the above range, the compounding ratio of the large particle size of 300 μm or more is as large as 20% or more in the conventional one, whereas the compounding ratio of the large particle size of 300 μm or more is as small as 10% or less in the present invention. Therefore, the present invention has more fine particles than the conventional one. Therefore, the total surface area of the zinc-based alloy powder is increased, so that the reactivity in the electrolyte is improved, the reaction continues even at low temperature and under high load discharge, the utilization factor of the active material is improved, and the large discharge capacity is increased. Will be shown. 300μ
Since the zinc-based alloy powder with a large particle size of m or more has a smaller surface area per volume than the powder with a smaller particle size, the reactivity in the electrolytic solution is low and the active material during discharge at low temperature and high load is used. The usage rate of is very poor. By reducing the compounding ratio of such an undesirable powder having a large particle size of 300 μm or more, the utilization ratio of the active material is improved and the discharge capacity is increased.

【0009】[0009]

【実施例】つぎのように無水銀アルカリ電池を試作し、
それぞれの放電性能を比較評価した。アルミニウムを4
0ppm、ビスマスを150ppm、インジウムを50
0ppm、鉛を10ppm添加した亜鉛基合金を原料と
し、アトマイズ法により亜鉛基合金粉末を製造した。そ
の粒度分布は75〜450μmの範囲であるが、この粉
末を適宜に分級・配合し75〜300μmの範囲の小粒
径粉末の配合率を75%にしたもの、80%にしたも
の、90%にしたもの、95%にしたものの4種類の負
極素材を得た。その4種類の負極素材を活物質として用
いて、その他は同じ構成でLR6型アルカリ電池をそれ
ぞれ100個製作した。
[Example] A trial manufacture of a mercury-free alkaline battery was carried out as follows.
Each discharge performance was comparatively evaluated. 4 aluminum
0 ppm, bismuth 150 ppm, indium 50
Using a zinc-based alloy containing 0 ppm and 10 ppm of lead as a raw material, a zinc-based alloy powder was manufactured by the atomization method. The particle size distribution is in the range of 75 to 450 μm, but this powder is appropriately classified and compounded, and the mixing ratio of the small particle size powder in the range of 75 to 300 μm is 75%, 80%, 90%. And four types of negative electrode materials were obtained. Using the four types of negative electrode materials as active materials, 100 LR6 alkaline batteries were manufactured with the same configuration except for the above.

【0010】そして各試作電池について、−10℃、1
0Ω連続放電、終止電圧0.9Vという条件の低温放電
試験と、20℃、2Ω連続放電、終止電圧0.9Vとい
う条件の高負荷放電試験を行い、それぞれ放電容量を測
定し、4種類各50個ずつの平均値を求めた。その結果
をつぎのグラフに示している。なお、このグラフでは7
5〜300μmの範囲の細粒子の配合率が75%の亜鉛
基合金粉末を使用した電池の放電容量を100とする相
対値で示している。このグラフから明らかなように、7
5〜300μmの範囲の小粒径の粉末の配合率を90%
以上に増やすことで、良好な放電特性が得られた。
For each prototype battery, -10 ° C, 1
A low-temperature discharge test under the conditions of 0Ω continuous discharge and a cutoff voltage of 0.9V and a high load discharge test under the conditions of 20 ° C., 2Ω continuous discharge and a cutoff voltage of 0.9V were performed. The average value for each was calculated. The results are shown in the graph below. In this graph, 7
It is shown as a relative value with the discharge capacity of a battery using a zinc-based alloy powder having a fine particle content in the range of 5 to 300 μm of 75% as 100. As you can see from this graph, 7
90% of the compounding ratio of the powder of the small particle size in the range of 5-300 μm
By increasing the amount above, good discharge characteristics were obtained.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【発明の効果】以上詳細に説明したように、この発明に
よれば、水銀を含まず、鉛、インジウム、アルミニウ
ム、ガリウム、スズ、カルシウム、マグネシウム、ビス
マス、リチウム、ナトリウムなどを微量添加した亜鉛基
合金粉末を負極活物質とする無水銀アルカリ電池の放電
特性をさらに改善することができ、特に、低温放電時お
よび高負荷放電時の容量を大きくすることができる。
As described in detail above, according to the present invention, a zinc group which does not contain mercury and to which a trace amount of lead, indium, aluminum, gallium, tin, calcium, magnesium, bismuth, lithium, sodium or the like is added is added. It is possible to further improve the discharge characteristics of a mercury-free alkaline battery using alloy powder as a negative electrode active material, and particularly to increase the capacity during low temperature discharge and high load discharge.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西田 国良 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kuniyoshi Nishida 5-36-11 Shinbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水銀を含まず、鉛、インジウム、アルミ
ニウム、ガリウム、スズ、カルシウム、マグネシウム、
ビスマス、リチウム、ナトリウムなどの1種以上を微量
添加した亜鉛基合金の粉末を負極活物質とするアルカリ
電池であって、前記亜鉛基合金粉末の粒径が75〜45
0μmの範囲であり、かつ300μm以下のものが90
%以上を占めていることを特徴とするアルカリ電池。
1. Mercury-free lead, indium, aluminum, gallium, tin, calcium, magnesium,
What is claimed is: 1. An alkaline battery in which a powder of a zinc-based alloy to which a trace amount of one or more of bismuth, lithium, sodium and the like is added is used as a negative electrode active material, and the particle diameter of the zinc-based alloy powder is 75 to 45.
90 in the range of 0 μm and 300 μm or less
Alkaline battery characterized by occupying more than 100%.
JP5313309A 1993-12-14 1993-12-14 Alkaline battery Pending JPH07169463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5313309A JPH07169463A (en) 1993-12-14 1993-12-14 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5313309A JPH07169463A (en) 1993-12-14 1993-12-14 Alkaline battery

Publications (1)

Publication Number Publication Date
JPH07169463A true JPH07169463A (en) 1995-07-04

Family

ID=18039674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5313309A Pending JPH07169463A (en) 1993-12-14 1993-12-14 Alkaline battery

Country Status (1)

Country Link
JP (1) JPH07169463A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1356881A1 (en) * 2002-04-25 2003-10-29 Grillo-Werke AG Zinc powder or zinc alloy powder for alkaline batteries
JP2005093121A (en) * 2003-09-12 2005-04-07 Toshiba Battery Co Ltd Zinc alkaline battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1356881A1 (en) * 2002-04-25 2003-10-29 Grillo-Werke AG Zinc powder or zinc alloy powder for alkaline batteries
WO2003090956A1 (en) * 2002-04-25 2003-11-06 Grillo-Werke Ag Zinc powder or zinc alloy powder for alkaline batteries
US7524582B2 (en) 2002-04-25 2009-04-28 Grillo-Werke Ag Zinc powder or zinc alloy powder for alkaline batteries
JP2005093121A (en) * 2003-09-12 2005-04-07 Toshiba Battery Co Ltd Zinc alkaline battery

Similar Documents

Publication Publication Date Title
JP4319253B2 (en) Electrochemical battery zinc anode
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JP4222488B2 (en) Alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JPH02239566A (en) Hydrogen storage alloy electrode for alkaline storage battery
JPH0222984B2 (en)
JPH07169463A (en) Alkaline battery
US20200388838A1 (en) Alkaline battery
JPH07161356A (en) Alkaline battery
JPH05135770A (en) Alkaline battery
JPH0140472B2 (en)
JP3188651B2 (en) Negative electrode zinc base alloy powder for alkaline batteries
JP3187862B2 (en) Zinc alkaline battery
JP3188652B2 (en) Negative electrode zinc base alloy powder for alkaline batteries
JPH0636765A (en) Zinc-alkaline battery
JPH0636764A (en) Zinc-alkaline battery
JPH08321302A (en) Hydrogen storage electrode
JP3219418B2 (en) Zinc alkaline battery
JP2005166419A (en) Alkaline dry battery
JPH05299075A (en) Zinc alkaline battery
JP2580235B2 (en) Negative electrode for non-aqueous secondary battery and its manufacturing method
EP0117902B1 (en) Process for producing divalent silver oxide cathode material
JPH10334909A (en) Negative electrode zinc-base alloy powder for alkaline battery
JPH0582129A (en) Zinc alloy powder for alkaline battery and manufacture thereof