JP2004019979A - Incineration method for combustible waste - Google Patents

Incineration method for combustible waste Download PDF

Info

Publication number
JP2004019979A
JP2004019979A JP2002172712A JP2002172712A JP2004019979A JP 2004019979 A JP2004019979 A JP 2004019979A JP 2002172712 A JP2002172712 A JP 2002172712A JP 2002172712 A JP2002172712 A JP 2002172712A JP 2004019979 A JP2004019979 A JP 2004019979A
Authority
JP
Japan
Prior art keywords
combustible waste
combustion
emulsion
fuel oil
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002172712A
Other languages
Japanese (ja)
Inventor
Rikiya Handa
半田 力也
Hiromi Oi
大井 弘美
Takeya Ishibashi
石橋 剛也
Ryusuke Toriuchi
鳥内 隆介
Iwane Fujii
藤井 石根
Tetsuo Miyakoshi
宮腰 哲雄
Minoru Takahashi
高橋 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002172712A priority Critical patent/JP2004019979A/en
Publication of JP2004019979A publication Critical patent/JP2004019979A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Feeding And Controlling Fuel (AREA)
  • Incineration Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a incineration method for combustible waste for preventing generation of dioxin and removing the other toxic substance in incineration. <P>SOLUTION: The granular combustible waste and emulsion containing at least water and fuel oil are burned in a mixing state. By combustion of the fuel oil in the emulsion, cluster-like water drops in the emulsion are diffused to the whole combustion area, each the water drop causes small phreatic explosion, and a ≤1/25 supply amount of air from the outside compared to normal combustion is sufficient. Accordingly, non-combusted carbon concentration is significantly small to extremely hardly form a benzene nucleus, and a partial high-temperature area is hardly generated in the combustion area. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本願の発明は、可燃性の産業廃棄物及び一般廃棄物の焼却方法に関するものである。
【0002】
【従来の技術】
可燃性の産業廃棄物及び一般廃棄物の殆どが高いエネルギーを保有しているので、埋立等の最終処分を行う前にその可燃性廃棄物の保有エネルギーを発電等に利用すると共に中間処理を行うために、可燃性廃棄物を焼却することが広く行われている。ところが、この焼却によって塩素ガス(Cl)、硫黄酸化物(SO)、窒素酸化物(NO)等の有害物が排出され、特に塩素はダイオキシンの発生原因になるので、公衆衛生や自然環境等が悪影響を受ける。
【0003】
これらの有害物の発生を防止するために、焼却後の排気ガスを水で洗浄して有害物を水で捕捉する方法が考えられている。また、厳格な温度管理の下で可燃性廃棄物を高温で焼却し且つ排気ガスを急冷すれば、ダイオキシンの発生は抑制することができるとされている。
【0004】
【発明が解決しようとする課題】
しかし、有害物を水で捕捉する方法では、洗浄後の水で公衆衛生や自然環境等が二次的に悪影響を受ける。また、厳格な温度管理及び急冷を行う方法では、処理コストが高く、しかもダイオキシンの発生は抑制することができても塩素ガス、硫黄酸化物、窒素酸化物等の有害物の排出は抑制することができない。従って、本願の発明は、焼却時にダイオキシンの発生が防止されると共にその他の有害物が除去されて、公衆衛生や自然環境等に対する悪影響を防止し且つ可燃性廃棄物の保有エネルギーを有効に利用しつつ、可燃性廃棄物を焼却することができる方法を提供することを目的としている。
【0005】
【課題を解決するための手段】
請求項1に係る可燃性廃棄物の焼却方法では、エマルジョン中の燃料油の燃焼によって、エマルジョン中の塩基水溶液におけるクラスター状の水滴が燃焼領域の全体に拡散して夫々が小さな水蒸気爆発を起こし、粒状の可燃性廃棄物が更に微細になる。このため、可燃性廃棄物の空気接触面積が非常に大きくなって、可燃性廃棄物の燃焼効率が著しく高い。更に、燃焼に必要な酸素が水蒸気から供給されて、外部からの空気の供給量が通常燃焼の1/25以下でよいので、被燃焼物の温度が高温に維持される。これらの結果、可燃性廃棄物が完全燃焼に近い状態で燃焼する。
【0006】
このため、可燃性廃棄物に含まれていた炭素の殆どが二酸化炭素になり、未燃焼炭素濃度が著しく低くて、ベンゼン核が極めて形成されにくい。また、可燃性廃棄物から塩素や硫黄が殆ど完全に分離し、これらによる塩素ガスや硫黄酸化物がエマルジョン中の塩基水溶液におけるイオン性の塩基と中和反応して塩として析出する。
【0007】
また、上述の水蒸気爆発によって燃焼が燃焼領域内で均一に生じて、燃焼領域に部分的な高温領域ができにくい。更に、上述の様に、燃焼に必要な酸素が水蒸気から供給されて、外部からの空気の供給量が通常燃焼の1/25以下でよい。これらのために、燃焼に伴って生じる窒素酸化物が生成されにくく、生成された窒素酸化物もエマルジョン中の塩基水溶液におけるイオン性の塩基と中和反応して塩として析出する。
【0008】
また、可燃性廃棄物が完全燃焼に近い状態で燃焼するので、可燃性廃棄物の保有エネルギーが有効に取り出される。なお、エマルジョン中における塩基水溶液の質量比が40%未満であると、水蒸気爆発が過少になって、ベンゼン核の形成の防止や、可燃性廃棄物からの塩素及び硫黄の分離や、燃焼に伴って生じる窒素酸化物の生成の防止が困難になる。また、エマルジョン中における塩基水溶液の質量比が80%超であると、燃料油が過少になって、可燃性廃棄物の燃焼自体が困難になる。
【0009】
請求項2に係る可燃性廃棄物の焼却方法では、エマルジョン中の燃料油の燃焼によって、エマルジョン中のクラスター状の水滴が燃焼領域の全体に拡散して夫々が小さな水蒸気爆発を起こし、粒状の可燃性廃棄物が更に微細になる。このため、可燃性廃棄物の空気接触面積が非常に大きくなって、可燃性廃棄物の燃焼効率が著しく高い。更に、燃焼に必要な酸素が水蒸気から供給されて、外部からの空気の供給量が通常燃焼の1/25以下でよいので、被燃焼物の温度が高温に維持される。これらの結果、可燃性廃棄物が完全燃焼に近い状態で燃焼する。
【0010】
このため、可燃性廃棄物に含まれていた炭素の殆どが二酸化炭素になり、未燃焼炭素濃度が著しく低くて、ベンゼン核が極めて形成されにくい。また、可燃性廃棄物から塩素や硫黄が殆ど完全に分離し、これらによる塩素ガスや硫黄酸化物が、可燃性廃棄物との混合物に含まれていてエマルジョン中の水によってイオン化した塩基と中和反応して塩として析出する。
【0011】
また、上述の水蒸気爆発によって燃焼が燃焼領域内で均一に生じて、燃焼領域に部分的な高温領域ができにくい。更に、上述の様に、燃焼に必要な酸素が水蒸気から供給されて、外部からの空気の供給量が通常燃焼の1/25以下でよい。これらのために、燃焼に伴って生じる窒素酸化物が生成されにくく、生成された窒素酸化物も、可燃性廃棄物との混合物に含まれていてエマルジョン中の水によってイオン化した塩基と中和反応して塩として析出する。
【0012】
また、可燃性廃棄物が完全燃焼に近い状態で燃焼するので、可燃性廃棄物の保有エネルギーが有効に取り出される。なお、エマルジョン中における水の質量比が40%未満であると、水蒸気爆発が過少になって、ベンゼン核の形成の防止や、可燃性廃棄物からの塩素及び硫黄の分離や、燃焼に伴って生じる窒素酸化物の生成の防止が困難になる。また、エマルジョン中における水の質量比が80%超であると、燃料油が過少になって、可燃性廃棄物の燃焼自体が困難になる。
【0013】
請求項3に係る可燃性廃棄物の焼却方法では、エマルジョン中の燃料油の燃焼によって、エマルジョン中のクラスター状の水滴が燃焼領域の全体に拡散して夫々が小さな水蒸気爆発を起こし、粒状の可燃性廃棄物が更に微細になる。このため、可燃性廃棄物の空気接触面積が非常に大きくなって、可燃性廃棄物の燃焼効率が著しく高い。更に、燃焼に必要な酸素が水蒸気から供給されて、外部からの空気の供給量が通常燃焼の1/25以下でよいので、被燃焼物の温度が高温に維持される。
【0014】
これらの結果、可燃性廃棄物が完全燃焼に近い状態で燃焼する。このため、可燃性廃棄物に含まれていた炭素の殆どが二酸化炭素になり、未燃焼炭素濃度が著しく低くて、ベンゼン核が極めて形成されにくい。
【0015】
また、上述の水蒸気爆発によって燃焼が燃焼領域内で均一に生じて、燃焼領域に部分的な高温領域ができにくい。更に、上述の様に、燃焼に必要な酸素が水蒸気から供給されて、外部からの空気の供給量が通常燃焼の1/25以下でよい。これらのために、燃焼に伴って生じる窒素酸化物が生成されにくい。
【0016】
また、可燃性廃棄物が完全燃焼に近い状態で燃焼するので、可燃性廃棄物の保有エネルギーが有効に取り出される。なお、エマルジョン中における水の質量比が40%未満であると、水蒸気爆発が過少になって、ベンゼン核の形成の防止や、燃焼に伴って生じる窒素酸化物の生成の防止が困難になる。また、エマルジョン中における水の質量比が80%超であると、燃料油が過少になって、可燃性廃棄物の燃焼自体が困難になる。
【0017】
請求項4に係る可燃性廃棄物の焼却方法では、粉砕された木質材料を可燃性廃棄物に混合するので、燃焼時の熱量を調整することができる。このため、可燃性廃棄物が完全燃焼に更に近い状態で燃焼し、ベンゼン核が更に形成されにくい。また、可燃性廃棄物が完全燃焼に更に近い状態で燃焼するので、可燃性廃棄物からの塩素や硫黄の分離が促進されて、これらによる塩素ガスや硫黄酸化物と塩基との中和反応による塩の析出も促進される。また、可燃性廃棄物が完全燃焼に更に近い状態で燃焼するので、可燃性廃棄物の保有エネルギーが更に有効に取り出される。
【0018】
請求項5に係る可燃性廃棄物の焼却方法では、燃焼終了側の第二の領域では蓄熱槽の周囲における螺旋状の流路内で燃焼を行う。このため、蓄熱槽の蓄熱効果によって被燃焼物の温度が更に高温に維持され、また、螺旋状の流路によって燃焼領域における被燃焼物の滞留時間が長い。これらの結果、可燃性廃棄物が完全燃焼に更に近い状態で燃焼し、ベンゼン核が更に形成されにくい。
【0019】
また、可燃性廃棄物が完全燃焼に更に近い状態で燃焼するので、可燃性廃棄物からの塩素や硫黄の分離が促進されて、これらによる塩素ガスや硫黄酸化物と塩基との中和反応による塩の析出も促進される。また、可燃性廃棄物が完全燃焼に更に近い状態で燃焼するので、可燃性廃棄物の保有エネルギーが更に有効に取り出される。
【0020】
【発明の実施の形態】
以下、本願の発明の一実施形態を、図1を参照しながら説明する。本実施形態では、可燃性廃棄物が乾燥設備11で乾燥され粉砕機12で粒状に冷却粉砕されて熱量調整設備13へ送られる。また、木質材料が粉砕機14で粉砕され乾燥設備15で乾燥され計量設備16で計量されて熱量調整設備13へ送られる。熱量調整設備13で木質材料によって可燃性廃棄物の燃焼時における熱量が調整された後、これらの可燃性廃棄物と木質材料とが混合攪拌装置17へ送られる。
【0021】
粉砕された残りの木質材料も、熱量が調整された可燃性廃棄物と木質材料との混合物に対して1対1の質量比になる様に、フィーダ18で混合攪拌装置17へ送られる。更に、水酸化カルシウムや水酸化ナトリウム等である粉状の塩基が計量設備19で計量されてフィーダ21で混合攪拌装置17へ送られる。可燃性廃棄物と木質材料と塩基とが混合攪拌装置17で混合攪拌され移送装置22で一次燃焼炉23のバイブレータフィーダ24まで送られホッパ25へ均一に送られることができる状態で、待機状態になっている。
【0022】
一方、燃料油貯槽26へ、液位計27の指示値に応じて、灯油またはA重油である燃料油が燃料油受入設備28から送り込まれる。そして、燃料油貯槽26中の燃料油が燃料油移送管29、燃料油移送ポンプ31及び燃料油供給管32、33で計量設備34へ送られる。燃料油供給管32には燃料油移送ポンプ31を作動させるための圧力計35が備えられている。計量設備34で計量された燃料油はゲル製造装置36へ送られる。
【0023】
界面活性剤貯槽37へ界面活性剤受入設備38から界面活性剤が送り込まれ、界面活性剤貯槽37から取り出された界面活性剤が計量設備39で計量されてゲル製造装置36へ送られる。ゲル製造装置36で燃料油と界面活性剤とから燃料油のゲルが製造され、水20%エマルジョン製造機41で質量比20%の水と燃料油とを含むエマルジョンが製造される。更に、水60%エマルジョン製造機42で質量比60%の水と燃料油とを含むエマルジョンが製造されて、エマルジョンの流動性が向上される。
【0024】
水20%エマルジョン製造機41及び水60%エマルジョン製造機42へは水槽43から水供給管44で水が供給され、水槽43へは市水受入設備45から水が送り込まれる。水60%エマルジョン製造機42は一次燃焼炉23及び二次燃焼炉46の夫々のエジェクタ47、48の近傍に設置されており、水60%エマルジョン製造機42で製造されたエマルジョンは定量移送装置49及びエマルジョン供給管51でエジェクタ47、48まで送られて、待機状態になっている。
【0025】
また、エジェクタ47、48からエマルジョンが円滑に噴霧される様に、圧縮空気が、空気圧縮機52で製造され、空気供給管53で空気貯槽54へ送られる。空気圧縮機52及び空気貯槽54には夫々圧力計55、56が備えられており、圧力スイッチ57が圧力計56の指示値に応答して空気圧縮機52の作動を制御する。空気貯槽54には安全弁58も備えられている。空気貯槽54内の圧縮空気の圧力は空気供給管59の圧力調整弁60で調整されて、エジェクタ47、48が作動できる状態で待機状態になっている。
【0026】
以上の様な待機状態で、まず、燃料油が燃料油貯槽26から取り出され燃料油移送管29、燃料油移送ポンプ31、燃料油供給管32及び燃料油供給支管61、62で一次燃焼炉23及び二次燃焼炉46の夫々の燃料油バーナ63、64へ送られて、燃料油のみの燃焼が開始される。この燃料油のみの燃焼で一次燃焼炉23内及び二次燃焼炉46内の温度がエマルジョン燃焼の可能な800℃になった時点で、エジェクタ47、48の作動が開始され、エマルジョンバーナ65、66からエマルジョンが噴霧されて、エマルジョンの燃焼も開始される。
【0027】
これらの燃料油燃焼及びエマルジョン燃焼で一次燃焼炉23内及び二次燃焼炉46内の温度が1100℃になった時点で、二次燃焼炉46の燃料油燃焼が停止され、それと同時に可燃性廃棄物と木質材料と塩基との混合物がホッパ25から一次燃焼炉23内へ投入されて、この混合物の燃焼が開始される。そして、一次燃焼炉23内及び二次燃焼炉46内の温度が1300℃になった時点で、一次燃焼炉23の燃料油燃焼が停止されて、エマルジョン燃焼と混合物燃焼とが継続される。
【0028】
エマルジョン燃焼では、エマルジョン中の燃料油の燃焼によって、エマルジョン中のクラスター状の水滴が一次燃焼炉23及び二次燃焼炉46の全体に拡散して夫々が小さな水蒸気爆発を起こし、粒状の可燃性廃棄物が更に微細になる。このため、可燃性廃棄物の空気接触面積が非常に大きくなって、可燃性廃棄物の燃焼効率が著しく高い。更に、燃焼に必要な酸素が水蒸気から供給されて、外部からの空気の供給量が通常燃焼の1/25以下でよいので、一次燃焼炉23内及び二次燃焼炉46内の可燃性廃棄物等の温度が高温に維持される。
【0029】
これらの結果、可燃性廃棄物が完全燃焼に近い状態で燃焼する。このため、可燃性廃棄物に含まれていた炭素の殆どが二酸化炭素になり、未燃焼炭素濃度が著しく低くて、煤燼が非常に少なく煙は全く排出されない。また、上述の水蒸気爆発によって燃焼が一次燃焼炉23内及び二次燃焼炉46内で均一に生じて、一次燃焼炉23内及び二次燃焼炉46内に部分的な高温領域ができにくい。更に、上述の様に、燃焼に必要な酸素が水蒸気から供給されて、外部からの空気の供給量が通常燃焼の1/25以下でよい。これらのために、燃焼に伴って生じる窒素酸化物が生成されにくい。
【0030】
可燃性廃棄物が完全燃焼に近い状態で燃焼すると、可燃性廃棄物から塩素や硫黄等が殆ど完全に分離し、これらが塩素ガスや硫黄酸化物等になる。一方、エジェクタ47、48から一次燃焼炉23内及び二次燃焼炉46内へ噴射されている質量比60%の水と燃料油とを含むエマルジョン中の水によって、ホッパ25から一次燃焼炉23内へ投入されている混合物内の塩基がイオン化される。
【0031】
そして、このイオン化した塩基が、一次燃焼炉23内及び二次燃焼炉46内の塩素ガス、硫黄酸化物及び窒素酸化物等と中和反応して、固定相の塩として析出する。従って、ダイオキシンの発生が防止されると共に塩素ガス、硫黄酸化物及び窒素酸化物等の有害物が除去される。
【0032】
しかし、塩素ガス、硫黄酸化物及び窒素酸化物等が過剰であって中和反応でも除去されずに残ると、これらが一次燃焼炉23内及び二次燃焼炉46内に浮遊する。この浮遊が感知器67で感知されると、感知信号が塩基水溶液製造装置69へ送られて、水酸化カルシウムや水酸化ナトリウム等の塩基を含む塩基水溶液が塩基水溶液製造装置69で製造される。
【0033】
塩基水溶液製造装置69で製造された塩基水溶液は、濃度調整計量装置71による濃度調整及び計量の後に水60%エマルジョン製造機42へ送られる。塩基水溶液製造装置69へは塩基受入設備72から塩基が送り込まれ、塩基水溶液製造装置69及び濃度調整計量装置71へは水槽43から水供給管44及び水供給支管73で水が送り込まれる。水60%エマルジョン製造機42では、それまでは質量比60%の水と燃料油とを含むエマルジョンが製造されていたが、濃度調整計量装置71から塩基が送られると、質量比60%の塩基水溶液と燃料油とを含むエマルジョンが製造される。
【0034】
質量比60%の塩基水溶液と燃料油とを含むエマルジョンはエジェクタ47、48から一次燃焼炉23内及び二次燃焼炉46内へ噴射される。エジェクタ47、48から一次燃焼炉23内及び二次燃焼炉46内へ新たに噴射された質量比60%の塩基水溶液と燃料油とを含むエマルジョン中の水によっても、ホッパ25から一次燃焼炉23内へ投入されている混合物内の塩基がイオン化される。
【0035】
そして、このイオン化した塩基とエマルジョン中の塩基水溶液中の塩基とが、一次燃焼炉23内及び二次燃焼炉46内の塩素ガス、硫黄酸化物及び窒素酸化物等と中和反応して、固定相の塩として析出する。従って、過剰な塩素ガス、硫黄酸化物及び窒素酸化物等の有害物も除去される。一次燃焼炉23内及び二次燃焼炉46内で生じた残渣は、残渣取出口74に集積し、ダンパ75を介して取り出されて、残渣取出コンベア76で搬出される。
【0036】
二次燃焼炉46の後続段として熱交換器77が設けられているが、熱交換器77が二次燃焼炉46に直結されていると、中和反応で析出する塩、特に食塩、が熱交換器77の内壁面に凝着して熱交換器77の性能を低下させる。そこで、二次燃焼炉46と熱交換器77との間に、水管式のラジエタに類似の構造を有する着脱の容易な凝着器78が設けられており、中和反応で析出する塩は凝着器78に凝着して、熱交換器77の内壁面への析出塩の凝着が防止されている。このため、塩素ガス、硫黄酸化物及び窒素酸化物等の有害物とこれらの有害物からの析出塩とが除去された高温ガスが、熱交換器77へ送られる。
【0037】
熱交換器77へは浄化水供給管79から浄化水が取り入れられ、この浄化水と高温ガスとの熱交換によって得られる高温高圧蒸気は発電設備81へ送られる。熱交換器77には、圧力計82、安全弁83及び温度計84も備えられている。熱交換された排気ガスは集塵器85へ送られ、残渣取出口74に集積しなかった排気ガス中の煤燼等が集塵器85で除去される。煤燼等を除去された排気ガスは、誘引送風機86で誘引され、排気管87を経てガス洗浄機88へ送られる。
【0038】
ガス洗浄機88では、塩基水溶液が塩基水溶液槽89から循環ポンプ91で塩基水溶液圧送管92を経て噴霧ノズル93から高圧で噴霧される。塩基水溶液圧送管92には圧力計94が備えられている。噴霧ノズル93からの塩基水溶液の噴霧によって、排気ガス中に残留している塩素ガス、硫黄酸化物及び窒素酸化物等の有害物が中和反応されると共に微粒状の煤燼や二酸化炭素等が捕捉される。噴霧済の塩基水溶液は、塩基水溶液戻り管95を経て塩基水溶液槽89へ戻され、塩基水溶液槽89内に設置されているプレコートフィルターの珪藻土で濾過される。
【0039】
プレコートフィルターの珪藻土による濾過では、排気ガス中に残留していた有害物と、噴霧ノズル93からの塩基水溶液の噴霧による中和反応で形成された塩と、噴霧ノズル93からの塩基水溶液の噴霧で捕捉された微粒状の煤燼等とが、捕捉される。ガス洗浄機88で浄化された清浄な排気ガスは、排気管96を経て吸引送風機97で吸引され、煙突98から大気中へ放出される。プレコートフィルターの珪藻土は後に溶融処理されるので、公衆衛生や自然環境等に対する二次的な悪影響も防止される。
【0040】
噴霧ノズル93から噴霧される塩基水溶液は、塩基水溶液槽89とガス洗浄機88との間を循環し、その汚れを塩基水溶液槽89内のプレコートフィルターで濾過され、その濃度を自動的に計測されて一定に保持され、最終的にはエマルジョンの塩基水溶液として利用される。このため、本実施形態の設備では、プロセス排水が外部へ一切排出されない。
【0041】
なお、以上の実施形態では、図1にも示されている様に、二次燃焼炉46は単なる空洞状であり、可燃性廃棄物等はこの空洞内で燃焼する。しかし、二次燃焼炉内に蓄熱槽を設けると共にこの蓄熱槽の周囲に螺旋状の流路を設け、この螺旋状の流路内で可燃性廃棄物等を燃焼させてもよい。この様にすると、蓄熱槽の蓄熱効果によって可燃性廃棄物等の温度が1300〜1600℃程度の範囲、一般には1500℃程度の更に高温に維持され、また、螺旋状の流路によって二次燃焼炉における可燃性廃棄物等の滞留時間が長い。これらの結果、可燃性廃棄物が完全燃焼に更に近い状態で燃焼する。
【0042】
なお、燃焼炉内の温度が1500℃程度以上になると、炉壁が激しく損傷して長時間の運転には耐えられないと一般に考えられている。しかし、炉壁に酸化防止剤を塗布することによって2200℃程度までの温度に耐えることができる様にすることが可能である。
【0043】
また、上述の実施形態では、粉状の塩基が計量設備19及びフィーダ21から送られて混合攪拌装置17で可燃性廃棄物と混合攪拌され、また、塩基水溶液製造装置69及び濃度調整計量装置71から送られる塩基水溶液が水60%エマルジョン製造機42で燃料油と共に質量比60%の塩基水溶液を含むエマルジョンにされる。しかし、必ずしも可燃性廃棄物とエマルジョンとの両方に塩基が含まれている必要はなく、これらの一方にのみ塩基が含まれているだけでもよく、エマルジョン中の塩基水溶液の質量比も40〜80%であればよい。
【0044】
更に、可燃性廃棄物とエマルジョンとの何れにも塩基が含まれていなくても、可燃性廃棄物が完全燃焼に近い状態で燃焼するためにダイオキシンの発生が防止され、また、一次燃焼炉23内及び二次燃焼炉46内に部分的な高温領域ができにくく且つ外部からの空気の供給量が通常燃焼の1/25以下でよいので窒素酸化物の発生が防止される。この場合にも、完全燃焼の程度を高め、部分的な高温領域の形成を効果的に防止し、外部からの空気の供給量を減少させるために、エマルジョン中の水の質量比を40〜80%にする。
【0045】
【発明の効果】
請求項1、2に係る可燃性廃棄物の焼却方法では、ベンゼン核が極めて形成されにくく、しかも、可燃性廃棄物から分離した塩素による塩素ガスが塩基と中和反応して塩として析出するので、焼却時にダイオキシンの発生が防止される。また、可燃性廃棄物から分離した塩素、硫黄による塩素ガス及び硫黄酸化物や燃焼に伴って生じる窒素酸化物が塩基と中和反応して塩として析出するので、焼却時に有害物が除去される。また、可燃性廃棄物の保有エネルギーが有効に取り出される。従って、公衆衛生や自然環境等に対する悪影響を防止し且つ可燃性廃棄物の保有エネルギーを有効に利用しつつ、可燃性廃棄物を焼却することができる。
【0046】
請求項3に係る可燃性廃棄物の焼却方法では、ベンゼン核が極めて形成されにくいので、焼却時にダイオキシンの発生が防止される。また、燃焼に伴って生じる窒素酸化物が生成されにくいので、焼却時に窒素酸化物の発生が防止される。また、可燃性廃棄物の保有エネルギーが有効に取り出される。従って、公衆衛生や自然環境等に対する悪影響を防止し且つ可燃性廃棄物の保有エネルギーを有効に利用しつつ、可燃性廃棄物を焼却することができる。
【0047】
請求項4、5に係る可燃性廃棄物の焼却方法では、ベンゼン核が更に形成されにくいので、焼却時にダイオキシンの発生が更に効果的に防止される。また、可燃性廃棄物からの塩素や硫黄の分離が促進されて、これらによる塩素ガスや硫黄酸化物と塩基との中和反応による塩の析出も促進されるので、焼却時に有害物の除去が更に効果的に行われる。また、可燃性廃棄物の保有エネルギーが更に有効に取り出される。従って、公衆衛生や自然環境等に対する悪影響を更に効果的に防止し且つ可燃性廃棄物の保有エネルギーを更に有効に利用しつつ、可燃性廃棄物を焼却することができる。
【図面の簡単な説明】
【図1】本願の発明の一実施形態を実施するための装置の概略図である。
【符号の説明】
12…粉砕機、14…粉砕機、17…混合攪拌装置、19…計量設備、23…一次燃焼炉(第一の領域)、26…燃料油貯槽、42…水60%エマルジョン製造機、46…二次燃焼炉(第二の領域)、69…塩基水溶液製造装置、77…熱交換器
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for incinerating flammable industrial waste and general waste.
[0002]
[Prior art]
Most of flammable industrial waste and general waste has high energy, so use the flammable waste energy for power generation and perform intermediate treatment before final disposal such as landfill. For this reason, incineration of combustible waste is widely performed. However, harmful substances such as chlorine gas (Cl 2 ), sulfur oxides (SO x ), and nitrogen oxides (NO x ) are discharged by this incineration, and chlorine in particular causes dioxin. The environment is adversely affected.
[0003]
In order to prevent the generation of these harmful substances, a method has been considered in which the exhaust gas after incineration is washed with water and the harmful substances are captured with water. Further, it is said that the generation of dioxin can be suppressed by incinerating combustible waste at a high temperature and quenching the exhaust gas under strict temperature control.
[0004]
[Problems to be solved by the invention]
However, in the method of trapping harmful substances with water, the water after washing has a secondary adverse effect on public health and the natural environment. In addition, strict temperature control and rapid cooling methods require high processing costs and can suppress the emission of harmful substances such as chlorine gas, sulfur oxides, and nitrogen oxides even if the generation of dioxins can be suppressed. Can not. Therefore, the invention of the present application prevents the generation of dioxin during incineration and removes other harmful substances, thereby preventing adverse effects on public health and the natural environment, and effectively utilizing the energy held by combustible waste. It is another object of the present invention to provide a method capable of incinerating combustible waste.
[0005]
[Means for Solving the Problems]
In the method for incinerating combustible waste according to claim 1, the combustion of the fuel oil in the emulsion causes cluster-like water droplets in the aqueous base solution in the emulsion to diffuse throughout the combustion region, causing each of the small steam explosions, Granular combustible waste becomes finer. For this reason, the air contact area of the combustible waste becomes very large, and the combustion efficiency of the combustible waste is extremely high. Further, the oxygen required for combustion is supplied from steam, and the supply amount of air from the outside may be 1/25 or less of that of normal combustion, so that the temperature of the object to be burned is maintained at a high temperature. As a result, combustible waste is burned in a state close to complete combustion.
[0006]
Therefore, most of the carbon contained in the combustible waste becomes carbon dioxide, the concentration of unburned carbon is extremely low, and benzene nuclei are extremely unlikely to be formed. Further, chlorine and sulfur are almost completely separated from the combustible waste, and the chlorine gas and sulfur oxide due to these are neutralized with the ionic base in the aqueous base solution in the emulsion to precipitate as salts.
[0007]
In addition, combustion occurs uniformly in the combustion region due to the above-described steam explosion, and it is difficult to form a partial high-temperature region in the combustion region. Further, as described above, oxygen required for combustion is supplied from steam, and the supply amount of air from the outside may be 1/25 or less of the normal combustion. For these reasons, nitrogen oxides generated during combustion are hardly generated, and the generated nitrogen oxides also undergo a neutralization reaction with the ionic base in the aqueous base solution in the emulsion to precipitate as salts.
[0008]
Further, since the combustible waste is burned in a state close to complete combustion, the stored energy of the combustible waste is effectively extracted. If the mass ratio of the aqueous base solution in the emulsion is less than 40%, steam explosion becomes too small to prevent formation of benzene nuclei, separation of chlorine and sulfur from combustible waste, and combustion. It is difficult to prevent the formation of nitrogen oxides. On the other hand, if the mass ratio of the aqueous base solution in the emulsion is more than 80%, the fuel oil becomes too small, and the combustion of combustible waste itself becomes difficult.
[0009]
In the method for incinerating combustible waste according to claim 2, the combustion of the fuel oil in the emulsion causes the cluster-like water droplets in the emulsion to diffuse throughout the combustion region, causing each of them to generate a small steam explosion, thereby causing the particulate combustible. Wastes become finer. For this reason, the air contact area of the combustible waste becomes very large, and the combustion efficiency of the combustible waste is extremely high. Further, the oxygen required for combustion is supplied from steam, and the supply amount of air from the outside may be 1/25 or less of that of normal combustion, so that the temperature of the object to be burned is maintained at a high temperature. As a result, combustible waste is burned in a state close to complete combustion.
[0010]
Therefore, most of the carbon contained in the combustible waste becomes carbon dioxide, the concentration of unburned carbon is extremely low, and benzene nuclei are extremely unlikely to be formed. Chlorine and sulfur are almost completely separated from combustible waste, and chlorine gas and sulfur oxides are neutralized by the water contained in the mixture with combustible waste and ionized by water in the emulsion. Reacts and precipitates as a salt.
[0011]
In addition, combustion occurs uniformly in the combustion region due to the above-described steam explosion, and it is difficult to form a partial high-temperature region in the combustion region. Further, as described above, oxygen required for combustion is supplied from steam, and the supply amount of air from the outside may be 1/25 or less of the normal combustion. For these reasons, nitrogen oxides generated during combustion are not easily generated, and the generated nitrogen oxides are also included in a mixture with combustible waste and neutralized with a base ionized by water in the emulsion. And precipitate as salt.
[0012]
Further, since the combustible waste is burned in a state close to complete combustion, the stored energy of the combustible waste is effectively extracted. If the mass ratio of water in the emulsion is less than 40%, the steam explosion becomes too small to prevent formation of benzene nuclei, separation of chlorine and sulfur from combustible waste, and combustion. It becomes difficult to prevent the generation of the generated nitrogen oxides. On the other hand, if the mass ratio of water in the emulsion is more than 80%, the fuel oil becomes too small, and the combustion of combustible waste itself becomes difficult.
[0013]
In the method for incinerating combustible waste according to claim 3, the combustion of the fuel oil in the emulsion causes the cluster-like water droplets in the emulsion to diffuse throughout the combustion area, causing each of them to generate a small steam explosion, thereby causing the particulate combustible. Wastes become finer. For this reason, the air contact area of the combustible waste becomes very large, and the combustion efficiency of the combustible waste is extremely high. Further, the oxygen required for combustion is supplied from steam, and the supply amount of air from the outside may be 1/25 or less of that of normal combustion, so that the temperature of the object to be burned is maintained at a high temperature.
[0014]
As a result, combustible waste is burned in a state close to complete combustion. Therefore, most of the carbon contained in the combustible waste becomes carbon dioxide, the concentration of unburned carbon is extremely low, and benzene nuclei are extremely unlikely to be formed.
[0015]
In addition, combustion occurs uniformly in the combustion region due to the above-described steam explosion, and it is difficult to form a partial high-temperature region in the combustion region. Further, as described above, oxygen required for combustion is supplied from steam, and the supply amount of air from the outside may be 1/25 or less of the normal combustion. For these reasons, it is difficult to generate nitrogen oxides generated during combustion.
[0016]
Further, since the combustible waste is burned in a state close to complete combustion, the stored energy of the combustible waste is effectively extracted. When the mass ratio of water in the emulsion is less than 40%, steam explosion becomes too small, and it is difficult to prevent formation of benzene nuclei and generation of nitrogen oxides caused by combustion. On the other hand, if the mass ratio of water in the emulsion is more than 80%, the fuel oil becomes too small, and the combustion of combustible waste itself becomes difficult.
[0017]
In the method for incinerating combustible waste according to claim 4, since the pulverized wood material is mixed with the combustible waste, the amount of heat during combustion can be adjusted. Therefore, the combustible waste burns in a state closer to complete combustion, and benzene nuclei are less likely to be formed. In addition, since combustible waste burns in a state closer to complete combustion, the separation of chlorine and sulfur from combustible waste is promoted, and the neutralization reaction between chlorine gas and sulfur oxides and bases due to these is promoted. Salt precipitation is also promoted. Further, since the combustible waste is burned in a state closer to complete combustion, the stored energy of the combustible waste is more effectively taken out.
[0018]
In the method for incinerating combustible waste according to claim 5, combustion is performed in a spiral flow path around the heat storage tank in the second region on the combustion end side. Therefore, the temperature of the material to be burned is maintained at a higher temperature by the heat storage effect of the heat storage tank, and the residence time of the material to be burned in the combustion region is long due to the spiral flow path. As a result, combustible waste burns in a state closer to complete combustion, and benzene nuclei are less likely to be formed.
[0019]
In addition, since combustible waste burns in a state closer to complete combustion, the separation of chlorine and sulfur from combustible waste is promoted, and the neutralization reaction between chlorine gas and sulfur oxides and bases due to these is promoted. Salt precipitation is also promoted. Further, since the combustible waste is burned in a state closer to complete combustion, the stored energy of the combustible waste is more effectively taken out.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG. In the present embodiment, the combustible waste is dried in the drying equipment 11, cooled and pulverized into granules by the pulverizer 12, and sent to the calorie adjusting equipment 13. Further, the woody material is pulverized by the pulverizer 14, dried by the drying equipment 15, measured by the measuring equipment 16, and sent to the calorie adjusting equipment 13. After the calorific value of the combustible waste during combustion of the combustible waste is adjusted by the wood material in the calorie adjusting device 13, the combustible waste and the wood material are sent to the mixing and stirring device 17.
[0021]
The remaining pulverized wood material is also sent to the mixing and stirring device 17 by the feeder 18 so that the mass ratio of the combustible waste and the wood material whose calorific value is adjusted is 1: 1. Further, a powdery base such as calcium hydroxide or sodium hydroxide is measured by the measuring equipment 19 and sent to the mixing and stirring device 17 by the feeder 21. The combustible waste, the wood material, and the base are mixed and agitated by the mixing and agitation device 17, sent to the vibrator feeder 24 of the primary combustion furnace 23 by the transfer device 22, and uniformly sent to the hopper 25. Has become.
[0022]
On the other hand, fuel oil, which is kerosene or A-heavy oil, is fed into the fuel oil storage tank 26 from the fuel oil receiving facility 28 according to the indication value of the liquid level meter 27. Then, the fuel oil in the fuel oil storage tank 26 is sent to the metering facility 34 by the fuel oil transfer pipe 29, the fuel oil transfer pump 31, and the fuel oil supply pipes 32 and 33. The fuel oil supply pipe 32 is provided with a pressure gauge 35 for operating the fuel oil transfer pump 31. The fuel oil measured by the metering facility 34 is sent to the gel manufacturing device 36.
[0023]
The surfactant is sent from the surfactant receiving facility 38 to the surfactant storage tank 37, and the surfactant removed from the surfactant storage tank 37 is measured by the measuring facility 39 and sent to the gel manufacturing device 36. A gel of the fuel oil is produced from the fuel oil and the surfactant by the gel producing device 36, and an emulsion containing 20% by mass of water and the fuel oil is produced by a water 20% emulsion producing machine 41. Further, an emulsion containing 60% by mass of water and fuel oil is produced by the water 60% emulsion production machine 42, and the fluidity of the emulsion is improved.
[0024]
Water is supplied from a water tank 43 to a water 20% emulsion production machine 41 and a water 60% emulsion production machine 42 by a water supply pipe 44, and water is sent from the city water receiving facility 45 to the water tank 43. The water 60% emulsion production machine 42 is installed near the ejectors 47 and 48 of the primary combustion furnace 23 and the secondary combustion furnace 46, respectively. Then, it is sent to the ejectors 47 and 48 by the emulsion supply pipe 51, and is in a standby state.
[0025]
Compressed air is produced by the air compressor 52 and sent to the air storage tank 54 by the air supply pipe 53 so that the emulsion is smoothly sprayed from the ejectors 47 and 48. The air compressor 52 and the air storage tank 54 are provided with pressure gauges 55 and 56, respectively, and a pressure switch 57 controls the operation of the air compressor 52 in response to the indicated value of the pressure gauge 56. The air storage tank 54 is also provided with a safety valve 58. The pressure of the compressed air in the air storage tank 54 is adjusted by the pressure adjustment valve 60 of the air supply pipe 59, and is in a standby state in which the ejectors 47 and 48 can operate.
[0026]
In the standby state as described above, first, the fuel oil is taken out of the fuel oil storage tank 26, and the fuel oil is transferred from the fuel oil transfer pipe 29, the fuel oil transfer pump 31, the fuel oil supply pipe 32, and the fuel oil supply branch pipes 61, 62 to the primary combustion furnace 23. Then, the fuel is sent to the fuel oil burners 63 and 64 of the secondary combustion furnace 46, and the combustion of only the fuel oil is started. When the temperature in the primary combustion furnace 23 and the temperature in the secondary combustion furnace 46 reach 800 ° C. at which the emulsion combustion can be performed by the combustion of only the fuel oil, the operation of the ejectors 47 and 48 is started, and the emulsion burners 65 and 66 are started. , The emulsion is sprayed and the combustion of the emulsion is started.
[0027]
When the temperatures in the primary combustion furnace 23 and the secondary combustion furnace 46 reach 1100 ° C. in these fuel oil combustion and emulsion combustion, fuel oil combustion in the secondary combustion furnace 46 is stopped, and at the same time, combustible waste is discharged. The mixture of the material, the wood material, and the base is put into the primary combustion furnace 23 from the hopper 25, and the combustion of the mixture is started. Then, when the temperatures in the primary combustion furnace 23 and the secondary combustion furnace 46 reach 1300 ° C., the fuel oil combustion in the primary combustion furnace 23 is stopped, and the emulsion combustion and the mixture combustion are continued.
[0028]
In the emulsion combustion, the combustion of fuel oil in the emulsion causes cluster-like water droplets in the emulsion to diffuse throughout the primary combustion furnace 23 and the secondary combustion furnace 46, causing small steam explosions, each of which causes granular combustible waste. Things become finer. For this reason, the air contact area of the combustible waste becomes very large, and the combustion efficiency of the combustible waste is extremely high. Further, since the oxygen required for combustion is supplied from steam and the supply amount of air from the outside is not more than 1/25 of the normal combustion, the combustible waste in the primary combustion furnace 23 and the secondary combustion furnace 46 is reduced. Temperature is maintained at a high temperature.
[0029]
As a result, combustible waste is burned in a state close to complete combustion. For this reason, most of the carbon contained in the combustible waste becomes carbon dioxide, the unburned carbon concentration is extremely low, the smoke is very small, and no smoke is emitted. In addition, due to the above-mentioned steam explosion, combustion occurs uniformly in the primary combustion furnace 23 and the secondary combustion furnace 46, and it is difficult to form a partial high-temperature region in the primary combustion furnace 23 and the secondary combustion furnace 46. Further, as described above, oxygen required for combustion is supplied from steam, and the supply amount of air from the outside may be 1/25 or less of the normal combustion. For these reasons, it is difficult to generate nitrogen oxides generated during combustion.
[0030]
When combustible waste is burned in a state close to complete combustion, chlorine, sulfur and the like are almost completely separated from the combustible waste, and these become chlorine gas and sulfur oxides. On the other hand, the water in the emulsion containing the fuel oil and the water having a mass ratio of 60% injected into the primary combustion furnace 23 and the secondary combustion furnace 46 from the ejectors 47 and 48 causes the primary combustion furnace 23 to move from the hopper 25 to the primary combustion furnace 23. The base in the mixture being charged to the is ionized.
[0031]
Then, the ionized base undergoes a neutralization reaction with chlorine gas, sulfur oxides, nitrogen oxides, and the like in the primary combustion furnace 23 and the secondary combustion furnace 46, and is precipitated as a stationary phase salt. Therefore, generation of dioxin is prevented and harmful substances such as chlorine gas, sulfur oxides and nitrogen oxides are removed.
[0032]
However, if chlorine gas, sulfur oxides, nitrogen oxides, and the like are excessive and remain without being removed by the neutralization reaction, they float in the primary combustion furnace 23 and the secondary combustion furnace 46. When the floating is detected by the sensor 67, a sensing signal is sent to the aqueous base solution manufacturing apparatus 69, and an aqueous base solution containing a base such as calcium hydroxide or sodium hydroxide is manufactured by the aqueous base solution manufacturing apparatus 69.
[0033]
The aqueous base solution produced by the aqueous base solution producing device 69 is sent to the 60% water emulsion producing device 42 after concentration adjustment and measurement by the concentration adjustment measuring device 71. The base is sent from the base receiving equipment 72 to the base aqueous solution producing device 69, and water is sent from the water tank 43 to the base aqueous solution producing device 69 and the concentration adjusting and measuring device 71 via the water supply pipe 44 and the water supply branch pipe 73. In the water 60% emulsion production machine 42, an emulsion containing water and fuel oil at a mass ratio of 60% was produced up to that time. However, when a base is sent from the concentration adjusting and measuring device 71, the base with a mass ratio of 60% is produced. An emulsion containing an aqueous solution and a fuel oil is produced.
[0034]
Emulsions containing a 60% by weight aqueous base solution and fuel oil are injected from ejectors 47 and 48 into the primary combustion furnace 23 and the secondary combustion furnace 46. The water in the emulsion containing the aqueous base solution and the fuel oil having a mass ratio of 60% newly injected into the primary combustion furnace 23 and the secondary combustion furnace 46 from the ejectors 47 and 48 also causes the primary combustion furnace 23 to move from the hopper 25 to the primary combustion furnace 23. The base in the mixture being introduced into the reactor is ionized.
[0035]
Then, the ionized base and the base in the aqueous base solution in the emulsion undergo a neutralization reaction with chlorine gas, sulfur oxides, nitrogen oxides, and the like in the primary combustion furnace 23 and the secondary combustion furnace 46, and are fixed. Precipitates as phase salt. Therefore, harmful substances such as excessive chlorine gas, sulfur oxides and nitrogen oxides are also removed. Residues generated in the primary combustion furnace 23 and the secondary combustion furnace 46 accumulate in a residue outlet 74, are taken out through a damper 75, and are carried out by a residue take-out conveyor 76.
[0036]
A heat exchanger 77 is provided as a succeeding stage of the secondary combustion furnace 46. However, if the heat exchanger 77 is directly connected to the secondary combustion furnace 46, salts precipitated by the neutralization reaction, in particular, salt, are heated. It adheres to the inner wall surface of the heat exchanger 77 and deteriorates the performance of the heat exchanger 77. Therefore, between the secondary combustion furnace 46 and the heat exchanger 77, an easily attachable / detachable coagulator 78 having a structure similar to a water tube type radiator is provided. The adhesion of the deposited salt to the inner wall surface of the heat exchanger 77 is prevented by adhering to the coater 78. For this reason, high-temperature gas from which harmful substances such as chlorine gas, sulfur oxides and nitrogen oxides and salts precipitated from these harmful substances have been removed is sent to the heat exchanger 77.
[0037]
Purified water is taken into the heat exchanger 77 from the purified water supply pipe 79, and high-temperature and high-pressure steam obtained by heat exchange between the purified water and the high-temperature gas is sent to the power generation equipment 81. The heat exchanger 77 is also provided with a pressure gauge 82, a safety valve 83, and a thermometer 84. The heat-exchanged exhaust gas is sent to the dust collector 85, and soot and the like in the exhaust gas that have not been accumulated in the residue outlet 74 are removed by the dust collector 85. The exhaust gas from which soot and the like have been removed is attracted by an induction blower 86 and sent to a gas cleaner 88 via an exhaust pipe 87.
[0038]
In the gas washer 88, the aqueous base solution is sprayed from the aqueous base solution tank 89 by the circulation pump 91 at a high pressure from the spray nozzle 93 through the aqueous base solution pressurizing pipe 92. A pressure gauge 94 is provided in the base aqueous solution supply pipe 92. By spraying the aqueous base solution from the spray nozzle 93, harmful substances such as chlorine gas, sulfur oxides and nitrogen oxides remaining in the exhaust gas are neutralized and fine particulate soot and carbon dioxide are generated. Be captured. The sprayed aqueous base solution is returned to the aqueous base solution tank 89 via the aqueous base solution return pipe 95, and is filtered by diatomaceous earth of a precoat filter installed in the aqueous base solution tank 89.
[0039]
In the filtration with the diatomaceous earth of the precoat filter, the harmful substances remaining in the exhaust gas, the salt formed by the neutralization reaction by spraying the aqueous base solution from the spray nozzle 93, and the spray of the aqueous base solution from the spray nozzle 93 are used. The captured fine particulate soot and the like are captured. The clean exhaust gas purified by the gas washer 88 is sucked by the suction blower 97 through the exhaust pipe 96 and discharged from the chimney 98 to the atmosphere. Since the diatomaceous earth of the precoat filter is melt-processed later, secondary adverse effects on public health, the natural environment, and the like are also prevented.
[0040]
The aqueous base solution sprayed from the spray nozzle 93 circulates between the aqueous base solution tank 89 and the gas washer 88, and the dirt is filtered by a precoat filter in the aqueous base solution tank 89, and the concentration is automatically measured. And it is finally used as an aqueous base solution of the emulsion. For this reason, in the equipment of the present embodiment, no process wastewater is discharged outside.
[0041]
In the above embodiment, as shown in FIG. 1, the secondary combustion furnace 46 is simply hollow, and combustible waste and the like burn in this hollow. However, it is also possible to provide a heat storage tank in the secondary combustion furnace, provide a spiral flow path around the heat storage tank, and burn combustible waste and the like in the spiral flow path. In this case, the temperature of the combustible waste and the like is maintained in the range of about 1300 to 1600 ° C., generally about 1500 ° C. by the heat storage effect of the heat storage tank, and the secondary combustion is performed by the spiral flow path. Long residence time of combustible waste etc. in the furnace. As a result, combustible waste is burned in a state closer to complete combustion.
[0042]
It is generally considered that when the temperature in the combustion furnace is about 1500 ° C. or more, the furnace wall is severely damaged and cannot withstand long-time operation. However, it is possible to withstand temperatures up to about 2200 ° C. by applying an antioxidant to the furnace wall.
[0043]
In the above-described embodiment, the base in powder form is sent from the measuring equipment 19 and the feeder 21 and mixed and stirred with the combustible waste by the mixing and stirring device 17. Is converted into an emulsion containing a 60% by mass aqueous base solution together with fuel oil in a water 60% emulsion production machine 42. However, it is not always necessary that both the combustible waste and the emulsion contain a base, and only one of them may contain a base, and the mass ratio of the aqueous base solution in the emulsion is also 40 to 80. %.
[0044]
Furthermore, even if neither the combustible waste nor the emulsion contains a base, the combustible waste burns in a state close to complete combustion, thereby preventing the generation of dioxin. It is difficult to form a partial high-temperature region in the inside and the secondary combustion furnace 46, and the supply amount of air from the outside may be 1/25 or less of the normal combustion, so that generation of nitrogen oxides is prevented. In this case, too, the mass ratio of water in the emulsion is set to 40 to 80 in order to increase the degree of complete combustion, effectively prevent the formation of a partial high-temperature region, and reduce the amount of air supplied from the outside. %.
[0045]
【The invention's effect】
In the method for incinerating combustible waste according to claims 1 and 2, benzene nuclei are extremely unlikely to be formed, and chlorine gas due to chlorine separated from combustible waste is neutralized with a base to precipitate as a salt. The generation of dioxin during incineration is prevented. In addition, chlorine separated from combustible waste, chlorine gas by sulfur and sulfur oxides, and nitrogen oxides generated by combustion are neutralized with bases and precipitated as salts, so harmful substances are removed during incineration. . In addition, the stored energy of combustible waste is effectively extracted. Therefore, the flammable waste can be incinerated while preventing adverse effects on public health, the natural environment, and the like, and effectively using the energy possessed by the flammable waste.
[0046]
In the method for incinerating combustible waste according to claim 3, since benzene nuclei are extremely unlikely to be formed, generation of dioxin during incineration is prevented. In addition, since nitrogen oxides generated during combustion are hardly generated, generation of nitrogen oxides during incineration is prevented. In addition, the stored energy of combustible waste is effectively extracted. Therefore, flammable waste can be incinerated while preventing adverse effects on public health, the natural environment, and the like, and effectively utilizing the energy possessed by the flammable waste.
[0047]
In the method for incinerating combustible waste according to claims 4 and 5, since benzene nuclei are less likely to be formed, the generation of dioxin during incineration is more effectively prevented. In addition, the separation of chlorine and sulfur from combustible waste is promoted, and the precipitation of salts due to the neutralization reaction of chlorine gas and sulfur oxides with the base is promoted, so that harmful substances can be removed during incineration. More effectively done. In addition, the stored energy of combustible waste is more effectively extracted. Therefore, flammable waste can be incinerated while preventing adverse effects on public health, the natural environment, and the like more effectively, and using the stored energy of flammable waste more effectively.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus for carrying out an embodiment of the present invention.
[Explanation of symbols]
12 crusher, 14 crusher, 17 mixing and stirring device, 19 weighing equipment, 23 primary combustion furnace (first area), 26 fuel oil storage tank, 42 water 60% emulsion production machine, 46… Secondary combustion furnace (second area), 69: base aqueous solution production apparatus, 77: heat exchanger

Claims (5)

粒状の可燃性廃棄物を準備する工程と、
質量比40〜80%の塩基水溶液と燃料油とを含むエマルジョンを準備する工程と、
前記可燃性廃棄物と前記エマルジョンとを混合状態で燃焼させる工程と
を具備する可燃性廃棄物の焼却方法。
Providing granular combustible waste;
Preparing an emulsion containing an aqueous base solution having a mass ratio of 40 to 80% and fuel oil;
Combusting the combustible waste and the emulsion in a mixed state.
粒状の可燃性廃棄物と粉状の塩基とを含む混合物を準備する工程と、
質量比40〜80%の水と燃料油とを含むエマルジョンを準備する工程と、
前記混合物と前記エマルジョンとを混合状態で燃焼させる工程と
を具備する可燃性廃棄物の焼却方法。
Providing a mixture comprising a particulate combustible waste and a powdered base,
Preparing an emulsion containing 40-80% by weight of water and fuel oil;
Combusting the mixture and the emulsion in a mixed state.
粒状の可燃性廃棄物を準備する工程と、
質量比40〜80%の水と燃料油とを含むエマルジョンを準備する工程と、
前記可燃性廃棄物と前記エマルジョンとを混合状態で燃焼させる工程と
を具備する可燃性廃棄物の焼却方法。
Providing granular combustible waste;
Preparing an emulsion containing 40-80% by weight of water and fuel oil;
Combusting the combustible waste and the emulsion in a mixed state.
粉砕されている木質材料を前記可燃性廃棄物に混合する工程を具備する請求項1〜3の何れか一項に記載の可燃性廃棄物の焼却方法。The method for incinerating combustible waste according to any one of claims 1 to 3, further comprising a step of mixing the pulverized wood material with the combustible waste. 前記燃焼を燃焼開始側の第一の領域と燃焼終了側の第二の領域とで行い、
前記第二の領域では蓄熱槽の周囲における螺旋状の流路内で前記燃焼を行う請求項1〜4の何れか一項に記載の可燃性廃棄物の焼却方法。
Performing the combustion in a first region on the combustion start side and a second region on the combustion end side,
The incineration method of combustible waste according to any one of claims 1 to 4, wherein the combustion is performed in a spiral flow path around a heat storage tank in the second region.
JP2002172712A 2002-06-13 2002-06-13 Incineration method for combustible waste Pending JP2004019979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002172712A JP2004019979A (en) 2002-06-13 2002-06-13 Incineration method for combustible waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002172712A JP2004019979A (en) 2002-06-13 2002-06-13 Incineration method for combustible waste

Publications (1)

Publication Number Publication Date
JP2004019979A true JP2004019979A (en) 2004-01-22

Family

ID=31172199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002172712A Pending JP2004019979A (en) 2002-06-13 2002-06-13 Incineration method for combustible waste

Country Status (1)

Country Link
JP (1) JP2004019979A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013064571A (en) * 2011-09-20 2013-04-11 Mitake Sogyo:Kk Power generation method in garbage incineration facility
CN104595905A (en) * 2013-10-30 2015-05-06 徐小芹 Three-in-one garbage incineration method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013064571A (en) * 2011-09-20 2013-04-11 Mitake Sogyo:Kk Power generation method in garbage incineration facility
CN104595905A (en) * 2013-10-30 2015-05-06 徐小芹 Three-in-one garbage incineration method

Similar Documents

Publication Publication Date Title
CN2926833Y (en) System and apparatus for firing medical refuse
CN104344408B (en) Salt bearing liquid wastes burns hold concurrently heat reclaiming system and technique
CN1884912A (en) Medical refuse incineration process and system equipment therefor
CN111928263A (en) System for utilize rotary kiln to burn burning furnace and handle hazardous waste
KR100938347B1 (en) Apparatus for incinerating pulverized food waste
KR20050004647A (en) Device and method for waste processing using Plasma pyrolysis
CN110715299B (en) Plasma torch medical waste treatment system and application method thereof
JP2004019979A (en) Incineration method for combustible waste
CN207815342U (en) A kind of garbage burning boiler
CN113531557B (en) Municipal wastewater sludge self-sustaining smoldering treatment system
CN109210546A (en) A kind of incineration plants material hole refuse processing method
TW524953B (en) Gasification and slagging combustion system
CN213746746U (en) Harmless treatment equipment for hazardous waste
RU91409U1 (en) INSTALLATION FOR THERMAL PROCESSING OF SOLID DOMESTIC WASTE
CN204404188U (en) House refuse direct gasification melting incinerating device
CN213089821U (en) System for utilize rotary kiln to burn burning furnace and handle hazardous waste
US7263933B2 (en) Incinerator furnace condensers and methods of using
RU2753797C1 (en) Mobile thermal recycling unit and method for use thereof
CN217604103U (en) To ammonia waste residue incineration disposal system
JP2006297331A (en) Production method and apparatus of granulation particle
JP2003322324A (en) Treatment device and method for hazardous substance
CN210128355U (en) Solid waste coprocessing system
JP4084913B2 (en) Method for treating desalted residue in flue gas treatment
JPH10300043A (en) Waste fuel combustion system and its processing method of collected substances by bag filter
JP2002333107A (en) Method and equipment for combusting waste containing agglomerate components