JP2004012056A - Water-cooled air conditioner - Google Patents

Water-cooled air conditioner Download PDF

Info

Publication number
JP2004012056A
JP2004012056A JP2002168073A JP2002168073A JP2004012056A JP 2004012056 A JP2004012056 A JP 2004012056A JP 2002168073 A JP2002168073 A JP 2002168073A JP 2002168073 A JP2002168073 A JP 2002168073A JP 2004012056 A JP2004012056 A JP 2004012056A
Authority
JP
Japan
Prior art keywords
heat exchanger
water
temperature
cooled
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002168073A
Other languages
Japanese (ja)
Inventor
Kentaro Hayashi
林 健太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAYASHI TAMA
Original Assignee
HAYASHI TAMA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAYASHI TAMA filed Critical HAYASHI TAMA
Priority to JP2002168073A priority Critical patent/JP2004012056A/en
Publication of JP2004012056A publication Critical patent/JP2004012056A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To resolve a problem in an air-cooled out door unit where heat exchanging efficiency is low and in a water-cooled outdoor unit where there is a water problem and the device becomes large. <P>SOLUTION: An indoor unit 1 comprises an indoor heat exchanger 2 and an indoor fan 3 or the like, and it blows out cool air. A water-cooled heat exchanging unit comprises a four way valve 7, a compressor 8, a temperature compensating heat exchanger 5 arranged in a tank 6, a heat exchanger 9, a capillary tube 11 or the like. One end of the temperature compensating heat exchanger 5 is connected to a refrigerant passage between the indoor unit 1 and the four way valve 7, and another end is connected to a refrigerant passage between the capillary tube 11 and the indoor unit 1. One end of the heat exchanger 9 is connected to the four way valve 7, and another end is connected to the capillary tube 11. The temperature compensating heat exchanger 5 adjusts a water temperature of the tank 6 within a certain range. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は水冷式エアコンに関する。
【0002】
【従来の技術】
エアコンの普及率は目覚ましく、その需要はますます増加している。商店や事務所には必ずエアコンが設置されていて、いつでも内部は快適な状態になっている。最近は大きなビルや学校でもエアコンによる冷暖房が調っており、気軽に運転できるようになっている。
【0003】
エアコンは、四季にわたって室温を調節する装置であり、夏期に室内の空気の冷却を行ない、冬期はバルブを切り換えて、暖房を行なうものである(冷媒の流れを冷房時と逆転させ、室内ユニットから温風が、室外ユニットから冷風が出るようにしたもの)。
【0004】
図3は、従来例における空冷式エアコンの概要回路図その1であり、夏期での使用を示している。図において、室内ユニット1は室内熱交換器2,室内ファン3とを内蔵しており、冷風を室内に吹き出す。屋外ユニット15は四方弁7,コンプレッサ8,屋外熱交換器16,屋外ファン17,キャピラリチューブ11とを内蔵しており、熱風を屋外に吹き出す。
【0005】
つぎに、冷媒の循環について説明する。キャピラリチューブ11から送られてきた▲1▼低温低圧液体が室内熱交換器2で気化して周囲を冷やす。室内熱交換器2からの▲2▼高温低圧ガスは四方弁7を経てコンプレッサ8で圧縮されて▲3▼高温高圧ガスとなる。この▲3▼高温高圧ガスは四方弁7を経て屋外熱交換器16によって冷やされて▲4▼低温高圧液体となる。この▲4▼低温高圧液体はキャピラリチューブ11により▲1▼低温低圧液体となる。
【0006】
図4は、従来例における空冷式エアコンの概要回路図その2であり、冬期での使用を示している。四方弁7による冷媒の流路の流れを逆にしている点を除けば図3と同じであるので回路構成の説明を省略する。
【0007】
つぎに、冷媒の循環について説明する。コンプレッサ8からの▲5▼高温高圧ガスは四方弁7を経て室内熱交換器2に送られる。室内熱交換器2で液化して周囲を暖める。室内熱交換器2からの▲6▼低温高圧液体はキャピラリチューブ11により▲7▼低温低圧液体となる。キャピラリチューブ11から送られてきた▲7▼低温低圧液体が室外熱交換器16で気化して熱を吸収する。熱を吸収した▲8▼高温低圧ガスは四方弁7を経てコンプレッサ8に送られる。
【0008】
この室外ユニットは家屋,マンション,ビルのベランダの床または天井,外壁,屋上等に設置され、それらは、建物の景観を壊したり、大事なスペースを占拠している。熱の伝達は熱伝達率に比例し、水の熱伝達率は空気の場合に比して著しく大きい。
そこで、室外ユニットは冷却用に多くの都市で地下水を汲み上げて使用していた。しかしながら、地下水の汲み上げによる地盤沈下などその他、水資源の問題が起きてきた。
【0009】
【発明が解決しようとする課題】
そこで、水冷式の場合、河川の水を利用するとき等を除きいったんエアコン等に使用して温度の上がった水を空気で冷却し、繰り返し水を使用できる冷却塔方式がある。それらは、大がかりな装置になってしまう、という課題があった。
【0010】
本発明はこのような点に鑑みてなされたものであり、従来の空冷式エアコンと水冷式エアコンの持つ上記課題を解決した水冷式エアコンを提供することを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するために本発明の水冷式エアコンは、室内熱交換器2,室内ファン3等を有する室内ユニット1と、四つの流路を分岐する四方弁7,冷媒ガスを圧縮するコンプレッサ8,水槽6内に設置した温度補償用熱交換器5,および熱交換器9,キャピラリチューブ11等を有する水冷式熱交換ユニット4とから構成し、温度補償用熱交換器5は一端を室内ユニット1と四方弁7との間の冷媒流路に接続し、他端をキャピラリチューブ11と室内ユニット1との間の冷媒流路に接続し、熱交換器9は一端を四方弁7に接続し、他端をキャピラリチューブ11に接続したことに特徴を有している。
【0012】
【発明の実施の形態】
一般化した空冷式の室外ユニットを上水の水を利用(飲料用・トイレ用・風呂用等の使用前又は使用後の水)して水冷式の屋外又は屋内ユニットとする。この場合、水の流れは間欠的になりがちであり、水の温度は不安定になる。そこで、室内ユニットに送る冷媒の一部を利用して、水の温度を制御しようとするものである。
【0013】
もともと、水冷式は空冷式に比し、著しく効率的(省電力化)であるから冷媒の一部を利用しても効率化が図れる。
【0014】
【実施例】
以下、本発明の一実施例を図面に基づいて説明する。図1は、本発明の一実施例における水冷式エアコンの概要回路図その1であり、夏期での使用を示している。図において、室内ユニット1は室内熱交換器2と室内ファン3等を内蔵しており、冷風を室内に吹き出す。この室内ユニット1の他に、四方弁7,コンプレッサ8,水槽6に設置した温度補償用熱交換器5,および熱交換器9,キャピラリチューブ11等からなる水冷式熱交換ユニット4とを構成要素としている。
【0015】
従来例における図3の空冷式エアコンとの主な相違点は空冷式の屋外ユニット15を水冷式にし、設置場所を屋外に限定していないことにある。相違点以外の説明は省略する。
【0016】
水槽6内に設置した温度補償用熱交換器5は、一端を室内ユニット1と四方弁7との間の冷媒流路に接続し、他端をキャピラリチューブ11と室内ユニット1との間の冷媒流路に接続している。また、水槽6内の熱交換器9は、一端を四方弁7に、他端をキャピラリチューブ11に接続している。さらに、水槽6には水温センサ12を設置し、キャピラリチューブ11と温度補償用熱交換器5の他端との間には調節弁13が挿入してある。
【0017】
つぎに、冷媒の循環について説明する。キャピラリチューブ11から送られてきた▲1▼低温低圧液体が室内熱交換器2で気化して周囲を冷やす。室内熱交換器2からの▲2▼高温低圧ガスは四方弁7を経てコンプレッサ8で圧縮されて▲3▼高温高圧ガスとなる。この▲3▼高温高圧ガスは四方弁7を経て水槽6内に設置した熱交換器9によって冷やされて▲4▼低温高圧液体となる。この▲4▼低温高圧液体はキャピラリチューブ11により▲1▼低温低圧液体となる。また、水槽6に設置した温度補償用熱交換器5の吸熱作用によりキャピラリチューブ11からの▲1▼低温低圧液体を▲2▼高温低圧ガスにして四方弁7に送出する。逆に水槽6の水は冷却される。
【0018】
一方、温度補償用熱交換器5の吸熱作用により水槽6の水を冷やして水温を一定の範囲に調節するので、熱交換器9による熱変換効率を最適に保つことができる。水槽6に設置した水温センサ12の値に基いて調節弁13で温度補償用熱交換器5に流れる冷媒の量を加減することができる。
【0019】
図2は、本発明の一実施例における水冷式エアコンの概要回路図その2であり、冬期での使用を示している。四方弁7による冷媒の流路の流れを逆にしている点を除けば図1と同じであるので回路構成の説明を省略する。
【0020】
つぎに、冷媒の循環について説明する。コンプレッサ8からの▲5▼高温高圧ガスは四方弁7を経て室内熱交換器2に送られる。室内熱交換器2で液化して周囲を暖める。室内熱交換器2からの▲6▼低温高圧液体はキャピラリチューブ11により▲7▼低温低圧液体となる。キャピラリチューブ11から送られてきた▲7▼低温低圧液体が熱交換器9で気化して熱を吸収する。熱を吸収した▲8▼高温低圧ガスは四方弁7を経てコンプレッサ8に送られる。また、水槽6に設置した温度補償用熱交換器5の放熱作用によりコンプレッサ8からの▲5▼高温高圧ガスを▲7▼低温低圧液体にしてキャピラリチューブ11に送出する。逆に水槽6の水は暖められる。
【0021】
一方、温度補償用熱交換器5の放熱作用により水槽6の水を暖めて水温を一定の範囲に調節するので、熱交換器9による熱変換効率を最適に保つことができる。水槽6に設置した水温センサ12の値に基いて調節弁13で温度補償用熱交換器5に流れる冷媒の量を加減することができる。
【0022】
【発明の効果】
以上説明したように、本発明による水冷式エアコンでは温度補償用熱交換器5により熱交換器9を設置した水槽6の水温を適切に管理することができるので、(1)水資源の問題を起こさない、(2)建物の景観を壊さない、(3)水冷式なので、熱伝達率も空気の場合に比べて格段に良くなり、装置全体が小型になり、省力化され、(4)大事なスペースを有効利用でき、緑化対策に貢献し、(5)冬期、面倒な除霜の心配がなくなり、(6)寒い地方でも安心して使用でき、(7)冷却塔によるジオネラ菌の発生の心配が無くなる等の効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例における水冷式エアコンの概要回路図その1である。
【図2】本発明の一実施例における水冷式エアコンの概要回路図その2である。
【図3】従来例における空冷式エアコンの概要回路図その1である。
【図4】従来例における空冷式エアコンの概要回路図その2である。
【符号の説明】
1 室内ユニット
2 室内熱交換器
3 室内ファン
4 水冷式熱交換ユニット
5 温度補償用熱交換器
6 水槽
7 四方弁
8 コンプレッサ
9 熱交換器
11 キャピラリチューブ
12 水温センサ
13 調節弁
15 屋外ユニット
16 屋外熱交換器
17 屋外ファン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water-cooled air conditioner.
[0002]
[Prior art]
The penetration rate of air conditioners is remarkable, and the demand is increasing. Air conditioners are always installed in shops and offices, and the interior is always comfortable. In recent years, large buildings and schools have been equipped with air conditioning and heating, making it easy to operate.
[0003]
An air conditioner is a device that adjusts the room temperature over the four seasons, cools indoor air in the summer, and switches the valve in the winter to heat the room. Warm air allows cold air to come out of the outdoor unit).
[0004]
FIG. 3 is a first schematic circuit diagram of an air-cooled air conditioner in a conventional example, and shows use in summer. In the figure, an indoor unit 1 has a built-in indoor heat exchanger 2 and an indoor fan 3, and blows cold air into the room. The outdoor unit 15 has a built-in four-way valve 7, a compressor 8, an outdoor heat exchanger 16, an outdoor fan 17, and a capillary tube 11, and blows out hot air to the outside.
[0005]
Next, circulation of the refrigerant will be described. (1) The low-temperature and low-pressure liquid sent from the capillary tube 11 is vaporized in the indoor heat exchanger 2 to cool the surroundings. The (2) high-temperature and low-pressure gas from the indoor heat exchanger 2 passes through the four-way valve 7 and is compressed by the compressor 8 to (3) become a high-temperature and high-pressure gas. The (3) high-temperature and high-pressure gas is cooled by the outdoor heat exchanger 16 via the four-way valve 7 and (4) becomes a low-temperature and high-pressure liquid. This (4) low-temperature and high-pressure liquid is converted into (1) low-temperature and low-pressure liquid by the capillary tube 11.
[0006]
FIG. 4 is a second schematic circuit diagram of an air-cooled air conditioner in a conventional example, and shows use in winter. 3 is the same as FIG. 3 except that the flow of the refrigerant flow path by the four-way valve 7 is reversed, and therefore, the description of the circuit configuration is omitted.
[0007]
Next, circulation of the refrigerant will be described. (5) The high-temperature and high-pressure gas from the compressor 8 is sent to the indoor heat exchanger 2 through the four-way valve 7. It liquefies in the indoor heat exchanger 2 and warms the surroundings. The (6) low-temperature and high-pressure liquid from the indoor heat exchanger 2 is turned into (7) a low-temperature and low-pressure liquid by the capillary tube 11. (7) The low-temperature and low-pressure liquid sent from the capillary tube 11 is vaporized in the outdoor heat exchanger 16 and absorbs heat. (8) The high-temperature and low-pressure gas that has absorbed the heat is sent to the compressor 8 via the four-way valve 7.
[0008]
This outdoor unit is installed on the floor or ceiling of a house, condominium, or building veranda, outer wall, rooftop, etc., which destroys the scenery of the building or occupies an important space. The transfer of heat is proportional to the heat transfer coefficient, and the heat transfer coefficient of water is significantly higher than that of air.
Therefore, outdoor units pumped groundwater in many cities for cooling. However, other problems with water resources, such as land subsidence caused by pumping groundwater, have arisen.
[0009]
[Problems to be solved by the invention]
Therefore, in the case of the water-cooled type, there is a cooling tower system in which water whose temperature has been raised is once used in an air conditioner or the like to be cooled by air, and water can be repeatedly used, except when using water from a river. They have a problem that they become large-scale devices.
[0010]
The present invention has been made in view of such a point, and an object of the present invention is to provide a water-cooled air conditioner which solves the above-mentioned problems of the conventional air-cooled air conditioner and water-cooled air conditioner.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, a water-cooled air conditioner according to the present invention comprises an indoor unit 1 having an indoor heat exchanger 2, an indoor fan 3, etc., a four-way valve 7 for branching four flow paths, and a compressor 8 for compressing refrigerant gas. , A temperature-compensating heat exchanger 5 installed in a water tank 6, and a water-cooled heat-exchanging unit 4 having a heat exchanger 9, a capillary tube 11, and the like. One end of the temperature-compensating heat exchanger 5 is an indoor unit. One end of the heat exchanger 9 is connected to the refrigerant flow path between the capillary tube 11 and the indoor unit 1, and one end of the heat exchanger 9 is connected to the four-way valve 7. The other end is connected to the capillary tube 11.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The generalized air-cooled outdoor unit is made of water-supplied water (water before or after use for drinking, toilet, bath, etc.) to be a water-cooled outdoor or indoor unit. In this case, the flow of water tends to be intermittent, and the temperature of the water becomes unstable. Therefore, the temperature of water is controlled by using a part of the refrigerant sent to the indoor unit.
[0013]
Originally, the water-cooled type is remarkably efficient (power saving) as compared with the air-cooled type, so the efficiency can be improved even if a part of the refrigerant is used.
[0014]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a first schematic circuit diagram of a water-cooled air conditioner according to an embodiment of the present invention, showing use in summer. In the figure, an indoor unit 1 has a built-in indoor heat exchanger 2, an indoor fan 3, and the like, and blows cool air into the room. In addition to the indoor unit 1, a four-way valve 7, a compressor 8, a temperature-compensating heat exchanger 5 installed in a water tank 6, and a water-cooled heat exchange unit 4 including a heat exchanger 9, a capillary tube 11, and the like are constituent elements. And
[0015]
The main difference from the air-cooled air conditioner of FIG. 3 in the conventional example is that the air-cooled outdoor unit 15 is water-cooled, and the installation location is not limited to the outdoors. Descriptions other than the differences are omitted.
[0016]
The temperature-compensating heat exchanger 5 installed in the water tank 6 has one end connected to the refrigerant flow path between the indoor unit 1 and the four-way valve 7, and the other end connected to the refrigerant between the capillary tube 11 and the indoor unit 1. Connected to the channel. The heat exchanger 9 in the water tank 6 has one end connected to the four-way valve 7 and the other end connected to the capillary tube 11. Further, a water temperature sensor 12 is installed in the water tank 6, and a control valve 13 is inserted between the capillary tube 11 and the other end of the temperature-compensating heat exchanger 5.
[0017]
Next, circulation of the refrigerant will be described. (1) The low-temperature and low-pressure liquid sent from the capillary tube 11 is vaporized in the indoor heat exchanger 2 to cool the surroundings. The (2) high-temperature and low-pressure gas from the indoor heat exchanger 2 passes through the four-way valve 7 and is compressed by the compressor 8 to (3) become a high-temperature and high-pressure gas. The (3) high-temperature and high-pressure gas is cooled by the heat exchanger 9 installed in the water tank 6 via the four-way valve 7 and (4) becomes a low-temperature and high-pressure liquid. This (4) low-temperature and high-pressure liquid is converted into (1) low-temperature and low-pressure liquid by the capillary tube 11. In addition, by the heat absorbing action of the temperature-compensating heat exchanger 5 installed in the water tank 6, (1) the low-temperature low-pressure liquid from the capillary tube 11 is converted into (2) high-temperature low-pressure gas and sent to the four-way valve 7. Conversely, the water in the water tank 6 is cooled.
[0018]
On the other hand, the water in the water tank 6 is cooled by the endothermic effect of the temperature-compensating heat exchanger 5 to adjust the water temperature within a certain range, so that the heat conversion efficiency of the heat exchanger 9 can be kept optimal. The amount of refrigerant flowing through the temperature-compensating heat exchanger 5 can be adjusted by the control valve 13 based on the value of the water temperature sensor 12 installed in the water tank 6.
[0019]
FIG. 2 is a second schematic circuit diagram of a water-cooled air conditioner according to one embodiment of the present invention, showing use in winter. Except that the flow of the refrigerant flow path by the four-way valve 7 is reversed, it is the same as FIG. 1 and therefore the description of the circuit configuration is omitted.
[0020]
Next, circulation of the refrigerant will be described. (5) The high-temperature and high-pressure gas from the compressor 8 is sent to the indoor heat exchanger 2 through the four-way valve 7. It liquefies in the indoor heat exchanger 2 and warms the surroundings. The (6) low-temperature and high-pressure liquid from the indoor heat exchanger 2 is turned into (7) a low-temperature and low-pressure liquid by the capillary tube 11. (7) The low-temperature and low-pressure liquid sent from the capillary tube 11 is vaporized in the heat exchanger 9 and absorbs heat. (8) The high-temperature and low-pressure gas that has absorbed the heat is sent to the compressor 8 via the four-way valve 7. Further, by the heat radiating action of the temperature-compensating heat exchanger 5 installed in the water tank 6, the high-temperature high-pressure gas from the compressor 8 is sent out to the capillary tube 11 as a low-temperature low-pressure liquid. Conversely, the water in the water tank 6 is warmed.
[0021]
On the other hand, the water in the water tank 6 is warmed by the heat radiation action of the temperature-compensating heat exchanger 5 to adjust the water temperature within a certain range, so that the heat conversion efficiency of the heat exchanger 9 can be kept optimal. The amount of refrigerant flowing through the temperature-compensating heat exchanger 5 can be adjusted by the control valve 13 based on the value of the water temperature sensor 12 installed in the water tank 6.
[0022]
【The invention's effect】
As described above, in the water-cooled air conditioner according to the present invention, since the temperature of the water in the water tank 6 in which the heat exchanger 9 is installed can be appropriately managed by the temperature-compensating heat exchanger 5, (1) the problem of water resources (2) Does not break the scenery of the building, (3) Since it is a water-cooled type, the heat transfer coefficient is much better than that of air, the whole device becomes smaller, labor saving, and (4) important (5) Eliminates the need for troublesome defrosting in winter, (6) Can be used safely even in cold regions, (7) Concerns about generation of Zionella bacteria by cooling towers There are effects such as disappearance.
[Brief description of the drawings]
FIG. 1 is a schematic circuit diagram 1 of a water-cooled air conditioner according to an embodiment of the present invention.
FIG. 2 is a second schematic circuit diagram of a water-cooled air conditioner in one embodiment of the present invention.
FIG. 3 is a first schematic circuit diagram of an air-cooled air conditioner in a conventional example.
FIG. 4 is a second schematic circuit diagram of an air-cooled air conditioner in a conventional example.
[Explanation of symbols]
Reference Signs List 1 indoor unit 2 indoor heat exchanger 3 indoor fan 4 water-cooled heat exchange unit 5 heat exchanger for temperature compensation 6 water tank 7 four-way valve 8 compressor 9 heat exchanger 11 capillary tube 12 water temperature sensor 13 control valve 15 outdoor unit 16 outdoor heat Exchanger 17 outdoor fan

Claims (1)

室内熱交換器(2),室内ファン(3)等を有する室内ユニット(1)と、
四つの流路を分岐する四方弁(7),冷媒ガスを圧縮するコンプレッサ(8),水槽(6)内に設置した温度補償用熱交換器5,および熱交換器9,キャピラリチューブ(11)等を有する水冷式熱交換ユニット(4)とから構成し、
温度補償用熱交換器(5)は一端を室内ユニット(1)と四方弁(7)との間の冷媒流路に接続し、他端をキャピラリチューブ(11)と室内ユニット(1)との間の冷媒流路に接続し、
熱交換器(9)は一端を四方弁(7)に接続し、他端をキャピラリチューブ(11)に接続したことを特徴とする水冷式エアコン。
An indoor unit (1) having an indoor heat exchanger (2), an indoor fan (3), and the like;
Four-way valve (7) for branching four flow paths, compressor (8) for compressing refrigerant gas, heat exchanger 5 for temperature compensation installed in water tank (6), heat exchanger 9, capillary tube (11) And a water-cooled heat exchange unit (4) having
One end of the temperature-compensating heat exchanger (5) is connected to the refrigerant flow path between the indoor unit (1) and the four-way valve (7), and the other end is connected to the capillary tube (11) and the indoor unit (1). Connected to the refrigerant flow path between
A water-cooled air conditioner characterized in that one end of the heat exchanger (9) is connected to a four-way valve (7) and the other end is connected to a capillary tube (11).
JP2002168073A 2002-06-10 2002-06-10 Water-cooled air conditioner Pending JP2004012056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002168073A JP2004012056A (en) 2002-06-10 2002-06-10 Water-cooled air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002168073A JP2004012056A (en) 2002-06-10 2002-06-10 Water-cooled air conditioner

Publications (1)

Publication Number Publication Date
JP2004012056A true JP2004012056A (en) 2004-01-15

Family

ID=30435077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002168073A Pending JP2004012056A (en) 2002-06-10 2002-06-10 Water-cooled air conditioner

Country Status (1)

Country Link
JP (1) JP2004012056A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127335A (en) * 2005-11-04 2007-05-24 Sanden Corp Cooling system
WO2013026206A1 (en) * 2011-08-25 2013-02-28 Feng Zhengyi Building built-in air conditioner
WO2021012781A1 (en) * 2019-07-25 2021-01-28 青岛海尔空调器有限总公司 Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127335A (en) * 2005-11-04 2007-05-24 Sanden Corp Cooling system
WO2013026206A1 (en) * 2011-08-25 2013-02-28 Feng Zhengyi Building built-in air conditioner
CN103842730A (en) * 2011-08-25 2014-06-04 杨建良 Building built-in air conditioner
CN103842730B (en) * 2011-08-25 2016-01-20 杨建良 Building one air-conditioning
WO2021012781A1 (en) * 2019-07-25 2021-01-28 青岛海尔空调器有限总公司 Air conditioner

Similar Documents

Publication Publication Date Title
US20100038441A1 (en) Energy system with a heat pump
JP4445530B2 (en) Heat pump type dry air conditioning system using geothermal heat
US20100242517A1 (en) Solar Photovoltaic Closed Fluid Loop Evaporative Tower
JP2010002162A (en) Air conditioning facility
KR20070003986A (en) Air conditioner system
JP2008076015A (en) Building air-conditioning system by geothermal use
JP2009036414A (en) Heat pump-type dry air conditioning system
WO2017195885A1 (en) Floor air conditioning system
CN105627623A (en) Novel solar energy-air energy combined heat pump cold-heat combined supply unit
JP5373959B2 (en) Air conditioner
CN113237157A (en) Composite heat pump system suitable for subway station in severe cold area
JP2005098543A (en) Heat using device for air conditioning
JP2004012056A (en) Water-cooled air conditioner
JP2006084149A (en) Heating-cooling system using underground heat
KR101092041B1 (en) system for supplying of hot water in an apartment house
JP2003207174A (en) Heat source storage water-cooled heat pump system of separate package type
CN108643608B (en) Zero-energy consumption sentry box adopting cold and heat source integrated enclosure structure
KR101308028B1 (en) Thermal energy sharing system for multi buildings
JP2004156791A (en) Facility system and its construction method
JP5040094B2 (en) Heat utilization system
JP2009109086A (en) Air conditioning system
CN1300527C (en) Triple purpose apparatus for environmental protective cooling and warming air condition energy saved in the four seasons
CN104596151A (en) Heat pump host
JPH07174368A (en) Radiation cooling and heating device
KR100795353B1 (en) Air-conditioning equipment using underground air as the heat source

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308