JP2004009134A - Method for rolling wide flange shape having narrow flange width - Google Patents

Method for rolling wide flange shape having narrow flange width Download PDF

Info

Publication number
JP2004009134A
JP2004009134A JP2002170358A JP2002170358A JP2004009134A JP 2004009134 A JP2004009134 A JP 2004009134A JP 2002170358 A JP2002170358 A JP 2002170358A JP 2002170358 A JP2002170358 A JP 2002170358A JP 2004009134 A JP2004009134 A JP 2004009134A
Authority
JP
Japan
Prior art keywords
rolling
flange
slab
width
flange width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002170358A
Other languages
Japanese (ja)
Other versions
JP4016733B2 (en
Inventor
Yukio Takashima
高嶋 由紀雄
Eiji Takenouchi
竹之内 英治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002170358A priority Critical patent/JP4016733B2/en
Publication of JP2004009134A publication Critical patent/JP2004009134A/en
Application granted granted Critical
Publication of JP4016733B2 publication Critical patent/JP4016733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To roll a wide flange shape having narrow flange width the flange width of which is 1/4 to 1/10 of the web height at high efficiency. <P>SOLUTION: A product having target dimensions is obtained by reducing the web and the flanges with a universal mill and the flange width with an edger mill after making a slab of a base stock having a rectangular section into a rough shape slab by rolling by one approximately H-shaped caliber. When making the rough shape slab by rolling by one approximately H-shaped caliber, rolling is carried out without rotating the slab of the base stock. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、フランジ幅がウェブ高さの1/4〜1/10の範囲にある狭フランジ幅H形鋼の圧延方法に関し、特に、圧延の高能率化に関する。
【0002】
【従来の技術】
H形鋼などのフランジを有する形鋼は、一般にブレークダウン圧延機、ユニバーサル圧延機、エッジャ圧延機を有する圧延ラインで製造される。加熱炉から出た素材鋼片はまず2重式の圧延機であるブレークダウン圧延機BDによって、目的とする製品寸法に適する形状に圧延される。続いて、粗ユニバーサル圧延機Uとエッジャ圧延機Eからなる粗ユニバーサル圧延機群において厚みを減じられるとともにフランジ端部の成形が行われる。さらに、仕上ユニバーサル圧延機Fによってフランジが直角に成形され、H形の製品となる。
【0003】
素材となる鋼片はビームブランクと呼ばれるH形の断面形状を有する鋼片や、長方形断面のスラブ等が用いられるのが一般的である。このうち、スラブを素材として略H形の粗形鋼片を得る方法は、例えば特公平7−61482号公報に開示されている技術が公知である。この技術は、例えば図6に示されるように、複数の孔型によりスラブの短辺を圧下して圧下部近傍の厚さを増加させることにより、断面形状をH形に近づけた後に、素材鋼片を90°転回させて略H形状の1対の孔型で圧延し、所望の断面形状を有する粗形鋼片を得るものである。
【0004】
さらに、従来のH形鋼はフランジ幅がウェブ高さの1/3以上という寸法比率が一般的であり、特にウェブ高さが500mm以上の大断面H形鋼では、ウェブ高さの1/4以下のフランジ幅を有するH形鋼は製品化された例がない。したがって、このような狭フランジ幅H形鋼に適した圧延方法は、従来は検討されたことがなかった。
【0005】
【発明が解決しようとする課題】
本発明者等は、フランジ幅がウェブ高さの1/4の狭フランジ幅H形鋼を圧延するため、従来のスラブを素材とするH形鋼の粗形鋼片の圧延法である特公平7−61482号公報の技術を適用することを検討した。その結果、以下に記すような問題点があることが明らかになった。
【0006】
まず、従来の技術では、スラブの短辺を複数の孔型を用いて圧延するため、圧延パスの回数が多く圧延能率が悪いという問題があることが分かった。さらに、スラブの短辺を圧下して断面形状をH形に近づけても、その後に90°転回して略H形の孔型で圧延することにより、鋼片のフランジに当たる部分の断面積が減少することが明らかになった。フランジ部の断面積の減少量は従来のH形鋼よりも大きいため、スラブ短辺を圧下する際にはこの減少分を勘案してフランジ部を形成する必要があり、結果としてさらに多くのパス回数が必要となるため、圧延能率がますます悪化することが懸念された。
【0007】
以上のように、従来のH形鋼のブレークダウン圧延法を狭フランジ幅H形鋼にそのまま通用することは問題が多く、新たな圧延法の開発が必要であることが明らかとなった。
【0008】
但し、フランジ幅がウェブ高さの1/10より小さいH形鋼は、粗及びユニバーサル圧延で被圧延材がロールに対して左右にずれた状態で圧延する可能性が高く、被圧延材のねじれ、などの形状不良やフランジ部を水平ロール間で圧延してロール損傷が発生するおそれがあるため、現実的には量産が不可能である。このようなことから、上記の新たな圧延法を必要とする狭フランジ幅H形鋼は、フランジ幅がウェブ高さに対して1/4〜1/10の寸法のものを対象としている。
【0009】
したがって、本発明は、フランジ幅がウェブ高さの1/4〜1/10の狭フランジ幅H形鋼を高能率に圧延することを可能にした狭フランジ幅H形鋼の圧延方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者等は、狭フランジ幅H形鋼の粗形鋼片を高能率に圧延する方法を開発するため、数値計算や実機の数分の一の大きさのモデル圧延機を用いた多数の圧延実験、さらには実機による圧延試験を行い種々の検討を重ねた結果、以下のような特徴を有する本発明の圧延方法を発明するに至った。
【0011】
(1)長方形断面を有する素材鋼片を、略H形状の1つの孔型により圧延して粗形鋼片とした後、ユニバーサル圧延機によりウェブとフランジを、エッジャ圧延機によりフランジ幅を圧下して目標とする寸法の製品を得る狭フランジ幅H形鋼の圧延方法。
【0012】
(2)略H形状の1つの孔型により圧延して粗形鋼片とするに際し、素材鋼片を転回することなく圧延する狭フランジ幅H形鋼の圧延方法。
【0013】
(3)長方形断面を有する素材鋼片の短辺を1対の孔型で圧延して素材鋼片の幅を調整した後、略H形状の1つの孔型で圧延して粗形鋼片とする狭フランジ幅H形鋼の圧延方法。
【0014】
(4)フランジ脚長の増加が飽和する前に略H形状の1つの孔型での圧延を終了する狭フランジ幅H形鋼の圧延方法。
【0015】
(5)フランジ脚長が製品よりも小さい状態で略H形状の1つの孔型での圧延を終了し、粗ユニバーサル圧延の最初のパスから連続した数パスで、フランジ圧下率をウェブ圧下率よりも大きくして圧延することによりフランジ幅を製品脚長まで増加させる狭フランジ幅H形鋼の圧延方法。
【0016】
(6)フランジ圧下率をウェブ圧下率よりも5%以上大きくして圧延する狭フランジ幅H形鋼の圧延方法。
【0017】
【発明の実施の形態】
実施形態1.
図2は本発明の実施形態1の圧延方法に供される形鋼圧延設備の一例を示す全体構成図である。この形鋼圧延設備においては、加熱炉から出た素材鋼片はまず2重式の圧延機であるブレークダウン圧延機BDによって、目的とする製品寸法に適する形状に圧延され、続いて、粗ユニバーサル圧延機Uとエッジャ圧延機Eからなる粗ユニバーサル圧延機群において厚みを減じられるとともにフランジ端部の成形が行われる。さらに、仕上ユニバーサル圧延機Fによってフランジが直角に成形されてH形の製品となる。
【0018】
本実施形態1においては、素材に長方形断面のスラブを用い、略H形状の1対の孔型を有するロールを備えたブレークダウン圧延機BDにより、狭フランジ幅H形鋼に適した形状の粗形鋼片を圧延する。
【0019】
図1(a)(b)は図2のブレークダウン圧延機BD及び粗ユニバーサル圧延機Uによる圧延状態を示した説明図である。孔型幅とほぼ等しい幅の素材鋼片10は、図1(a)に示される略H形状の1つの孔型20により圧延が行われる。このとき、素材鋼片は図1(a)に示されるように孔型のウェブ部11のみが圧下され、フランジ部12は圧下されずにロール間を通過することとなる。フランジ部12はウェブ部の延伸により引き伸ばされ、厚みが減少するものの、ウェブ部11よりは大きな厚みとなるため、素材鋼片の断面形状はH形に近づくこととなる。
【0020】
以上のように、スラブ幅の調整以外にはスラブの短辺の圧下を行わず、略H形状の1つの孔型20でのみ圧延することにより、パス数は大幅に少なくなる。従来技術ではスラブ短辺を圧下する複数の孔型を用い、それぞれで2パス以上の圧延を行うのが一般的であったが、そのような圧延パスを無くすことによって本実施形態1においては、パス数は従来法の半分以下にすることが可能となり、圧延能率が大幅に向上した。
【0021】
図3は上記のブレークダウン圧延機BDでのフランジ脚長HEの変化を示す特性図である。上記のように1つの略H形状の孔型20で多パス圧延を行うと、図3に示されるように、ウェブ面とフランジ先端の距離であるフランジ脚長HEは圧延パスが多くなるにしたがって増加するものの、その増加量は徐々に小さくなっていき、或るパス数以上では飽和して増加量がゼロとなることが分かった。このことから、ブレークダウン圧延機BDの圧延に際しては、増加量が飽和するパス数よりも少ないパス数で圧延するのが好ましい。
【0022】
図4はブレークダウン圧延機BDにより圧延された素材鋼片を、粗ユニバーサル圧延機Uにより圧延したときのフランジ脚長HEの変化を示す特性図である。フランジ脚長HEの増加が飽和する前、或いはほぼ飽和するまで略H形状孔型で圧延しても、ブレークダウン圧延機BDによる圧延が終了したときの粗形鋼片のフランジ脚長HEが製品のフランジ脚長HEpよりも小さい場合があるが、このような場合には、続く粗ユニバーサル圧延機Uでフランジ脚長を増大させ、製品のフランジ脚長以上の寸法とする。粗ユニバーサル圧延機Uによる圧延では、フランジ脚長HEを効果的に増加させるため、フランジ圧下率がウェブ圧下率よりも大きい条件で圧延を行うことにより、図4に示されるように、大きなフランジ脚長の増加を生じさせることができる(6パス以降)。
【0023】
ここで、粗ユニバーサル圧延機Uによる圧延において、フランジの圧下率をウェブの圧下率よりも5%以上大きくすれば、少ないパス数で目標とするフランジ脚長とすることができるため、フランジとウェブの圧下率の関係は、
フランジ圧下率≧ウェブ圧下率 望ましくは
フランジ圧下率≧ウェブ圧下率+5%
とする。従って、粗ユニバーサル圧延機Uにおいては、図1(b)に示されるように、相対的にウェブ部11を軽圧下し、フランジ部12を強圧下することになる。
【0024】
また、本実施形態1では、フランジ脚長を増加させるための圧延を粗ユニバーサル圧延機Uの圧延の最初のパスから数パスで行うこととした。これは、被圧延材の板厚が薄くなる前にフランジ脚長を増加させておくことにより、被圧延材が粗ユニバーサル圧延機Uのロールの間を安定して通過するようになるためである。フランジ脚長を増加させるパスを粗ユニバーサル圧延機Uの圧延の初期以外とすると、フランジ脚長が小さくかつフランジ厚が薄い圧延材が圧延機のロール間を通過する際に、フランジが倒れて水平ロールの間で圧延される等の事故が発生しやすくなるため好ましくない。
【0025】
実施形態2.
ところで、素材となるスラブの幅は孔型の幅にほぼ等しいことが理想的であるが、実際には素材スラブの幅は100mmおきに鋳造されるなどの制約がある場合が多く、孔型に適したスラブ幅ではなく孔型の幅よりも広幅のスラブが用いられる場合がある。本実施形態2はそのような場合に対応するものである。
【0026】
図5は本実施形態2の圧延方法の説明図である。ブレークダウン圧延機BDの1対の孔型、好ましくは凹型の孔型15を用いてスラブ10の短辺を圧下し、スラブ10の幅が孔型幅にほぼ等しくなるようスラブ幅の調整を行う。この後の処理は上述の実施形態1と同じである。
【0027】
【実施例】
実施例1.
本発明の第1の実施例として、図1に示す形鋼の熱間圧延設備を用いて狭フランジ幅H形鋼の圧延を行った。ここで、目標とする製品の寸法はウェブ高さ800mm、フランジ幅100mm、ウェブ厚は10mm、フランジ厚は18mmであった。素材スラブの寸法は、幅1000mm、厚さ250mmとした。このスラブを孔型幅1020mm、ウェブ部幅764mmの略H形状の孔型20で7パス圧延し、ウェブ厚100mmとしたところ、フランジ幅170mm、フランジ厚118mmの略H形状の粗形鋼片を圧延することができた。この粗形鋼片を引き続き粗ユニバーサル圧延機Uとエッジャ圧延機Eにより合計12パス圧延し、最後に仕上ユニバーサル圧延機Fで1パスの圧延を行うことにより、目標とする寸法の狭フランジ幅H形鋼が圧延できた。
【0028】
実施例2.
また、本発明の第2の実施例として、図1に示す形鋼の熱間圧延設備を用い、幅1050mm、厚さ250mmの素材スラブを用いて、実施例1と同じ寸法の製品を圧延した。まず、図5に示す凹形の1対の孔型15でスラブ短辺を圧下し、スラブ幅を1000mmとした。以下、実施例1と同様の圧延を行うことにより、目標とする寸法の製品が圧延できた。このときのブレークダウン圧延のパス数は、凹型の孔型15が2パス、略H形状の孔型20が7パスで、合計9パスであった。
【0029】
実施例3.
次に本発明の第3の実施例として、図1に示す形鋼の熱間圧延設備を用い、幅1100mm、厚さ250mmの素材スラブを用いて、ウェブ高さ800mm、フランジ幅200mm、ウェブ厚12mm、フランジ厚18mmの狭フランジ幅H形鋼を圧延した。まず、略H形状の孔型20で7パスの圧延を行い、ウェブ厚を100mmとしたところ、フランジ幅178mm、フランジ厚156mmの略H形状の粗形鋼片となった。7パス目の圧延では、フランジ脚長の増加量が約1mmと小さく、次のパスを行った場合にはフランジ脚長の増加量が飽和することが予想された。そこで、この時点で略H形状の孔型20での圧延を終了させ、粗ユニバーサル圧延機Uに搬送した。粗ユニバーサル圧延を行うに当たり、最初の5パスでフランジ圧下率がウェブ圧下率よりも約5%高い圧下率で圧延を行ったところ、フランジ幅は250mmまで増大した。その後は、粗ユニバーサル圧延でフランジとウェブの圧下率がほぼ等しい条件で粗ユニバーサル圧延機Uとエッジャ圧延機Eによる圧延を10パス行い、最後に仕上げユニバーサル圧延機Fで1パス圧延してH形鋼としたところ、目標とする寸法の狭フランジ幅H形鋼を圧延することができた。
【0030】
比較例1.
一方、比較例として図6に示すようにスラブ短辺を圧延する孔型を3つ用い、更に略H形状の孔型で圧延する方法で、同じ寸法の製品を圧延することとした。素材スラブの寸法は幅1200mm、厚さ250mmとした。スラブ短辺の圧延に要したパス数は、孔型K−1が2パス、孔型K−2が4パス、孔型K−3が4パス、略H形状の孔型K−4が9パスで、合計19パスであった。ブレークダウン圧延後の粗形鋼片を実施例1と同様にユニバーサル圧延し、粗ユニバーサル圧延12パス、仕上げユニバーサル圧延1パス、ブレークダウン圧延とあわせて合計32パスで所望の寸法の製品を得た。ただし、ブレークダウン圧延の圧延パス数は本発明の方法の2倍以上であり、ブレークダウン圧延のパス数が多いために圧延能率が大幅に低下した。
【0031】
【発明の効果】
以上説明したように本発明によれば、フランジ幅がウェブ高さの1/4〜1/10の狭フランジ幅H形鋼を高能率に圧延することが可能となり、製造コストの削減に大きな効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施形態1の圧延方法に供される形鋼圧延設備の一例を示す全体構成図である。
【図2】図1のブレークダウン圧延機BD及び粗ユニバーサル圧延機Uによる圧延状態を示した説明図である。
【図3】ブレークダウン圧延機BDでのフランジ脚長HEの変化を示す特性図である。
【図4】ブレークダウン圧延でフランジ脚長の増加が飽和する前に孔型圧延を終えて、ユニバーサル圧延を行ったときのフランジ脚長HEの変化を示す特性図である。
【図5】本発明の実施形態2の圧延方法において使用される凹形孔型を有するロール及び圧延状態を示した説明図である。
【図6】従来技術のブレークダウン圧延機の孔型を示す概略図である。
【符号の説明】
BD ブレークダウン圧延機、U 粗ユニバーサル圧延機、E エッジャ圧延機、
F 仕上ユニバーサル圧延機。
10 スラブ、11 ウェブ部、12 フランジ部、15 凹部の孔型、
20 略H型形状の孔型。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for rolling an H-section steel having a narrow flange width having a flange width in a range of 1/4 to 1/10 of a web height, and more particularly, to a high-efficiency rolling.
[0002]
[Prior art]
A section steel having a flange such as an H-section steel is generally manufactured in a rolling line having a breakdown rolling mill, a universal rolling mill, and an edger rolling mill. The raw steel slab that has exited the heating furnace is first rolled by a breakdown rolling mill BD, which is a double rolling mill, into a shape suitable for the target product dimensions. Subsequently, the thickness is reduced and the flange end is formed in the coarse universal rolling mill group including the rough universal rolling mill U and the edger rolling mill E. Further, the flange is formed at a right angle by the finishing universal rolling mill F, and an H-shaped product is obtained.
[0003]
As a steel slab as a material, a steel slab having an H-shaped cross section called a beam blank, a slab having a rectangular cross section, or the like is generally used. Among them, a method disclosed in Japanese Patent Publication No. 7-61482, for example, is known as a method of obtaining a roughly H-shaped steel slab using a slab as a raw material. This technique involves, as shown in FIG. 6, for example, reducing the short side of the slab with a plurality of holes to increase the thickness in the vicinity of the reduced portion, thereby bringing the cross-sectional shape closer to the H-shape. The slab is turned by 90 ° and rolled with a pair of substantially H-shaped cavities to obtain a coarse shaped slab having a desired cross-sectional shape.
[0004]
Further, conventional H-section steels generally have a dimensional ratio in which the flange width is 1/3 or more of the web height. Particularly, in a large-section H-section steel having a web height of 500 mm or more, 1/4 of the web height is required. There is no example in which an H-section steel having the following flange width has been commercialized. Therefore, a rolling method suitable for such a narrow flange width H-section steel has not been studied so far.
[0005]
[Problems to be solved by the invention]
The present inventors have rolled out a conventional method of rolling a crude steel slab of H-section steel using a slab as a material in order to roll a narrow flange width H-section steel having a flange width of 1/4 of the web height. The application of the technology of JP-A-7-61482 was examined. As a result, it became clear that there were the following problems.
[0006]
First, it has been found that in the conventional technique, the short side of the slab is rolled using a plurality of holes, so that there is a problem that the number of rolling passes is large and the rolling efficiency is poor. Furthermore, even if the short side of the slab is pressed down to bring the cross-sectional shape closer to the H-shape, the cross-sectional area of the portion of the slab that hits the flange is reduced by rolling it 90 ° and rolling it with a substantially H-shaped hole. It turned out to be. Since the reduction in the cross-sectional area of the flange is larger than that of the conventional H-section steel, it is necessary to form the flange in consideration of this reduction when rolling down the short side of the slab. Since the number of times was required, there was a concern that the rolling efficiency would be further deteriorated.
[0007]
As described above, there are many problems in applying the conventional H-beam breakdown rolling method to a narrow flange width H-beam as it is, and it has become clear that a new rolling method needs to be developed.
[0008]
However, the H-section steel with a flange width smaller than 1/10 of the web height is more likely to be rolled in a state where the material to be rolled is shifted left and right with respect to the roll in rough and universal rolling, and the torsion of the material to be rolled is high. In reality, mass production is not possible because there is a possibility that the shape defect such as, or the like, or the flange portion is rolled between horizontal rolls to cause roll damage. For this reason, the narrow flange width H-section steel requiring the above-mentioned new rolling method is intended to have a flange width of 1/4 to 1/10 of the web height.
[0009]
Therefore, the present invention provides a method for rolling a narrow flange width H-section steel which enables highly efficient rolling of a narrow flange width H-section steel having a flange width of 1/4 to 1/10 of the web height. The purpose is to:
[0010]
[Means for Solving the Problems]
The present inventors have developed a method for efficiently rolling a crude steel slab of a narrow flange width H-section steel by using a numerical calculation or a model rolling mill having a size several times smaller than that of an actual machine. As a result of conducting a rolling experiment and a rolling test using an actual machine and conducting various studies, a rolling method of the present invention having the following features has been invented.
[0011]
(1) A raw steel slab having a rectangular cross section is rolled into a roughly shaped steel slab by using one substantially H-shaped die, and then the web and flange are reduced by a universal rolling mill, and the flange width is reduced by an edger rolling mill. Method of rolling narrow flange width H-section steel to obtain products of target dimensions.
[0012]
(2) A method for rolling a narrow flange width H-section steel in which a raw steel slab is rolled without rolling when a rough slab is rolled using one substantially H-shaped die.
[0013]
(3) After rolling the short side of the raw steel slab having a rectangular cross section with a pair of dies to adjust the width of the raw slab, rolling the raw steel slab with one substantially H-shaped die and forming a coarse steel slab Method of rolling narrow flange width H-section steel.
[0014]
(4) A method for rolling a narrow flange width H-section steel in which rolling with one substantially H-shaped die is completed before the increase in flange leg length is saturated.
[0015]
(5) The rolling with one hole having a substantially H shape is completed in a state where the flange leg length is smaller than the product, and the flange reduction rate is made smaller than the web reduction rate in several successive passes from the first pass of the rough universal rolling. A method of rolling a narrow flange width H-section steel in which the flange width is increased to the product leg length by rolling with a larger size.
[0016]
(6) A method for rolling a narrow flange width H-section steel in which the rolling reduction is made at least 5% larger than the web rolling reduction.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 2 is an overall configuration diagram showing an example of a section steel rolling facility provided for the rolling method of Embodiment 1 of the present invention. In this section steel rolling equipment, the raw material slab that has exited from the heating furnace is first rolled by a breakdown rolling mill BD, which is a double rolling mill, into a shape suitable for the target product dimensions. In the rough universal rolling mill group including the rolling mill U and the edger rolling mill E, the thickness is reduced and the flange end is formed. Further, the flange is formed at a right angle by the finishing universal rolling mill F to obtain an H-shaped product.
[0018]
In the first embodiment, a slab having a rectangular cross section is used as a material, and a rough rolling of a shape suitable for a narrow flange width H-section steel is performed by a breakdown rolling mill BD provided with a pair of rolls having a pair of substantially H-shaped holes. Roll shaped slabs.
[0019]
FIGS. 1A and 1B are explanatory views showing rolling states by the breakdown rolling mill BD and the coarse universal rolling mill U in FIG. The raw steel slab 10 having a width substantially equal to the width of the die is rolled by one die 20 having a substantially H shape shown in FIG. At this time, as shown in FIG. 1A, only the hole-shaped web portion 11 of the raw steel slab is reduced, and the flange portion 12 passes between the rolls without being reduced. Although the flange portion 12 is stretched by stretching of the web portion and its thickness is reduced, the thickness is larger than that of the web portion 11, so that the cross-sectional shape of the raw steel slab approaches the H shape.
[0020]
As described above, the number of passes is greatly reduced by performing rolling with only one substantially die-shaped die 20 without reducing the short side of the slab except for adjusting the slab width. In the prior art, it was common to use a plurality of molds for rolling down the short side of the slab and perform rolling of two or more passes in each case. However, in the first embodiment by eliminating such a rolling pass, The number of passes can be reduced to less than half of the conventional method, and the rolling efficiency has been greatly improved.
[0021]
FIG. 3 is a characteristic diagram showing a change in the flange leg length HE in the breakdown rolling mill BD. When multi-pass rolling is performed with one substantially H-shaped hole die 20 as described above, the flange leg length HE, which is the distance between the web surface and the flange tip, increases as the number of rolling passes increases, as shown in FIG. However, the amount of increase gradually decreased, and it was found that the amount of saturation became saturated at a certain number of passes or more, and the amount of increase became zero. For this reason, when rolling down the breakdown rolling mill BD, it is preferable to perform rolling with a smaller number of passes than the number of passes at which the increase is saturated.
[0022]
FIG. 4 is a characteristic diagram showing a change in flange leg length HE when a raw steel slab rolled by a breakdown rolling mill BD is rolled by a rough universal rolling mill U. Before the increase of the flange leg length HE is saturated, or even if the roll is rolled in a substantially H-shaped hole form until it is substantially saturated, the flange leg HE of the crude steel slab at the end of rolling by the breakdown rolling mill BD is determined by the flange of the product. The leg length may be smaller than the leg length HEp, but in such a case, the length of the flange leg is increased by the subsequent coarse universal rolling mill U to make the dimension longer than the flange length of the product. In the rolling by the coarse universal rolling mill U, in order to effectively increase the flange leg length HE, rolling is performed under the condition that the flange draft is larger than the web draft, as shown in FIG. An increase can occur (after 6 passes).
[0023]
Here, in the rolling by the coarse universal rolling mill U, if the rolling reduction of the flange is made 5% or more larger than the rolling reduction of the web, the target flange leg length can be obtained with a small number of passes. The relationship of the draft is
Flange reduction rate ≥ Web reduction rate Desirably, flange reduction rate ≥ Web reduction rate + 5%
And Accordingly, in the coarse universal rolling mill U, as shown in FIG. 1B, the web portion 11 is relatively lightly reduced and the flange portion 12 is strongly reduced.
[0024]
In the first embodiment, rolling for increasing the flange leg length is performed in several passes from the first pass of the rolling of the rough universal rolling mill U. This is because, by increasing the flange leg length before the sheet thickness of the material to be rolled becomes thin, the material to be rolled stably passes between the rolls of the rough universal rolling mill U. Assuming that the path for increasing the flange leg length is other than the initial stage of the rolling of the rough universal rolling mill U, when a rolled material having a small flange leg length and a thin flange thickness passes between the rolls of the rolling mill, the flange falls down and the It is not preferable because an accident such as rolling between the sheets easily occurs.
[0025]
Embodiment 2. FIG.
By the way, it is ideal that the width of the slab to be the material is almost equal to the width of the die. However, there are many cases where the width of the material slab is actually cast every 100 mm, etc. In some cases, a slab wider than the width of the hole type is used instead of a suitable slab width. Embodiment 2 corresponds to such a case.
[0026]
FIG. 5 is an explanatory diagram of the rolling method according to the second embodiment. The short side of the slab 10 is reduced by using a pair of dies, preferably a concave dies 15 of the breakdown rolling mill BD, and the slab width is adjusted so that the width of the slab 10 becomes substantially equal to the width of the dies. . Subsequent processing is the same as in the first embodiment.
[0027]
【Example】
Embodiment 1 FIG.
Example 1 As a first example of the present invention, a narrow flange width H-section steel was rolled using the hot rolling equipment for section steel shown in FIG. Here, target product dimensions were a web height of 800 mm, a flange width of 100 mm, a web thickness of 10 mm, and a flange thickness of 18 mm. The dimensions of the material slab were 1000 mm in width and 250 mm in thickness. This slab was rolled for 7 passes with a substantially H-shaped hole die 20 having a hole width of 1020 mm and a web portion width of 764 mm to obtain a web thickness of 100 mm. A roughly H-shaped rough steel piece having a flange width of 170 mm and a flange thickness of 118 mm was obtained. Could be rolled. The rough billet is continuously rolled for a total of 12 passes by a rough universal rolling mill U and an edger rolling mill E, and finally is rolled for one pass by a finishing universal rolling mill F, whereby a narrow flange width H having a target size is obtained. The shape steel could be rolled.
[0028]
Embodiment 2. FIG.
Further, as a second embodiment of the present invention, a product having the same dimensions as in the first embodiment was rolled by using a raw slab having a width of 1050 mm and a thickness of 250 mm using the hot rolling equipment for shaped steel shown in FIG. 1. . First, the short side of the slab was reduced by a pair of concave molds 15 shown in FIG. 5 to make the slab width 1000 mm. Thereafter, by performing the same rolling as in Example 1, a product having a target size could be rolled. At this time, the number of passes of the breakdown rolling was 2 passes for the concave die 15 and 7 passes for the substantially H-shaped die 20 for a total of 9 passes.
[0029]
Embodiment 3 FIG.
Next, as a third embodiment of the present invention, using a hot rolling facility for shaped steel shown in FIG. 1, using a material slab having a width of 1100 mm and a thickness of 250 mm, a web height of 800 mm, a flange width of 200 mm, and a web thickness of A narrow flange width H-section steel having a flange thickness of 12 mm and a flange thickness of 18 mm was rolled. First, rolling was performed for 7 passes with a substantially H-shaped hole die 20, and when the web thickness was 100 mm, a roughly H-shaped rough steel slab having a flange width of 178 mm and a flange thickness of 156 mm was obtained. In the rolling in the seventh pass, the increase in the flange leg length was as small as about 1 mm, and it was expected that the increase in the flange leg length would be saturated in the next pass. Therefore, at this point, the rolling in the substantially H-shaped die 20 was completed, and the roll was conveyed to the rough universal rolling mill U. In performing the rough universal rolling, when the rolling was performed at a rolling reduction of about 5% higher than the web rolling reduction in the first five passes, the flange width increased to 250 mm. Thereafter, rolling is performed by a rough universal rolling mill U and an edger rolling mill E for 10 passes under the condition that the rolling reduction of the flange and the web is substantially equal in the rough universal rolling, and finally, one pass rolling is performed by the finishing universal rolling mill F to form an H-shape. When steel was used, a narrow flange width H-section steel having a target size could be rolled.
[0030]
Comparative Example 1
On the other hand, as a comparative example, as shown in FIG. 6, three dies for rolling the short side of the slab were used, and a product having the same dimensions was rolled by a method of rolling with a substantially H-shaped dies. The dimensions of the material slab were 1200 mm in width and 250 mm in thickness. The number of passes required for rolling the short side of the slab was 2 passes for the hole shape K-1, 4 passes for the hole shape K-2, 4 passes for the hole shape K-3, and 9 for the substantially H-shaped hole shape K-4. There were a total of 19 passes. The rough slab after the breakdown rolling was universally rolled in the same manner as in Example 1, and a product having desired dimensions was obtained in a total of 32 passes including the coarse universal rolling 12 passes, the finishing universal rolling 1 pass, and the breakdown rolling. . However, the number of rolling passes in the breakdown rolling was twice or more that of the method of the present invention, and the rolling efficiency was greatly reduced due to the large number of passes in the breakdown rolling.
[0031]
【The invention's effect】
As described above, according to the present invention, a narrow flange width H-section steel having a flange width of 1/4 to 1/10 of the web height can be rolled with high efficiency, and a great effect on reduction of manufacturing cost. Is obtained.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram illustrating an example of a section steel rolling facility provided for a rolling method according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a rolling state by a breakdown rolling mill BD and a rough universal rolling mill U of FIG. 1;
FIG. 3 is a characteristic diagram showing a change in flange leg length HE in a breakdown rolling mill BD.
FIG. 4 is a characteristic diagram showing a change in flange leg length HE when groove rolling is completed before the increase in flange leg length is saturated by breakdown rolling and universal rolling is performed.
FIG. 5 is an explanatory diagram showing a roll having a concave hole shape and a rolled state used in a rolling method according to a second embodiment of the present invention.
FIG. 6 is a schematic view showing a form of a prior art breakdown rolling mill.
[Explanation of symbols]
BD breakdown rolling mill, U rough universal rolling mill, E edger rolling mill,
F Finishing universal rolling mill.
10 Slab, 11 Web part, 12 Flange part, 15 Recessed hole type,
20 H-shaped hole type.

Claims (6)

長方形断面を有する素材鋼片を、略H形状の1つの孔型により圧延して粗形鋼片とした後、ユニバーサル圧延機によりウェブとフランジを、エッジャ圧延機によりフランジ幅を圧下して目標とする寸法の製品を得ることを特徴とする、狭フランジ幅H形鋼の圧延方法。A raw steel slab having a rectangular cross section is rolled into a roughly shaped steel slab by using a substantially H-shaped die, and the web and flange are reduced by a universal rolling mill, and the flange width is reduced by an edger rolling mill to achieve a target. A method for rolling an H-section steel having a narrow flange width, characterized by obtaining a product having a dimension as described below. 略H形状の1つの孔型により圧延して粗形鋼片とするに際し、素材鋼片を転回することなく圧延することを特徴とする、請求項1記載の狭フランジ幅H形鋼の圧延方法。2. The method for rolling a narrow flange width H-section steel according to claim 1, wherein the raw steel slab is rolled without rolling when rolling into a crude steel slab by using one substantially H-shaped die. . 長方形断面を有する素材鋼片の短辺を1対の孔型で圧延して素材鋼片の幅を調整した後、略H形状の1つの孔型で圧延して粗形鋼片とすることを特徴とする請求項1記載の狭フランジ幅H形鋼の圧延方法。After rolling the short side of the raw material slab having a rectangular cross-section with a pair of holes to adjust the width of the raw material slab, rolling the raw material slab with one approximately H-shaped hole into a coarse steel slab. The method for rolling an H-section steel having a narrow flange width according to claim 1, characterized in that: フランジ脚長の増加が飽和する前に略H形状の1つの孔型での圧延を終了することを特徴とする請求項1〜3の何れかに記載の狭フランジ幅H形鋼の圧延方法。The method for rolling a narrow flange width H-section steel according to any one of claims 1 to 3, wherein rolling with one substantially H-shaped hole is completed before the increase in flange leg length is saturated. フランジ脚長が製品よりも小さい状態で略H形状の1つの孔型での圧延を終了し、粗ユニバーサル圧延の最初のパスから連続した数パスで、フランジ圧下率をウェブ圧下率よりも大きくして圧延することによりフランジ幅を製品脚長まで増加させることを特徴とする請求項1〜4の何れかに記載の狭フランジ幅H形鋼の圧延方法。Rolling in one hole having a substantially H-shape is completed with the flange leg length smaller than the product, and the flange reduction rate is made larger than the web reduction rate in several passes from the first pass of the rough universal rolling. The method for rolling a narrow flange width H-section steel according to any one of claims 1 to 4, wherein the flange width is increased to a product leg length by rolling. フランジ圧下率をウェブ圧下率よりも5%以上大きくして圧延することを特徴とする請求項5記載の狭フランジ幅H形鋼の圧延方法。6. The method for rolling a narrow flange width H-section steel according to claim 5, wherein the rolling is performed with the flange reduction ratio being at least 5% larger than the web reduction ratio.
JP2002170358A 2002-06-11 2002-06-11 Rolling method for narrow flange width H-section steel Expired - Fee Related JP4016733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002170358A JP4016733B2 (en) 2002-06-11 2002-06-11 Rolling method for narrow flange width H-section steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002170358A JP4016733B2 (en) 2002-06-11 2002-06-11 Rolling method for narrow flange width H-section steel

Publications (2)

Publication Number Publication Date
JP2004009134A true JP2004009134A (en) 2004-01-15
JP4016733B2 JP4016733B2 (en) 2007-12-05

Family

ID=30436646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170358A Expired - Fee Related JP4016733B2 (en) 2002-06-11 2002-06-11 Rolling method for narrow flange width H-section steel

Country Status (1)

Country Link
JP (1) JP4016733B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101712045B (en) * 2009-12-15 2012-07-04 攀钢集团钢铁钒钛股份有限公司 Method for rolling H-shaped steel
CN110280593A (en) * 2019-06-26 2019-09-27 南京钢铁股份有限公司 The ribbon steel for not generating step determines method with three roll shape roughing mills and its pass

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245570A (en) * 1975-10-08 1977-04-11 Sumitomo Metal Ind Method to roll formed stebl for universal roll mill
JPS60162503A (en) * 1984-02-01 1985-08-24 Nippon Steel Corp Rough rolling method of h-beam
JPS6444203A (en) * 1987-08-13 1989-02-16 Kawasaki Steel Co Universal rolling method for unequal side and unequal thickness i-shape steel
JPS6483302A (en) * 1987-09-24 1989-03-29 Sumitomo Metal Ind Manufacture of h-shape steel
JPH02169103A (en) * 1988-12-23 1990-06-29 Nippon Steel Corp Method for flange width changeable rolling rough rolled stock for h-shaped steel
JPH07164004A (en) * 1993-12-15 1995-06-27 Kawasaki Steel Corp Method for rolling h-shape steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245570A (en) * 1975-10-08 1977-04-11 Sumitomo Metal Ind Method to roll formed stebl for universal roll mill
JPS60162503A (en) * 1984-02-01 1985-08-24 Nippon Steel Corp Rough rolling method of h-beam
JPS6444203A (en) * 1987-08-13 1989-02-16 Kawasaki Steel Co Universal rolling method for unequal side and unequal thickness i-shape steel
JPS6483302A (en) * 1987-09-24 1989-03-29 Sumitomo Metal Ind Manufacture of h-shape steel
JPH02169103A (en) * 1988-12-23 1990-06-29 Nippon Steel Corp Method for flange width changeable rolling rough rolled stock for h-shaped steel
JPH07164004A (en) * 1993-12-15 1995-06-27 Kawasaki Steel Corp Method for rolling h-shape steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101712045B (en) * 2009-12-15 2012-07-04 攀钢集团钢铁钒钛股份有限公司 Method for rolling H-shaped steel
CN110280593A (en) * 2019-06-26 2019-09-27 南京钢铁股份有限公司 The ribbon steel for not generating step determines method with three roll shape roughing mills and its pass

Also Published As

Publication number Publication date
JP4016733B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
WO2019179307A1 (en) On-line roll press hot forming process for hot sheet/strip and application thereof
JPH11347601A (en) Method for rolling rough shape billent
JPS59133902A (en) Hot rolling method of h-beam
JP2004009134A (en) Method for rolling wide flange shape having narrow flange width
US20190009315A1 (en) Method for producing h-shaped steel and rolling apparatus
JP2004098102A (en) Method and equipment for manufacturing flat bar
JP2004535934A (en) Work method for XH shape rolling of parallel flange section steel (beam steel)
JP3339466B2 (en) H-section steel and its rolling method
JPWO2018216742A1 (en) H-shaped steel manufacturing method
JP7295397B2 (en) Shaped steel manufacturing method
JP3211331B2 (en) Hot rolling method for H-section steel
JP6747256B2 (en) Method for manufacturing H-section steel
JPH026001A (en) Method of rolling shape steel
JP6790973B2 (en) Manufacturing method of H-section steel
JP2005152932A (en) Universal mill and manufacturing method of steel plate using the same
JP2009160630A (en) Method and apparatus for rolling wide flange shape
JP2004322105A (en) Method for manufacturing wide flange shape and grooved roll
JPH0596304A (en) Method for rolling angle steel having unequal side and unequal thickness
WO2013108418A1 (en) Method for manufacturing t-shaped steel and rolling equipment
JP2021109180A (en) Method of manufacturing h-shaped steel
JPS5893501A (en) Rolling method for approximately h-shaped steel ingot
JP3302783B2 (en) Rolling method and rolling device for section steel
JPH02187201A (en) Method for rough rolling h-shape steel
JPH0824926B2 (en) Rolling method for profile with flange
JP6323291B2 (en) Finish bending machine for H-section steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees