JP2004006423A - Active material for lithium secondary battery - Google Patents

Active material for lithium secondary battery Download PDF

Info

Publication number
JP2004006423A
JP2004006423A JP2003303936A JP2003303936A JP2004006423A JP 2004006423 A JP2004006423 A JP 2004006423A JP 2003303936 A JP2003303936 A JP 2003303936A JP 2003303936 A JP2003303936 A JP 2003303936A JP 2004006423 A JP2004006423 A JP 2004006423A
Authority
JP
Japan
Prior art keywords
metallic iron
quality
lithium
ppm
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003303936A
Other languages
Japanese (ja)
Inventor
Koichi Numata
沼田 幸一
Sumihiko Makizoe
牧添 澄彦
Shintaro Ishida
石田 新太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003303936A priority Critical patent/JP2004006423A/en
Publication of JP2004006423A publication Critical patent/JP2004006423A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active material for a lithium secondary battery with high capacity retainability as a material capable of electrochemically separating and inserting lithium. <P>SOLUTION: As the material capable of electrochemically separating and inserting lithium, Li<SB>x</SB>MO<SB>2</SB>having a layer crystal structure (M is at least one metal selected from a group comprising Fe, Co, Ni, Mg, and Al; 0.95<x<1.05) is selected, and the content of metallic iron in the material is limited to less than 5 ppm, and the material is used as the active material for the lithium secondary battery. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、リチウム二次電池用活物質に関し、より詳細にはリチウム二次電池で使用したときに、高い容量を保つことのできるリチウム二次電池用活物質に関する。 The present invention relates to an active material for a lithium secondary battery, and more particularly, to an active material for a lithium secondary battery capable of maintaining a high capacity when used in a lithium secondary battery.

 近年のパソコンや電話等のポータブル化、コードレス化の急速な進歩により、それらの駆動用電源としての二次電池の需要が高まっている。その中でもリチウム二次電池は最も小型で高エネルギー密度を有するため特に期待されている。即ち、リチウム二次電池は携帯電子機器に用いられる重要な機器の一つである。上記要望を満たすリチウム二次電池の正極材料としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム
(LiMnO)等があり、負極材料としては炭素等がある。
2. Description of the Related Art With the rapid progress of portable and cordless personal computers and telephones in recent years, demand for secondary batteries as power sources for driving them has been increasing. Among them, lithium secondary batteries are particularly expected because they are the smallest and have a high energy density. That is, the lithium secondary battery is one of important devices used for portable electronic devices. Positive electrode materials of the lithium secondary battery satisfying the above demand include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and the like, and negative electrode materials include carbon and the like.

 しかしながらこれらの正極材料や負極材料を用いて作製した電池の特性は、製造方法によって大きく異なることが知られている。本発明者等は鋭意研究の結果、金属性の鉄の存在がリチウム二次電池用活物質のサイクル寿命に影響を与えていることを見出し、本発明に至った。 However, it is known that the characteristics of batteries manufactured using these positive electrode materials and negative electrode materials vary greatly depending on the manufacturing method. The present inventors have assiduously studied and found that the presence of metallic iron affects the cycle life of an active material for a lithium secondary battery, leading to the present invention.

  従って本発明の目的は、リチウム二次電池用として使用したときに、高い容量維持率を有するリチウム二次電池用活物質、及び該リチウム二次電池用活物質を使用するリチウム二次電池を提供することにある。
 本発明は、Liの電気化学的な脱離及び挿入が可能な材料を含んで成り、該材料中の金属性の鉄の品位が5ppm未満であることを特徴とするリチウム二次電池用活物質である。
Accordingly, an object of the present invention is to provide an active material for a lithium secondary battery having a high capacity retention rate when used for a lithium secondary battery, and a lithium secondary battery using the active material for the lithium secondary battery. Is to do.
The present invention provides an active material for a lithium secondary battery, comprising a material capable of electrochemical desorption and insertion of Li, wherein the quality of metallic iron in the material is less than 5 ppm. It is.

 前記材料としては、(1)炭素あるいは、(2)層状の結晶構造を有するLiMO(MはMn、Fe、Co、Ni、Mg及びAlから成る群から選択される少なくとも1種の金属で、0.95<x<1.05である)や(3)スピネル型の結晶構造を有するLi(MはMn、Fe、Co、Ni、Mg及びAlから成る群から選択される少なくとも1種の金属で、0.98<y<1.10である)等がある。 Examples of the material include (1) carbon or (2) Li x MO 2 having a layered crystal structure (M is at least one metal selected from the group consisting of Mn, Fe, Co, Ni, Mg, and Al) Wherein 0.95 <x <1.05) and (3) Li y M 2 O 4 having a spinel-type crystal structure (M is at least one selected from the group consisting of Mn, Fe, Co, Ni, Mg and Al). 0.98 <y <1.10).

これらの材料を有するリチウム二次電池用活物質を使用して構成されるリチウム二次電池は高容量維持率を有している。 A lithium secondary battery formed using an active material for a lithium secondary battery having these materials has a high capacity retention rate.

 以下本発明をその好ましい実施形態に基づき説明する。先ず、本発明における金属性の鉄とは金属鉄と鉄合金を含み、本発明では金属性の鉄の品位(含有量)を5ppm未満、好ましくは4ppm未満、より好ましくは1ppm未満とする。鉄品位が5ppm以上であると、サイクル寿命が不十分で、二次電池としての使用には難があり、5ppm未満、特に1ppm未満の場合には、満足できる容量維持率が得られる。金属性の鉄の品位の下限はゼロであり、この場合に最も良好な容量維持率が得られる。
 本発明のリチウム二次電池用活物質中の金属性の鉄の品位は、初期の鉄品位に大きく影響される他に、後述のように原料の粉砕を行う場合には、粉砕に使用する容器の鉄含有量や、粉砕後の原料の粒径等に影響される。
Hereinafter, the present invention will be described based on preferred embodiments. First, the metallic iron in the present invention includes metallic iron and an iron alloy. In the present invention, the quality (content) of metallic iron is less than 5 ppm, preferably less than 4 ppm, and more preferably less than 1 ppm. When the iron grade is 5 ppm or more, the cycle life is insufficient, and it is difficult to use the battery as a secondary battery. When the iron grade is less than 5 ppm, particularly less than 1 ppm, a satisfactory capacity retention rate can be obtained. The lower limit of the quality of metallic iron is zero, in which case the best capacity retention rate is obtained.
The quality of metallic iron in the active material for a lithium secondary battery of the present invention is greatly influenced by the initial iron quality, and when grinding raw materials as described later, a container used for grinding. And the particle size of the raw material after grinding.

 活物質である正極材料及び負極材料は種々の元素の組み合わせが可能であるが、前述した、(1)炭素、(2)LiMO及び(3)Liの容量維持率に対して鉄品位の影響が観察された。
 活物質である炭素としては、グラファイトが好適に用いられる。
 前記LiMOは、リチウム原料と、マンガン、鉄、コバルト、ニッケル、マグネシウム及びアルミニウムから選択される少なくとも1種の元素を含む化合物、例えばそれらの酸化物、水酸化物又は炭酸塩等とを混合し焼成することにより得られる。前記リチウム原料としては、炭酸リチウム(LiCO)、硝酸リチウム(LiNO)及び水酸化リチウム(LiOH)等が挙げられる。前記LiMOのx値は0.95<x<1.05であることが望ましく、x値が1.05を超えると容量維持率は向上するが、初期容量が減少しやすくなり、x値が0.95未満では高温での電池特性の改善が十分に行われない傾向がある。
The positive electrode material and the negative electrode material, which are active materials, can be various combinations of elements. As described above, the capacity retention rates of (1) carbon, (2) Li x MO 2 and (3) Li y M 2 O 4 The effect of iron grade was observed.
Graphite is preferably used as carbon as an active material.
The Li x MO 2 comprises a lithium raw material and a compound containing at least one element selected from manganese, iron, cobalt, nickel, magnesium and aluminum, for example, an oxide, hydroxide or carbonate thereof. It is obtained by mixing and firing. Examples of the lithium raw material include lithium carbonate (LiCO 3 ), lithium nitrate (LiNO 3 ), and lithium hydroxide (LiOH). It is preferable that the x value of the Li x MO 2 is 0.95 <x <1.05. When the x value exceeds 1.05, the capacity retention ratio is improved, but the initial capacity tends to decrease. Battery characteristics tend not to be sufficiently improved.

 前記Liは、リチウム原料と、マンガン、鉄、コバルト、ニッケル、マグネシウム及びアルミニウムから選択される少なくとも1種の元素を含む化合物、例えばそれらの酸化物、水酸化物又は炭酸塩等とを混合し焼成することにより得られる。前記リチウム原料としては、炭酸リチウム(LiCO)、硝酸リチウム(LiNO)及び水酸化リチウム(LiOH)等が挙げられる。前記Liのy値は0.98<y<1.10であることが望ましく、y値が1.10を超えると容量維持率は向上するが、初期容量が減少しやすくなり、y値が0.98未満では高温での電池特性の改善が十分に行われない傾向がある。
 このような材料の製造に関しては、原料混合前あるいは後に粉砕を行うことも好ましい。秤量及び混合された原料はそのまま、又は造粒して使用できる。造粒方法は、湿式でも乾式でも良く、押し出し造粒、転動造粒、流動造粒、混合造粒、噴霧乾燥造粒、加圧成型造粒、あるいはロール等を用いたフレーク造粒でも良い。
The Li y M 2 O 4 is a compound containing a lithium raw material and at least one element selected from manganese, iron, cobalt, nickel, magnesium and aluminum, for example, oxides, hydroxides or carbonates thereof. And firing the mixture. Examples of the lithium raw material include lithium carbonate (LiCO 3 ), lithium nitrate (LiNO 3 ), and lithium hydroxide (LiOH). The y value of Li y M 2 O 4 is desirably 0.98 <y <1.10. When the y value exceeds 1.10, the capacity retention ratio is improved, but the initial capacity is easily reduced, and the y value is less than 0.98. In such a case, the battery characteristics at high temperatures tend not to be sufficiently improved.
Regarding the production of such a material, it is also preferable to carry out pulverization before or after mixing the raw materials. The weighed and mixed raw materials can be used as they are or granulated. The granulation method may be wet or dry, and may be extrusion granulation, tumbling granulation, fluidized granulation, mixing granulation, spray drying granulation, pressure molding granulation, or flake granulation using a roll or the like. .

 このようにして得られた原料は、例えば焼成炉内に投入され、600〜1000℃で焼成することによって、前記化合物がマンガン化合物である場合にはスピネル型マンガン酸リチウムが得られる。単一相のスピネル型マンガン酸リチウムを得るためには600℃程度の焼成でも十分であるが、焼成温度が低いと粒成長が進行しないので750℃以上、好ましくは850℃以上の焼成温度が望ましい。ここで用いられる焼成炉としては、ロータリーキルンあるいは静置炉等が例示できる。焼成時間は1時間以上、好ましくは5〜20時間である。
 本発明では、例えば前記正極材料とカーボンブラック等の導電材とテフロン(登録商標)バインダー等の結着剤とを混合して正極合剤とし、又負極にはリチウム、又はカーボン等のリチウムを吸蔵、脱蔵できる材料が用いられる。非水系電解質としては、例えば六フッ化リン酸リチウム(LiPF)等のリチウム塩をエチレンカーボネート−ジメチルカーボネート等の混合溶媒に溶解したものが用いられ、これらの正極合剤、負極及び非水系電解質等により好ましいリチウム二次電池が構成されるが、これらの材料に限定されるものではない。
The raw material thus obtained is put into, for example, a firing furnace and fired at 600 to 1000 ° C., whereby spinel-type lithium manganate is obtained when the compound is a manganese compound. Firing at about 600 ° C. is sufficient to obtain a single-phase spinel-type lithium manganate, but a firing temperature of 750 ° C. or higher, preferably 850 ° C. or higher is desirable, since grain growth does not proceed when the firing temperature is low. . Examples of the firing furnace used here include a rotary kiln and a stationary furnace. The firing time is 1 hour or more, preferably 5 to 20 hours.
In the present invention, for example, the positive electrode material, a conductive material such as carbon black, and a binder such as Teflon (registered trademark) are mixed to form a positive electrode mixture, and the negative electrode stores lithium or lithium such as carbon. A material that can be devolatilized is used. As the non-aqueous electrolyte, for example, a solution in which a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a mixed solvent such as ethylene carbonate-dimethyl carbonate is used. These positive electrode mixture, negative electrode, and non-aqueous electrolyte are used. Thus, a preferable lithium secondary battery is constituted, but is not limited to these materials.

  本発明に係わるリチウム二次電池用活物質の実施例を記載するが、本発明は該実施例に限定されるものではない。実施例1〜3及び比較例1は活物質として炭素を用いた例を、実施例7〜9は活物質として層状の結晶構造を有するLiMOを使用した例を、実施例4〜6、10〜15及び比較例2〜5では活物質としてLiを使用した例をそれぞれ示す。 Examples of the active material for a lithium secondary battery according to the present invention will be described, but the present invention is not limited to the examples. Examples 1 to 3 and Comparative Example 1 are examples using carbon as an active material, Examples 7 to 9 are examples using Li x MO 2 having a layered crystal structure as an active material, and Examples 4 to 6 are examples. , 10 to 15 and Comparative Examples 2 to 5 show examples using Li y M 2 O 4 as an active material, respectively.

[実施例1]
 中心粒径が20ミクロンである市販のグラファイトを、ポリプロピレン容器に多数のアルミナボールを入れたボールミル(以下、単にボールミルという)で中心粒径10ミクロンに粉砕した。このグラファイト中の金属性の鉄の品位を次の方法で測定した。
 グラファイトのサンプル5gを2容量%の臭素−メタノール溶液100mlに加え、常温で5分間振とうして金属性の鉄を溶液中に抽出した。この溶液を遠心分離により回収して原子吸光法で前記溶液中の鉄濃度を測定し、前記サンプル中の金属性の鉄品位を算出した。
[Example 1]
Commercially available graphite having a center particle size of 20 microns was pulverized to a center particle size of 10 microns by a ball mill (hereinafter simply referred to as a ball mill) in which a large number of alumina balls were placed in a polypropylene container. The quality of metallic iron in this graphite was measured by the following method.
5 g of a graphite sample was added to 100 ml of a 2% by volume bromine-methanol solution, and the mixture was shaken at room temperature for 5 minutes to extract metallic iron into the solution. This solution was collected by centrifugation, and the iron concentration in the solution was measured by an atomic absorption method, and the metallic iron quality in the sample was calculated.

 次に前記グラファイト材料をテフロンバインダーと十分に混合し、プレス成形でディスク状として正極合剤とし、対極を金属リチウムとし、これらの材料を使用して図1に示した2016型コイン電池を作製した。
 図1のコイン電池は、耐有機電解液性のステンレス鋼製の正極缶4の内側に、同じくステンレス鋼製の正極集電体6がスポット熔接されている。この正極集電体6の上面には前記正極合剤から成る正極1が圧着されている。この正極1の上面には、電解液を含浸した微孔性のポリプロピレン樹脂製のセパレータ3が配置されている。前記正極缶4の開口部には、下方に金属リチウムから成る負極2を接合した負極缶5が、ポリプロピレン製の絶縁パッキング8を挟んで配置され、これにより電池は密封されている。前記負極缶5は負極端子を兼ね、正極缶と同様のステンレス製である。
Next, the graphite material was sufficiently mixed with a Teflon binder, formed into a disk shape by press molding to form a positive electrode mixture, the counter electrode was made of lithium metal, and the 2016 type coin battery shown in FIG. 1 was manufactured using these materials. .
In the coin battery shown in FIG. 1, a positive electrode current collector 6 also made of stainless steel is spot-welded to the inside of a positive electrode can 4 made of stainless steel having organic electrolyte resistance. The positive electrode 1 made of the positive electrode mixture is pressed on the upper surface of the positive electrode current collector 6. On the upper surface of the positive electrode 1, a separator 3 made of microporous polypropylene resin impregnated with an electrolytic solution is arranged. At the opening of the positive electrode can 4, a negative electrode can 5 having a negative electrode 2 made of metallic lithium joined thereto is disposed with an insulating packing 8 made of polypropylene interposed therebetween, thereby sealing the battery. The negative electrode can 5 also serves as a negative electrode terminal, and is made of stainless steel similar to the positive electrode can.

 電池の直径は20mm、電池の総高は1.6mmとした。電解液は、エチレンカーボネートと1,3−ジメトキシエタンを等体積混合したものを溶媒とし、これに溶質として六フッ化リン酸リチウムを1モル/リットル溶解させたものを用いた。
 充放電条件は次の通りとした。電圧範囲は0.1〜1.5V、ICレートとし、温度は45℃とした。充放電サイクルを25回繰り返し、初期の放電容量に対する25サイクルでの容量維持率を評価した。
 粉砕前の金属性の鉄品位は0.5ppmであった。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ0.6ppm及び96%であった。
The diameter of the battery was 20 mm, and the total height of the battery was 1.6 mm. The electrolytic solution used was a solvent obtained by mixing ethylene carbonate and 1,3-dimethoxyethane in an equal volume, and a solution in which lithium hexafluorophosphate was dissolved at 1 mol / liter as a solute.
The charging and discharging conditions were as follows. The voltage range was 0.1 to 1.5 V, the IC rate was 45 ° C. The charge / discharge cycle was repeated 25 times, and the capacity retention ratio at 25 cycles with respect to the initial discharge capacity was evaluated.
The metallic iron grade before grinding was 0.5 ppm. As shown in Table 1, the quality of the metallic iron after pulverization and the capacity retention rate after 25 cycles were 0.6 ppm and 96%, respectively.

Figure 2004006423
Figure 2004006423

[実施例2]
 実施例1で使用した中心粒径が20ミクロンである市販のグラファイトを、ボールミルで中心粒径5ミクロンに粉砕した。この粉砕グラファイト中の金属性の鉄の品位及び充放電特性を実施例1と同様の方法で測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ0.5ppm及び98%であった。
[Example 2]
The commercially available graphite having a central particle size of 20 microns used in Example 1 was ground with a ball mill to a central particle size of 5 microns. The quality and charge / discharge characteristics of the metallic iron in the pulverized graphite were measured in the same manner as in Example 1. The quality of the metallic iron after pulverization and the capacity retention rate in 25 cycles were 0.5 ppm and 98%, respectively, as shown in Table 1.

[実施例3]
 実施例1で使用した中心粒径が20ミクロンである市販のグラファイトを、鉄製のピンミルを用いて中心粒径10ミクロンに粉砕した。この粉砕グラファイト中の金属性の鉄の品位及び充放電特性を実施例1と同様の方法で測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ4.2ppm及び95%であった。
[Example 3]
The commercially available graphite having a center particle diameter of 20 microns used in Example 1 was pulverized to a center particle diameter of 10 microns using an iron pin mill. The quality and charge / discharge characteristics of the metallic iron in the pulverized graphite were measured in the same manner as in Example 1. As shown in Table 1, the quality of the metallic iron after pulverization and the capacity retention rate after 25 cycles were 4.2 ppm and 95%, respectively.

[比較例1]
 実施例1で使用した中心粒径が20ミクロンである市販のグラファイトを、鉄製のピンミルを用いて中心粒径5ミクロンに粉砕した。この粉砕グラファイト中の金属性の鉄の品位及び充放電特性を実施例1と同様の方法で測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ6.5ppm及び88%であった。
[Comparative Example 1]
The commercially available graphite having a center particle diameter of 20 microns used in Example 1 was ground to a center particle diameter of 5 microns using an iron pin mill. The quality and charge / discharge characteristics of the metallic iron in the pulverized graphite were measured in the same manner as in Example 1. As shown in Table 1, the quality of the metallic iron after pulverization and the capacity retention rate after 25 cycles were 6.5 ppm and 88%, respectively.

[実施例4]
 中心粒径が25ミクロンの水酸化コバルトと水酸化リチウムを、Co:Li=1:1となるように秤量し混合し、大気中900℃で20時間焼成した。得られたコバルト酸リチウム(LiCoO)の中心粒径は22ミクロンであり、実施例1に記載の方法で測定した金属性の鉄の品位は0.3ppmであった。
 このコバルト酸リチウムを実施例1のボールミルで中心粒径約10ミクロンに粉砕した。この材料中の金属性の鉄の品位を実施例1と同様の方法で測定した。充放電特性も実施例1と同様の方法で電圧範囲を3.0〜4.3Vとして測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ0.3ppm及び97%であった。
[Example 4]
Cobalt hydroxide and lithium hydroxide having a center particle diameter of 25 microns were weighed and mixed so that Co: Li = 1: 1, and fired at 900 ° C. in the air for 20 hours. The center particle size of the obtained lithium cobaltate (LiCoO 2 ) was 22 μm, and the quality of metallic iron measured by the method described in Example 1 was 0.3 ppm.
This lithium cobaltate was pulverized by the ball mill of Example 1 to a central particle size of about 10 μm. The quality of metallic iron in this material was measured in the same manner as in Example 1. The charge / discharge characteristics were measured in the same manner as in Example 1, with the voltage range being 3.0 to 4.3V. The quality of the metallic iron after pulverization and the capacity retention rate in 25 cycles were 0.3 ppm and 97%, respectively, as shown in Table 1.

[実施例5]
 実施例4で合成した中心粒径が22ミクロンであるコバルト酸リチウムをボールミルを用いて中心粒径約5ミクロンに粉砕した。この粉砕材料中の金属性の鉄の品位及び充放電特性をそれぞれ実施例1及び実施例4と同様の方法で測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ0.4ppm及び98%であった。
[Example 5]
Lithium cobaltate having a center particle size of 22 microns synthesized in Example 4 was ground using a ball mill to a center particle size of about 5 microns. The quality and charge / discharge characteristics of metallic iron in the pulverized material were measured by the same methods as in Examples 1 and 4, respectively. As shown in Table 1, the quality of the metallic iron after pulverization and the capacity retention rate after 25 cycles were 0.4 ppm and 98%, respectively.

[実施例6]
 実施例4で合成した中心粒径が22ミクロンであるコバルト酸リチウムをボールミルを用いて中心粒径約10ミクロンに粉砕した。この粉砕材料中の金属性の鉄の品位及び充放電特性をそれぞれ実施例1及び実施例4と同様の方法で測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ3.6ppm及び94%であった。
[Example 6]
Lithium cobaltate having a center particle size of 22 microns synthesized in Example 4 was ground using a ball mill to a center particle size of about 10 microns. The quality and charge / discharge characteristics of metallic iron in the pulverized material were measured by the same methods as in Examples 1 and 4, respectively. The quality of the metallic iron after pulverization and the capacity retention rate in 25 cycles were 3.6 ppm and 94%, respectively, as shown in Table 1.

[比較例2]
 実施例4で合成した中心粒径が22ミクロンであるコバルト酸リチウムを鉄製のピンミルを用いて中心粒径約5ミクロンに粉砕した。この粉砕材料中の金属性の鉄の品位及び充放電特性をそれぞれ実施例1及び実施例4と同様の方法で測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ8.0ppm及び87%であった。
[Comparative Example 2]
Lithium cobaltate synthesized in Example 4 and having a center particle diameter of 22 microns was ground to a center particle diameter of about 5 microns using an iron pin mill. The quality and charge / discharge characteristics of metallic iron in the pulverized material were measured by the same methods as in Examples 1 and 4, respectively. As shown in Table 1, the quality of the metallic iron after pulverization and the capacity retention rate after 25 cycles were 8.0 ppm and 87%, respectively.

[実施例7]
 共沈法で合成した中心粒径が21ミクロンである水酸化マンガンニッケル(Mn:Ni=1:1)と水酸化リチウムを、Li:(Mn+Ni)=1:1となるように、秤量及び混合して大気中1000℃で20時間焼成した。得られたマンガンニッケル酸リチウム(LiMn0.5Ni0.5)の中心粒径は23ミクロンであり、実施例1と同様の方法で測定した金属性の鉄の品位は0.6ppmであった。
 このマンガンニッケル酸リチウムをボールミルを用いて中心粒径約10ミクロンに粉砕した。この粉砕材料中の金属性の鉄の品位及び充放電特性をそれぞれ実施例1及び実施例4と同様の方法で測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ0.8ppm及び96%であった。
[Example 7]
Weigh and mix manganese nickel hydroxide (Mn: Ni = 1: 1) and lithium hydroxide synthesized by coprecipitation method with a center particle size of 21 microns so that Li: (Mn + Ni) = 1: 1. And baked at 1000 ° C. for 20 hours in the air. The center particle size of the obtained lithium manganese nickelate (LiMn 0.5 Ni 0.5 O 2 ) was 23 μm, and the quality of metallic iron measured by the same method as in Example 1 was 0.6 ppm.
This lithium manganese nickelate was pulverized to a center particle size of about 10 microns using a ball mill. The quality and charge / discharge characteristics of metallic iron in the pulverized material were measured by the same methods as in Examples 1 and 4, respectively. As shown in Table 1, the quality of the metallic iron after pulverization and the capacity retention rate after 25 cycles were 0.8 ppm and 96%, respectively.

[実施例8]
 実施例7で合成した中心粒径が23ミクロンであるマンガンニッケル酸リチウムをボールミルを用いて中心粒径約5ミクロンに粉砕した。この粉砕材料中の金属性の鉄の品位及び充放電特性をそれぞれ実施例1及び実施例4と同様の方法で測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ0.7ppm及び96%であった。
Example 8
Lithium manganese nickel oxide having a center particle size of 23 μm synthesized in Example 7 was ground using a ball mill to a center particle size of about 5 μm. The quality and charge / discharge characteristics of metallic iron in the pulverized material were measured by the same methods as in Examples 1 and 4, respectively. As shown in Table 1, the quality of the metallic iron after pulverization and the capacity retention rate after 25 cycles were 0.7 ppm and 96%, respectively.

[実施例9]
 実施例7で合成した中心粒径が23ミクロンであるマンガンニッケル酸リチウムを鉄製のピンミルを用いて中心粒径約10ミクロンに粉砕した。この粉砕材料中の金属性の鉄の品位及び充放電特性をそれぞれ実施例1及び実施例4と同様の方法で測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ4.5ppm及び92%であった。
[Example 9]
Lithium manganese nickel oxide having a center particle size of 23 microns synthesized in Example 7 was ground to a center particle size of about 10 microns using an iron pin mill. The quality and charge / discharge characteristics of metallic iron in the pulverized material were measured by the same methods as in Examples 1 and 4, respectively. As shown in Table 1, the quality of the metallic iron after pulverization and the capacity retention rate after 25 cycles were 4.5 ppm and 92%, respectively.

[比較例3]
 実施例4で合成した中心粒径が22ミクロンであるマンガンニッケル酸リチウムを鉄製のピンミルを用いて中心粒径約5ミクロンに粉砕した。この粉砕材料中の金属性の鉄の品位及び充放電特性をそれぞれ実施例1及び実施例4と同様の方法で測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ8.5ppm及び92%であった。
[Comparative Example 3]
Lithium manganese nickel oxide having a center particle size of 22 μm synthesized in Example 4 was ground to about 5 μm with a pin mill made of iron. The quality and charge / discharge characteristics of metallic iron in the pulverized material were measured by the same methods as in Examples 1 and 4, respectively. The quality of the metallic iron after pulverization and the capacity retention rate in 25 cycles were 8.5 ppm and 92%, respectively, as shown in Table 1.

[実施例10]
 中心粒径が23ミクロンである電解二酸化マンガンと炭酸リチウムを、Li:Mn=1.1:1.9となるように、秤量及び混合して大気中900℃で20時間焼成した。得られたスピネル型マンガン酸リチウム(Li1.1Mn1.9)の中心粒径は23ミクロンであり、実施例1と同様の方法で測定した金属性の鉄の品位は0.8ppmであった。
 このスピネル型マンガン酸リチウムをボールミルを用いて中心粒径約10ミクロンに粉砕した。この粉砕材料中の金属性の鉄の品位及び充放電特性をそれぞれ実施例1及び実施例4と同様の方法で測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ0.8ppm及び98%であった。
[Example 10]
Electrolytic manganese dioxide and lithium carbonate having a center particle diameter of 23 microns were weighed and mixed so that Li: Mn = 1.1: 1.9, and fired at 900 ° C. in the air for 20 hours. The center particle size of the obtained spinel-type lithium manganate (Li 1.1 Mn 1.9 O 4 ) was 23 μm, and the quality of metallic iron measured by the same method as in Example 1 was 0.8 ppm.
This spinel-type lithium manganate was ground using a ball mill to a central particle size of about 10 μm. The quality and charge / discharge characteristics of metallic iron in the pulverized material were measured by the same methods as in Examples 1 and 4, respectively. The quality of the metallic iron after pulverization and the capacity retention rate in 25 cycles were 0.8 ppm and 98%, respectively, as shown in Table 1.

[実施例11]
 実施例10で合成した中心粒径が23ミクロンであるスピネル型マンガン酸リチウムをボールミルを用いて中心粒径約5ミクロンに粉砕した。この粉砕材料中の金属性の鉄の品位及び充放電特性をそれぞれ実施例1及び実施例4と同様の方法で測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ0.9ppm及び87%であった。
[Example 11]
The spinel-type lithium manganate synthesized in Example 10 and having a center particle diameter of 23 μm was ground to about 5 μm using a ball mill. The quality and charge / discharge characteristics of metallic iron in the pulverized material were measured by the same methods as in Examples 1 and 4, respectively. As shown in Table 1, the quality of the metallic iron after pulverization and the capacity retention rate after 25 cycles were 0.9 ppm and 87%, respectively.

[実施例12]
 実施例10で合成した中心粒径が23ミクロンであるスピネル型マンガン酸リチウムを鉄製のピンミルを用いて中心粒径約10ミクロンに粉砕した。この粉砕材料中の金属性の鉄の品位及び充放電特性をそれぞれ実施例1及び実施例4と同様の方法で測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ4.8ppm及び91%であった。
[Example 12]
The spinel-type lithium manganate synthesized in Example 10 and having a center particle size of 23 μm was pulverized to a center particle size of about 10 μm using an iron pin mill. The quality and charge / discharge characteristics of metallic iron in the pulverized material were measured by the same methods as in Examples 1 and 4, respectively. The quality of the metallic iron after pulverization and the capacity retention rate after 25 cycles were 4.8 ppm and 91%, respectively, as shown in Table 1.

[比較例4]
 実施例10で合成した中心粒径が22ミクロンであるマンガンニッケル酸リチウムを鉄製のピンミルを用いて中心粒径約5ミクロンに粉砕した。この粉砕材料中の金属性の鉄の品位及び充放電特性をそれぞれ実施例1及び実施例4と同様の方法で測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ9.5ppm及び91%であった。
[Comparative Example 4]
Lithium manganese nickel oxide having a center particle size of 22 μm synthesized in Example 10 was ground using a pin mill made of iron to a center particle size of about 5 μm. The quality and charge / discharge characteristics of metallic iron in the pulverized material were measured by the same methods as in Examples 1 and 4, respectively. The quality of the metallic iron after pulverization and the capacity retention rate after 25 cycles were 9.5 ppm and 91%, respectively, as shown in Table 1.

[実施例13]
 中心粒径が23ミクロンである電解二酸化マンガン、酸化マグネシウムと炭酸リチウムを、Li:Mn:Mg=1.07:1.89:0.04となるように、秤量及び混合して大気中900℃で20時間焼成した。得られたマグネシウム置換スピネル型マンガン酸リチウム(Li1.07Mn1.89Mg0.04)の中心粒径は22ミクロンであり、実施例1と同様の方法で測定した金属性の鉄の品位は0.8ppmであった。
 このマグネシウム置換スピネル型マンガン酸リチウムをボールミルを用いて中心粒径約10ミクロンに粉砕した。この粉砕材料中の金属性の鉄の品位及び充放電特性をそれぞれ実施例1及び実施例4と同様の方法で測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ0.8ppm及び99%であった。
[Example 13]
Electrolytic manganese dioxide, magnesium oxide and lithium carbonate having a center particle size of 23 microns were weighed and mixed so that Li: Mn: Mg = 1.07: 1.89: 0.04, and fired at 900 ° C. in the atmosphere for 20 hours. The center particle size of the obtained magnesium-substituted spinel-type lithium manganate (Li 1.07 Mn 1.89 Mg 0.04 O 4 ) was 22 μm, and the metallic iron grade measured by the same method as in Example 1 was 0.8 ppm. there were.
This magnesium-substituted spinel-type lithium manganate was pulverized to a center particle size of about 10 μm using a ball mill. The quality and charge / discharge characteristics of metallic iron in the pulverized material were measured by the same methods as in Examples 1 and 4, respectively. As shown in Table 1, the quality of the metallic iron after pulverization and the capacity retention rate after 25 cycles were 0.8 ppm and 99%, respectively.

[実施例14]
 実施例13で合成した中心粒径が22ミクロンであるマグネシウム置換スピネル型マンガン酸リチウムをボールミルを用いて中心粒径約5ミクロンに粉砕した。この粉砕材料中の金属性の鉄の品位及び充放電特性をそれぞれ実施例1及び実施例4と同様の方法で測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ0.7ppm及び98%であった。
[Example 14]
The magnesium-substituted spinel-type lithium manganate synthesized in Example 13 and having a center particle diameter of 22 microns was ground to a center particle diameter of about 5 microns using a ball mill. The quality and charge / discharge characteristics of metallic iron in the pulverized material were measured by the same methods as in Examples 1 and 4, respectively. As shown in Table 1, the quality of the metallic iron after pulverization and the capacity retention rate after 25 cycles were 0.7 ppm and 98%, respectively.

[実施例15]
 実施例13で合成した中心粒径が22ミクロンであるマグネシウム置換スピネル型マンガン酸リチウムを鉄製のピンミルを用いて中心粒径約10ミクロンに粉砕した。この粉砕材料中の金属性の鉄の品位及び充放電特性をそれぞれ実施例1及び実施例4と同様の方法で測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ4.3ppm及び93%であった。
[Example 15]
The magnesium-substituted spinel-type lithium manganate synthesized in Example 13 and having a center particle size of 22 microns was ground to a center particle size of about 10 microns using an iron pin mill. The quality and charge / discharge characteristics of metallic iron in the pulverized material were measured by the same methods as in Examples 1 and 4, respectively. The quality of the metallic iron after pulverization and the capacity retention rate in 25 cycles were 4.3 ppm and 93%, respectively, as shown in Table 1.

[比較例5]
 実施例13で合成した中心粒径が22ミクロンであるマンガンニッケル酸リチウムを鉄製のピンミルを用いて中心粒径約5ミクロンに粉砕した。この粉砕材料中の金属性の鉄の品位及び充放電特性をそれぞれ実施例1及び実施例4と同様の方法で測定した。粉砕後の金属性の鉄の品位と25サイクルでの容量維持率は表1に示した通りそれぞれ9.0ppm及び85%であった。
[Comparative Example 5]
Lithium manganese nickelate having a center particle size of 22 microns synthesized in Example 13 was ground to a center particle size of approximately 5 microns using an iron pin mill. The quality and charge / discharge characteristics of metallic iron in the pulverized material were measured by the same methods as in Examples 1 and 4, respectively. The quality of the metallic iron after pulverization and the capacity retention rate in 25 cycles were 9.0 ppm and 85%, respectively, as shown in Table 1.

 実施例7〜9ではLiMOのMとしてCoを使用した例を示したが、Co以外のMn、Fe、Ni、Mg及びAlでも同様の効果が得られた。又実施例4〜6及び10〜15ではLiのMとしてMgを使用した例を示したが、Mg以外のMn、Fe、Ni、Co及びAlでも同様の効果が得られた。 An example of using Co as M in Examples 7-9 In Li x MO 2, but, Mn other than Co, Fe, Ni, a similar effect can Mg and Al was obtained. Examples 4 to 6 and 10 to 15 show examples in which Mg was used as M in Li y M 2 O 4. However, similar effects were obtained with Mn, Fe, Ni, Co and Al other than Mg. .

 以上の説明から分かるように、本実施例で粉砕用のミルとして鉄製のピンミルを使用した場合に、各材料中の金属性の鉄の品位が5ppm以上になることがあり(比較例1〜5)、この場合には25サイクル後の容量維持率が最大で92%である。これに対しボールミルを使用した全ての場合、及び鉄製のピンミルの使用する一部の場合(実施例3、9、12及び15)には、材料の金属性の鉄の品位が5ppm未満に抑えられ、25サイクル後の容量維持率が最大で99%から最小91%の高い値の範囲に保持される。 As can be understood from the above description, when an iron pin mill is used as a mill for pulverization in this example, the quality of metallic iron in each material may be 5 ppm or more (Comparative Examples 1 to 5). ), In which case the capacity retention after 25 cycles is up to 92%. In contrast, in all cases using a ball mill and in some cases using an iron pin mill (Examples 3, 9, 12, and 15), the metallic iron grade of the material was reduced to less than 5 ppm. , The capacity retention rate after 25 cycles is kept in a high value range from a maximum of 99% to a minimum of 91%.

本発明で用いたリチウム二次電池を例示する断面図。FIG. 2 is a cross-sectional view illustrating a lithium secondary battery used in the present invention.

符号の説明Explanation of reference numerals

1 正極
2 負極
3 セパレータ
4 正極缶
5 負極缶
6正極集電体
7負極集電体
8絶縁パッキング
Reference Signs List 1 positive electrode 2 negative electrode 3 separator 4 positive electrode can 5 negative electrode can 6 positive electrode current collector 7 negative electrode current collector 8 insulating packing

Claims (4)

Liの電気化学的な脱離及び挿入が可能な材料として、層状の結晶構造を有するLiMO(MはMn、Fe、Co、Ni、Mg及びAlから成る群から選択される少なくとも1種の金属で、0.95<x<1.05である)を含んで成り、該材料中の金属性の鉄の品位が5ppm未満であることを特徴とするリチウム二次電池用活物質。 Li x MO 2 having a layered crystal structure (M is at least one selected from the group consisting of Mn, Fe, Co, Ni, Mg and Al) as a material capable of electrochemical desorption and insertion of Li Wherein 0.95 <x <1.05), and the metallic iron content in the material is less than 5 ppm. Liの電気化学的な脱離及び挿入が可能な材料として、スピネル型の結晶構造を有するLi(MはMn、Fe、Co、Ni、Mg及びAlから成る群から選択される少なくとも1種の金属で、0.98<y<1.10である)を含んで成り、該材料中の金属性の鉄の品位が5ppm未満であることを特徴とするリチウム二次電池用活物質。 Li y M 2 O 4 having a spinel-type crystal structure (M is selected from the group consisting of Mn, Fe, Co, Ni, Mg and Al) as a material capable of electrochemical desorption and insertion of Li An active material for a lithium secondary battery, comprising at least one metal, wherein 0.98 <y <1.10, and wherein the quality of metallic iron in the material is less than 5 ppm. 金属性の鉄の品位が0.3ppm以上5ppm未満であることを特徴とする請求項1又は2に記載のリチウム二次電池用活物質。 3. The active material for a lithium secondary battery according to claim 1, wherein the quality of the metallic iron is 0.3 ppm or more and less than 5 ppm. 請求項1から3までのいずれか1項に記載のリチウム二次電池用活物質を含んで成ることを特徴とするリチウム二次電池。
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A lithium secondary battery comprising the active material for a lithium secondary battery according to any one of claims 1 to 3.



















JP2003303936A 2001-04-10 2003-08-28 Active material for lithium secondary battery Pending JP2004006423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003303936A JP2004006423A (en) 2001-04-10 2003-08-28 Active material for lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001111792 2001-04-10
JP2003303936A JP2004006423A (en) 2001-04-10 2003-08-28 Active material for lithium secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002581605A Division JP3620744B2 (en) 2001-04-10 2002-04-08 Method for producing active material for lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2004006423A true JP2004006423A (en) 2004-01-08

Family

ID=30445672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303936A Pending JP2004006423A (en) 2001-04-10 2003-08-28 Active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2004006423A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108574A (en) * 2006-10-25 2008-05-08 Nippon Chem Ind Co Ltd Positive electrode active material for lithium-ion secondary battery, and its manufacturing method
JP2009500277A (en) * 2005-06-29 2009-01-08 エフエムシー・コーポレイション Lithium manganese compound and method for producing the same.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009500277A (en) * 2005-06-29 2009-01-08 エフエムシー・コーポレイション Lithium manganese compound and method for producing the same.
JP2008108574A (en) * 2006-10-25 2008-05-08 Nippon Chem Ind Co Ltd Positive electrode active material for lithium-ion secondary battery, and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2000195516A (en) Lithium secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP5953269B2 (en) Method for producing positive electrode active material for lithium secondary battery
WO1999001903A1 (en) Secondary cell with nonaqueous electrolyte and process for preparing positive active material therefor
JP2000048817A (en) Manufacture of spinel type lithium manganate
CN103178260A (en) Lithium manganate anode material, and preparation method and application thereof
JP3048352B1 (en) Method for producing lithium manganate
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP4800589B2 (en) Solid electrolyte-containing electrode for lithium secondary battery
JPH09213305A (en) Nonaqueous electrolyte secondary cell
KR20040014270A (en) Negative electrode active material, method of producing the same, and nonaqueous electrolyte cell
JP3620744B2 (en) Method for producing active material for lithium secondary battery
JP4581157B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2004006423A (en) Active material for lithium secondary battery
JP2000040512A (en) Manufacture of positive electrode material for lithium secondary battery
JPH07326356A (en) Lithium transition metal composite oxide powder and manufacture thereof, lithium secondary battery positive electrode and lithium secondary battery
JP3407880B2 (en) Spinel-type positive electrode material for lithium secondary battery and manufacturing method
JP2015022950A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof
JP4088850B2 (en) Non-aqueous solvent secondary battery
JP7009805B2 (en) Positive electrode material for lithium ion secondary batteries and method for manufacturing positive electrode using it
JP2005314147A (en) Lithium-manganese composite oxide
JP2017004912A (en) Spinel lithium-manganese composite oxide and method for producing the same, and lithium ion secondary battery and electrochemical device
JPH06295726A (en) Secondary battery
JP2000243399A (en) Nonaqueous electrolyte secondary battery