JP2004006379A - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
JP2004006379A
JP2004006379A JP2003176314A JP2003176314A JP2004006379A JP 2004006379 A JP2004006379 A JP 2004006379A JP 2003176314 A JP2003176314 A JP 2003176314A JP 2003176314 A JP2003176314 A JP 2003176314A JP 2004006379 A JP2004006379 A JP 2004006379A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
layer
organic
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003176314A
Other languages
Japanese (ja)
Inventor
Chishio Hosokawa
細川 地潮
Hisayuki Kawamura
川村 久幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2003176314A priority Critical patent/JP2004006379A/en
Publication of JP2004006379A publication Critical patent/JP2004006379A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a long-life and high-efficiency organic electroluminescent element (an orgnic EL element) which has little change in a color of emitted light even with a long-time drive. <P>SOLUTION: The organic EL element provided with an organic compound case at least having a recombination area where a hole and an electron are recombined and a lumious area emitting light in response to the recombination and a pair of electrodes pinching the organic compound layer contains at least a kind selected from compounds expressed in chemical formula (1) (wherein, each symbol is as defined in the detailed statement) by the ratio of 0.1 to 8 weight percent as a fluorescent dopant at least in either the recombination area or the luminous area. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は有機エレクトロルミネッセンス(以下、ELと略記する)素子に関し、さらに詳しくは、長時間駆動しても発光色の変化が少ないなど、長寿命を有し、かつ高効率の有機EL素子に関するものである。
【0002】
【従来の技術】
電界発光を利用したEL素子は、自己発光のため視認性が高く、かつ完全固体素子であるため、耐衝撃性に優れるなどの特徴を有することから、各種表示装置における発光素子としての利用が注目されている。
このEL素子には、発光材料に無機化合物を用いてなる無機EL素子と有機化合物を用いてなる有機EL素子とがあり、このうち、有機EL素子は、印加電圧を大幅に低くしうるために、次世代の表示素子としてその実用化研究が積極的になされている。
【0003】
ところで、この有機EL素子においては、長寿命かつ高効率の青色発光素子を開発するため、これまで青色発光材料に関する研究に力が注がれ、種々の青色発光材料、例えば高輝度,高効率のジスチリルアリーレン系青色発光材料(特許文献1),高輝度のキレート系青色発光材料(特許文献2),高輝度のジアミン系青色発光材料(特許文献3)などが開示されている。しかしながら、これらの青色発光材料は、通常陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極の構成で利用され、性能が発揮されていたが、寿命の点では必ずしも満足しうるものではなく、例えば(1)駆動時間が経過するとともに、色が緑色化し、発光色が変化する、(2)初期輝度100cd/mの時の半減寿命が1000時間程度と短い(実用上は数千時間以上が要求される)、などの問題がある。
【0004】
他方、本発明における蛍光性ドーパントに類似した構造を有する化合物を発光層の材料とする素子が提案されているが(特許文献4)、微量添加された蛍光性ドーパントの機能については何ら言及していない。
また、特許文献5及び特許文献6には、発光層に添加させる電荷注入補助剤であるジスチリルアリーレン系材料が開示されている。この材料は蛍光性ドーパントとしても働くものであるが、このものを用いた素子の半減寿命は1000時間程度(初期輝度100cd/m)と短く、改善が求められていた。
【特許文献1】
特開平2−247278号公報
【特許文献2】
特開平5−198378号公報
【特許文献3】
特開平6−220437号公報
【特許文献4】
特開平6−220437号公報
【特許文献5】
特開平6−9953号公報
【特許文献6】
国際公開94−6157号公報
【0005】
【発明が解決しようとする課題】
本発明は、このような従来の有機EL素子がもつ欠点を改良し、長時間駆動しても発光色の変化が少ないなど、長寿命を有し、かつ高効率の有機EL素子を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは、長寿命かつ高効率の有機EL素子を開発すべく鋭意研究を重ねた結果、素子の正孔と電子との結合領域又は発光領域の少なくともいずれかに、蛍光性ドーパントとして、特定の化合物を所定の割合で含有させることにより、その目的を達成しうることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、正孔と電子とが再結合する再結合領域及び該再結合に応答して発光する発光領域を少なくとも有する有機化合物層と、この有機化合物層を挾持する一対の電極とを備えた有機エレクトロルミネッセンス素子において、上記再結合領域及び/又は発光領域に、蛍光性ドーパントとして、一般式(I)
【0007】
【化3】

Figure 2004006379
【0008】
〔式中、Ar,Ar及びArは、それぞれ炭素数1〜10のアルキル基,炭素数6〜30のアリール基又は複素環式基を示し、それらはたがいに同一でも異なっていてもよいが、その少なくとも一つは炭素数12以上の縮合多環炭化水素基である。〕
及び一般式(II)
【0009】
【化4】
Figure 2004006379
【0010】
〔式中,Ar,Ar,Ar及びArはそれぞれ炭素数1〜10のアルキル基,炭素数6〜30のアリール基又は複素環式基を示し、それらはたがいに同一でも異なっていてもよく、Arは炭素数6〜30のアリーレン基又は二価の複素環式基を示すが、Ar〜Arの少なくとも一つは炭素数12以上の縮合多環炭化水素基である。〕
で表される化合物の中から選ばれた少なくとも一種を0.1〜8重量%の割合で含有させたことを特徴とする有機EL素子を提供するものである。
【発明の実施の形態】
本発明において用いられる蛍光性ドーパントは、一般式(I)
【0011】
【化5】
Figure 2004006379
【0012】
又は、一般式(II)
【0013】
【化6】
Figure 2004006379
【0014】
で表される構造を有する化合物である。
上記一般式(I)及び(II)において、Ar〜Arは、それぞれ炭素数1〜10のアルキル基,炭素数6〜30のアリール基又は複素環式基を示す。ここで、炭素数1〜10のアルキル基の例としては、メチル基,エチル基,n−プロピル基,イソプロピル基,n−ブチル基,イソブチル基,sec−ブチル基,t−ブチル基などが挙げられ、炭素数6〜30のアリール基の例としては、フェニル基,ビフェニル基,ターフェニル基などの非縮合炭化水素基や縮合多環炭化水素基が挙げられる。該縮合多環炭化水素基としては、好ましくは環を形成する炭素数が18以下のもの、例えばペンタレニル基,インデニル基,ナフチル基,アズレニル基,ヘプタレニル基,ビフェニレニル基,as−インダセニル基,フルオレニル基,s−インダセニル基,アセナフチレニル基,プレイアデニル基,アセナフテニル基,フェナレニル基,フェナントリル基,アントリル基,フルオランテニル基,アセフェナントリレニル基,アセアントリレニル基,トリフェニレニル基,ピレニル基,クリセニル基,ナフタセニル基などが挙げられる。
【0015】
また、複素環式基の例としては、ピリジル基,ピリミジル基,ピラジニル基,トリアジニル基,フラニル基,ピロリル基,チオフェニル基,キノリル基,クマリニル基,ベンゾフラニル基,ベンズイミダゾリル基,ベンズオキサゾリル基,ジベンゾフラニル基,ベンゾチオフェニル基,ジベンゾチオフェニル基,インドリル基,カルバゾリル基,ピラゾリル基,イミダゾリル基,オキサゾリル基,イソオキサゾリル基,チアゾリル基,インダゾリル基,ベンゾチアゾリル基,ピリダジニル基,シンノリル基,キナゾリル基,キノキサリル基,フタラジニル基,フタラジンジオニル基,フタルアミジル基,クロモニル基,ナフトラクタミル基,キノロニル基,o−スルホ安息香酸イミジル基,マレイン酸イミジル基,ナフタリジニル基,ベンズイミダゾロニル基,ベンズオキサゾロニル基,ベンゾチアゾロニル基,ベンゾチアゾチオニル基,キナゾロニル基,キノキサロニル基,フタラゾニル基,ジオキソピリミジニル基,ピリドニル基,イソキノロニル基,イソキノリニル基,イソチアゾリル基,ベンズイソキサゾリル基,ベンズイソチアゾリル基,インダジロニル基,アクリジニル基,アクリドニル基,キナゾリンジオニル基,キノキサリンジオニル基,ベンゾオキサジンジオニル基,ベンゾキサジノニル基,ナフタルイミジル基などが挙げられる。
【0016】
一方、Arは炭素数6〜30のアリーレン基又は二価の複素環式基を示す。ここで、炭素数6〜30のアリーレン基又は二価の複素環式基としては、例えばAr〜Arの説明で例示したアリール基又は複素環式から、水素原子を1個除いた二価の基を挙げることができる。また、他のアリーレン基として、ジフェニレンプロパン基,ジフェニレンメタン基などのジアリーレンアルカン基、ジフェニレンシクロヘキサン基,ジフェニレンシクロペンタン基などのジアリーレンアルカン基、ジフェニレンエーテル基などのジアリーレンエーテル基、ジフェニレンチオエーテル基などのジアリーレンチオエーテル基、N−フェニルジフェニレンアミン基,N−ナフチルジナフチレンアミン基,N−フェニルカルバゾリレン基などのN−アリールジアリーレンアミン基、さらにジフェニルチオフェン,ジフェニルビチオフェンの2価の基などのジアリールチオフェン又はジアリールビチオフェン基なども好ましく挙げることができる。
該Ar,Ar及びArは、たがいに同一でも異なっていてもよいが、その少なくとも一つは炭素数12以上の縮合多環炭化水素基であることが必要である。またAr,Ar,Ar及びArはたがいに同一でも異なっていてもよいが、Ar〜Arの少なくとも一つは炭素数12以上の縮合多環炭化水素基であることが必要である。
【0017】
さらに、該Ar〜Arは適当な置換基が導入されていてもよく、この置換基としては、例えば(1)ハロゲン原子(F,Cl,Br,I),シアノ基,ニトロ基,(2)アルキル基,(3)アルコキシ基,(4)アリールオキシ基,(5)アルキル又はアリールメルカプト基,(6)−NR(R及びRはそれぞれ水素原子,アルキル基又はアリール基を示し、それらはたがいに同一でも異なっていてもよい。)で表される置換若しくは無置換アミノ基,(7)アルキレンジオキシ基,アルキレンジチオ基などを挙げることができる。ここで、(2)のアルキル基としては、炭素数1〜20、特に1〜12の直鎖状又は分岐鎖状のものが好ましく、また、このアルキル基は、さらにハロゲン原子(F,Cl,Br,I),水酸基,シアノ基,炭素数1〜12のアルコキシ基,フェニル基又は炭素数1〜12のアルキル基やアルコキシ基で置換されたフェニル基を含有していてもよい。このようなアルキル基の例としては、メチル基,エチル基,n−プロピル基,イソプロピル基,t−ブチル基,sec−ブチル基,n−ブチル基,イソブチル基,トリフルオロメチル基,2−ヒドロキシエチル基,2−シアノエチル基,2−エトキシエチル基,2−メトキシエチル基,ベンジル基,4−クロロベンジル基,4−メチルベンジル基,4−メトキシベンジル基,4−フェニルベンジル基などが挙げられる。
【0018】
(3)のアルコキシ基(−OR)としては、Rとして上記(2)で例示したアルキル基を有するものを挙げることができ、具体的には、メトキシ基,エトキシ基,n−プロポキシ基,イソプロポキシ基,t−ブトキシ基,n−ブトキシ基,sec−ブトキシ基,イソブトキシ基,2−ヒドロキシエトキシ基,2−シアノエトキシ基,ベンジルオキシ基,4−メチルベンジルオキシ基,トリフルオロメトキシ基などが挙げられる。(4)のアリールオキシ基(−OAr)としては、Arとして無置換又はハロゲン原子(F,Cl,Br,I),炭素数1〜4のアルキル基若しくはアルコキシ基などが置換されたフェニル基やナフチル基を有するものを好ましく挙げることができ、具体的にはフェノキシ基,1−ナフチルオキシ基,2−ナフチルオキシ基,4−メチルフェノキシ基,4−メトキシフェノキシ基,4−クロロフェノキシ基,6−メチル−2−ナフチルオキシ基などが挙げられる。また、(5)のアルキル又はアリールメルカプト基(−SR)としては、Rとして上記(2)で例示したアルキル基又は(4)で例示したフェニル基やナフチル基などを有するものを挙げることができ、具体的には、メチルチオ基,エチルチオ基,フェニルチオ基,p−メチルフェニルチオ基などが挙げられる。
【0019】
さらに、(6)の−NRで示される基としては、R及びRがそれぞれ水素原子,アルキル基又はアリール基であるものが挙げられる。ここで、アルキル基としては、上記(2)で例示したものを挙げることができ、またアリール基としては、無置換又はハロゲン原子(F,Cl,Br,I),炭素数1〜4のアルキル基若しくはアルコキシ基などが置換されたフェニル基,ビフェニル基,ナフチル基,ピレニル基,アントラニル基などを挙げることができる。該R及びRはたがいに同一でも異なっていてもよく、またたがいに結合して環構造を形成していてもよい。具体的には、アミノ基,ジエチルアミノ基,N−メチル−N−フェニルアミノ基,N,N−ジフェニルアミノ基,N,N−ジ−(p−トリル)アミノ基,ジベンジルアミノ基,ピペリジノ基,モルホリノ基,ユロリジル基などが挙げられる。(7)のアルキレンジオキシ基,アルキレンジチオ基としては、例えばメチレンジオキシ基,メチレンジチオ基などが挙げられる。
【0020】
前記一般式(I),(II)で表される化合物としては、例えば次に示す構造のものを挙げることができる。
【0021】
【化7】
Figure 2004006379
【0022】
【化8】
Figure 2004006379
【0023】
【化9】
Figure 2004006379
【0024】
【化10】
Figure 2004006379
【0025】
【化11】
Figure 2004006379
【0026】
【化12】
Figure 2004006379
【0027】
【化13】
Figure 2004006379
【0028】
【化14】
Figure 2004006379
【0029】
本発明においては、蛍光性ドーパントとして、これらの化合物を一種用いてもよく、二種以上を組み合わせて用いてもよい。
なお、本発明における蛍光性ドーパントとは、有機EL素子の再結合領域又は発光領域において、正孔と電子の再結合に応答して光を発する化合物のことであり、再結合領域又は発光領域を形成する物質(ホスト材料)に微量含有させるものである。ここで、再結合領域とは、素子中にあって、正孔と電子とが出会い、結合して励起状態を形成する場所のことである。また、発光領域とは、再結合領域で形成された励起状態は、場合によっては移動し、拡散するが、その拡散する範囲を指定する場所のことである。
【0030】
本発明においては、上記蛍光性ドーパントは、再結合領域及び発光領域の少なくともいずれか、即ち、再結合領域のみに、発光領域のみに、あるいは両領域に、0.1〜8重量%の割合で含有させることが必要である。この含有量が0.1重量%未満では蛍光性ドーパントの効果が充分に発揮されず、本発明の目的が達せられない。一方、8重量%を超えると蛍光性ドーパント間の会合により、消失現象が生じ、充分に効果が発揮されない場合がある。素子の長寿命化及び高効率化の点から、蛍光性ドーパントの好ましい含有量は0.3〜4重量%の範囲であり、特に0.8〜3重量%の範囲が好適である。
この蛍光性ドーパントを、再結合領域又は発光領域に含有させる方法については特に制限はないが、例えば再結合領域又は発光領域を形成する材料(ホスト材料)との共蒸着法を採用するのが好ましい。この方法においては、ホスト材料と蛍光性ドーパントを、それぞれが収容された別々のボートから真空蒸着し、再結合領域や発光領域を形成する。
本発明の有機EL素子においては、有機化合物層として、再結合領域及び発光領域を少なくとも有するものが用いられる。この再結合領域及び発光領域は、通常発光層に存在するため、本発明においては、有機化合物層として発光層のみを用いてもよいが、必要に応じ、発光層以外に、例えば正孔注入層,電子注入層,有機半導体層,電子障壁層,付着改善層なども用いることができる。
【0031】
次に、本発明の有機EL素子の代表的な構成例を示す。もちろん、これに限定されるものではない。
▲1▼陽極/正孔注入層/発光層/陰極
▲2▼陽極/正孔注入層/発光層/電子注入層/陰極
▲3▼陽極/発光層/電子注入層/陰極
▲4▼陽極/有機半導体層/発光層/陰極
▲5▼陽極/有機半導体層/電子障壁層/発光層/陰極
▲6▼陽極/正孔注入層/発光層/付着改善層/陰極
これらの中で、通常▲2▼の構成が好ましく用いられる。
【0032】
本発明の素子における再結合領域及び発光領域は、前記したように通常発光層に存在する。したがって、蛍光性ドーパントは、通常発光層に含有される。しかし、場合によっては、他の層、例えば正孔注入層,電子注入層,有機半導体層,電子障壁層,付着改善層なども、再結合や発光に関与することがある。この場合、これらの層にも含有させるのが好ましい。
【0033】
本発明の有機EL素子は、上記有機化合物層が一対の電極、すなわち陽極と陰極とによって挾持された構造を有しており、該陽極としては、仕事関数の大きい(4eV以上)金属,合金,電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Auなどの金属,CuI,ITO,SnO,ZnOなどの誘電性透明材料が挙げられる。該陽極は、これらの電極物質を蒸着やスパッタリングなどの方法により、薄膜を形成させることにより作製することができる。この電極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また、電極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10nm〜1μm,特に10〜200nmの範囲が好ましい。
【0034】
一方、陰極としては、仕事関数の小さい(4eV以下)金属,合金,電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム,ナトリウム−カリウム合金,マグネシウム,リチウム,マグネシウム・銀合金,Al/AlO,インジウム,希土類金属などが挙げられる。該陰極はこれらの電極物質を蒸着やスパッタリングなどの方法により、薄膜を形成させることにより、作製することができる。また、電極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜1μm,特に50〜200nmの範囲が好ましい。なお、本発明の素子においては、特に規定しないが、該陽極又は陰極のいずれか一方が透明若しくは半透明であることが発光を透過し、取り出す効率がよいので好ましい。
【0035】
本発明の素子における発光層においては、発光材料(ホスト材料)として、一般式(III)
【0036】
【化15】
Figure 2004006379
【0037】
で表されるジスチリルアリーレン系化合物が好ましく用いられる。この化合物は、特開平2−247278号公報に開示されている。
【0038】
上記一般式(III)において、Y〜Yはそれぞれ水素原子,炭素数1〜6のアルキル基,炭素数1〜6のアルコキシ基,炭素数7〜8のアラルキル基,置換あるいは無置換の炭素数6〜18のアリール基,置換あるいは無置換のシクロヘキシル基,置換あるいは無置換の炭素数6〜18のアリールオキシ基,炭素数1〜6のアルコキシ基を示す。ここで、置換基は炭素数1〜6のアルキル基,炭素数1〜6のアルコキシ基,炭素数7〜8のアラルキル基,炭素数6〜18のアリールオキシ基,炭素数1〜6のアシル基,炭素数1〜6のアシルオキシ基,カルボキシル基,スチリル基,炭素数6〜20のアリールカルボニル基,炭素数6〜20のアリールオキシカルボニル基,炭素数1〜6のアルコキシカルボニル基,ビニル基,アニリノカルボニル基,カルバモイル基,フェニル基,ニトロ基,水酸基あるいはハロゲンを示す。これらの置換基は単一でも複数でもよい。また、Y〜Yは同一でも、また互いに異なっていてもよく、YとY及びYとYは互いに置換している基と結合して、置換あるいは無置換の飽和五員環又は置換あるいは無置換の飽和六員環を形成してもよい。Arは置換あるいは無置換の炭素数6〜20のアリーレン基を表し、単一置換されていても、複数置換されていてもよく、また結合部位は、オルト,パラ,メタいずれでもよい。但し、Arが無置換フェニレン基の場合、Y〜Yはそれぞれ炭素数1〜6のアルコキシ基,炭素数7〜8のアラルキル基,置換あるいは無置換のナフチル基,ビフェニル基,シクロヘキシル基,アリールオキシ基より選ばれたものである。 このようなジスチリルアリーレン系化合物としては、例えば、
【0039】
【化16】
Figure 2004006379
【0040】
【化17】
Figure 2004006379
【0041】
【化18】
Figure 2004006379
【0042】
【化19】
Figure 2004006379
【0043】
などが挙げられる。
【0044】
また、別の好ましい発光材料(ホスト材料)として、8−ヒドロキシキノリン、又はその誘導体の金属錯体を挙げることができる。具体的には、オキシン(一般に8−キノリノールまたは8−ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物である。このような化合物は高水準の性能を示し、容易に薄膜形態に成形される。このオキシノイド化合物の例は下記構造式を満たすものである。
【0045】
【化20】
Figure 2004006379
【0046】
(式中、Mtは金属を表し、nは1〜3の整数であり、Zはそのそれぞれの位置が独立であって、少なくとも2以上の縮合芳香族環を完成させるために必要な原子を示す。)
ここで、Mtで表される金属は、一価,二価又は三価の金属とすることができるものであり、例えばリチウム,ナトリウム,カリウムなどのアルカリ金属、マグネシウムやカルシウムなどのアルカリ土類金属、あるいはホウ素又はアルミニウムなどの土類金属である。
一般に有用なキレート化合物であると知られている一価,二価又は三価の金属はいずれも使用することができる。
【0047】
また、Zは、少なくとも2以上の縮合芳香族環の一方がアゾール又はアジンからなる複素環を形成させる原子を示す。ここで、もし必要であれば、上記縮合芳香族環に他の異なる環を付加することが可能である。また、機能上の改善がないまま嵩ばった分子を付加することを回避するため、Zで示される原子の数は18以下に維持することが好ましい。
さらに、具体的にキレート化オキシノイド化合物を例示すると、トリス(8−キノリノール)アルミニウム,ビス(8−キノリノール)マグネシウム,ビス(ベンゾ−8−キノリノール)亜鉛,ビス(2−メチル−8−キノリラート)アルミニウムオキシド,トリス(8−キノリノール)インジウム,トリス(5−メチル−8−キノリノール)アルミニウム,8−キノリノールリチウム,トリス(5−クロロ−8−キノリノール)ガリウム,ビス(5−クロロ−8−キノリノール)カルシウム,5,7−ジクロル−8−キノリノールアルミニウム,トリス(5,7−ジブロモ−8−ヒドロキシキノリノール)アルミニウムなどがある。
【0048】
さらに、特開平5−198378号公報に記載されているフェノラート置換8−ヒドロキシキノリンの金属錯体は、青色発光材料として、好ましいものでる。このフェノラート置換8−ヒドロキシキノリンの金属錯体の具体例としては、ビス(2−メチル−8−キノリノラート)(フェノラート)アルミニウム(III),ビス(2−メチル−8−キノリノラート)(o−クレゾラート)アルミニウム(III),ビス(2−メチル−8−キノリノラート)(m−クレゾラート)アルミニウム(III),ビス(2−メチル−8−キノリノラート)(p−クレゾラート)アルミニウム(III),ビス(2−メチル−8−キノリノラート)(o−フェニルフェノラート)アルミニウム(III),ビス(2−メチル−8−キノリノラート)(m−フェニルフェノラート)アルミニウム(III),ビス(2−メチル−8−キノリノラート)(p−フェニルフェノラート)アルミニウム(III),ビス(2−メチル−8−キノリノラート)(2,3−ジメチルフェノラート)アルミニウム(III),ビス(2−メチル−8−キノリノラート)(2,6−ジメチルフェノラート)アルミニウム(III),ビス(2−メチル−8−キノリノラート)(3,4−ジメチルフェノラート)アルミニウム(III),ビス(2−メチル−8−キノリノラート)(3,5−ジメチルフェノラート)アルミニウム(III),ビス(2−メチル−8−キノリノラート)(3,5−ジ−t−ブチルフェノラート)アルミニウム(III),ビス(2−メチル−8−キノリノラート)(2,6−ジフェニルフェノラート)アルミニウム(III),ビス(2−メチル−8−キノリノラート)(2,4,6−トリフェニルフェノラート)アルミニウム(III)などが挙げられる。
これらの発光材料は一種用いてもよく、二種以上を組み合わせて用いてもよい。
【0049】
本発明の素子における発光層の形成方法としては、例えば蒸着法,スピンコート法,キャスト法,LB法などの公知の方法により薄膜化することにより形成することができるが、特に分子堆積膜であることが好ましい。ここで、分子堆積膜とは、該化合物の気相状態から沈着され形成された薄膜や、該化合物の溶融状態又は液相状態から固体化され形成された膜のことである。通常、この分子堆積膜はLB法により形成された薄膜(分子累積膜)と凝集構造,高次構造の相違や、それに起因する機能的な相違により区別することができる。
また、この発光層は樹脂などの結着材と共に溶剤に溶かして溶液とした後、これをスピンコート法などにより薄膜化して形成することができる。
このようにして形成された発光層の膜厚については特に制限はなく、適宜状況に応じて選ぶことができるが、好ましくは1nm〜10μm、特に好ましくは5nm〜5μmの範囲がよい。
【0050】
次に、正孔注入層は、必ずしも本発明の素子に必要なものではないが、発光性能の向上のために用いた方が好ましいものである。この正孔注入層は、発光層への正孔注入を助ける層であって、正孔移動度が大きく、イオン化エネルギーが、通常5.5eV以下と小さい。このような正孔注入層としては、より低い電界で正孔を発光層に輸送する材料が好ましく、さらに正孔の移動度が、例えば10〜10V/cmの電界印加時に、少なくとも10−6cm/V・秒であればなお好ましい。
このような正孔注入材料については、前記の好ましい性質を有するものであれば特に制限はなく、従来、光導伝材料において、正孔の電荷輸送材として慣用されているものやEL素子の正孔注入層に使用される公知のものの中から任意のものを選択して用いることができる。
【0051】
該正孔注入材料としては、例えばトリアゾール誘導体(米国特許第3,112,197号明細書等参照),オキサジアゾール誘導体(米国特許第3,189,447号明細書等参照),イミダゾール誘導体(特公昭37−16096号公報等参照),ポリアリールアルカン誘導体(米国特許第3,615,402号明細書,同3,820,989号明細書,同3,542,544号明細書,特公昭45−555号公報,同51−10983号公報,特開昭51−93224号公報,同55−17105号公報,同56−4148号公報,同55−108667号公報,同55−156953号公報,同56−36656号公報等参照),ピラゾリン誘導体およびピラゾロン誘導体(米国特許第3,180,729号明細書,同4,278,746号明細書,特開昭55−88064号公報,同55−88065号公報,同49−105537号公報,同55−51086号公報,同56−80051号公報,同56−88141号公報,同57−45545号公報,同54−112637号公報,同55−74546号公報等参照),フェニレンジアミン誘導体(米国特許第3,615,404号明細書,特公昭51−10105号公報,同46−3712号公報,同47−25336号公報,特開昭54−53435号公報,同54−110536号公報,同54−119925号公報等参照),アリールアミン誘導体(米国特許第3,567,450号明細書,同3,180,703号明細書,同3,240,597号明細書,同3,658,520号明細書,同4,232,103号明細書,同4,175,961号明細書,同4,012,376号明細書,特公昭49−35702号公報,同39−27577号公報,特開昭55−144250号公報,同56−119132号公報,同56−22437号公報,西独特許第1,110,518号明細書等参照),アミノ置換カルコン誘導体(米国特許第3,526,501号明細書等参照),オキサゾール誘導体(米国特許第3,257,203号明細書などに記載のもの),スチリルアントラセン誘導体(特開昭56−46234号公報等参照),フルオレノン誘導体(特開昭54−110837号公報等参照),ヒドラゾン誘導体(米国特許第3,717,462号明細書,特開昭54−59143号公報,同55−52063号公報,同55−52064号公報,同55−46760号公報,同55−85495号公報,同57−11350号公報,同57−148749号公報等参照),スチルベン誘導体(特開昭61−210363号公報,同61−228451号公報,同61−14642号公報,同61−72255号公報,同62−47646号公報,同62−36674号公報,同62−10652号公報,同62−30255号公報,同60−93445号公報,同60−94462号公報,同60−174749号公報,同60−175052号公報等参照)などを挙げることができる。
さらに、シラザン誘導体(米国特許第4,950,950号明細書),ポリシラン系(特開平2−204996号公報),アニリン系共重合体(特開平2−282263号公報),導電性高分子オリゴマー(特開平1−211399号公報),特に含チオフェンオリゴマーなどが挙げられる。
【0052】
本発明においては、これらの化合物を正孔注入材料として使用することができるが、次に示すポリフィリン化合物(特開昭63−2956965号公報などに記載のもの)、芳香族第三級アミン化合物およびスチリルアミン化合物(米国特許第4,127,412号明細書,特開昭53−27033号公報,同54−58445号公報,同54−149634号公報,同54−64299号公報,同55−79450号公報,同55−144250号公報,同56−119132号公報,同61−295558号公報,同61−98353号公報,同63−295695号公報等参照),特に該芳香族第三級アミン化合物を用いることが好ましい。
【0053】
該ポリフィリン化合物の代表例としては、ポルフィン,1,10,15,20−テトラフェニル−21H,23H−ポルフィン銅(II);1,10,15,20−テトラフェニル21H,23H−ポルフィン亜鉛(II);5,10,15,20−テトラキス(ペンタフルオロフェニル)−21H,23H−ポルフィン;シリコンフタロシアニンオキシド;アルミニウムフタロシアニンクロリド;フタロシアニン(無金属);ジリチウムフタロシアニン;銅テトラメチルフタロシアニン;銅フタロシアニン;クロムフタロシアニン;亜鉛フタロシアニン;鉛フタロシアニン;チタニウムフタロシアニンオキシド;マグネシウムフタロシアニン;銅オクタメチルフタロシアニンなどが挙げられる。
【0054】
また該芳香族第三級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N’,N’−テトラフェニル−4,4’−ジアミノフェニル,N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジアミノビフェニル,2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン,1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン,N,N,N’,N’−テトラ−p−トリル−4,4’−ジアミノビフェニル,1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン,ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン,ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン,N,N’−ジフェニル−N,N’−ジ(4−メトキシフェニル)−4,4’−ジアミノビフェニル,N,N,N’,N’−テトラフェニル−4,4’−ジアミノジフェニルエーテル,4,4’−ビス(ジフェニルアミノ)クオードリフェニル,N,N,N−トリ(P−トリル)アミン,4−(ジ−p−トリルアミノ)−4’−〔4(ジ−p−トリルアミノ)スチリル〕スチルベン,4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン,3−メトキシ−4’−N,N−ジフェニルアミノスチルベンゼン,N−フェニルカルバゾール,芳香族ジメチリディン系化合物などが挙げられる。
【0055】
本発明のEL素子における該正孔注入層は、上記化合物を、例えば真空蒸着法,スピンコート法,LB法などの公知の薄膜法により製膜して形成することができる。この正孔注入層の膜厚は、特に制限はないが、通常は5nm〜5μmである。この正孔注入層は、上記正孔注入材料一種又は二種以上からなる一層で構成されていてもよいし、あるいは、前記正孔注入層とは別種の化合物からなる正孔注入層を積層したものであってもよい。
また、有機半導体層は、発光層への正孔注入又は電子注入を助ける層であって、10−10S/cm以上の導電率を有するものが好適である。このような有機半導体層の材料としては、含チオフェンオリゴマーや含アリールアミンオリゴマーなどの導電性オリゴマー、含アリールアミンデンドリマーなどの導電性デンドリマーなどを用いることができる。具体的には、
【0056】
【化21】
Figure 2004006379
【0057】
【化22】
Figure 2004006379
【0058】
などが挙げられる。
さらに、電子障壁層は、電子を発光層内に閉じ込める役割をもつ層であって、発光層と陽極との間に設けられ、正孔輸送性に優れることが望ましい。このような電子障壁層の材料としては、例えば
【0059】
【化23】
Figure 2004006379
【0060】
【化24】
Figure 2004006379
【0061】
【化25】
Figure 2004006379
【0062】
などを挙げることができる。
【0063】
一方、電子注入層は、発光層への電子の注入を助ける層であって、電子移動度が大きく、また付着改善層は、この電子注入層の中で、特に陰極との付着が良い材料からなる層である。電子注入層に用いられる材料としては、例えば8−ヒドロキシキノリン又はその誘導体の金属錯体、あるいはオキサジアゾール誘導体が好ましく挙げられる。また、付着改善層に用いられる材料としては、特に8−ヒドロキシキノリン又はその誘導体の金属錯体が好適である。
上記8−ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、オキシン(一般に8−キノリノール又は8−ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物が挙げられる。
【0064】
一方、オキサジアゾール誘導体としては、一般式(IV)及び(V)
【0065】
【化26】
Figure 2004006379
【0066】
(式中Ar10〜Ar13はそれぞれ置換又は無置換のアリール基を示し、Ar10とAr11及びAr12とAr13はそれぞれにおいてたがいに同一であっても異なっていてもよく、Ar14は置換又は無置換のアリーレン基を示す。)
で表される電子伝達化合物が挙げられる。ここで、アリール基としてはフェニル基,ビフェニル基,アントラニル基,ペリレニル基,ピレニル基などが挙げられ、アリーレン基としてはフェニレン基,ナフチレン基,ビフェニレン基,アントラセニレン基,ペリレニレン基,ピレニレン基などが挙げられる。また、置換基としては炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基又はシアノ基などが挙げられる。この電子伝達化合物は、薄膜形成性のものが好ましい。
上記電子伝達化合物の具体例としては、
【0067】
【化27】
Figure 2004006379
【0068】
などが挙げられる。
【0069】
【実施例】
次に、本発明を実施例によりさらに詳しく説明するが、本発明はこれらの例によってなんら限定されるものではない。
【0070】
製造例1 K−1の製造
300ミリリットルの三つ口フラスコに、N,N’−ジフェニル−4,4’−ベンジジン(東京化成社製)2g;1−ヨードアントラセン(ナード研究所社製)5g,無水炭酸カリウム10g及び銅1gを入れ、ジメチルスルホキシド(DMSO)200ミリリットルに溶解し、200℃で8時間加熱し、攪拌した。
反応終了後、無機物をろ別し、溶媒を減圧下で留去したのち、残渣をシリカゲル(広島和光社製)を充填したカラムでトルエンを展開溶媒として精製したところ、黄色粉末1.8gを得た。
このものは、NMR及びFD−MS(フィールドディフュージョンマススペクトル)の測定より、N,N’−ジ−(アントラセン−1−イル)−N,N’−ジフェニル−4,4’−ベンジジン(K−1)と同定した。
【0071】
製造例2 K−2の製造
製造例1において、1−ヨードアントラセンの代わりに1−ヨードピレン(ナード研究所社製)を用いた以外は、製造例1と同様に反応し、精製したところ、黄色粉末1.5gを得た。
このものは、NMR及びFD−MSの測定より、N,N’−ジ−(ピレン−1−イル)−N,N’−ジフェニル−4,4’−ベンジジン(K−2)と同定した。
【0072】
製造例3 K−3の製造
製造例1において、N,N’−ジフェニルベンジジンの代わりに1,6−ジアミノピレン(東京化成社製)を用い、かつ1−ヨードアントラセンの代わりにヨードベンゼン(東京化成社製)20gを用いた以外は、製造例1と同様に反応し、精製したところ、黄色粉末1.4gを得た。
このものは、NMR及びFD−MSの測定より、N,N,N’,N’−テトラフェニル−1,6−ジアミノピレン(K−3)と同定した。
【0073】
製造例4 K−4の製造
製造例1において、N,N’−ジフェニルベンジジンの代わりにN,N’−ジフェニル−1,3−フェニレンジアミン(ナード研究所社製)を用い、かつ1−ヨードアントラセンの代わりに1−ヨードピレン(ナード研究所社製)を用いた以外は、製造例1と同様に反応し、精製したところ、黄色粉末1.5gを得た。
このものは、NMR及びFD−MSの測定より、N,N’−ジ−(ピレン−1−イル)−N,N’−ジフェニル−1,3−フェニレンジアミン(K−4)と同定した。
【0074】
製造例5 K−5の製造
製造例1において、N,N’−ジフェニルベンジジンの代わりに1−アミノピレンを用い、かつ1−ヨードアントラセンの代わりにヨードベンゼン10gを用いた以外は、製造例1と同様に反応し、精製したところ、黄色粉末1.9gを得た。
このものは、NMRとFD−MSの測定より、N,N’−ジフェニル−1−アミノピレン(K−5)と同定した。
【0075】
製造例6 K−6の製造
300ミリリットルの三つ口フラスコに、1−アミノアントラセン(アルドリッチ社製)2g;2,5−ビス−(4−ヨードフェニル−1−イル)−チオフェン(ナード研究所社製)2g,無水炭酸カリウム10g及び銅1gを入れ、DMSO200ミリリットルに溶解し、200℃で8時間加熱攪拌した。
反応終了後、無機物をろ別し、減圧下で溶媒を留去したのち、残渣を、シリカゲル(広島和光社製)を充填したカラムでトルエンを展開溶媒として精製し、黄色粉末1.7gを得た。
次に、300ミリリットルの三つ口フラスコに、この黄色粉末1.5g,ヨードベンゼン10g,無水炭酸カリウム10g及び銅1gを入れ、DMSOに溶解し、200℃で8時間加熱攪拌した。
反応終了後、無機物をろ別し、減圧下で溶媒を留去したのち、残渣を、シリカゲル(広島和光社製)を充填したカラムでトルエンを展開溶媒として精製し、黄色粉末0.68gを得た。
このものは、NMR及びFD−MSの測定より、2,5−ビス−(4−〔N−(アントラセン−1−イル)−N−フェニル〕アミノフェニル)チオフェン(K−6)と同定した。
【0076】
実施例1〜6及び比較例1
25mm×75mm×1.1mmのガラス基板上に、ITOを蒸着法にて100nmの厚さで製膜したもの(ジオマティック社製)を透明支持基板とした。なお、この基板は、イソプロピルアルコール中で5分間超音波洗浄後、窒素を吹きつけて乾燥し、UVオゾン洗浄(UV300,サムコインターナショナル社製)を30分間行ったものである。
この透明支持基板を市販の蒸着装置(日本真空技術(株)製)の基板ホルダ ーに固定し、モリブデン製抵抗加熱ボートにMTDATA200mgを入れ、他のモリブデン製抵抗加熱ボートにDPVBi200mgを入れ、別のモリブデン製抵抗加熱ボートに正孔輸送材であるNPD200mgを入れ、さらに他のモリブデン製抵抗加熱ボートに第1表に示す種類の蛍光性ドーパント〔化合物(A)〕200mgを入れ、真空槽を1×10−4Paまで減圧した。その後MTDATAの入った前記ボートを215〜220℃まで加熱し、蒸着速度0.1〜0.3nm/秒で透明支持基板上に蒸着して、膜厚60nmの正孔注入層を製膜させた。
次に、真空槽より基板を取り出すことなく、NPDの入ったボートを加熱し、膜厚20nmの正孔輸送層を正孔注入層の上に製膜した。このとき、基板の温度は室温であった。これを真空槽より取り出すことなく、NPD層上にDPVBiをホスト材料として40nm積層した。このとき同時に化合物(A)のボートを加熱し、発光層に化合物(A)を混合した。このときの蒸着速度はDPVBiの蒸着速度(第1表に示す(B))に対して、化合物(A)の蒸着速度を(C)(第1表に示す)とした。したがって、混合比〔ホスト材料に対する化合物(A)の割合〕は(D)(第1表に示す)となった。
その後、真空槽を大気圧に戻し、新たにモリブデン製抵抗加熱ボートに電子注入層の材料である8−ヒドロキシキノリン・アルミニウム錯体を入れ、さらにモリブデン製抵抗加熱ボートにマグネシウムリボン1gを入れ、タングステン製バスケットに銀ワイヤーを500mg入れて、真空槽を1×10−4Paまで減圧した。
次いで、蒸着速度0.01〜0.03nm/秒で8−ヒドロキシキノリン・アルミニウム錯体を蒸着し電子注入層を20nm形成した。さらに、銀を蒸着速度0.1nm/秒,マグネシウムを蒸着速度1.4nm/秒で同時蒸着して銀:マグネシウム混合電極を陰極とした。膜厚は150nmであった。
得られた素子に、電圧8Vを印加し、電流量,素子の輝度を測定して発光効率を算出した。得られた結果を第2表に示す。
なお、MTDATA,DPVBi及びNPDの構造は次のとおりである。
【0077】
【化28】
Figure 2004006379
【0078】
【表1】
Figure 2004006379
【0079】
【表2】
Figure 2004006379
【0080】
以上の結果、本発明の素子は、蛍光性ドーパントとしてペリレン(特開平5−198378号公報記載の蛍光性ドーパント)を用いた比較例1のものに比べて、発光効率が優れていることが分かる。
次に各素子を初期輝度300cd/mにて乾燥窒素雰囲気下で駆動し、半減寿命(初期輝度が半分になる時間)を求めた。結果を第3表に示す。尚、初期輝度100cd/mで試験した結果は、第3表の約3.5倍程度の寿命が得られている。従って、本発明の素子は初期輝度100cd/mの条件では2500時間〜1100時間の寿命が得られるものである。
【0081】
【表3】
Figure 2004006379
【0082】
第3表から分かるように、本発明の素子は、比較例1のものに比べて寿命が大幅に改善されている。
【0083】
比較例2
蛍光性ドーパント〔化合物(A)〕として、PAVTP(国際特許公開94−6157号記載の蛍光性ドーパント)を用いた以外は、実施例1と同様にして素子を作製し、初期輝度300cd/mで半減寿命を求めたところ、半減寿命は300時間であり、本発明の素子に比べて寿命が短く、劣っていた。尚、初期輝度100cd/mの時での試験結果は半減寿命1000時間であった。
なお、PAVTPの構造を次に示す。
【0084】
【化29】
Figure 2004006379
【0085】
【発明の効果】
本発明の有機EL素子は、正孔と電子とが再結合する再結合領域又は該再結合に応答して発光する発光領域の少なくともいずれかに、特定の構造の蛍光性ドーパントを含有させたものであって、長時間駆動しても発光色の変化が少ないなど、長寿命を有し、かつ発光効率が高く、例えば情報産業機器のディスプレイなどに好適に用いられる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an organic electroluminescence (hereinafter abbreviated as EL) device, and more particularly, to a long-life and high-efficiency organic EL device having little change in emission color even when driven for a long time. It is.
[0002]
[Prior art]
EL devices using electroluminescence emit light with high visibility due to self-emission, and have characteristics such as excellent impact resistance because they are completely solid devices. Therefore, their use as light emitting devices in various display devices attracts attention. Have been.
This EL element includes an inorganic EL element using an inorganic compound as a light emitting material and an organic EL element using an organic compound. Among these, the organic EL element is used because the applied voltage can be significantly reduced. Practical research is being actively conducted on the next-generation display element.
[0003]
By the way, in this organic EL device, in order to develop a long-life and high-efficiency blue light-emitting device, research on a blue light-emitting material has been focused on so far, and various blue light-emitting materials, for example, a high-brightness and high-efficiency light-emitting device have been developed. Distyrylarylene-based blue light-emitting materials (Patent Document 1), high-luminance chelate-based blue light-emitting materials (Patent Document 2), and high-luminance diamine-based blue light-emitting materials (Patent Document 3) are disclosed. However, these blue light-emitting materials have usually been used in the structure of anode / hole injection / transport layer / light-emitting layer / electron injection / transport layer / cathode and have exhibited their performance, but they are not necessarily satisfactory in terms of life. Instead, for example, (1) the color turns green and the emission color changes as the drive time elapses, and (2) the initial luminance is 100 cd / m2. 2 In this case, the half life is as short as about 1000 hours (several thousands hours or more are required in practice).
[0004]
On the other hand, an element using a compound having a structure similar to the fluorescent dopant in the present invention as a material of the light emitting layer has been proposed (Patent Document 4), but does not mention the function of the fluorescent dopant added in a small amount. Absent.
Patent Documents 5 and 6 disclose a distyryl arylene-based material that is a charge injection auxiliary added to a light emitting layer. Although this material also functions as a fluorescent dopant, the half-life of an element using this material is about 1000 hours (initial luminance of 100 cd / m2). 2 ) And it was short and needed to be improved.
[Patent Document 1]
JP-A-2-247278
[Patent Document 2]
JP-A-5-198338
[Patent Document 3]
JP-A-6-22037
[Patent Document 4]
JP-A-6-22037
[Patent Document 5]
JP-A-6-9953
[Patent Document 6]
International Publication No. 94-6157
[0005]
[Problems to be solved by the invention]
An object of the present invention is to improve the drawbacks of the conventional organic EL element and provide a highly efficient organic EL element having a long life, such as a small change in emission color even when driven for a long time. The purpose is.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to develop a long-life and high-efficiency organic EL device, and as a result, as a fluorescent dopant, in at least one of a hole-electron bonding region and a light-emitting region of the device. It has been found that the object can be achieved by including a specific compound in a predetermined ratio. The present invention has been completed based on such findings.
That is, the present invention provides an organic compound layer having at least a recombination region where holes and electrons recombine and a light emitting region which emits light in response to the recombination, and a pair of electrodes sandwiching the organic compound layer. In the organic electroluminescence device provided, the above-mentioned recombination region and / or light-emitting region is represented by the following general formula (I) as a fluorescent dopant:
[0007]
Embedded image
Figure 2004006379
[0008]
[Wherein, Ar 1 , Ar 2 And Ar 3 Represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 30 carbon atoms or a heterocyclic group, which may be the same or different, and at least one of them has 12 or more carbon atoms. Is a fused polycyclic hydrocarbon group. ]
And general formula (II)
[0009]
Embedded image
Figure 2004006379
[0010]
[Wherein, Ar 4 , Ar 5 , Ar 6 And Ar 7 Represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 30 carbon atoms or a heterocyclic group, which may be the same or different; 8 Represents an arylene group having 6 to 30 carbon atoms or a divalent heterocyclic group; 4 ~ Ar 8 At least one is a fused polycyclic hydrocarbon group having 12 or more carbon atoms. ]
And at least one compound selected from the group consisting of compounds represented by the formula (1) in a ratio of 0.1 to 8% by weight.
BEST MODE FOR CARRYING OUT THE INVENTION
The fluorescent dopant used in the present invention has the general formula (I)
[0011]
Embedded image
Figure 2004006379
[0012]
Or the general formula (II)
[0013]
Embedded image
Figure 2004006379
[0014]
Is a compound having a structure represented by
In the above general formulas (I) and (II), Ar 1 ~ Ar 7 Represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 30 carbon atoms, or a heterocyclic group, respectively. Here, examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group and a t-butyl group. Examples of the aryl group having 6 to 30 carbon atoms include a non-condensed hydrocarbon group such as a phenyl group, a biphenyl group, and a terphenyl group and a condensed polycyclic hydrocarbon group. The fused polycyclic hydrocarbon group preferably has 18 or less carbon atoms forming a ring, for example, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, a biphenylenyl group, an as-indacenyl group, a fluorenyl group , S-indacenyl, acenaphthylenyl, preyadenyl, acenaphthenyl, phenalenyl, phenanthryl, anthryl, fluoranthenyl, acephenanthrenyl, aceanthrenyl, triphenylenyl, pyrenyl, chrysenyl , Naphthacenyl group and the like.
[0015]
Examples of the heterocyclic group include a pyridyl group, a pyrimidyl group, a pyrazinyl group, a triazinyl group, a furanyl group, a pyrrolyl group, a thiophenyl group, a quinolyl group, a coumarinyl group, a benzofuranyl group, a benzimidazolyl group, and a benzoxazolyl group. , Dibenzofuranyl, benzothiophenyl, dibenzothiophenyl, indolyl, carbazolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, indazolyl, benzothiazolyl, pyridazinyl, cinnolyl, quinazolyl Group, quinoxalyl group, phthalazinyl group, phthalazinionyl group, phthalamidyl group, chromonyl group, naphthactamyl group, quinolonyl group, imidyl o-sulfobenzoate group, imidyl maleate group, naphthalidinyl group, benz Midazolonyl group, benzoxazolonyl group, benzothiazolonyl group, benzothiazothonyl group, quinazolonyl group, quinoxalonyl group, phthalazonyl group, dioxopyrimidinyl group, pyridonyl group, isoquinolonyl group, isoquinolinyl group, isothiazolyl group, benzisoxa Examples include a zolyl group, a benzisothiazolyl group, an indazilonyl group, an acridinyl group, an acrylonyl group, a quinazolindionyl group, a quinoxalinedionyl group, a benzoxazinionyl group, a benzoxazinonyl group, and a naphthalimidyl group.
[0016]
On the other hand, Ar 8 Represents an arylene group having 6 to 30 carbon atoms or a divalent heterocyclic group. Here, as the arylene group having 6 to 30 carbon atoms or the divalent heterocyclic group, for example, Ar 1 ~ Ar 7 And a divalent group in which one hydrogen atom has been removed from the aryl group or heterocyclic group exemplified in the description. Other arylene groups include diarylene alkane groups such as diphenylene propane group and diphenylene methane group, diarylene alkane groups such as diphenylene cyclohexane group, diphenylene cyclopentane group, and diarylene ether groups such as diphenylene ether group. , A diarylene thioether group such as a diphenylene thioether group, an N-aryl diarylene amine group such as an N-phenyldiphenyleneamine group, an N-naphthyldinaphthyleneamine group, an N-phenylcarbazolylen group, and further diphenylthiophene And diarylthiophene or diarylbithiophene groups such as divalent groups of diphenylbithiophene.
The Ar 1 , Ar 2 And Ar 3 May be the same or different, but at least one of them must be a condensed polycyclic hydrocarbon group having 12 or more carbon atoms. Ar 4 , Ar 5 , Ar 6 And Ar 7 Although they may be the same or different, Ar 4 ~ Ar 8 Must be a fused polycyclic hydrocarbon group having 12 or more carbon atoms.
[0017]
Further, the Ar 1 ~ Ar 8 May have an appropriate substituent introduced therein. Examples of the substituent include (1) a halogen atom (F, Cl, Br, I), a cyano group, a nitro group, (2) an alkyl group, and (3) Alkoxy group, (4) aryloxy group, (5) alkyl or arylmercapto group, (6) -NR 1 R 2 (R 1 And R 2 Represents a hydrogen atom, an alkyl group or an aryl group, which may be the same or different. Or (7) an alkylenedioxy group, an alkylenedithio group and the like. Here, the alkyl group of (2) is preferably a straight-chain or branched-chain alkyl group having 1 to 20, particularly 1 to 12 carbon atoms, and the alkyl group further has a halogen atom (F, Cl, Br, I), a hydroxyl group, a cyano group, an alkoxy group having 1 to 12 carbon atoms, a phenyl group, or a phenyl group substituted with an alkyl group or an alkoxy group having 1 to 12 carbon atoms. Examples of such alkyl groups include methyl, ethyl, n-propyl, isopropyl, t-butyl, sec-butyl, n-butyl, isobutyl, trifluoromethyl, 2-hydroxy Examples include an ethyl group, a 2-cyanoethyl group, a 2-ethoxyethyl group, a 2-methoxyethyl group, a benzyl group, a 4-chlorobenzyl group, a 4-methylbenzyl group, a 4-methoxybenzyl group, and a 4-phenylbenzyl group. .
[0018]
The alkoxy group (-OR) of (3) 3 ) Is R 3 Examples thereof include those having an alkyl group exemplified in the above (2), and specifically, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, t-butoxy group, n-butoxy group, sec -Butoxy, isobutoxy, 2-hydroxyethoxy, 2-cyanoethoxy, benzyloxy, 4-methylbenzyloxy, trifluoromethoxy and the like. As the aryloxy group (—OAr) of (4), Ar is unsubstituted or substituted with a halogen atom (F, Cl, Br, I), an alkyl group having 1 to 4 carbon atoms or an alkoxy group, or the like. Preferred are those having a naphthyl group. Specific examples include phenoxy, 1-naphthyloxy, 2-naphthyloxy, 4-methylphenoxy, 4-methoxyphenoxy, 4-chlorophenoxy, -Methyl-2-naphthyloxy group and the like. Further, the alkyl or aryl mercapto group of (5) (-SR 4 ) Is R 4 Examples thereof include those having an alkyl group exemplified in the above (2) or a phenyl group or a naphthyl group exemplified in the above (4), and specifically, a methylthio group, an ethylthio group, a phenylthio group, a p-methylphenyl And a thio group.
[0019]
Further, -NR of (6) 1 R 2 The group represented by 1 And R 2 Is a hydrogen atom, an alkyl group or an aryl group. Here, examples of the alkyl group include those exemplified in the above (2), and examples of the aryl group include unsubstituted or halogen atoms (F, Cl, Br, I) and alkyl groups having 1 to 4 carbon atoms. Examples thereof include a phenyl group, a biphenyl group, a naphthyl group, a pyrenyl group, and an anthranyl group substituted with a group or an alkoxy group. The R 1 And R 2 They may be the same or different, and may combine with each other to form a ring structure. Specifically, amino group, diethylamino group, N-methyl-N-phenylamino group, N, N-diphenylamino group, N, N-di- (p-tolyl) amino group, dibenzylamino group, piperidino group , A morpholino group, a eurololidyl group and the like. Examples of the alkylenedioxy group and alkylenedithio group (7) include a methylenedioxy group and a methylenedithio group.
[0020]
Examples of the compounds represented by the general formulas (I) and (II) include those having the following structures.
[0021]
Embedded image
Figure 2004006379
[0022]
Embedded image
Figure 2004006379
[0023]
Embedded image
Figure 2004006379
[0024]
Embedded image
Figure 2004006379
[0025]
Embedded image
Figure 2004006379
[0026]
Embedded image
Figure 2004006379
[0027]
Embedded image
Figure 2004006379
[0028]
Embedded image
Figure 2004006379
[0029]
In the present invention, one kind of these compounds may be used as the fluorescent dopant, or two or more kinds thereof may be used in combination.
Note that the fluorescent dopant in the present invention is a compound that emits light in response to recombination of holes and electrons in a recombination region or a light-emitting region of an organic EL device. A small amount is contained in the substance (host material) to be formed. Here, the recombination region is a place in the device where holes and electrons meet and combine to form an excited state. In addition, the light emitting region is a place where the excited state formed in the recombination region moves and diffuses in some cases, but designates a range of the diffusion.
[0030]
In the present invention, the fluorescent dopant is contained in at least one of the recombination region and the light-emitting region, that is, only in the recombination region, only in the light-emitting region, or in both regions at a ratio of 0.1 to 8% by weight. It is necessary to contain it. When the content is less than 0.1% by weight, the effect of the fluorescent dopant is not sufficiently exhibited, and the object of the present invention cannot be achieved. On the other hand, if it exceeds 8% by weight, the disappearance phenomenon occurs due to association between the fluorescent dopants, and the effect may not be sufficiently exhibited. From the viewpoint of extending the life of the device and increasing the efficiency, the preferable content of the fluorescent dopant is in the range of 0.3 to 4% by weight, and particularly preferably in the range of 0.8 to 3% by weight.
There is no particular limitation on the method for incorporating this fluorescent dopant into the recombination region or the light-emitting region, but it is preferable to employ, for example, a co-evaporation method with a material (host material) forming the recombination region or the light-emitting region. . In this method, a host material and a fluorescent dopant are vacuum-deposited from separate boats each containing a host material to form a recombination region or a light-emitting region.
In the organic EL device of the present invention, an organic compound layer having at least a recombination region and a light-emitting region is used. Since the recombination region and the light-emitting region are usually present in the light-emitting layer, in the present invention, only the light-emitting layer may be used as the organic compound layer. , An electron injection layer, an organic semiconductor layer, an electron barrier layer, an adhesion improving layer, and the like.
[0031]
Next, a typical configuration example of the organic EL device of the present invention will be described. Of course, it is not limited to this.
(1) Anode / hole injection layer / light-emitting layer / cathode
(2) anode / hole injection layer / light-emitting layer / electron injection layer / cathode
(3) anode / light-emitting layer / electron injection layer / cathode
(4) anode / organic semiconductor layer / light-emitting layer / cathode
(5) Anode / organic semiconductor layer / electron barrier layer / light emitting layer / cathode
(6) anode / hole injection layer / light-emitting layer / adhesion improving layer / cathode
Of these, the configuration (2) is preferably used.
[0032]
The recombination region and the light emitting region in the device of the present invention usually exist in the light emitting layer as described above. Therefore, the fluorescent dopant is usually contained in the light emitting layer. However, in some cases, other layers, such as a hole injection layer, an electron injection layer, an organic semiconductor layer, an electron barrier layer, and an adhesion improving layer, may also contribute to recombination and light emission. In this case, it is preferable that these layers are also contained.
[0033]
The organic EL device of the present invention has a structure in which the organic compound layer is sandwiched between a pair of electrodes, that is, an anode and a cathode. As the anode, a metal, alloy, or the like having a large work function (4 eV or more) is used. Those using an electrically conductive compound and a mixture thereof as an electrode material are preferably used. Specific examples of such an electrode material include metals such as Au, CuI, ITO, and SnO. 2 , ZnO and the like. The anode can be produced by forming a thin film from these electrode substances by a method such as vapor deposition or sputtering. When light is extracted from this electrode, the transmittance is desirably greater than 10%, and the sheet resistance of the electrode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is preferably in the range of usually 10 nm to 1 μm, particularly preferably 10 to 200 nm.
[0034]
On the other hand, as the cathode, a metal, an alloy, an electrically conductive compound or a mixture thereof having a low work function (4 eV or less) as an electrode material is used. Specific examples of such an electrode material include sodium, sodium-potassium alloy, magnesium, lithium, magnesium-silver alloy, Al / AlO 2 , Indium, rare earth metals and the like. The cathode can be manufactured by forming a thin film from these electrode substances by a method such as evaporation or sputtering. Further, the sheet resistance as an electrode is preferably several hundreds Ω / □ or less, and the film thickness is usually 10 nm to 1 μm, particularly preferably 50 to 200 nm. In the element of the present invention, although not particularly specified, it is preferable that either the anode or the cathode is transparent or translucent, because the efficiency of transmitting and extracting light is high.
[0035]
In the light emitting layer of the device of the present invention, a light emitting material (host material) represented by the general formula (III)
[0036]
Embedded image
Figure 2004006379
[0037]
A distyryl arylene compound represented by the following formula is preferably used. This compound is disclosed in JP-A-2-247278.
[0038]
In the above general formula (III), Y 1 ~ Y 4 Is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aralkyl group having 7 to 8 carbon atoms, a substituted or unsubstituted aryl group having 6 to 18 carbon atoms, substituted or unsubstituted A substituted or unsubstituted aryloxy group having 6 to 18 carbon atoms and an alkoxy group having 1 to 6 carbon atoms. Here, the substituent is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aralkyl group having 7 to 8 carbon atoms, an aryloxy group having 6 to 18 carbon atoms, an acyl having 1 to 6 carbon atoms. Group, acyloxy group having 1 to 6 carbon atoms, carboxyl group, styryl group, arylcarbonyl group having 6 to 20 carbon atoms, aryloxycarbonyl group having 6 to 20 carbon atoms, alkoxycarbonyl group having 1 to 6 carbon atoms, vinyl group , Anilinocarbonyl group, carbamoyl group, phenyl group, nitro group, hydroxyl group or halogen. These substituents may be single or plural. Also, Y 1 ~ Y 4 May be the same or different from each other, and Y 1 And Y 2 And Y 3 And Y 4 And may be bonded to mutually substituted groups to form a substituted or unsubstituted saturated 5-membered ring or a substituted or unsubstituted saturated 6-membered ring. Ar 9 Represents a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, which may be monosubstituted or plurally substituted, and the binding site may be any of ortho, para and meta. Where Ar 9 Is an unsubstituted phenylene group, 1 ~ Y 4 Is selected from an alkoxy group having 1 to 6 carbon atoms, an aralkyl group having 7 to 8 carbon atoms, a substituted or unsubstituted naphthyl group, a biphenyl group, a cyclohexyl group, and an aryloxy group. Such distyryl arylene compounds include, for example,
[0039]
Embedded image
Figure 2004006379
[0040]
Embedded image
Figure 2004006379
[0041]
Embedded image
Figure 2004006379
[0042]
Embedded image
Figure 2004006379
[0043]
And the like.
[0044]
Another preferable light-emitting material (host material) includes a metal complex of 8-hydroxyquinoline or a derivative thereof. Specifically, it is a metal chelate oxinoid compound containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline). Such compounds exhibit a high level of performance and are easily formed into thin film form. Examples of the oxinoid compound satisfy the following structural formula.
[0045]
Embedded image
Figure 2004006379
[0046]
(In the formula, Mt represents a metal, n is an integer of 1 to 3, and Z is an independent atom, and represents an atom necessary for completing at least two or more fused aromatic rings. .)
Here, the metal represented by Mt can be a monovalent, divalent or trivalent metal, for example, an alkali metal such as lithium, sodium and potassium, and an alkaline earth metal such as magnesium and calcium. Or an earth metal such as boron or aluminum.
Any of the monovalent, divalent or trivalent metals generally known to be useful chelate compounds can be used.
[0047]
Z represents an atom in which at least one of two or more fused aromatic rings forms a heterocyclic ring composed of azole or azine. Here, if necessary, another different ring can be added to the fused aromatic ring. Further, in order to avoid adding bulky molecules without improving the function, it is preferable to keep the number of atoms represented by Z at 18 or less.
Further, specific examples of chelated oxinoid compounds include tris (8-quinolinol) aluminum, bis (8-quinolinol) magnesium, bis (benzo-8-quinolinol) zinc, bis (2-methyl-8-quinolinolate) aluminum Oxide, tris (8-quinolinol) indium, tris (5-methyl-8-quinolinol) aluminum, 8-quinolinollithium, tris (5-chloro-8-quinolinol) gallium, bis (5-chloro-8-quinolinol) calcium , 5,7-dichloro-8-quinolinol aluminum, tris (5,7-dibromo-8-hydroxyquinolinol) aluminum and the like.
[0048]
Furthermore, a metal complex of phenolate-substituted 8-hydroxyquinoline described in JP-A-5-198338 is preferable as a blue light-emitting material. Specific examples of the metal complex of the phenolate-substituted 8-hydroxyquinoline include bis (2-methyl-8-quinolinolate) (phenolate) aluminum (III), bis (2-methyl-8-quinolinolate) (o-cresolate) aluminum (III), bis (2-methyl-8-quinolinolate) (m-cresolate) aluminum (III), bis (2-methyl-8-quinolinolate) (p-cresolate) aluminum (III), bis (2-methyl- 8-quinolinolate) (o-phenylphenolate) aluminum (III), bis (2-methyl-8-quinolinolate) (m-phenylphenolate) aluminum (III), bis (2-methyl-8-quinolinolate) (p -Phenylphenolate) aluminum (III), (2-methyl-8-quinolinolate) (2,3-dimethylphenolate) aluminum (III), bis (2-methyl-8-quinolinolate) (2,6-dimethylphenolate) aluminum (III), bis (2 -Methyl-8-quinolinolate) (3,4-dimethylphenolate) aluminum (III), bis (2-methyl-8-quinolinolate) (3,5-dimethylphenolate) aluminum (III), bis (2-methyl -8-quinolinolate) (3,5-di-t-butylphenolate) aluminum (III), bis (2-methyl-8-quinolinolate) (2,6-diphenylphenolate) aluminum (III), bis (2 -Methyl-8-quinolinolate) (2,4,6-triphenylphenolate) aluminum (II ), And the like.
These light emitting materials may be used alone or in combination of two or more.
[0049]
As a method for forming the light emitting layer in the device of the present invention, for example, the light emitting layer can be formed by thinning by a known method such as a vapor deposition method, a spin coating method, a casting method, and an LB method. Is preferred. Here, the molecular deposition film refers to a thin film formed by depositing the compound from a gaseous state or a film formed by solidifying the compound from a molten state or a liquid state. Usually, the molecular deposited film can be distinguished from a thin film (molecule accumulation film) formed by the LB method by a difference in an aggregated structure and a higher-order structure and a functional difference caused by the difference.
Further, the light emitting layer can be formed by dissolving in a solvent together with a binder such as a resin to form a solution, and then thinning the solution by spin coating or the like.
The thickness of the light emitting layer formed in this manner is not particularly limited and can be appropriately selected depending on the situation, but is preferably in the range of 1 nm to 10 μm, and particularly preferably in the range of 5 nm to 5 μm.
[0050]
Next, the hole injection layer is not always necessary for the device of the present invention, but is preferably used for improving light emitting performance. This hole injection layer is a layer that assists hole injection into the light emitting layer, has a high hole mobility, and a small ionization energy of usually 5.5 eV or less. As such a hole injecting layer, a material that transports holes to the light emitting layer with a lower electric field is preferable. 4 -10 6 When an electric field of V / cm is applied, at least 10 -6 cm 2 / V · sec is more preferable.
Such a hole injecting material is not particularly limited as long as it has the above-mentioned preferable properties. Conventionally, in a photoconductive material, a material commonly used as a hole charge transporting material or a hole in an EL element has been used. Any one of known ones used for the injection layer can be selected and used.
[0051]
Examples of the hole injection material include a triazole derivative (see US Pat. No. 3,112,197), an oxadiazole derivative (see US Pat. No. 3,189,447, etc.), and an imidazole derivative (see US Pat. No. 3,189,447). JP-B-37-16096, etc.), polyarylalkane derivatives (U.S. Pat. Nos. 3,615,402, 3,820,989, and 3,542,544) JP-A-45-555, JP-A-51-10983, JP-A-51-93224, JP-A-55-17105, JP-A-56-4148, JP-A-55-108667, JP-A-55-156953, No. 56-36656, pyrazoline derivatives and pyrazolone derivatives (U.S. Pat. Nos. 3,180,729 and 4,278,7). 6, JP-A-55-88064, JP-A-55-88065, JP-A-49-105537, JP-A-55-51086, JP-A-56-80051, JP-A-56-88141, Nos. 57-45545, 54-112637 and 55-74546; phenylenediamine derivatives (U.S. Pat. No. 3,615,404; JP-B-51-10105; Nos. 3712, 47-25336, JP-A-54-53435, JP-A-54-110536, JP-A-54-119925, etc., and arylamine derivatives (US Pat. No. 3,567,450). Specification, 3,180,703, 3,240,597, 3,658,520, 4,232, No. 03, No. 4,175,961, No. 4,012,376, JP-B-49-35702, JP-A-39-27577, JP-A-55-144250, and JP-A-55-144250. JP-A-56-119132, JP-A-56-22437, West German Patent No. 1,110,518, etc.), amino-substituted chalcone derivatives (see U.S. Pat. No. 3,526,501), oxazole derivatives (See, for example, U.S. Pat. No. 3,257,203), styryl anthracene derivatives (see JP-A-56-46234, etc.), fluorenone derivatives (see JP-A-54-110837, etc.), Hydrazone derivatives (US Pat. No. 3,717,462, JP-A-54-59143, JP-A-55-52063, and JP-A-55-52064). JP-A-55-46760, JP-A-55-85495, JP-A-57-1350, and JP-A-57-148749, etc.), stilbene derivatives (JP-A-61-210363, JP-A-61-228451). JP-A-61-14642, JP-A-61-72255, JP-A-62-47646, JP-A-62-36674, JP-A-62-10652, JP-A-62-30255, and JP-A-60-93445. JP-A-60-94462, JP-A-60-174747, JP-A-60-175052, etc.).
Furthermore, silazane derivatives (U.S. Pat. No. 4,950,950), polysilanes (JP-A-2-204996), aniline-based copolymers (JP-A-2-282263), and conductive polymer oligomers (Japanese Unexamined Patent Publication (Kokai) No. 1-211399), and especially thiophene-containing oligomers.
[0052]
In the present invention, these compounds can be used as a hole injecting material, and the following porphyrin compounds (those described in JP-A-63-2959695 and the like), aromatic tertiary amine compounds and Styrylamine compounds (U.S. Pat. No. 4,127,412, JP-A-53-27033, JP-A-54-58445, JP-A-54-149634, JP-A-54-64299, and JP-A-55-79450). JP-A-55-144250, JP-A-56-119132, JP-A-61-295558, JP-A-61-98353, JP-A-63-295695, etc.), especially the aromatic tertiary amine compound. It is preferable to use
[0053]
Representative examples of the porphyrin compound include porphine, 1,10,15,20-tetraphenyl-21H, 23H-porphine copper (II); 1,10,15,20-tetraphenyl 21H, 23H-porphine zinc (II) 5,10,15,20-tetrakis (pentafluorophenyl) -21H, 23H-porphine; silicon phthalocyanine oxide; aluminum phthalocyanine chloride; phthalocyanine (metal-free); dilithium phthalocyanine; copper tetramethyl phthalocyanine; copper phthalocyanine; Phthalocyanine; zinc phthalocyanine; lead phthalocyanine; titanium phthalocyanine oxide; magnesium phthalocyanine; copper octamethylphthalocyanine.
[0054]
Representative examples of the aromatic tertiary amine compound and styrylamine compound include N, N, N ', N'-tetraphenyl-4,4'-diaminophenyl, N, N'-diphenyl-N, N '-Di (3-methylphenyl) -4,4'-diaminobiphenyl, 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis (4-di-p-tolylamino Phenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di-p-tolylaminophenyl) -4-phenylcyclohexane, Bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphenyl-N, N'-di (4-methoxyphenyl)- 4,4'- Aminobiphenyl, N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) quadriphenyl, N, N, N-tri (P-tolyl) Amine, 4- (di-p-tolylamino) -4 '-[4 (di-p-tolylamino) styryl] stilbene, 4-N, N-diphenylamino- (2-diphenylvinyl) benzene, 3-methoxy-4 '-N, N-diphenylaminostilbenzene, N-phenylcarbazole, aromatic dimethylidin compounds and the like.
[0055]
The hole injection layer in the EL device of the present invention can be formed by forming the above compound by a known thin film method such as a vacuum evaporation method, a spin coating method, and an LB method. The thickness of the hole injection layer is not particularly limited, but is usually 5 nm to 5 μm. This hole injection layer may be composed of one or more layers of the above-described hole injection material, or may have a hole injection layer made of a compound different from the hole injection layer. It may be something.
The organic semiconductor layer is a layer that assists hole injection or electron injection into the light emitting layer, -10 Those having a conductivity of S / cm or more are suitable. As a material of such an organic semiconductor layer, a conductive oligomer such as a thiophene-containing oligomer or an arylamine-containing oligomer, or a conductive dendrimer such as an arylamine-containing dendrimer can be used. In particular,
[0056]
Embedded image
Figure 2004006379
[0057]
Embedded image
Figure 2004006379
[0058]
And the like.
Further, the electron barrier layer is a layer having a role of confining electrons in the light emitting layer, is provided between the light emitting layer and the anode, and desirably has excellent hole transportability. As a material of such an electron barrier layer, for example,
[0059]
Embedded image
Figure 2004006379
[0060]
Embedded image
Figure 2004006379
[0061]
Embedded image
Figure 2004006379
[0062]
And the like.
[0063]
On the other hand, the electron injection layer is a layer that assists the injection of electrons into the light emitting layer, has a high electron mobility, and the adhesion improving layer is made of a material that has a good adhesion to the cathode, particularly in the electron injection layer. Layer. Preferred examples of the material used for the electron injection layer include a metal complex of 8-hydroxyquinoline or a derivative thereof, or an oxadiazole derivative. As a material used for the adhesion improving layer, a metal complex of 8-hydroxyquinoline or a derivative thereof is particularly preferable.
Specific examples of the metal complex of 8-hydroxyquinoline or a derivative thereof include a metal chelate oxinoid compound containing a chelate of oxine (generally, 8-quinolinol or 8-hydroxyquinoline).
[0064]
On the other hand, as oxadiazole derivatives, general formulas (IV) and (V)
[0065]
Embedded image
Figure 2004006379
[0066]
(Where Ar 10 ~ Ar 13 Each represents a substituted or unsubstituted aryl group; 10 And Ar 11 And Ar 12 And Ar 13 May be the same or different in each case, and Ar 14 Represents a substituted or unsubstituted arylene group. )
The electron transfer compound represented by these is mentioned. Here, the aryl group includes a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, a pyrenyl group, and the like. Can be Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyano group. The electron transfer compound is preferably a thin film-forming compound.
Specific examples of the electron transfer compound,
[0067]
Embedded image
Figure 2004006379
[0068]
And the like.
[0069]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0070]
Production Example 1 Production of K-1
In a 300 ml three-necked flask, 2 g of N, N'-diphenyl-4,4'-benzidine (manufactured by Tokyo Kasei); 5 g of 1-iodoanthracene (manufactured by Nard Institute), 10 g of anhydrous potassium carbonate and 1 g of copper Was dissolved in 200 ml of dimethyl sulfoxide (DMSO), heated at 200 ° C. for 8 hours, and stirred.
After completion of the reaction, the inorganic substance was filtered off, the solvent was distilled off under reduced pressure, and the residue was purified with a column packed with silica gel (manufactured by Hiroshima Wako) using toluene as a developing solvent to obtain 1.8 g of a yellow powder. Was.
This product was analyzed by NMR and FD-MS (field diffusion mass spectrum) to find that N, N′-di- (anthracen-1-yl) -N, N′-diphenyl-4,4′-benzidine (K- 1).
[0071]
Production Example 2 Production of K-2
In Production Example 1, the reaction was carried out in the same manner as in Production Example 1 except that 1-iodopyrene (manufactured by Nard Institute) was used instead of 1-iodoanthracene, and 1.5 g of a yellow powder was obtained.
This was identified as N, N'-di- (pyren-1-yl) -N, N'-diphenyl-4,4'-benzidine (K-2) by NMR and FD-MS measurements.
[0072]
Production Example 3 Production of K-3
In Production Example 1, 1,6-diaminopyrene (manufactured by Tokyo Kasei) was used instead of N, N'-diphenylbenzidine, and 20 g of iodobenzene (manufactured by Tokyo Kasei) was used instead of 1-iodoanthracene. Except for the above, the reaction and purification were carried out in the same manner as in Production Example 1 to obtain 1.4 g of a yellow powder.
This was identified as N, N, N ', N'-tetraphenyl-1,6-diaminopyrene (K-3) by NMR and FD-MS measurements.
[0073]
Production Example 4 Production of K-4
In Production Example 1, N, N'-diphenyl-1,3-phenylenediamine (manufactured by Nard Institute) was used in place of N, N'-diphenylbenzidine, and 1-iodopyrene (instead of 1-iodoanthracene) was used. The reaction and purification were carried out in the same manner as in Production Example 1 except that NARD Laboratory Co., Ltd. was used, to obtain 1.5 g of a yellow powder.
This was identified as N, N′-di- (pyren-1-yl) -N, N′-diphenyl-1,3-phenylenediamine (K-4) by NMR and FD-MS measurements.
[0074]
Production Example 5 Production of K-5
The reaction and purification were carried out in the same manner as in Production Example 1 except that 1-aminopyrene was used instead of N, N'-diphenylbenzidine and 10 g of iodobenzene was used instead of 1-iodoanthracene. As a result, 1.9 g of a yellow powder was obtained.
This was identified as N, N'-diphenyl-1-aminopyrene (K-5) by NMR and FD-MS measurements.
[0075]
Production Example 6 Production of K-6
In a 300 ml three-necked flask, 2 g of 1-aminoanthracene (manufactured by Aldrich); 2 g of 2,5-bis- (4-iodophenyl-1-yl) -thiophene (manufactured by Nard Institute), anhydrous potassium carbonate 10 g and 1 g of copper were added, dissolved in 200 ml of DMSO, and heated and stirred at 200 ° C. for 8 hours.
After completion of the reaction, the inorganic substance was filtered off, and the solvent was distilled off under reduced pressure. The residue was purified with a column packed with silica gel (manufactured by Hiroshima Wako) using toluene as a developing solvent to obtain 1.7 g of a yellow powder. Was.
Next, 1.5 g of this yellow powder, 10 g of iodobenzene, 10 g of anhydrous potassium carbonate and 1 g of copper were put into a 300 ml three-necked flask, dissolved in DMSO, and heated and stirred at 200 ° C. for 8 hours.
After completion of the reaction, the inorganic substance was filtered off and the solvent was distilled off under reduced pressure. The residue was purified by a column packed with silica gel (manufactured by Hiroshima Wako) using toluene as a developing solvent to obtain 0.68 g of a yellow powder. Was.
This was identified as 2,5-bis- (4- [N- (anthracen-1-yl) -N-phenyl] aminophenyl) thiophene (K-6) by NMR and FD-MS measurements.
[0076]
Examples 1 to 6 and Comparative Example 1
A transparent support substrate was formed by depositing ITO with a thickness of 100 nm on a glass substrate of 25 mm × 75 mm × 1.1 mm by a vapor deposition method. The substrate was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, dried by blowing nitrogen, and then subjected to UV ozone cleaning (UV300, manufactured by Samco International) for 30 minutes.
This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition device (manufactured by Japan Vacuum Technology Co., Ltd.), 200 mg of MTDATA was put into a molybdenum resistance heating boat, 200 mg of DPVBi was put into another molybdenum resistance heating boat, and another A molybdenum resistance heating boat was charged with 200 mg of NPD as a hole transport material, and another molybdenum resistance heating boat was charged with 200 mg of a fluorescent dopant [compound (A)] of the type shown in Table 1, and the vacuum chamber was 1 × 10 -4 The pressure was reduced to Pa. Thereafter, the boat containing MTDATA was heated to 215 to 220 ° C., and was vapor-deposited on a transparent support substrate at a vapor deposition rate of 0.1 to 0.3 nm / sec to form a 60-nm-thick hole injection layer. .
Next, without removing the substrate from the vacuum chamber, the boat containing the NPD was heated to form a 20 nm-thick hole transport layer on the hole injection layer. At this time, the temperature of the substrate was room temperature. This was stacked on the NPD layer with a thickness of 40 nm using DPVBi as a host material without taking it out of the vacuum chamber. At this time, the boat of the compound (A) was heated at the same time, and the compound (A) was mixed into the light emitting layer. At this time, the deposition rate of the compound (A) was set to (C) (shown in Table 1) with respect to the deposition rate of DPVBi ((B) shown in Table 1). Therefore, the mixing ratio [the ratio of the compound (A) to the host material] was (D) (shown in Table 1).
After that, the vacuum chamber was returned to the atmospheric pressure, and a new molybdenum resistance heating boat was charged with 8-hydroxyquinoline / aluminum complex, which is a material for the electron injection layer. Put 500 mg of silver wire in the basket and set the vacuum tank to 1 × 10 -4 The pressure was reduced to Pa.
Next, an 8-hydroxyquinoline / aluminum complex was deposited at a deposition rate of 0.01 to 0.03 nm / sec to form an electron injection layer of 20 nm. Further, silver was vapor-deposited at a vapor deposition rate of 0.1 nm / sec and magnesium was vapor-deposited at a vapor deposition rate of 1.4 nm / sec, and a silver: magnesium mixed electrode was used as a cathode. The thickness was 150 nm.
A voltage of 8 V was applied to the obtained device, and the amount of current and the luminance of the device were measured to calculate the luminous efficiency. Table 2 shows the obtained results.
The structures of MTDATA, DPVBi and NPD are as follows.
[0077]
Embedded image
Figure 2004006379
[0078]
[Table 1]
Figure 2004006379
[0079]
[Table 2]
Figure 2004006379
[0080]
From the above results, it can be seen that the device of the present invention is superior in luminous efficiency to that of Comparative Example 1 using perylene (fluorescent dopant described in JP-A-5-198338) as the fluorescent dopant. .
Next, each element was set to an initial luminance of 300 cd / m. 2 Was driven in a dry nitrogen atmosphere to obtain a half-life (time during which the initial luminance becomes half). The results are shown in Table 3. Note that the initial luminance is 100 cd / m. 2 As a result, the life was about 3.5 times as long as that in Table 3. Therefore, the device of the present invention has an initial luminance of 100 cd / m 2. 2 Under the conditions described above, a life of 2500 hours to 1100 hours can be obtained.
[0081]
[Table 3]
Figure 2004006379
[0082]
As can be seen from Table 3, the life of the device of the present invention is significantly improved as compared with that of Comparative Example 1.
[0083]
Comparative Example 2
A device was prepared in the same manner as in Example 1, except that PAVTP (fluorescent dopant described in International Patent Publication No. 94-6157) was used as the fluorescent dopant [compound (A)], and an initial luminance of 300 cd / m2 was obtained. 2 The half-life was determined to be 300 hours. The half-life was 300 hours, which was shorter and inferior to the device of the present invention. Note that the initial luminance is 100 cd / m. 2 The test result at that time was a half life of 1000 hours.
The structure of PAVTP is shown below.
[0084]
Embedded image
Figure 2004006379
[0085]
【The invention's effect】
The organic EL device of the present invention has a structure in which at least one of a recombination region where holes and electrons recombine or a light-emitting region which emits light in response to the recombination contains a fluorescent dopant having a specific structure. It has a long life and high luminous efficiency, such as little change in emission color even when driven for a long time, and is suitably used for, for example, displays of information industry equipment.

Claims (3)

正孔と電子とが再結合する再結合領域及び該再結合に応答して発光する発光領域を少なくとも有する有機化合物層と、この有機化合物層を挾持する一対の電極とを備えた有機エレクトロルミネッセンス素子において、上記再結合領域及び/又は発光領域に、蛍光性ドーパントとして、一般式(I)
Figure 2004006379
〔式中、Ar,Ar及びArは、それぞれ炭素数1〜10のアルキル基,炭素数6〜30のアリール基又は複素環式基を示し、それらはたがいに同一でも異なっていてもよいが、その少なくとも一つは炭素数12以上の縮合多環炭化水素基である。〕
及び一般式(II)
Figure 2004006379
〔式中、Ar,Ar,Ar及びArはそれぞれ炭素数1〜10のアルキル基,炭素数6〜30のアリール基又は複素環式基を示し、それらはたがいに同一でも異なっていてもよく、Arは炭素数6〜30のアリーレン基又は二価の複素環式基を示すが、Ar〜Arの少なくとも一つは炭素数12以上の縮合多環炭化水素基である。〕
で表される化合物の中から選ばれた少なくとも一種を0.1〜8重量%の割合で含有させたことを特徴とする有機エレクトロルミネッセンス素子。
An organic electroluminescent device including an organic compound layer having at least a recombination region where holes and electrons recombine, a light emitting region emitting light in response to the recombination, and a pair of electrodes sandwiching the organic compound layer. In the above formula, the compound represented by the general formula (I)
Figure 2004006379
[Wherein, Ar 1 , Ar 2 and Ar 3 each represent an alkyl group having 1 to 10 carbon atoms, an aryl group or a heterocyclic group having 6 to 30 carbon atoms, and they may be the same or different. At least one of them is a condensed polycyclic hydrocarbon group having 12 or more carbon atoms. ]
And general formula (II)
Figure 2004006379
[In the formula, Ar 4 , Ar 5 , Ar 6 and Ar 7 each represent an alkyl group having 1 to 10 carbon atoms, an aryl group or a heterocyclic group having 6 to 30 carbon atoms, and they may be the same or different. Ar 8 represents an arylene group having 6 to 30 carbon atoms or a divalent heterocyclic group, but at least one of Ar 4 to Ar 8 is a condensed polycyclic hydrocarbon group having 12 or more carbon atoms. . ]
An organic electroluminescence device characterized in that at least one selected from the compounds represented by formula (1) is contained at a ratio of 0.1 to 8% by weight.
蛍光性ドーパントを発光層に含有させてなる請求項1記載の有機エレクトロルミネッセンス素子。The organic electroluminescence device according to claim 1, wherein a fluorescent dopant is contained in the light emitting layer. 素子構成が、陽極/正孔注入層/発光層/電子注入層/陰極である請求項1記載の有機エレクトロルミネッセンス素子。2. The organic electroluminescence device according to claim 1, wherein the device configuration is: anode / hole injection layer / light emitting layer / electron injection layer / cathode.
JP2003176314A 2003-06-20 2003-06-20 Organic electroluminescent element Pending JP2004006379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176314A JP2004006379A (en) 2003-06-20 2003-06-20 Organic electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003176314A JP2004006379A (en) 2003-06-20 2003-06-20 Organic electroluminescent element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP01091895A Division JP3506281B2 (en) 1995-01-26 1995-01-26 Organic electroluminescence device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006009511A Division JP2006128715A (en) 2006-01-18 2006-01-18 Organic electroluminescent element

Publications (1)

Publication Number Publication Date
JP2004006379A true JP2004006379A (en) 2004-01-08

Family

ID=30438339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176314A Pending JP2004006379A (en) 2003-06-20 2003-06-20 Organic electroluminescent element

Country Status (1)

Country Link
JP (1) JP2004006379A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122062A (en) * 2010-11-15 2012-06-28 Sumitomo Chemical Co Ltd Polymeric compound and method for producing the same
US9331285B2 (en) 2009-12-16 2016-05-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using same
US9902687B2 (en) 2014-09-19 2018-02-27 Idemitsu Kosan Co., Ltd. Compound
US10263191B2 (en) 2009-04-24 2019-04-16 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US10297765B2 (en) 2007-12-28 2019-05-21 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same
CN110003019A (en) * 2019-04-09 2019-07-12 江苏三月光电科技有限公司 It is a kind of using equal benzene as the high mobility organic compound of core and its application
CN110156612A (en) * 2019-04-09 2019-08-23 江苏三月光电科技有限公司 A kind of organic compound and its application with high mobility

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11133478B2 (en) 2007-12-28 2021-09-28 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same
US10297765B2 (en) 2007-12-28 2019-05-21 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same
US10263191B2 (en) 2009-04-24 2019-04-16 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US11024806B2 (en) 2009-04-24 2021-06-01 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US10686137B2 (en) 2009-04-24 2020-06-16 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising the same
US9923146B2 (en) 2009-12-16 2018-03-20 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using same
US9331285B2 (en) 2009-12-16 2016-05-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using same
JP2012122062A (en) * 2010-11-15 2012-06-28 Sumitomo Chemical Co Ltd Polymeric compound and method for producing the same
US10118889B2 (en) 2014-09-19 2018-11-06 Idemitsu Kosan Co., Ltd. Compound
US10435350B2 (en) 2014-09-19 2019-10-08 Idemitsu Kosan Co., Ltd. Organic electroluminecence device
US9902687B2 (en) 2014-09-19 2018-02-27 Idemitsu Kosan Co., Ltd. Compound
CN110003019A (en) * 2019-04-09 2019-07-12 江苏三月光电科技有限公司 It is a kind of using equal benzene as the high mobility organic compound of core and its application
CN110156612A (en) * 2019-04-09 2019-08-23 江苏三月光电科技有限公司 A kind of organic compound and its application with high mobility
CN110003019B (en) * 2019-04-09 2022-08-16 江苏三月科技股份有限公司 High-mobility organic compound with mesitylene as core and application thereof
CN110156612B (en) * 2019-04-09 2022-10-25 江苏三月科技股份有限公司 Organic compound with high mobility and application thereof

Similar Documents

Publication Publication Date Title
JP3506281B2 (en) Organic electroluminescence device
JP3093796B2 (en) Charge injection auxiliary material and organic electroluminescence device containing the same
JP3290432B2 (en) Organic electroluminescence device
JP3366401B2 (en) White organic electroluminescence device
US8072137B2 (en) Fused heterocyclic compound and organic light emitting device
JP3724833B2 (en) Organic electroluminescence device
US20080193796A1 (en) Organic electroluminescent device
JP3163589B2 (en) Organic electroluminescence device
JP3693128B2 (en) Organic electroluminescence device
JP5097700B2 (en) Organic electroluminescence device
JP3895178B2 (en) Amine compound and organic electroluminescence device using the same
JPH07138561A (en) Organic electroluminescent element
US20090091244A1 (en) Amine compound, organic light-emitting device, and organic blue-light-emitting device
WO2008062636A1 (en) Aromatic amine derivative and organic electroluminescent element using the same
WO2006046441A1 (en) Aromatic amine compound and organic electroluminescent device using same
JP2000273056A (en) Amino or styryl compound and organic electroluminescent element using the same
WO2007132678A1 (en) Organic electroluminescent device
JPH0688072A (en) Organic electroluminescent element
WO2007111262A1 (en) Nitrogen-containing heterocyclic derivative and organic electroluminescent device using same
US7807277B2 (en) Amine compound and organic light-emitting device
JP2004171828A (en) Organic electroluminescent element
JP3357857B2 (en) Organic electroluminescence device and method of manufacturing the same
JP2003238501A (en) Aromatic oligoamine derivative and organic electroluminescent element containing the same
JP4140986B2 (en) Organic electroluminescence device
TWI636972B (en) Compound for organic electroluminescent device and organic electroluminescent device including the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051122