JPH0688072A - Organic electroluminescent element - Google Patents

Organic electroluminescent element

Info

Publication number
JPH0688072A
JPH0688072A JP4238513A JP23851392A JPH0688072A JP H0688072 A JPH0688072 A JP H0688072A JP 4238513 A JP4238513 A JP 4238513A JP 23851392 A JP23851392 A JP 23851392A JP H0688072 A JPH0688072 A JP H0688072A
Authority
JP
Japan
Prior art keywords
group
layer
carbon atoms
compound
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4238513A
Other languages
Japanese (ja)
Other versions
JP3228301B2 (en
Inventor
Hisahiro Azuma
久洋 東
Hiroshi Shoji
弘 東海林
Chishio Hosokawa
地潮 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP23851392A priority Critical patent/JP3228301B2/en
Publication of JPH0688072A publication Critical patent/JPH0688072A/en
Application granted granted Critical
Publication of JP3228301B2 publication Critical patent/JP3228301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To improve the thinness of films and adhesion to a cathode by sandwiching an electroluminescent element made up of a specific org. compd. between an anode and a cathode. CONSTITUTION:An electroluminescent element made up of at least one layer of a heterocyclic styryl compd. of the formula [wherein A is C or N; R<1> and R<2> are each H or they combine with each other to form an (un)satd.arom. or heterocyclic ring condensed with a heterocyclic ring; Ar<1> and Ar<2> are each (substd.) 6-20C aryl or (substd.) 5-18C heterocyclic; substituting groups are each 1-6C alkyl, 1-6C alkoxy, 6-18C aryloxy, phenyl, nitro, cyano, amino, hydroxyl, or halogen provided they may combine with each other to form an (unsatd.) 5- or 6-membered ring; and Ar<3> is (substd.) arylene or a single bond] is sandwiched between an anode having a sheet resistance of several hundreds of OMEGA/mm or lower, a film thickness of 10nm to 1mum, and a transmission of 10% or higher and a cathode having a sheet resistance of several hundreds of OMEGA/mm or lower and a film thickness of 10nm to 1mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機エレクトロルミネッ
センス素子に関するものである。さらに詳しくは、本発
明は薄膜性および陰極の付着性に優れた有機エレクトロ
ルミネッセンス素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescence device. More specifically, the present invention relates to an organic electroluminescence device having excellent thin film properties and cathode adhesion.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】エレク
トロルミネッセンス素子(以下、EL素子と略す。)自
己発光のために視認性が高く、完全固体素子であるため
耐衝撃性に優れているという特徴を有している。現在、
実用に供されているEL素子は分散型EL素子である。
これは、蛍光体を分散させた発光層に交流電圧を印加し
て発光させるものであるが、数十V,10kHz以上の
交流電圧を印加する必要があり、その駆動回路は複雑で
あった。近年、発光層材料として有機化合物を用い、1
0V程度の直流電圧で駆動できる有機EL素子が開発さ
れた(C.W.Tong and S.A.VanSlyke,Appl.Phys.Lett.,vo
l.51,pp.913 〜915(1987) 。これらの有機EL素子は、
透明電極/正孔注入層/発光層/背面電極の積層型であ
り、電極間の膜厚は1μm以下である必要がある。その
ため、発光層に用いる化合物によってはピンホールを生
じ易く、生産性が低いという問題がある。このピンホー
ルを防ぐためには、素子を構成する薄膜性が非常に重要
となってきている。また、発光性向上のため電子注入層
を必要に応じて設ける素子構成が開示されている。例え
ば、アルミキレート錯体を用いた電子注入層(特開平3
−163186号公報および同3−163187号公報
参照)またはオキサジアゾール誘導体を用いた電子注入
層(Appl.Phys.Lett.,Vol.55(1989),pp.1489,特開平3
−35083号公報および同3−35084号公報参
照)が挙げられる。このような電子注入層は、陰極との
付着性およびそれ自身の薄膜性が重要であるが、薄膜性
に問題があり、均一な発光は得られていない。また、芳
香族複素環を含んだ化合物を用いた発光材料(特開平4
−103571号公報参照)は、付着性には優れている
が薄膜性に劣っている。
2. Description of the Related Art Electroluminescence element (hereinafter abbreviated as EL element) has high visibility due to self-luminous property, and has excellent impact resistance because it is a completely solid state element. have. Current,
An EL element that is put to practical use is a dispersion type EL element.
This is one in which an alternating voltage is applied to the light emitting layer in which the fluorescent material is dispersed to emit light, but it is necessary to apply an alternating voltage of several tens of volts and 10 kHz or more, and the driving circuit thereof is complicated. In recent years, organic compounds have been used as light emitting layer materials.
An organic EL device that can be driven by a DC voltage of about 0 V has been developed (CWTong and SAVanSlyke, Appl. Phys. Lett., Vo
l.51, pp.913-915 (1987). These organic EL elements are
It is a laminated type of transparent electrode / hole injection layer / light emitting layer / back electrode, and the film thickness between the electrodes must be 1 μm or less. Therefore, depending on the compound used for the light emitting layer, there is a problem that pinholes are likely to occur and the productivity is low. In order to prevent this pinhole, the thin film property of the device has become very important. In addition, an element structure in which an electron injection layer is provided as necessary to improve the light emitting property is disclosed. For example, an electron injection layer using an aluminum chelate complex (Japanese Patent Application Laid-Open No. Hei 3)
No. 163186 and No. 3-163187) or an electron injection layer using an oxadiazole derivative (Appl. Phys. Lett., Vol. 55 (1989), pp. 1489, JP-A-3).
-35083 and 3-35084). In such an electron injection layer, the adhesion to the cathode and the thin film property of itself are important, but there is a problem with the thin film property, and uniform light emission is not obtained. In addition, a light emitting material using a compound containing an aromatic heterocycle (Japanese Patent Application Laid-Open No. Hei.
No. 103571), the adhesive property is excellent, but the thin film property is inferior.

【0003】[0003]

【課題を解決するための手段】そこで本発明者らは、上
記従来技術の欠点を解消し、陰極への付着性を高めかつ
薄膜性に優れた有機エレクトロルミネッセンス素子を開
発すべく鋭意研究を重ねた。その結果、芳香族複素環を
含んだ化合物のビニル末端に2つの芳香環を導入し、分
子スタッキングの規則性を乱すことにより、上記目的が
充分に達成できることを見出した。本発明はかかる知見
に基いて完成したものである。
Therefore, the inventors of the present invention have conducted extensive studies to solve the above-mentioned drawbacks of the prior art and to develop an organic electroluminescent device having improved adhesion to the cathode and excellent thin film properties. It was As a result, they have found that the above object can be sufficiently achieved by introducing two aromatic rings at the vinyl terminal of a compound containing an aromatic heterocycle to disturb the regularity of molecular stacking. The present invention has been completed based on such findings.

【0004】すなわち本発明は、陽極および陰極の間に
挟持された一層または複数層の有機化合物から構成され
る電界発光素子において、少なくとも一層を構成する有
機化合物が一般式(I)
That is, according to the present invention, in an electroluminescent device composed of one or more layers of organic compound sandwiched between an anode and a cathode, at least one organic compound is represented by the general formula (I).

【0005】[0005]

【化2】 [Chemical 2]

【0006】(式中、Aは炭素原子または窒素原子を示
し、R1 およびR2 は両者共に水素原子,両者が結合し
て複素環に縮合した飽和あるいは不飽和の芳香環,また
は飽和あるいは不飽和の複素環を示す。Ar1 およびA
2 は置換あるいは無置換の炭素数6〜20のアリール
基,置換あるいは無置換の炭素数5〜18の複素環を示
す。ここで、置換基とは炭素数1〜6のアルキル基,炭
素数1〜6のアルコキシ基,炭素数6〜18のアリール
オキシ基,フェニル基,ニトロ基,シアノ基,アミノ
基,水酸基あるいはハロゲン原子を示す。また、これら
の置換基は同一でも異なっていてもよく、さらに置換基
同士が結合して飽和あるいは不飽和の五員環あるいは六
員環を形成してもよい。Ar3 は置換あるいは無置換の
炭素数6〜20のアリーレン基または単結合でもよ
い。)で表される複素環含有スチリル化合物であること
を特徴とする有機エレクトロルミネッセンス素子を提供
するものである。
(Wherein A represents a carbon atom or a nitrogen atom, R 1 and R 2 are both hydrogen atoms, a saturated or unsaturated aromatic ring in which both are bonded to form a heterocycle, or a saturated or unsaturated aromatic ring). Represents a saturated heterocycle, Ar 1 and A
r 2 represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms or a substituted or unsubstituted heterocyclic ring having 5 to 18 carbon atoms. Here, the substituent is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryloxy group having 6 to 18 carbon atoms, a phenyl group, a nitro group, a cyano group, an amino group, a hydroxyl group or halogen. Indicates an atom. Further, these substituents may be the same or different, and the substituents may be bonded to each other to form a saturated or unsaturated five-membered ring or six-membered ring. Ar 3 may be a substituted or unsubstituted arylene group having 6 to 20 carbon atoms or a single bond. ) A heterocycle-containing styryl compound represented by the formula (1) is provided.

【0007】本発明は、一般式(I)で表される複素環
含有スチリル化合物を有機EL素子の構成成分とする。
この構成成分は、有機EL素子の陽極と陰極の間に挟持
された層の材料となり、一層または複数の層として有機
EL素子を構成するものである。ここで、Ar1 および
Ar2 は置換あるいは無置換の炭素数6〜20のアリー
ル基(例えば、フェニル基,ナフチル基,ビフェニル
基,ターフェニル基,アントラセニル基,ピレニル基な
ど)を示し、または炭素数5〜18の複素環基(例え
ば、ピリジル基,キノリル基,カルバゾリル基,オキサ
ジアゾリル基など)を示す。これらは、単一置換されて
いても複数置換されていてもよい。また、Ar3 は置換
あるいは無置換の炭素数6〜20のアリーレン基(例え
ば、フェニレン基,ナフチレン基,ビフェニレン基,タ
ーフェニレン基,アントラセンジイル基,ピレニジイル
基など)を示し、または単結合でもよい。上記置換基と
しては、炭素数1〜6のアルキル基(例えば、メチル
基,エチル基,n−プロピル基,i−プロピル基,n−
ブチル基,i−ブチル基,sec−ブチル基,t−ブチ
ル基,i−ペンチル基,t−ペンチル基,ネオペンチル
基,n−ヘキシル基,i−ヘキシル基など)、炭素数1
〜6のアルコキシ基(例えば、メトキシ基,エトキシ
基,プロポキシ基,i−プロポキシ基,ブチルオキシ
基,i−ブチルオキシ基,sec−ブチルオキシ基,i
−ペンチルオキシ基,t−ペンチルオキシ基,n−ヘキ
シルオキシ基など)、炭素数6〜18のアリールオキシ
基(例えば、フェノキシ基,ナフチルオキシ基など)、
フェニル基、ニトロ基、シアノ基、アミノ基(アミン,
ジメチルアミン,ジエチルアミン,ジフェニルアミンな
ど)、水酸基あるいはハロゲン原子を示し、単一置換さ
れていても複数置換されていてもよい。また、一般式
(I)で表される複素環含有スチリル化合物の複素環
は、A,R 1 およびR2 によって以下に示す種々の構造
を挙げることができる。 (1)Aが炭素原子の場合 R1 =R2 =Hの場合
The present invention is a heterocycle represented by the general formula (I)
The contained styryl compound is used as a constituent component of the organic EL device.
This component is sandwiched between the anode and cathode of the organic EL device.
As a material for a layer that has been
It constitutes an EL element. Where Ar1and
Ar2Is a substituted or unsubstituted aryl having 6 to 20 carbon atoms.
Group (eg phenyl group, naphthyl group, biphenyl
Group, terphenyl group, anthracenyl group, pyrenyl group
Or a heterocyclic group having 5 to 18 carbon atoms (for example,
For example, pyridyl group, quinolyl group, carbazolyl group, oxa
Diazolyl group). These are single substitutions
Or a plurality of them may be substituted. Also, Ar3Is replaced
Or an unsubstituted arylene group having 6 to 20 carbon atoms (for example,
For example, phenylene group, naphthylene group, biphenylene group,
-Phenylene group, anthracenediyl group, pyrenediyl group
Group) or a single bond. With the above substituents
Is an alkyl group having 1 to 6 carbon atoms (for example, methyl
Group, ethyl group, n-propyl group, i-propyl group, n-
Butyl group, i-butyl group, sec-butyl group, t-butyl group
Group, i-pentyl group, t-pentyl group, neopentyl group
Group, n-hexyl group, i-hexyl group, etc.), carbon number 1
~ 6 alkoxy groups (eg methoxy, ethoxy
Group, propoxy group, i-propoxy group, butyloxy
Group, i-butyloxy group, sec-butyloxy group, i
-Pentyloxy group, t-pentyloxy group, n-hexyl
Siloxy group), aryloxy having 6 to 18 carbon atoms
Groups (eg, phenoxy group, naphthyloxy group, etc.),
Phenyl group, nitro group, cyano group, amino group (amine,
Dimethylamine, diethylamine, diphenylamine, etc.
Etc.) indicates a hydroxyl group or a halogen atom and is
Or a plurality of them may be substituted. Also, the general formula
Heterocycle of heterocycle-containing styryl compound represented by (I)
Is A, R 1And R2Various structures shown below by
Can be mentioned. (1) When A is a carbon atom R1= R2= H

【0008】[0008]

【化3】 [Chemical 3]

【0009】R1 およびR2 が縮環した飽和または不
飽和の芳香環の場合
When R 1 and R 2 are condensed or saturated aromatic rings

【0010】[0010]

【化4】 [Chemical 4]

【0011】R1 およびR2 が縮環した飽和または不
飽和の複素環の場合
When R 1 and R 2 are condensed or saturated heterocyclic rings

【0012】[0012]

【化5】 [Chemical 5]

【0013】(2)Aが窒素原子の場合 R1 =R2 =Hの場合(2) When A is a nitrogen atom, R 1 = R 2 = H

【0014】[0014]

【化6】 [Chemical 6]

【0015】R1 およびR2 が縮環した飽和または不
飽和の芳香環の場合
When R 1 and R 2 are condensed or unsaturated aromatic rings

【0016】[0016]

【化7】 [Chemical 7]

【0017】R1 およびR2 が縮環した飽和または不
飽和の複素環の場合
When R 1 and R 2 are condensed or saturated heterocyclic rings

【0018】[0018]

【化8】 [Chemical 8]

【0019】上記複素環を含んだ一般式(I)で表され
る有機化合物としては、種々のものが挙げられ、例えば
As the organic compound represented by the general formula (I) containing the above heterocycle, various compounds can be mentioned, for example,

【0020】[0020]

【化9】 [Chemical 9]

【0021】[0021]

【化10】 [Chemical 10]

【0022】[0022]

【化11】 [Chemical 11]

【0023】[0023]

【化12】 [Chemical 12]

【0024】[0024]

【化13】 [Chemical 13]

【0025】[0025]

【化14】 [Chemical 14]

【0026】[0026]

【化15】 [Chemical 15]

【0027】[0027]

【化16】 [Chemical 16]

【0028】[0028]

【化17】 [Chemical 17]

【0029】[0029]

【化18】 [Chemical 18]

【0030】[0030]

【化19】 [Chemical 19]

【0031】[0031]

【化20】 [Chemical 20]

【0032】などが挙げられる。なお、一般式(I)で
表される複素環スチリル化合物は、1分子中に2つのオ
レフィン部位(=C=CH−)を有している。このオレ
フィン部位の幾何異性により、一般式(I)で表される
複素環スチリル化合物は大きく分けてシス体,トランス
体の組合せがあるが本発明の複素環スチリル化合物はそ
れらのいずれであってもよく、混合したものであっても
よい。
And the like. The heterocyclic styryl compound represented by the general formula (I) has two olefin moieties (= C = CH-) in one molecule. Due to the geometrical isomerism of the olefin moiety, the heterocyclic styryl compound represented by the general formula (I) is roughly classified into a combination of cis and trans isomers, and the heterocyclic styryl compound of the present invention may be any of them. Well, it may be a mixture.

【0033】上記一般式(I)で表される有機化合物
は、通常の方法によって製造することができ、好ましく
はArbusow−Michaelis反応を用いて製
造するのがよい。このArbusow−Michael
is反応は、次の反応からなる。先ず、下記一般式
The organic compound represented by the above general formula (I) can be produced by a conventional method, preferably by the Arbusow-Michaelis reaction. This Arbusow-Michael
The is reaction consists of the following reactions. First, the following general formula

【0034】[0034]

【化21】 [Chemical 21]

【0035】(式中、Xはハロゲン原子を示し、R1
2 ,AおよびAr3 は前記と同じである。)で表され
るハロメチル化合物と下記一般式
(In the formula, X represents a halogen atom, and R 1 ,
R 2 , A and Ar 3 are the same as above. ) And a halomethyl compound represented by the following general formula

【0036】[0036]

【化22】 [Chemical formula 22]

【0037】(式中、Rは炭素数1〜4のアルキル基ま
たはフェニル基を示す。)で表される亜リン酸トリアル
キルあるいは亜リン酸トリフェニルを反応させることに
より、一般式(II)
By reacting a trialkyl phosphite or triphenyl phosphite represented by the formula (wherein R represents an alkyl group having 1 to 4 carbon atoms or a phenyl group), general formula (II)

【0038】[0038]

【化23】 [Chemical formula 23]

【0039】(式中、R,R1 ,R 2,AおよびAr3
は前記と同じである。)で表されるホスホン酸エステル
が得られる。得られたホスホン酸エステルを、塩基の存
在下、一般式(III)
(Wherein R, R 1 , R 2 , A and Ar 3
Is the same as above. ) The phosphonate ester represented by The resulting phosphonate ester was treated with the compound of the general formula (III) in the presence of a base.

【0040】[0040]

【化24】 [Chemical formula 24]

【0041】(式中、Ar1 およびAr2 は前記と同じ
である。)で表されるケトンとカップリング反応させる
ことにより一般式(I)で表される有機化合物を得るこ
とができる。ここで用いる反応溶媒としては、炭化水
素,アルコール類,エーテル類が好適用いられる。具体
的には、メタノール;エタノール;イソプロパノール;
ブタノール;2−メトキシエタノール;1,2−ジメト
キシエタン;ビス(2−メトキシエチル)エーテル;ジ
オキサン;テトラヒドロフラン;トルエン;キシレン;
ジメチルスルホキシド;N,N−ジメチルホルムアミ
ド;N−メチルピロリドン;1,3−ジメチル−2−イ
ミダゾリジノンなどが挙げられる。中でもテトラヒドロ
フラン,ジメチルスルホキシドが好適である。また、縮
合剤としては苛性ソーダ,苛性カリ,ナトリウムアミ
ド,水素化ナトリウム,n−ブチルリチウム,ナトリウ
ムメチラートおよびカリウム−t−ブトキシドなどのア
ルコラートが好ましく、特にn−ブチルリチウムおよび
カリウム−t−ブトキシドが好ましい。反応温度は、用
いる反応原料の種類や条件により、一義的に定めること
はできないが、通常は室温〜約100℃までの広範囲を
選択することができ、室温が特に好ましい。
The organic compound represented by the general formula (I) can be obtained by the coupling reaction with the ketone represented by the formula (wherein Ar 1 and Ar 2 are the same as above). As the reaction solvent used here, hydrocarbons, alcohols and ethers are preferably used. Specifically, methanol; ethanol; isopropanol;
Butanol; 2-methoxyethanol; 1,2-dimethoxyethane; bis (2-methoxyethyl) ether; dioxane; tetrahydrofuran; toluene; xylene;
Dimethyl sulfoxide; N, N-dimethylformamide; N-methylpyrrolidone; 1,3-dimethyl-2-imidazolidinone and the like. Of these, tetrahydrofuran and dimethyl sulfoxide are preferable. As the condensing agent, caustic soda, caustic potash, sodium amide, sodium hydride, n-butyllithium, sodium methylate and alcoholates such as potassium t-butoxide are preferable, and n-butyllithium and potassium t-butoxide are particularly preferable. . The reaction temperature cannot be uniquely determined depending on the type and conditions of the reaction raw materials used, but usually a wide range from room temperature to about 100 ° C. can be selected, and room temperature is particularly preferable.

【0042】このようにして得られる本発明の複素環含
有スチリル化合物(以下、スチリル化合物と呼ぶ。)
は、低電圧で高輝度の発光が可能なEL素子の材料とし
て有効に利用できるものである。この本発明のスチリル
化合物は、電極の付着性および薄膜性にすぐれており、
全体として均一発光が得られる。さらに、このスチリル
化合物は、蒸着温度まで加熱しても、分解や変質するこ
となく、均一なアモルファス性薄膜が形成できる上、ピ
ンホールが生成しないという長所がある。すでに述べた
ように、本発明の前記一般式(I)で表されるスチリル
化合物は、種々の構成層に用いられるが、特にEL素子
における発光層(あるいは電子注入輸送層)として有効
である。先ず、最初に発光層について説明すると、この
発光層は、例えば蒸着法,スピンコート法,キャスト法
などの公知の方法によって、一般式(I)の化合物を薄
膜化してことにより形成することができるが、特に分子
堆積膜とすることが好ましい。ここで分子堆積膜とは、
該化合物の気相状態から沈着され形成された薄膜や、該
化合物の溶液状態又は液相状態から固体化され形成され
た膜のことであり、例えば蒸着膜などを示すが、通常こ
の分子堆積膜はLB法により形成された薄膜(分子累積
膜)とは区別することができる。また、該発光層は、特
開昭59−194393号公報などに開示されているよ
うに、樹脂などの結着剤と該化合物とを、溶剤に溶かし
て溶液としたのち、これをスピンコート法などにより薄
膜化し、形成することができる。このようにして形成さ
れた発光層の薄膜については特に制限はなく、適宜状況
に応じて選ぶことができるが、通常5nmないし5μm
の範囲で選定される。このEL素子における発光層は、
(1)電界印加時に、陽極又は正孔注入輸送層により正
孔を注入することができ、かつ陰極又は電子注入輸送層
より電子を注入することができる注入機能、(2)注入
した電荷(電子と正孔)を電界の力で移動させる輸送機
能、(3)電子と正孔の再結合の場を発光層内部に提供
し、これを発光につなげる発光機能などを有している。
なお、正孔の注入されやすさと、電子の注入されやすさ
に違いがあってもよいし、正孔と電子の移動度で表わさ
れる輸送能に大小があってもよいが、どちらか一方の電
荷を移動することが好ましい。この発光層に用いる前記
一般式(I)で表わされる化合物は、一般にイオン化エ
ネルギーが6.0eV程度より小さいので、適当な陽極金
属又は陽極化合物を選べば、比較的正孔を注入しやす
い。また電子親和力は2.8eV程度より大きいので、適
当な陰極金属又は陰極化合物を選べば、比較的電子を注
入しやすい上、電子,正孔の輸送能力も優れている。さ
らに固体状態の蛍光性が強いため、該化合物やその会合
体又は結晶などの電子と正孔の再結晶時に形成された励
起状態を光に変換する能力が大きい。
The heterocycle-containing styryl compound of the present invention thus obtained (hereinafter referred to as "styryl compound")
Can be effectively used as a material for an EL element capable of emitting light with high brightness at a low voltage. The styryl compound of the present invention has excellent electrode adhesion and thin film properties,
Uniform light emission is obtained as a whole. Furthermore, this styryl compound has the advantage that even if it is heated to the vapor deposition temperature, a uniform amorphous thin film can be formed without decomposition or deterioration, and pinholes do not form. As described above, the styryl compound represented by the general formula (I) of the present invention is used for various constituent layers, and is particularly effective as a light emitting layer (or an electron injecting and transporting layer) in an EL device. First, the light emitting layer will be described. This light emitting layer can be formed by thinning the compound of the general formula (I) by a known method such as a vapor deposition method, a spin coating method, or a casting method. However, it is particularly preferable to use a molecular deposition film. Here, the molecular deposition film is
A thin film formed by depositing the compound from the gas phase state, or a film formed by solidifying from the solution state or liquid phase state of the compound, for example, a vapor deposition film, etc. Can be distinguished from a thin film (molecular cumulative film) formed by the LB method. Further, as disclosed in JP-A-59-194393, etc., the light-emitting layer is prepared by dissolving a binder such as a resin and the compound in a solvent to form a solution, which is then spin-coated. For example, it can be formed into a thin film. The thin film of the light emitting layer thus formed is not particularly limited and can be appropriately selected depending on the situation, but is usually 5 nm to 5 μm.
It is selected in the range of. The light emitting layer in this EL element is
(1) An injection function capable of injecting holes from the anode or the hole injecting and transporting layer and applying electrons from the cathode or the electron injecting and transporting layer when an electric field is applied, (2) injected charges (electrons And (hole) are moved by the force of an electric field, and (3) a field for recombination of electrons and holes is provided inside the light-emitting layer, and this is used as a light-emitting function.
It should be noted that there may be a difference between the ease with which holes are injected and the ease with which electrons are injected, and the transport capacity represented by the mobility of holes and electrons may be large or small. It is preferable to transfer charges. Since the compound represented by the general formula (I) used for the light emitting layer generally has an ionization energy of less than about 6.0 eV, holes can be relatively easily injected by selecting an appropriate anode metal or anode compound. Further, since the electron affinity is larger than about 2.8 eV, if an appropriate cathode metal or cathode compound is selected, it is relatively easy to inject electrons and the electron and hole transporting ability is excellent. Furthermore, since the solid-state fluorescence is strong, it has a large ability to convert the excited state formed at the time of recrystallization of electrons and holes of the compound or its associated body or crystal into light.

【0043】本発明の化合物を用いたEL素子の構成
は、各種の態様があるが、基本的には、一対の電極(陽
極と陰極)間に、前記発光層を挟持した構成とし、これ
に必要に応じて、正孔注入輸送層や電子注入輸送層を介
在させればよい。介在の方法として、ポリマーへのまぜ
込みや同時蒸着がある。具体的には(1)陽極/発光層
/陰極,(2)陽極/正孔注入輸送層/発光層/陰極,
(3)陽極/正孔注入輸送層/発光層/電子注入輸送層
/陰極などの構成を挙げることができる。該正孔注入輸
送層や電子注入輸送層は、必ずしも必要ではないが、こ
れらの層があると発光性能が一段と向上する。また、前
記構成の素子においては、いずれも基板に支持されてい
ることが好ましく、該基板については特に制限はなく、
従来EL素子に慣用されているもの、例えばガラス,透
明プラスチック,石英などから成るものを用いることが
できる。このEL素子における陽極としては、仕事関数
の大きい(4eV以上)金属,合金,電気伝導性化合物
及びこれらの混合物を電極物質とするものが好ましく用
いられる。このような電極物質の具体例としてはAuな
どの金属,CuI,ITO,SnO2 ,ZnOなどの誘
電性透明材料が挙げられる。該陽極は、これらの電極物
質を蒸着やスパッタリングなどの方法により、薄膜を形
成させることにより作製することができる。この電極よ
り発光を取り出す場合には、透過率を10%より大きく
することが望ましく、また、電極としてのシート抵抗は
数百Ω/mm以下が好ましい。さらに膜厚は材料にもよる
が、通常10nmないし1μm,好ましくは10〜20
0nmの範囲で選ばれる。
The EL device using the compound of the present invention may have various modes. Basically, the light emitting layer is sandwiched between a pair of electrodes (anode and cathode). A hole injecting / transporting layer or an electron injecting / transporting layer may be interposed as necessary. As the intervening method, there are mixing into the polymer and simultaneous vapor deposition. Specifically, (1) anode / light emitting layer / cathode, (2) anode / hole injection / transport layer / light emitting layer / cathode,
(3) Anode / hole injecting / transporting layer / light emitting layer / electron injecting / transporting layer / cathode can be mentioned. The hole injecting and transporting layer and the electron injecting and transporting layer are not always necessary, but the presence of these layers further improves the light emitting performance. Further, in the element having the above structure, it is preferable that all are supported by a substrate, and the substrate is not particularly limited,
What is conventionally used for EL elements, for example, those made of glass, transparent plastic, quartz or the like can be used. As the anode in this EL element, a material having a large work function (4 eV or more), a metal, an alloy, an electrically conductive compound or a mixture thereof as an electrode substance is preferably used. Specific examples of such an electrode material include a metal such as Au and a dielectric transparent material such as CuI, ITO, SnO 2 and ZnO. The anode can be prepared by forming a thin film of these electrode substances by a method such as vapor deposition or sputtering. When the emitted light is taken out from this electrode, it is desirable that the transmittance is higher than 10%, and the sheet resistance as the electrode is preferably several hundred Ω / mm or less. Further, the film thickness depends on the material, but is usually 10 nm to 1 μm, preferably 10 to 20.
It is selected in the range of 0 nm.

【0044】一方、陰極としては、仕事関数の小さい
(4eV以下)金属,合金,電気伝導性化合物及びこれ
らの混合物を電極物質とするものが用いられる。このよ
うな電極物質の具体例としては、ナトリウム,ナトリウ
ム−カリウム合金,マグネシウム,リチウム,マグネシ
ウム/銅混合物,Al/AlO2 ,インジウムなどが挙
げられる。該陰極は、これらの電極物質を蒸着やスパッ
タリングなどの方法により、薄膜を形成させることによ
り、作製することができる。また、電極としてのシート
抵抗は数百Ω/mm以下が好ましく、膜厚は通常10nm
ないし1μm,好ましくは50〜200nmの範囲で選
ばれる。なお、このEL素子においては、該陽極又は陰
極のいずれか一方が透明又は半透明であることが、発光
を透過するため、発光の取出し効率がよく好都合であ
る。
On the other hand, as the cathode, a material having a low work function (4 eV or less), an alloy, an electrically conductive compound or a mixture thereof as an electrode substance is used. Specific examples of such an electrode material include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, Al / AlO 2 , indium and the like. The cathode can be produced by forming a thin film of these electrode substances by a method such as vapor deposition or sputtering. The sheet resistance as an electrode is preferably several hundred Ω / mm or less, and the film thickness is usually 10 nm.
To 1 μm, preferably 50 to 200 nm. In this EL element, it is convenient that either the anode or the cathode is transparent or semi-transparent to allow the emitted light to pass therethrough, so that the emission efficiency of the emitted light is good.

【0045】本発明の化合物を用いるEL素子の構成
は、前記したように、各種の態様があり、前記(2)又
は(3)の構成のEL素子における正孔注入輸送層は、
正孔伝達化合物からなる層であって、陽極より注入され
た正孔を発光層に伝達する機能を有し、この正孔注入輸
送層を陽極と発光層との間に介在させることにより、よ
り低い電界で多くの正孔が発光層に注入され、その上、
発光層に陰極又は電子注入輸送層より注入された電子
は、発光層と正孔注入輸送層の界面に存在する電子の障
壁により、この発光層内の界面付近に蓄積され発光効率
が向上するなど、発光性能の優れた素子となる。前記正
孔注入輸送層に用いられる正孔伝達化合物は、電界を与
えられた2個の電極間に配置されて陽極から正孔が注入
された場合、該正孔を適切に発光層へ伝達しうる化合物
であって、例えば104 〜106 V/cmの電界印加時
に、少なくとも10-6 cm2/V・秒の正孔移動度をもつ
ものが好適である。このような正孔伝達化合物について
は、前記の好ましい性質を有するものであれば特に制限
はなく、従来、光導電材料において、正孔の電荷輸送材
として慣用されているものやEL素子の正孔注入輸送層
に使用される公知のものの中から任意のものを選択して
用いることができる。
The EL device using the compound of the present invention has various constitutions as described above, and the hole injecting and transporting layer in the EL device having the constitution (2) or (3) is
A layer composed of a hole-transporting compound, which has a function of transferring holes injected from the anode to the light-emitting layer, and by interposing this hole-injecting and transporting layer between the anode and the light-emitting layer, Many holes are injected into the light emitting layer at a low electric field, and further,
The electrons injected from the cathode or the electron injecting and transporting layer into the light emitting layer are accumulated near the interface in the light emitting layer due to the barrier of electrons existing at the interface between the light emitting layer and the hole injecting and transporting layer, and the luminous efficiency is improved. The device has excellent light emitting performance. The hole transporting compound used in the hole injecting and transporting layer is disposed between two electrodes to which an electric field is applied, and when holes are injected from the anode, the hole transporting compound is appropriately transferred to the light emitting layer. It is preferable that the compound has a hole mobility of at least 10 −6 cm 2 / V · second when an electric field of 10 4 to 10 6 V / cm is applied. The hole transporting compound is not particularly limited as long as it has the above-mentioned preferable properties, and is conventionally used as a charge transporting material for holes in photoconductive materials and the hole of EL elements. Any known material can be selected and used from the known materials used for the injecting and transporting layer.

【0046】該電荷輸送材としては、例えばトリアゾー
ル誘導体(米国特許第3,112,197号明細書などに記
載のもの)、オキサジアゾール誘導体(米国特許第3,1
89,447号明細書などに記載のもの)、イミダゾール
誘導体(特公昭37−16096号公報などに記載のも
の)、ポリアリールアルカン誘導体(米国特許第3,61
5,402 号明細書,同3,820,989 号明細書,同3,5
42,544 号明細書,特公昭45−555号公報,同5
1−10983号公報,特開昭51−93224号公
報,同55−17105号公報,同56−4148号公
報,同55−108667号公報,同55−15695
3号公報,同56−36656号公報などに記載のも
の)、ピラゾリン誘導体及びピラゾロン誘導体(米国特
許第3,180,729 号明細書,同4,278,746 号明細
書,特開昭55−88064号公報,同55−8806
5号公報,同49−105537号公報,同55−51
086号公報,同56−80051号公報,同56−8
8141号公報,同57−45545号公報,同54−
112637号公報,同55−74546号公報などに
記載のもの)、フェニレンジアミン誘導体(米国特許第
3,615,404 号明細書,特公昭51−10105号公
報,同46−3712号公報,同47−25336号公
報,特開昭54−53435号公報,同54−1105
36号公報,同54−119925号公報などに記載の
もの)、アリールアミン誘導体(米国特許第3,567,4
50 号明細書,同3,180,703 号明細書,同3,24
0,597 号明細書,同3,658,520 号明細書,同4,2
32,103 号明細書,同4,175,961 号明細書,同
4,012,376号明細書,特公昭49−35702号公
報,同39−27577号公報,特開昭55−1442
50号公報,同56−119132号公報,同56−2
2437号公報,西独特許第1,110,518 号明細書な
どに記載のもの)、アミノ置換カルコン誘導体(米国特
許第3,526,501 号明細書などに記載のもの)、オキ
サゾール誘導体(米国特許第3,257,203 号明細書な
どに記載のもの)、スチリルアントラセン誘導体(特開
昭56−46234号公報などに記載のもの)、フルオ
レノン誘導体(特開昭54−110837号公報などに
記載のもの)、ヒドラゾン誘導体(米国特許第3,71
7,462 号明細書,特開昭54−59143号公報,同
55−52063号公報,同55−52064号公報,
同55−46760号公報,同55−85495号公
報,同57−11350号公報,同57−148749
号公報などに記載されているもの)、スチルベル誘導体
(特開昭61−210363号公報,同61−2284
51号公報,同61−14642号公報,同61−72
255号公報,同62−47646号公報,同62−3
6674号公報,同62−10652号公報,同62−
30255号公報,同60−93445号公報,同60
−94462号公報,同60−174749号公報,同
60−175052号公報などに記載のもの)などを挙
げることができる。
Examples of the charge transport material include triazole derivatives (described in US Pat. No. 3,112,197), oxadiazole derivatives (US Pat. No. 3,1).
89,447, etc.), imidazole derivatives (described in Japanese Patent Publication No. 37-16096, etc.), polyarylalkane derivatives (US Pat. No. 3,61).
5,402, 3,820,989, 3,5
42,544, Japanese Patent Publication No. 45-555, 5
1-10983, JP-A-51-93224, JP-A-55-17105, JP-A-56-4148, JP-A-55-108667, and JP-A-55-15695.
No. 3, JP-A-56-36656, etc.), pyrazoline derivatives and pyrazolone derivatives (US Pat. Nos. 3,180,729, 4,278,746 and JP-A-55-55). No. 88064, 55-8806.
5 gazette, the same 49-105537 gazette, the same 55-51.
086, 56-80051, 56-8
No. 8141, No. 57-45545, No. 54-
No. 112637, No. 55-74546, etc.), phenylenediamine derivatives (U.S. Pat. No. 3,615,044, Japanese Patent Publication Nos. 51-10105, 46-3712, 47). No. 25336, JP-A No. 54-53435, and No. 54-1105.
No. 36, No. 54-119925, etc.), arylamine derivatives (US Pat. No. 3,567,4).
No. 50, No. 3,180,703, No. 3,24
No. 0,597, No. 3,658,520, No. 4,2
32,103, 4,175,961, 4,012,376, JP-B-49-35702, 39-27577, and JP-A-55-1442.
No. 50, No. 56-119132, No. 56-2
2437 gazette, those described in West German Patent No. 1,110,518 etc.), amino-substituted chalcone derivatives (described in US Pat. No. 3,526,501 etc.), oxazole derivatives (US patent Nos. 3,257,203), styrylanthracene derivatives (described in JP-A-56-46234), fluorenone derivatives (described in JP-A-54-110837). ), Hydrazone derivatives (US Pat. No. 3,71
7,462, JP-A-54-59143, JP-A-55-52063, JP-A-55-52064,
55-46760, 55-85495, 57-11350 and 57-148749.
Those described in JP-A-62-110363 and JP-A-61-2284.
No. 51, No. 61-14642, No. 61-72.
255, 62-47646, 62-3.
6674, 62-10652, and 62-
No. 30255, No. 60-93445, No. 60
-94462, 60-174749, 60-175052, etc.) and the like.

【0047】これらの化合物を正孔伝達化合物として使
用することができるが、次に示すポリフィリン化合物
(特開昭63−295695号公報などに記載のもの)
及び芳香族第三級アミン化合物及びスチリルアミン化合
物(米国特許第4,127,412号明細書,特開昭53−
27033号公報,同54−58445号公報,同54
−149634号公報,同54−64299号公報,同
55−79450号公報,同55−144250号公
報,同56−119132号公報,同61−29555
8号公報,同61−98353号公報,同63−295
695号公報などに記載のもの)、特に該芳香族第三級
アミン化合物を用いることが好ましい。
These compounds can be used as a hole transfer compound, and the following porphyrin compounds (described in JP-A-63-295695)
And aromatic tertiary amine compounds and styrylamine compounds (U.S. Pat. No. 4,127,412, JP-A-53-53)
27033, 54-58445, 54.
No. 149634, No. 54-64299, No. 55-79450, No. 55-144250, No. 56-119132, No. 61-29555.
8 gazette, the same 61-98353 gazette, the same 63-295.
No. 695, etc.), and it is particularly preferable to use the aromatic tertiary amine compound.

【0048】該ポリフィリン化合物の代表例としては、
ポルフィリン;5,10,15,20−テトラフェニル
−21H,23H−ポルフィリン銅(II);5,10,
15,20−テトラフェニル−21H,23H−ポルフ
ィリン亜鉛(II);5,10,15,20−テトラキス
(ペンタフルオロフェニル)−21H,23H−ポルフ
ィリン;シリコンフタロシアニンオキシド;アルミニウ
ムフタロシアニンクロリド;フタロシアニン(無金
属);ジリチウムフタロシアニン;銅テトラメチルフタ
ロシアニン;銅フタロシアニン;クロムフタロシアニ
ン;亜鉛フタロシアニン;鉛フタロシアニン;チタニウ
ムフタロシアニンオキシド;マグネシウムフタロシアニ
ン;銅オクタメチルフタロシアニンなどが挙げられる。
また該芳香族第三級化合物及びスチリルアミン化合物の
代表例としては、N,N,N',N' −テトラフェニル−
4,4' −ジアミノビフェニル;N,N' −ジフェニル
−N,N' −ジ(3−メチルフェニル)−4,4' −ジ
アミノビフェニル;2,2−ビス(4−ジ−p−トリル
アミノフェニル)プロパン;1,1−ビス(4−ジ−p
−トリルアミノフェニル)シクロヘキサン;N,N,
N',N' −テトラ−p−トリル−4,4' −ジアミノビ
フェニル;1,1−ビス(4−ジ−p−トリルアミノフ
ェニル)−4−フェニルシクロヘキサン;ビス(4−ジ
メチルアミノ−2−メチルフェニル)フェニルメタン;
ビス(4−ジ−p−トリルアミノフェニル)フェニルメ
タン;N,N' −ジフェニル−N,N' −ジ(4−メト
キシフェニル)−4,4' −ジアミノビフェニル;N,
N,N',N' −テトラフェニル−4,4' −ジアミノジ
フェニルエーテル;4,4' −ビス(ジフェニルアミ
ノ)クオードリフェニル;N,N,N−トリ(p−トリ
ル)アミン;4−(ジ−p−トリルアミン)−4' −
〔4(ジ−p−トリルアミン)スチリル〕スチルベン;
4−N,N−ジフェニルアミノ−(2−ジフェニルビニ
ル)ベンゼン;3−メトキシ−4' −N,N−ジフェニ
ルアミノスチルベン;N−フェニルカルバゾールなどが
挙げられる。
As a typical example of the porphyrin compound,
Porphyrin; 5,10,15,20-tetraphenyl-21H, 23H-porphyrin copper (II); 5,10,
15,20-Tetraphenyl-21H, 23H-porphyrin zinc (II); 5,10,15,20-Tetrakis (pentafluorophenyl) -21H, 23H-porphyrin; Silicon phthalocyanine oxide; Aluminum phthalocyanine chloride; Phthalocyanine (metal free) ); Dilithium phthalocyanine; copper tetramethyl phthalocyanine; copper phthalocyanine; chromium phthalocyanine; zinc phthalocyanine; lead phthalocyanine; titanium phthalocyanine oxide; magnesium phthalocyanine; copper octamethyl phthalocyanine.
Further, as typical examples of the aromatic tertiary compound and the styrylamine compound, N, N, N ′, N′-tetraphenyl-
4,4'-diaminobiphenyl; N, N'-diphenyl-N, N'-di (3-methylphenyl) -4,4'-diaminobiphenyl; 2,2-bis (4-di-p-tolylamino) Phenyl) propane; 1,1-bis (4-di-p
-Tolylaminophenyl) cyclohexane; N, N,
N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl; 1,1-bis (4-di-p-tolylaminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2) -Methylphenyl) phenylmethane;
Bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N'-di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N,
N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl; N, N, N-tri (p-tolyl) amine; 4- ( Di-p-tolylamine) -4'-
[4 (di-p-tolylamine) styryl] stilbene;
4-N, N-diphenylamino- (2-diphenylvinyl) benzene; 3-methoxy-4′-N, N-diphenylaminostilbene; N-phenylcarbazole and the like.

【0049】上記EL素子における該正孔注入輸送層
は、これらの正孔伝達化合物一種又は二種以上からなる
一層で構成されてもよいし、あるいは、前記層とは別種
の化合物からなる正孔注入層を積層したものであっても
よい。一方、前記(3)の構成のEL素子における電子
注入輸送層は、電子伝達化合物からなるものであって、
陰極より注入された電子を発光層に伝達する機能を有し
ている。このような電子伝達化合物について特に制限は
なく、従来公知の化合物の中から任意のものを選択して
用いることができる。該電子伝達化合物の好ましい例と
しては、
The hole injecting and transporting layer in the EL device may be composed of a single layer composed of one or more of these hole transporting compounds, or a hole composed of a compound different from the layer. It may be a stack of injection layers. On the other hand, the electron injecting and transporting layer in the EL device having the structure (3) is composed of an electron transfer compound,
It has a function of transmitting electrons injected from the cathode to the light emitting layer. There is no particular limitation on such an electron transfer compound, and any compound can be selected and used from conventionally known compounds. Preferred examples of the electron transfer compound include:

【0050】[0050]

【化25】 [Chemical 25]

【0051】などのニトロ置換フルオレノン誘導体、A nitro-substituted fluorenone derivative such as

【0052】[0052]

【化26】 [Chemical formula 26]

【0053】などのチオピランジオキシド誘導体,Thiopyran dioxide derivatives such as

【0054】[0054]

【化27】 [Chemical 27]

【0055】などのジフェニルキノン誘導体〔「ポリマ
ー・プレプリント(Polymer Preprints ),ジャパン」
第37巻,第3号,第681ページ(1988年)など
に記載のもの〕、あるいは
Diphenylquinone derivatives such as ["Polymer Preprints, Japan"
Volume 37, No. 3, 681 (1988), etc.], or

【0056】[0056]

【化28】 [Chemical 28]

【0057】などの化合物〔「ジャーナル・オブ・アプ
ライド・フィジックス(J.Apply.Phys. )」第27巻,
第269頁(1988年)などに記載のもの〕や、アン
トラキノジメタン誘導体(特開昭57−149259号
公報,同58−55450号公報,同61−22515
1号公報,同61−233750号公報,同63−10
4061号公報などに記載のもの)、フレオレニリデン
メタン誘導体(特開昭60−69657号公報,同61
−143764号公報,同61−148159号公報な
どに記載のもの)、アントロン誘導体(特開昭61−2
25151号公報,同61−233750号公報などに
記載のもの)などを挙げることができる。また、次の一
般式(IV)及び(V)
Compounds such as [Journal of Applied Physics (J.Apply.Phys.)] Vol. 27,
Those described on page 269 (1988), etc., and anthraquinodimethane derivatives (JP-A-57-149259, JP-A-58-55450, JP-A-61-22515).
No. 1, gazette 61-233750, gazette 63-10.
4061) and fluorenylidene methane derivatives (JP-A-60-69657 and 61).
Those described in JP-A-143764, JP-A-61-148159, etc.) and anthrone derivatives (JP-A-61-2).
No. 25151, No. 61-233750, etc.). In addition, the following general formulas (IV) and (V)

【0058】[0058]

【化29】 [Chemical 29]

【0059】(式中、Ar4 〜Ar6 及びAr8 はそれ
ぞれ独立にアリール基を示し、Ar7はアリーレン基を
示す。これらのアリール基及びアリーレン基は置換され
ていても、置換されていなくてもよい。)で表される化
合物を挙げることができる。ここで、アリール基として
は、フェニル基,ナフチル基,ビフェニル基,アントラ
ニル基,ペリレニル基,ピレニル基等が挙げられ、アリ
ーレン基としては、フェニレン基,ナフチレン基,ビフ
ェニレン基,アントラセニレン基,ペリレニレン基,ピ
レニレン基等が挙げられる。また、置換基としては、炭
素数1〜10のアルキル基,炭素数1〜10のアルコキ
シ基又はシアノ基等が挙げられる。この一般式(IV)及
び(V)で表される化合物は、薄膜形成性のものが好ま
しい。この一般式(IV)及び(V)で表される化合物の
具体例としては、
(In the formula, Ar 4 to Ar 6 and Ar 8 each independently represent an aryl group, and Ar 7 represents an arylene group. These aryl groups and arylene groups may or may not be substituted. May be used). Here, examples of the aryl group include a phenyl group, naphthyl group, biphenyl group, anthranyl group, perylenyl group, pyrenyl group, and the like, and examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthracenylene group, a perylenylene group, Examples thereof include a pyrenylene group. Moreover, as a substituent, a C1-C10 alkyl group, a C1-C10 alkoxy group, a cyano group, etc. are mentioned. The compounds represented by the general formulas (IV) and (V) are preferably those capable of forming a thin film. Specific examples of the compounds represented by the general formulas (IV) and (V) include:

【0060】[0060]

【化30】 [Chemical 30]

【0061】[0061]

【化31】 [Chemical 31]

【0062】[0062]

【化32】 [Chemical 32]

【0063】等が挙げられる。なお、正孔注入輸送層及
び電子注入輸送層は電子の注入性,輸送性,障害性のい
ずれかを有する層であり、上記した有機材料の他にSi
系,SiC系,CdS系等の結晶性ないし非結晶性材料
を用いることもできる。有機材料を用いた正孔注入輸送
層及び電子注入輸送層は発光層と同様にして形成するこ
とができ、無機材料を用いた正孔注入輸送層及び電子注
入輸送層は真空蒸着法やスパッタリング等によりできる
が、有機または無機のいずれの材料を用いた場合でも発
光層のときと同様の理由から真空蒸着法により形成する
ことが好ましい。
And the like. Note that the hole injecting and transporting layer and the electron injecting and transporting layer are layers having any of an electron injecting property, a transporting property, and an obstacle property.
It is also possible to use a crystalline or non-crystalline material such as a system type, a SiC type, a CdS type. The hole injecting and transporting layer and the electron injecting and transporting layer using the organic material can be formed in the same manner as the light emitting layer, and the hole injecting and transporting layer and the electron injecting and transporting layer using the inorganic material can be formed by the vacuum deposition method, the sputtering, etc. However, it is preferable to form it by the vacuum vapor deposition method for the same reason as in the case of the light emitting layer regardless of whether organic or inorganic material is used.

【0064】[0064]

【実施例】次に本発明を合成例,実施例および比較例に
より、さらに詳しく説明する。本発明は、これらの例に
よって何ら限定されるものではない。 合成例1
The present invention will be described in more detail with reference to Synthesis Examples, Examples and Comparative Examples. The invention is in no way limited by these examples. Synthesis example 1

【0065】[0065]

【化33】 [Chemical 33]

【0066】2,3−ビス(ブロモメチル)キノキサリ
ン(アルドリッチ製)5.0g(0.015モル)と亜リン
酸トリエチル10ミリリットルを3つ口フラスコへ入
れ、オイルバス温度100℃,フラスコ内温度80〜8
4℃にて2時間加熱攪拌した。放冷後、灰白色沈澱をn
−ヘキサン100ミリリットルで洗浄し、減圧乾燥し
た。その結果、6.7g(定量的)の灰白色粉末(A)を
得た。この灰白色粉末(A)の融点は、91〜93℃で
あった。得られた灰白色粉末(A)のプロトン核磁気共
鳴( 1H−NMR)スペクトルの測定結果を以下に示
す。1 H−NMR(溶媒:CDCl2 ,標準:テトラメチル
シラン(TMS)) δ(ppm)=7.5〜8.1(m,4H:キノキサリン骨
格のH) δ(ppm)=3.9〜4.5(q,8H:エトキシ基) δ(ppm)=3.9(d,4H:−CH2 −,J=12
Hz) δ(ppm)=1.4(t,12H:エトキシ基) 次いで、(A)のホスホン酸エステル1.3g(3.02×
10-3モル)とベンゾフェノン1.2g(6.58×10-3
モル)をアルゴンガス気流下、室温にてジメチルスルホ
キシド(DMSO)50ミリリットルに懸濁させた。こ
れに、カリウム−t−ブトキシド0.6g(5.35×10
-3モル)を加えた結果、反応液は直ちに赤茶色懸濁液を
呈した。そのまま室温で8時間攪拌した後、氷50gh
e投入し、塩化メチレン100ミリリットルで抽出し
た。塩化メチレン相を炭酸カリウムにて乾燥し、シリカ
ゲルカラムにて精製を行った結果、黄色の溶出液が得ら
れた。得られた溶出液の溶媒を除去した後、アセトン:
n−ヘキサン=1:9(体積/体積)にて再結晶を行っ
た。その結果、白色針状結晶0.3g(収率:22%)が
得られた。得られた白色針状結晶の融点は、152〜1
53℃であった。また、得られた白色針状結晶の質量分
析の結果、m/Z=486のみのピークが得られ、
(B)(以下DPVQと略記する。)が合成されている
ことを確認した。得られたDPVQの吸収スペクトル
(DMF中)の測定結果を以下に示す。 270nm(2.4×104 cm-1・mol-1・リット
ル) 300nm(2.5×104 cm-1・mol-1・リット
ル) 360nm(1.3×104 cm-1・mol-1・リット
ル)
5.0 g (0.015 mol) of 2,3-bis (bromomethyl) quinoxaline (manufactured by Aldrich) and 10 ml of triethyl phosphite were placed in a three-necked flask, the oil bath temperature was 100 ° C., and the temperature inside the flask was 80. ~ 8
The mixture was heated and stirred at 4 ° C for 2 hours. After cooling, the grayish white precipitate is removed.
-Washed with 100 ml of hexane and dried under reduced pressure. As a result, 6.7 g (quantitative) of off-white powder (A) was obtained. The melting point of this off-white powder (A) was 91 to 93 ° C. The measurement results of the proton nuclear magnetic resonance ( 1 H-NMR) spectrum of the obtained off-white powder (A) are shown below. 1 H-NMR (solvent: CDCl 2 , standard: tetramethylsilane (TMS)) δ (ppm) = 7.5-8.1 (m, 4H: H of quinoxaline skeleton) δ (ppm) = 3.9- 4.5 (q, 8H: ethoxy) δ (ppm) = 3.9 ( d, 4H: -CH 2 -, J = 12
Hz) δ (ppm) = 1.4 (t, 12H: ethoxy group) Next, 1.3 g (3.02 ×) of the phosphonate ester of (A).
10 -3 mol) and benzophenone 1.2 g (6.58 × 10 -3)
(Mol) was suspended in 50 ml of dimethyl sulfoxide (DMSO) at room temperature under an argon gas stream. 0.6 g of potassium t-butoxide (5.35 x 10
-3 mol) was added, the reaction solution immediately exhibited a reddish brown suspension. After stirring at room temperature for 8 hours, ice 50 gh
e, and extracted with 100 ml of methylene chloride. The methylene chloride phase was dried over potassium carbonate and purified by a silica gel column to give a yellow eluate. After removing the solvent of the obtained eluate, acetone:
Recrystallization was carried out with n-hexane = 1: 9 (volume / volume). As a result, 0.3 g of white needle crystals (yield: 22%) were obtained. The melting point of the obtained white needle crystal is 152 to 1
It was 53 ° C. Further, as a result of mass spectrometry of the obtained white needle-like crystals, only a peak of m / Z = 486 was obtained,
It was confirmed that (B) (hereinafter abbreviated as DPVQ) was synthesized. The measurement results of the obtained DPVQ absorption spectrum (in DMF) are shown below. 270 nm (2.4 × 10 4 cm -1 · mol −1 · liter) 300 nm (2.5 × 10 4 cm −1 · mol −1 · liter) 360 nm (1.3 × 10 4 cm −1 · mol −) 1 liter)

【0067】合成例2〜6 ベンゾフェノンを対応するケトンに変えた以外は、合成
例1と同様にして第1表で示す化合物種を合成した。
Synthesis Examples 2 to 6 The compound species shown in Table 1 were synthesized in the same manner as in Synthesis Example 1 except that benzophenone was changed to the corresponding ketone.

【0068】合成例7 合成例1で用いた(A)のホスホン酸エステルを、下記
の6,7−ジメチルキノキサリンのホスホン酸エステル
に代えた以外は、合成例1と同様にして第1表()お
よび()で示す化合物種を合成した。
Synthesis Example 7 Table 1 (Synthesis Example 1) was repeated except that the phosphonate ester of (A) used in Synthesis Example 1 was replaced with the phosphonate ester of 6,7-dimethylquinoxaline shown below. ) And () were synthesized.

【0069】[0069]

【化34】 [Chemical 34]

【0070】[0070]

【表1】 [Table 1]

【0071】[0071]

【表2】 [Table 2]

【0072】合成例8Synthesis Example 8

【0073】[0073]

【化35】 [Chemical 35]

【0074】[0074]

【化36】 [Chemical 36]

【0075】4,4’−ジメチルベンジル2.0g(8.3
×10-3モル),N−ブロモスクシンイミド(NBS)
3.0g(0.0168モル)および過酸化ベンゾイル0.1
4g(5.8×10-4モル)を四塩化炭素100ミリリッ
トルに懸濁させた。これを、外温100℃にて2時間還
流攪拌した。一晩放置後、析出した黄色沈澱をメタノー
ル100ミリリットルで2回洗浄して1.7gの黄色粉末
(C)を得た(収率:50%)。この黄色粉末(C)の
融点は、196〜197℃であった。得られた黄色粉末
(C)の 1H−NMRスペクトルの測定結果を以下に示
す。 1 H−NMR(溶媒:CDCl2 ,標準:テトラメチル
シラン(TMS)) δ(ppm)=7.4〜8.0(q,8H:芳香環のH) δ(ppm)=4.5(q,4H:臭化メチル基) 次いで、(C)のホスホン酸エステル1.6g(4.0×1
-3モル)とo−フェニレンジアミン0.5g(4.6×1
-3モル)を酢酸70ミリリットルに懸濁し、80℃で
30分間加熱攪拌した。反応終了後、得られた白色沈澱
を水50ミリリットルで2回洗浄し、シリカゲルカラム
にて精製(展開液:塩化メチレン)を行った結果、白色
粉末(D)1.8g(収率:96%)が得られた。得られ
た白色粉末の融点は、172〜173℃であった。得ら
れた白色粉末(D)のプロトン核磁気共鳴( 1H−NM
R)スペクトルの測定結果を以下に示す。1 H−NMR(溶媒:CDCl2 ,標準:テトラメチル
シラン(TMS)) δ(ppm)=8.3(m,12H:キノキサリン骨格お
よび芳香環のH) δ(ppm)=4.5(s,4H:臭化メチル基) 得られた(D)1.8g(3.8×10-3モル)へ、亜リン
酸トリエチル12ミリリットルを加え、内温85℃で3
時間加熱攪拌した。一晩放置後、得られた白色沈澱をn
−ヘキサン50ミリリットルで洗浄した結果、淡黄色粉
末(E)1.4g(収率:64%)が得られた。得られた
淡黄色粉末の融点は、129〜131℃であった。得ら
れた淡黄色粉末(E)の 1H−NMRスペクトルの測定
結果を以下に示す。1 H−NMR(溶媒:CDCl2 ,標準:テトラメチル
シラン(TMS)) δ(ppm)=8.3〜7.0(m,12H:キノキサリン
骨格および芳香環のH) δ(ppm)=4.1(q,8H:エトキシ基) δ(ppm)=3.2(d,4H:−CH2 P,J=16
Hz) δ(ppm)=1.3(t,12H:エトキシ基) 得られたホスホン酸エステル(E)1.4g(2.6×10
-3モル),ベンゾフェノン1.0g(5.5×10-3モルモ
ル)およびカリウム−t−ブトキシド0.6g(5.3×1
-3モル)をジメチルスルホキシド50ミリリットルに
懸濁させた。これを、アルゴンガス雰囲気下、室温にて
3時間還流攪拌した。一晩放置後、犯行液へメタノール
50ミリリットルを加えて析出した沈澱を濾取した。シ
リカゲルカラムにて精製(展開液:塩化メチレン)を行
った後、目的のフラクションをアセトン・n−ヘキサン
混合溶液により再結晶して 0.9gの黄色粉末(F)を
得た(収率:37%)。この黄色粉末(F)の融点は、
198〜199℃であった。得られた黄色粉末(F)の
1H−NMRスペクトルの測定結果を以下に示す。 1 H−NMR(溶媒:CDCl2 ,標準:テトラメチル
シラン(TMS)) δ(ppm)=6.7〜8.2(m,34H:芳香環,キノ
キサリン環および=C=HCの−H) また、得られた黄色粉末の質量分析の結果、m/Z=6
38のみのピークが得られ、(F)(DPVPQ)が合
成されていることを確認した。
2.0 g of 4,4'-dimethylbenzyl (8.3
× 10-3Mol), N-bromosuccinimide (NBS)
3.0 g (0.0168 mol) and benzoyl peroxide 0.1
4g (5.8 × 10-FourMol) to 100 milliliters of carbon tetrachloride
Suspended in tor. Return this for 2 hours at an external temperature of 100 ° C
It was stirred by flowing. After leaving it overnight, the formed yellow precipitate is removed with methanol.
1.7g yellow powder after washing twice with 100ml
(C) was obtained (yield: 50%). Of this yellow powder (C)
The melting point was 196-197 ° C. Yellow powder obtained
(C)1The measurement results of the H-NMR spectrum are shown below.
You 1 1 H-NMR (solvent: CDCl2, Standard: Tetramethyl
Silane (TMS)) δ (ppm) = 7.4 to 8.0 (q, 8H: H of aromatic ring) δ (ppm) = 4.5 (q, 4H: methyl bromide group) Then, (C) 1.6 g (4.0 × 1)
0-3Mol) and 0.5 g of o-phenylenediamine (4.6 x 1)
0-3Mol) in 70 ml of acetic acid at 80 ° C
The mixture was heated and stirred for 30 minutes. After the reaction was completed, the white precipitate obtained
Was washed twice with 50 ml of water, and the silica gel column was washed.
As a result of purification (developing solution: methylene chloride) at
1.8 g (yield: 96%) of powder (D) was obtained. Obtained
The melting point of the white powder was 172-173 ° C. Got
Nuclear magnetic resonance of the white powder (D) (1H-NM
R) The measurement result of the spectrum is shown below.1 1 H-NMR (solvent: CDCl2, Standard: Tetramethyl
Silane (TMS)) δ (ppm) = 8.3 (m, 12H: quinoxaline skeleton
And H of aromatic ring) δ (ppm) = 4.5 (s, 4H: methyl bromide group) 1.8 g (3.8 x 10) of obtained (D)-3Mol) to phosphorus
Add 12 ml of triethyl acid and add 3 at internal temperature of 85 ℃.
The mixture was heated and stirred for hours. After standing overnight, the white precipitate obtained was n
-Light yellow powder as a result of washing with 50 ml of hexane
The powder (E) 1.4g (yield: 64%) was obtained. Got
The melting point of the pale yellow powder was 129 to 131 ° C. Got
Of pale yellow powder (E)1Measurement of 1 H-NMR spectrum
The results are shown below.1 1 H-NMR (solvent: CDCl2, Standard: Tetramethyl
Silane (TMS)) δ (ppm) = 8.3 to 7.0 (m, 12H: quinoxaline
H of skeleton and aromatic ring) δ (ppm) = 4.1 (q, 8H: ethoxy group) δ (ppm) = 3.2 (d, 4H: -CH)2P, J = 16
Hz) δ (ppm) = 1.3 (t, 12H: ethoxy group) 1.4 g (2.6 × 10) of the obtained phosphonate ester (E)
-3Mol), benzophenone 1.0 g (5.5 × 10-3Guinea pig
And potassium-t-butoxide 0.6 g (5.3 × 1)
0-3Mol) to 50 ml of dimethyl sulfoxide
Suspended. This at room temperature under an argon gas atmosphere
The mixture was stirred under reflux for 3 hours. After leaving it overnight, methanol is added to the crime liquid.
50 ml was added and the deposited precipitate was collected by filtration. Shi
Purification (developing solution: methylene chloride) is performed on the Rica gel column.
Then, the desired fraction is added to acetone / n-hexane.
Recrystallize with the mixed solution to obtain 0.9 g of yellow powder (F).
Obtained (yield: 37%). The melting point of this yellow powder (F) is
The temperature was 198 to 199 ° C. Of the obtained yellow powder (F)
1The measurement results of the 1 H-NMR spectrum are shown below. 1 1 H-NMR (solvent: CDCl2, Standard: Tetramethyl
Silane (TMS)) δ (ppm) = 6.7 to 8.2 (m, 34H: aromatic ring, quino
Xaline ring and -H of = C = HC) Further, as a result of mass spectrometry of the obtained yellow powder, m / Z = 6.
Only 38 peaks were obtained, and (F) (DPVPQ) was
I confirmed that it was made.

【0076】合成例9 ベンゾフェノンを4,4’−ジメチルベンゾフェノンに
代えた以外は、合成例8と同様にして第1表()で示
す化合物種を合成した。
Synthesis Example 9 The compound species shown in Table 1 () was synthesized in the same manner as in Synthesis Example 8 except that benzophenone was changed to 4,4'-dimethylbenzophenone.

【0077】[0077]

【表3】 [Table 3]

【0078】実施例1 25mm×75mm×1.1mmのガラス基板上(HO
YA社製,NA40)に、ITOを蒸着法にて100n
mの厚さで製膜したもの(HOYA製,陽極に相当)を
透明支持基板とした。なお、この基板は、イソプロピル
アルコール中で5分間さらに純粋中で5分間超音波洗浄
後、窒素を吹きつけて乾燥し、UVオゾン洗浄装置(U
V300,(株)サムコインターナショナル研究所製)
により基板温度150℃で20分間洗浄を行ったもので
ある。この透明支持基板上に市販の真空蒸着装置(日本
真空技術(株)製)の基板ホルダーに固定し、モリブデ
ン製抵抗加熱ボートにCu配位のフタロシアニン(以
下、CuPcと略す。)を200mg入れ、他のモリブ
デン製抵抗加熱ボートに,N’−ビス(3−メチルフェ
ニル)−N,N’−ジフェニル(1,1’−ビフェニ
ル)−4,4’−ジアミン(以下、TPD(p)と略
す。)を200mg入れ、さらに別のモリブデン製抵抗
加熱ボートに4,4’−ビス(2,2−ジフェニルビニ
ル)ビフェニル(以下、DPVBiと略す。)を200
mg入れ、真空槽内を1×10−4Paまで減圧した。
その後、CuPcの入った前記ボートを350℃程度ま
で加熱し、蒸着速度0.1〜0.3nm/秒でITO膜
上にCuPcを蒸着して、膜厚20nmのCuPc層を
設けた。このとき、基板の温度は室温であった。これを
真空槽より取り出すことなく、TPD(p)を入れたボ
ートを250℃程度まで加熱し、蒸着速度0.1〜0.3n
m/秒でCuPc層上にTPD(p)を蒸着させて膜厚
40nmのTPD(p)層を設けた。このときの基板温
度は室温であった。このようにして設けたCuPc層と
TPD(p)層の2層が、正孔輸送層に相当する。次に
DPVBiを入れたボートを240℃程度まで加熱し、
蒸着速度0.1〜0.3nm/秒でTPD(p)層上にDP
VBiを蒸着させて膜厚40nmの発光層を設けた。次
に、3層の有機層を形成した透明支持基板を真空層から
取り出し、発光層の上にステンレススチール製のマスク
を配置して再び基板ホルダーに固定した。また、モリブ
デン製抵抗加熱ボートに合成例1で得られた2,3−ビ
ス(2,2−ジフェニルビニル)キノキサリン(以下、
DPVQと略す。)を200mgを入れ、真空槽に装着
した。次に、マグネシウムリボン1gを入れたモリブデ
ン製抵抗加熱ボートと銀ワイヤー500mgを入れたタ
ングステン製バスケットを真空槽に装着した。その後、
真空槽を1×10-4Paまで減圧した。減圧後、DPV
Qの入った前記ボートを通電して216℃まで加熱し、
蒸着速度0.1〜0.3nm/秒で上記発光層に蒸着して、
膜厚20nmの電子注入輸送層を設けた。次いで、銀ワ
イヤーを入れたタングステン製バスケットに通電して蒸
着速度0.1nm/秒で銀を蒸着させると同時に、マグネ
シウムリボン入りのボートに通電して蒸着速度1.4〜2.
0nm/秒でマグネシウムを蒸着させた。この二元同時
蒸着により、DPVQ層上に膜厚200nmのマグネシ
ウム−銀層(陰極に相当)が形成された。以上のように
して、目的の有機EL素子(ITO/CuPc/TPD
(p)/DPVBi/DPVQ/Mg:Ag)が得られ
た。得られた有機EL素子に、電圧10Vを印加した結
果、3.5mA/cm2 の電流が流れ、60cd/m2
高輝度の青色発光が観測された。このとき、発光効率は
0.5ルーメン/Wであった。また、蛍光スペクトルの測
定結果より、発光のピーク波長は474nmであり、D
PVBiからの発光と確認された。この素子を100c
d/m2 の輝度で発光させ、輝度計(CS−100,ミ
ノルタカメラ(株)製)を用いて観測したところ、観察
領域が素子作成直後においても、1日経過後においても
均一発光(直径10μm以上の無発光領域もしくは発光
むらは無かった。)であった。
Example 1 On a glass substrate of 25 mm × 75 mm × 1.1 mm (HO
YA, NA40) with 100 n of ITO by vapor deposition
The film having a thickness of m (made by HOYA, corresponding to the anode) was used as a transparent support substrate. This substrate was ultrasonically cleaned in isopropyl alcohol for 5 minutes and further in pure water for 5 minutes, and then dried by blowing nitrogen, and a UV ozone cleaning device (U
V300, manufactured by Samco International Laboratories Inc.)
Was washed at a substrate temperature of 150 ° C. for 20 minutes. On this transparent support substrate, fixed to a substrate holder of a commercially available vacuum deposition apparatus (manufactured by Nippon Vacuum Technology Co., Ltd.), 200 mg of Cu-coordinated phthalocyanine (hereinafter abbreviated as CuPc) was put in a molybdenum resistance heating boat, In another molybdenum resistance heating boat, N'-bis (3-methylphenyl) -N, N'-diphenyl (1,1'-biphenyl) -4,4'-diamine (hereinafter abbreviated as TPD (p)). 200 mg of 4,4'-bis (2,2-diphenylvinyl) biphenyl (hereinafter abbreviated as DPVBi) in another resistance heating boat made of molybdenum.
mg was added, and the inside of the vacuum chamber was depressurized to 1 × 10 −4 Pa.
Then, the boat containing CuPc was heated to about 350 ° C., and CuPc was vapor-deposited on the ITO film at a vapor deposition rate of 0.1 to 0.3 nm / sec to form a CuPc layer having a thickness of 20 nm. At this time, the temperature of the substrate was room temperature. Without removing this from the vacuum tank, the boat containing TPD (p) is heated to about 250 ° C., and the deposition rate is 0.1 to 0.3 n.
TPD (p) was vapor-deposited on the CuPc layer at a rate of m / sec to form a TPD (p) layer having a film thickness of 40 nm. The substrate temperature at this time was room temperature. The two layers, the CuPc layer and the TPD (p) layer thus provided, correspond to the hole transport layer. Next, heat the boat containing DPVBi to about 240 ° C,
DP on the TPD (p) layer at a deposition rate of 0.1 to 0.3 nm / sec.
VBi was vapor-deposited to form a light emitting layer having a thickness of 40 nm. Next, the transparent support substrate on which the three organic layers were formed was taken out from the vacuum layer, a stainless steel mask was placed on the light emitting layer, and the substrate was again fixed to the substrate holder. Moreover, 2,3-bis (2,2-diphenylvinyl) quinoxaline obtained in Synthesis Example 1 (hereinafter,
Abbreviated as DPVQ. ) Was put in a vacuum chamber. Next, a resistance heating boat made of molybdenum containing 1 g of a magnesium ribbon and a basket made of tungsten containing 500 mg of a silver wire were attached to a vacuum chamber. afterwards,
The vacuum chamber was evacuated to 1 × 10 −4 Pa. After depressurization, DPV
Heat the boat containing Q by heating it to 216 ° C.
The vapor deposition rate is 0.1 to 0.3 nm / sec.
An electron injecting and transporting layer having a film thickness of 20 nm was provided. Next, the tungsten basket containing the silver wire is energized to deposit silver at a vapor deposition rate of 0.1 nm / sec, and at the same time, the boat containing the magnesium ribbon is energized to deposit vapor rates of 1.4 to 2.
Magnesium was vapor deposited at 0 nm / sec. A 200-nm-thick magnesium-silver layer (corresponding to the cathode) was formed on the DPVQ layer by this binary vapor deposition. As described above, the target organic EL element (ITO / CuPc / TPD
(P) / DPVBi / DPVQ / Mg: Ag) was obtained. As a result of applying a voltage of 10 V to the obtained organic EL device, a current of 3.5 mA / cm 2 was flown and a high-intensity blue light emission of 60 cd / m 2 was observed. At this time, the luminous efficiency is
It was 0.5 lumen / W. In addition, from the measurement result of the fluorescence spectrum, the peak wavelength of emission is 474 nm, and
It was confirmed that the light was emitted from PVBi. This element is 100c
It was made to emit light with a brightness of d / m 2 and was observed using a brightness meter (CS-100, manufactured by Minolta Camera Co., Ltd.). There was no non-light emitting region or light emission unevenness).

【0079】実施例2〜8 電子注入輸送層として用いたDPVQの代わりに、第2
表に記載の化合物を用い、蒸着時の加熱ボート温度を第
2表に記載のように変えた以外は、実施例1と同様の方
法で有機EL素子を作製して評価した。得られた結果を
第2表に示す。
Examples 2 to 8 Instead of the DPVQ used as the electron injecting and transporting layer, the second
Organic EL devices were prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the table were used and the heating boat temperature during vapor deposition was changed as shown in Table 2. The results obtained are shown in Table 2.

【0080】比較例1 電子注入輸送層として用いたDPVQの代わりに、第2
表に記載の化合物を用い、蒸着時の加熱ボート温度を第
2表に記載のように変えた以外は、実施例1と同様の方
法で有機EL素子を作製して評価した。得られた結果を
第2表に示す。
Comparative Example 1 Instead of the DPVQ used as the electron injecting and transporting layer, the second
Organic EL devices were prepared and evaluated in the same manner as in Example 1 except that the compounds shown in the table were used and the heating boat temperature during vapor deposition was changed as shown in Table 2. The results obtained are shown in Table 2.

【0081】比較例2 電子注入輸送層を用いず、発光材料であるDPVBiに
直接陰極を付けた以外は、実施例1と同様の方法で有機
EL素子を作製して評価した。得られた結果を第2表に
示す。
Comparative Example 2 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the electron injecting and transporting layer was not used and the cathode was directly attached to the light emitting material DPVBi. The results obtained are shown in Table 2.

【0082】[0082]

【表4】 [Table 4]

【0083】*均一性の評価 ○:観察領域が素子作製直後でも、1日経過後でも均一
発光である。 △:観察領域が素子作製直後においては均一発光である
が、1日経過後は直径10μm以下の無発光領域もしく
は発光むらがある。 ×:観察領域が素子作製直後においても、1日経過後で
も直径10μm以下の無発光領域もしくは発光むらがあ
る。
* Evaluation of uniformity ∘: Uniform light emission was observed in the observation region immediately after the device was manufactured and after one day. Δ: The observation area shows uniform light emission immediately after the element is manufactured, but after one day, there is a non-light emission area having a diameter of 10 μm or less or uneven light emission. X: There is a non-light emitting region having a diameter of 10 μm or less or uneven light emission in the observation region immediately after the element is manufactured or even after one day.

【0084】比較例1で示したように、電子注入輸送層
としてSQを用いたものは、陰極金属の付着性は良好で
あるが、SQ自身の薄膜性が劣っているため時間経過と
共に結晶化してしまい、発光の均一性が劣る。また、比
較例2より明らかなように、発光材料のDPVBi上に
直接陰極金属を付けた素子は、発光材料の薄膜性は良好
であるが、金属の付着性が非常に劣るため発光の均一性
に劣っている。
As shown in Comparative Example 1, in the case of using SQ as the electron injecting and transporting layer, the adhesion of the cathode metal is good, but since the thin film property of SQ itself is inferior, crystallization occurs over time. And the uniformity of light emission is poor. Further, as is clear from Comparative Example 2, the element in which the cathode metal is directly attached on the DPVBi of the light emitting material has a good thin film property of the light emitting material, but the adhesion of the metal is very poor, and thus the uniformity of light emission is high. Inferior to

【0085】実施例9 実施例1と同様にして正孔注入輸送層を製膜した。次に
最初にセットしておいた合成例8のDPVPQ200m
g入りのモリブデン製抵抗加熱ボートを通電して290
℃まで加熱し、蒸着速度0.1〜0.3nm/秒で上記正孔
注入輸送層に蒸着して、膜厚40nmの発光層を製膜さ
せた。次に、得られた正孔注入輸送層を形成した透明支
持基板を真空層から取り出し、正孔注入輸送層の上にス
テンレススチール製のマスクを配置して再び基板ホルダ
ーに固定した。次に、マグネシウムリボン1gを入れた
モリブデン製抵抗加熱ボートと銀ワイヤー500mgを
入れたタングステン製バスケットを真空槽に装着した。
次いで、銀ワイヤーを入れたタングステン製バスケット
に通電して蒸着速度0.1nm/秒で銀を蒸着させると同
時に、マグネシウムリボン入りのボートに通電して蒸着
速度1.4nm/秒でマグネシウムを蒸着させた。この二
元同時蒸着により、DPVPQ層上に膜厚150nmの
マグネシウム−銀層(陰極に相当)を製膜した。以上の
ようにして、目的の有機EL素子(ITO/CuPc/
TPD/DPVPQ/Mg:Ag)が得られた。得られ
た有機EL素子に、電圧10Vを印加した結果、13m
A/cm2 の電流が流れ、50cd/m2 のGreenish B
lue の発光が観測された。このとき、発光効率は0.12
ルーメン/Wであった。また、蛍光スペクトルの測定結
果より、発光のピーク波長は485nmであり、DPV
PQからの発光と確認された。この素子を50cd/m
2 の輝度で発光させ、輝度計(CS−100,ミノルタ
カメラ(株)製)を用いて観測したところ、観察領域が
素子作成直後においても、1日経過後においても均一発
光(直径10μm以上の無発光領域もしくは発光むらは
無かった。)であった。
Example 9 A hole injecting and transporting layer was formed in the same manner as in Example 1. Next, DPVPQ200m of Synthesis Example 8 set first
290 by energizing the molybdenum resistance heating boat containing g
It heated up to (degreeC) and vapor-deposited on the said hole injection transport layer at vapor deposition rate of 0.1-0.3 nm / sec, and formed the light emitting layer with a film thickness of 40 nm. Next, the obtained transparent supporting substrate having the hole injecting and transporting layer formed thereon was taken out from the vacuum layer, a stainless steel mask was placed on the hole injecting and transporting layer, and the hole was again fixed to the substrate holder. Next, a resistance heating boat made of molybdenum containing 1 g of a magnesium ribbon and a basket made of tungsten containing 500 mg of a silver wire were attached to a vacuum chamber.
Next, the tungsten basket containing the silver wire is energized to deposit silver at a vapor deposition rate of 0.1 nm / sec, and at the same time, the boat with a magnesium ribbon is energized to deposit magnesium at a vapor deposition rate of 1.4 nm / sec. It was A 150-nm-thick magnesium-silver layer (corresponding to the cathode) was formed on the DPVPQ layer by this binary vapor deposition. As described above, the target organic EL element (ITO / CuPc /
TPD / DPVPQ / Mg: Ag) was obtained. As a result of applying a voltage of 10 V to the obtained organic EL device, 13 m
A / cm 2 current flows, 50 cd / m 2 Greenish B
Lue emission was observed. At this time, the luminous efficiency is 0.12.
It was lumen / W. In addition, from the measurement result of the fluorescence spectrum, the peak wavelength of emission is 485 nm, and the DPV
It was confirmed that the light was emitted from PQ. This element is 50 cd / m
When light was emitted at a luminance of 2 and observed using a luminance meter (CS-100, manufactured by Minolta Camera Co., Ltd.), it was observed that the observation area had uniform light emission immediately after the element was formed and after one day had elapsed (diameter of 10 μm or more There was no light emitting region or uneven light emission.).

【0086】[0086]

【発明の効果】以上の如く、本発明の有機EL素子は、
複素環スチリル化合物を用いることによって、金属との
付着性および薄膜性に優れるとともに、発光の均一性に
も優れた性質を有することを可能とした。したがって、
本発明の有機EL素子は、有機EL素子など各種素子と
して有効な利用が期待される。
As described above, the organic EL device of the present invention is
By using the heterocyclic styryl compound, it is possible to have excellent adhesiveness with a metal and thin film property, and also excellent light emission uniformity. Therefore,
The organic EL element of the present invention is expected to be effectively used as various elements such as an organic EL element.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 陽極および陰極の間に挟持された一層ま
たは複数層の有機化合物から構成される電界発光素子に
おいて、少なくとも一層を構成する有機化合物が一般式
(I) 【化1】 (式中、Aは炭素原子または窒素原子を示し、R1 およ
びR2 は両者共に水素原子,両者が結合して複素環に縮
合した飽和あるいは不飽和の芳香環,または飽和あるい
は不飽和の複素環を示す。Ar1 およびAr2 は置換あ
るいは無置換の炭素数6〜20のアリール基,置換ある
いは無置換の炭素数5〜18の複素環を示す。ここで、
置換基とは炭素数1〜6のアルキル基,炭素数1〜6の
アルコキシ基,炭素数6〜18のアリールオキシ基,フ
ェニル基,ニトロ基,シアノ基,アミノ基,水酸基ある
いはハロゲン原子を示す。また、これらの置換基は同一
でも異なっていてもよく、さらに置換基同士が結合して
飽和あるいは不飽和の五員環あるいは六員環を形成して
もよい。Ar3 は置換あるいは無置換の炭素数6〜20
のアリーレン基または単結合でもよい。)で表される複
素環含有スチリル化合物であることを特徴とする有機エ
レクトロルミネッセンス素子。
1. In an electroluminescent device composed of one or more layers of organic compound sandwiched between an anode and a cathode, the organic compound constituting at least one layer is represented by the general formula (I): (In the formula, A represents a carbon atom or a nitrogen atom, R 1 and R 2 are both hydrogen atoms, a saturated or unsaturated aromatic ring in which both are bonded to form a heterocycle, or a saturated or unsaturated heterocycle. Ar 1 and Ar 2 represent a substituted or unsubstituted aryl group having 6 to 20 carbon atoms or a substituted or unsubstituted heterocyclic ring having 5 to 18 carbon atoms.
The substituent is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryloxy group having 6 to 18 carbon atoms, a phenyl group, a nitro group, a cyano group, an amino group, a hydroxyl group or a halogen atom. . Further, these substituents may be the same or different, and the substituents may be bonded to each other to form a saturated or unsaturated five-membered ring or six-membered ring. Ar 3 is a substituted or unsubstituted C 6 to C 20
May be an arylene group or a single bond. ) A heterocycle-containing styryl compound represented by the formula (1).
【請求項2】 一般式(I)で表される化合物を発光層
の構成成分とすることを特徴とする請求項1記載の有機
エレクトロルミネッセンス素子。
2. The organic electroluminescence device according to claim 1, wherein the compound represented by the general formula (I) is used as a constituent component of the light emitting layer.
【請求項3】 一般式(I)で表される化合物を電子注
入輸送層の構成成分とすることを特徴とする請求項1記
載の有機エレクトロルミネッセンス素子。
3. The organic electroluminescence device according to claim 1, wherein the compound represented by the general formula (I) is used as a constituent component of the electron injecting and transporting layer.
JP23851392A 1992-09-07 1992-09-07 Organic electroluminescence device Expired - Fee Related JP3228301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23851392A JP3228301B2 (en) 1992-09-07 1992-09-07 Organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23851392A JP3228301B2 (en) 1992-09-07 1992-09-07 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JPH0688072A true JPH0688072A (en) 1994-03-29
JP3228301B2 JP3228301B2 (en) 2001-11-12

Family

ID=17031373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23851392A Expired - Fee Related JP3228301B2 (en) 1992-09-07 1992-09-07 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP3228301B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013384A (en) * 1997-01-27 2000-01-11 Junji Kido Organic electroluminescent devices
US6240617B1 (en) * 1997-04-04 2001-06-05 Kawasaki Steel Corporation Large unit weight hot rolling process and rolling apparatus therefor
US6396209B1 (en) 1998-12-16 2002-05-28 International Manufacturing And Engineering Services Co., Ltd. Organic electroluminescent device
US6423429B2 (en) 1998-03-02 2002-07-23 Junji Kido Organic electroluminescent devices
US6459199B1 (en) 1996-05-15 2002-10-01 Chemipro Kasei Kaisha, Limited Multicolor organic EL element having plurality of organic dyes, method of manufacturing the same, and display using the same
US6589673B1 (en) 1999-09-29 2003-07-08 Junji Kido Organic electroluminescent device, group of organic electroluminescent devices
WO2004006355A2 (en) * 2002-07-10 2004-01-15 E.I. Du Pont De Nemours And Company Charge transport compositions which are quinazoline derivatives and electronic devices made with such compositions
JP2005330219A (en) * 2004-05-19 2005-12-02 Chemiprokasei Kaisha Ltd Substituted vinyl group-containing dipyridophenazine derivative, electron transport material and organic electroluminescent element using the same
US7326473B2 (en) 1998-02-17 2008-02-05 Junji Kido Organic electroluminescent devices
WO2013058505A2 (en) 2011-10-17 2013-04-25 주식회사 엘지화학 Substrate for organic electronic device
WO2013141679A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Substrate for organic electronic device
WO2013141674A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Organic light-emitting element
WO2013141675A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Organic light-emitting element
WO2013147570A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2013147573A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2013147572A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2013147571A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2014021642A1 (en) 2012-07-31 2014-02-06 주식회사 엘지화학 Substrate for organic electronic device
WO2014021644A1 (en) 2012-07-31 2014-02-06 주식회사 엘지화학 Substrate for organic electronic device
WO2014021643A1 (en) 2012-07-31 2014-02-06 주식회사 엘지화학 Substrate for organic electronic device
WO2014084699A1 (en) 2012-11-30 2014-06-05 주식회사 엘지화학 Substrate for organic electronic element
WO2014084701A1 (en) 2012-11-30 2014-06-05 주식회사 엘지화학 Substrate for organic electronic element
WO2015047049A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Organic electronic device
WO2015047053A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Method for manufacturing organic electronic device
WO2015047036A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic devices and production method therefor
WO2015047055A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device
WO2015047044A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Method for manufacturing organic electronic device
WO2015047037A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device and method for manufacturing same
WO2015047041A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device
WO2015084073A1 (en) 2013-12-04 2015-06-11 주식회사 엘지화학 Method for manufacturing substrate for organic electronic device
US9203046B2 (en) 2003-10-17 2015-12-01 Junji Kido Organic electroluminescent device and production process thereof

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459199B1 (en) 1996-05-15 2002-10-01 Chemipro Kasei Kaisha, Limited Multicolor organic EL element having plurality of organic dyes, method of manufacturing the same, and display using the same
US6013384A (en) * 1997-01-27 2000-01-11 Junji Kido Organic electroluminescent devices
US6240617B1 (en) * 1997-04-04 2001-06-05 Kawasaki Steel Corporation Large unit weight hot rolling process and rolling apparatus therefor
US7326473B2 (en) 1998-02-17 2008-02-05 Junji Kido Organic electroluminescent devices
US6423429B2 (en) 1998-03-02 2002-07-23 Junji Kido Organic electroluminescent devices
US6396209B1 (en) 1998-12-16 2002-05-28 International Manufacturing And Engineering Services Co., Ltd. Organic electroluminescent device
US6589673B1 (en) 1999-09-29 2003-07-08 Junji Kido Organic electroluminescent device, group of organic electroluminescent devices
WO2004006355A2 (en) * 2002-07-10 2004-01-15 E.I. Du Pont De Nemours And Company Charge transport compositions which are quinazoline derivatives and electronic devices made with such compositions
US8529796B2 (en) 2002-07-10 2013-09-10 E I Du Pont De Nemours And Company Charge transport compositions and electronic devices made with such compositions
WO2004006352A3 (en) * 2002-07-10 2004-04-01 Du Pont Electronic devices made with electron transport and/or anti-quenching layers
WO2004006355A3 (en) * 2002-07-10 2004-03-18 Du Pont Charge transport compositions which are quinazoline derivatives and electronic devices made with such compositions
US7265378B2 (en) 2002-07-10 2007-09-04 E. I. Du Pont De Nemours And Company Electronic devices made with electron transport and/or anti-quenching layers
WO2004006352A2 (en) * 2002-07-10 2004-01-15 E.I. Du Pont De Nemours And Company Electronic devices made with electron transport and/or anti-quenching layers
US8287769B2 (en) 2002-07-10 2012-10-16 E I Du Pont De Nemours And Company Charge transport compositions and electronic devices made with such compositions
US8293139B2 (en) 2002-07-10 2012-10-23 E I Du Pont De Nemours And Company Charge transport compositions and electronic devices made with such compositions
US9203046B2 (en) 2003-10-17 2015-12-01 Junji Kido Organic electroluminescent device and production process thereof
JP2005330219A (en) * 2004-05-19 2005-12-02 Chemiprokasei Kaisha Ltd Substituted vinyl group-containing dipyridophenazine derivative, electron transport material and organic electroluminescent element using the same
WO2013058505A2 (en) 2011-10-17 2013-04-25 주식회사 엘지화학 Substrate for organic electronic device
WO2013141679A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Substrate for organic electronic device
WO2013141678A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Substrate for organic electronic device
WO2013141674A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Organic light-emitting element
WO2013141675A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Organic light-emitting element
WO2013141673A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Method for producing a substrate for organic electronic devices
WO2013141677A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Substrate for organic electronic device
WO2013147573A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2013147572A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2013147571A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2013147570A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2014021642A1 (en) 2012-07-31 2014-02-06 주식회사 엘지화학 Substrate for organic electronic device
WO2014021644A1 (en) 2012-07-31 2014-02-06 주식회사 엘지화학 Substrate for organic electronic device
WO2014021643A1 (en) 2012-07-31 2014-02-06 주식회사 엘지화학 Substrate for organic electronic device
US9391301B2 (en) 2012-07-31 2016-07-12 Lg Chem, Ltd. Substrate for organic electronic device
US9373820B2 (en) 2012-07-31 2016-06-21 Lg Chem, Ltd. Substrate for organic electronic device
WO2014084699A1 (en) 2012-11-30 2014-06-05 주식회사 엘지화학 Substrate for organic electronic element
WO2014084701A1 (en) 2012-11-30 2014-06-05 주식회사 엘지화학 Substrate for organic electronic element
US9768398B2 (en) 2012-11-30 2017-09-19 Lg Chem, Ltd. Substrate for organic electronic device
WO2015047037A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device and method for manufacturing same
WO2015047044A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Method for manufacturing organic electronic device
WO2015047041A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device
WO2015047055A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device
WO2015047036A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic devices and production method therefor
WO2015047053A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Method for manufacturing organic electronic device
US9570705B2 (en) 2013-09-30 2017-02-14 Lg Display Co., Ltd. Method of manufacturing organic electronic device
US9755188B2 (en) 2013-09-30 2017-09-05 Lg Display Co., Ltd. Organic electronic device
US9761832B2 (en) 2013-09-30 2017-09-12 Lg Display Co., Ltd. Substrate for organic electronic device
WO2015047049A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Organic electronic device
US10079351B2 (en) 2013-09-30 2018-09-18 Lg Display Co., Ltd. Method of preparing organic electronic device
US10950808B2 (en) 2013-09-30 2021-03-16 Lg Display Co., Ltd. Method of preparing organic electronic device
WO2015084073A1 (en) 2013-12-04 2015-06-11 주식회사 엘지화학 Method for manufacturing substrate for organic electronic device

Also Published As

Publication number Publication date
JP3228301B2 (en) 2001-11-12

Similar Documents

Publication Publication Date Title
JP3228301B2 (en) Organic electroluminescence device
JP3724833B2 (en) Organic electroluminescence device
JP4429438B2 (en) Amino compound and organic electroluminescence device using the same
JP3163589B2 (en) Organic electroluminescence device
JP3093796B2 (en) Charge injection auxiliary material and organic electroluminescence device containing the same
JP3366401B2 (en) White organic electroluminescence device
JP3287421B2 (en) Organic electroluminescence device
JP3214674B2 (en) Novel styryl compound, method for producing the same and organic electroluminescent device comprising the same
JP3506281B2 (en) Organic electroluminescence device
JP3693128B2 (en) Organic electroluminescence device
JP3211994B2 (en) Tetrafunctional styryl compound and method for producing the same
JPH07138561A (en) Organic electroluminescent element
JPH02247278A (en) Electroluminescence element
JP3175816B2 (en) Organic electroluminescence device
JPH06206865A (en) New anthracene compound and electroluminescent element using the compound
JP2554771B2 (en) Aromatic dimethylidin compound
JPH07224012A (en) Diphenylamine derivative
JP3185913B2 (en) Distyrylarylene derivatives
JP2000191560A (en) Aromatic hydrocarbon compound and organic electroluminescence element using thereof
JP5266161B2 (en) Organic electroluminescence device
JP3278975B2 (en) Coumarin derivatives
JP3045799B2 (en) Organic electroluminescence device
JP2809473B2 (en) Organic electroluminescence device
JPH06313168A (en) Organic electroluminescent element
JP3635708B2 (en) Organic electroluminescence device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070907

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees