JP2004005782A - 光源駆動方法と光源駆動装置と情報記録装置 - Google Patents
光源駆動方法と光源駆動装置と情報記録装置 Download PDFInfo
- Publication number
- JP2004005782A JP2004005782A JP2002156994A JP2002156994A JP2004005782A JP 2004005782 A JP2004005782 A JP 2004005782A JP 2002156994 A JP2002156994 A JP 2002156994A JP 2002156994 A JP2002156994 A JP 2002156994A JP 2004005782 A JP2004005782 A JP 2004005782A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light source
- current
- level
- modulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Head (AREA)
- Semiconductor Lasers (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
【課題】光源の閾値電流及び微分量子効率が変動してもデータ欠損を生じさせる特殊記録パルスの発生や記録動作中断を行わずに常に所望の出力光量が得られるようにする。
【解決手段】光源102の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の所定光量発光時のレベルと、光源102の目標光出力波形に比例した発光基準信号の所定光量発光時のレベルとがほぼ一致するようにバイアス電流を制御し、モニタ受光信号の平均値レベルと発光基準信号の平均値レベルとがほぼ一致するように変調電流のスケールを制御し、その各制御されたバイアス電流と変調電流との和を光源102の駆動電流とする。
【選択図】 図1
【解決手段】光源102の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の所定光量発光時のレベルと、光源102の目標光出力波形に比例した発光基準信号の所定光量発光時のレベルとがほぼ一致するようにバイアス電流を制御し、モニタ受光信号の平均値レベルと発光基準信号の平均値レベルとがほぼ一致するように変調電流のスケールを制御し、その各制御されたバイアス電流と変調電流との和を光源102の駆動電流とする。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
この発明は、半導体レーザ光源等の光源の出力光量を制御して駆動する光源駆動方法とその光源駆動方法を実施する光源駆動装置と、その光源駆動装置を搭載するCD−Rドライブ装置,CD−RWドライブ装置,DVD−Rドライブ装置,DVD−RWドライブ装置,DVD+RWドライブ装置,DVD−RAMドライブ装置などの情報記録装置とに関する。
【0002】
【従来の技術】
記録可能な光ディスク(情報記録媒体)に対して光ピックアップに搭載された光源である半導体レーザ光源(Laser Diode:LD)から照射するレーザ光の光変調によって情報の記録を行う光ディスク装置においては、1ビームオーバーライト技術や、情報記録の高密度化のための記録マーク形状制御のために光変調波形をマルチパルス化,多値レベル化して制御する技術が必須になっており、光源の照射光量が常に所望の値になるように制御する必要がある。
一般には、光源(LD)は温度変化などによって閾値電流が変動するので、一定の駆動電流を保つだけでは光量変動が起こってしまう。そのため、光源の出射光量の一部を受光素子でモニタ受光し、そのモニタ受光信号が所定の目標値と一致するように光源の駆動電流を制御するAPC(Automatic Power Control)制御と呼ばれる方法が用いられる。
【0003】
但し、情報の高速化記録,情報の高密度化記録を行うためには光変調周波数が高くなり、周波数帯域の限られた受光素子では正確な出射光量をモニタすることは困難になっている。そのため、通常はモニタ受光信号の低周波成分を検出し、予め算出した平均照射光量に対応する目標値に一致するように制御(この制御方法を「平均値制御方法」と呼ぶ)したり、照射光量の一定の期間が比較的長い時(モニタ受光信号が整定したレベル)をサンプルし、そのサンプルしたレベルが目標値に一致するように制御(この制御方法を「サンプルホールド制御方法」と呼ぶ)したりしている。
【0004】
また、半導体レーザ光源の駆動電流−光出力特性の勾配(「微分量子効率」と呼ぶ)も温度変化などによって大きく変動し、その微分量子効率も出射光量変動の要因になる。その変動による不具合を解決するには、微分量子効率を測定し、その測定結果に応じて光源の駆動電流を補正する方法、すなわち、所定の2点の照射光量に対するモニタ受光信号のレベルを検出し、その検出した2つのモニタ受光信号のレベル差から微分量子効率を算出し、その算出結果に応じて光源の駆動電流を補正する方法(例えば、特開2000−294871号公報,特開平08−235629公報参照)が提案されている。その微分量子効率の算出方法としては、所定のキャリブレーション期間を設けて検出し、その検出結果に応じて制御している。
【0005】
【発明が解決しようとする課題】
しかしながら、上述したような光源の駆動電流を補正する方法では、情報記録装置に適用する場合には、連続記録時間が1時間以上にも及ぶこともあり、その連続記録の間はキャリブレーション期間を挿入できないので、記録前に算出した微分量子効率では長時間(使用LDによっては数分程度でも)の記録に対しては大きくずれてしまって不十分である。
一方、記録の途中にキャリブレーション期間を挿入するには一旦記録動作を中止し、情報記録媒体(または情報記録領域)の無いところまで光ピックアップを移動したりデフォーカスして情報記録媒体に記録されない状態にしたりして、キャリブレーションを行う必要があり、記録速度が低下するという問題があった。また、光ピックアップによっては合焦時と非合焦時では戻り光の影響などによって異なる値が取得されるので、上述のような非合焦時にキャリブレーションをする方法では誤った値に制御されてしまうという問題が生じる場合もあった。
【0006】
さらに、記録動作中に微分量子効率を検出して制御する方法として、記録時に生じる低頻度のデータ欠損は再生時のエラー訂正機能によって影響が低減されるという考えのもとに、データ欠損は覚悟して本来の記録パルスとは異なる特殊な微分量子効率検出用のパルスを挿入して制御するという方法が提案されている。しかしながら、このような方法では、データ欠損が起こるのは事実であり、また検出パルスは頻繁には挿入できないので、制御帯域をあげることができないなどの問題があった。
この発明は上記の課題を解決するためになされたものであり、光源の閾値電流及び微分量子効率が変動してもデータ欠損を生じさせる特殊記録パルスの発生や記録動作中断を行わずに常に所望の出力光量が得られるようにすることを目的とする。
【0007】
【課題を解決するための手段】
この発明は上記の目的を達成するため、次の(1)〜(5)の光源駆動方法を提供する。
(1) 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の所定光量発光時のレベルと上記光源の目標光出力波形に比例した発光基準信号の所定光量発光時のレベルとがほぼ一致するようにバイアス電流を制御する第一の制御工程と、上記モニタ受光信号の平均値レベルと上記発光基準信号の平均値レベルとがほぼ一致するように変調電流のスケールを制御する第二の制御工程と、上記第一の制御工程によって制御されたバイアス電流と上記第二の制御工程によって制御された変調電流との和を上記光源の駆動電流とする駆動電流生成工程とからなる光源駆動方法。
【0008】
(2) 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の平均値レベルと上記光源の目標光出力波形に比例した発光基準信号の平均値レベルとがほぼ一致するようにバイアス電流を制御する第一の制御工程と、上記モニタ受光信号の所定光量発光時のレベルと上記発光基準信号の所定光量発光時のレベルとがほぼ一致するように変調電流のスケールを制御する第二の制御工程と、上記第一の制御工程によって制御されたバイアス電流と上記第二の制御工程によって制御された変調電流との和を上記光源の駆動電流とする駆動電流生成工程とからなる光源駆動方法。
【0009】
(3) 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の所定光量発光時のレベルと上記光源の目標光出力波形に比例した発光基準信号の所定光量発光時のレベルとがほぼ一致するようにバイアス電流を制御する第一の制御工程と、上記モニタ受光信号の所定光量発光時のレベルと平均値レベルとの差分と、上記発光基準信号の所定光量発光時のレベルと平均値レベルとの差分とがほぼ一致するように変調電流のスケールを制御する第二の制御工程と、上記第一の制御工程によって制御されたバイアス電流と上記第二の制御工程によって制御された変調電流との和を上記光源の駆動電流とする駆動電流生成工程とからなる光源駆動方法。
【0010】
(4) 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の平均値レベルと上記光源の目標光出力波形に比例した発光基準信号の平均値レベルとがほぼ一致するようにバイアス電流を制御する第一の制御工程と、上記モニタ受光信号の所定光量発光時のレベルと平均値レベルとの差分と、上記発光基準信号の所定光量発光時のレベルと平均値レベルとの差分とがほぼ一致するように変調電流のスケールを制御する第二の制御工程と、上記第一の制御工程によって制御されたバイアス電流と上記第二の制御工程によって制御された変調電流との和を上記光源の駆動電流とする駆動電流生成工程とからなる光源駆動方法。(5) (1)乃至(4)のいずれかの光源駆動方法において、上記第一の制御工程と上記第二の制御工程のうちの何れか一方の工程における制御帯域をもう一方の工程における制御帯域よりも速くする光源駆動方法。
【0011】
また、次の(6)〜(11)の光源駆動装置も提供する。
(6) 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の所定光量発光時のレベルと上記光源の目標光出力波形に比例した発光基準信号の所定光量発光時のレベルとがほぼ一致するようにバイアス電流を制御する第一の制御手段と、変調データに基づいて変調電流を生成し、その変調電流のスケールをスケール信号に基づいて変更する変調手段と、上記モニタ受光信号の平均値レベルと上記発光基準信号の平均値レベルとがほぼ一致するように上記変調手段のスケール信号を制御する第二の制御手段と、上記第一の制御手段によって制御されたバイアス電流と上記変調手段によって変更された変調電流との和を上記光源の駆動電流とする駆動手段を備えた光源駆動装置。
【0012】
(7) 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の平均値レベルと上記光源の目標光出力波形に比例した発光基準信号の平均値レベルとがほぼ一致するようにバイアス電流を制御する第一の制御手段と、変調データに基づいて変調電流を生成し、その変調電流のスケールをスケール信号に基づいて変更する変調手段と、上記モニタ受光信号の所定光量発光時のレベルと上記発光基準信号の所定光量発光時のレベルとがほぼ一致するように上記変調手段のスケール信号を制御する第二の制御手段と、上記第一の制御手段によって制御されたバイアス電流と上記変調手段によって変更された変調電流との和を上記光源の駆動電流とする駆動手段を備えた光源駆動装置。
【0013】
(8) 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の所定光量発光時のレベルと上記光源の目標光出力波形に比例した発光基準信号の所定光量発光時のレベルとがほぼ一致するようにバイアス電流を制御する第一の制御手段と、変調データに基づいて変調電流を生成し、その変調電流のスケールをスケール信号に基づいて変更する変調手段と、上記モニタ受光信号の所定光量発光時のレベルと平均値レベルとの差分を検出する検出手段と、その検出手段によって検出された差分と上記発光基準信号の所定光量発光時のレベルと平均値レベルとの差分とがほぼ一致するように上記変調手段のスケール信号を制御する第二の制御手段と、上記第一の制御手段によって制御されたバイアス電流と上記変調手段によって変更された変調電流との和を上記光源の駆動電流とする駆動手段を備えた光源駆動装置。
【0014】
(9) 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の平均値レベルと上記光源の目標光出力波形に比例した発光基準信号の平均値レベルとがほぼ一致するようにバイアス電流を制御する第一の制御手段と、変調データに基づいて変調電流を生成し、その変調電流のスケールをスケール信号に基づいて変更する変調手段と、上記モニタ受光信号の所定光量発光時のレベルと平均値レベルとの差分を検出する検出手段と、その検出手段によって検出された差分と上記発光基準信号の所定光量発光時のレベルと平均値レベルとの差分とがほぼ一致するように上記変調手段のスケール信号を制御する第二の制御手段と、上記第一の制御手段によって制御されたバイアス電流と上記変調手段によって変更された変調電流との和を上記光源の駆動電流とする駆動手段を備えた光源駆動装置。
【0015】
(10) (6)乃至(9)のいずれかの光源駆動装置において、上記第一の制御手段と上記第二の制御手段のうちの何れか一方の手段によって制御する制御帯域をもう一方の手段によって制御する制御帯域よりも速くするようにした光源駆動装置。
(11) (6)乃至(9)のいずれかの光源駆動装置において、上記モニタ受光信号の平均値レベルの検出帯域と上記発光基準信号の平均値レベルの検出帯域をほぼ等しくするようにした光源駆動装置。
さらに、次の(12)と(13)の情報記録装置も提供する。
(12) (6)乃至(11)のいずれかの光源駆動装置を備えた情報記録装置において、上記所定光量をスペースパワーにするようにした情報記録装置。
(13) (6)乃至(11)のいずれかの光源駆動装置を備えた情報記録装置において、上記所定光量を記録パワーの一つにするようにした情報記録装置。
【0016】
【発明の実施の形態】
以下、この発明の実施形態を図面に基づいて具体的に説明する。
本発明の光源駆動装置を適用し、その光源駆動方法を実施する情報記録再生装置の全体構成及び動作概要を図面に基づいて説明する。
図1は、本発明の光源駆動装置と光源駆動方法を適用する情報記録再生装置の一実施形態の全体構成を示すブロック図である。
図1において、情報記録媒体100は、再生すべき情報が予め記録されたCD−ROM,DVD−ROM等の光ディスク、または情報が未記録であってユーザが任意に新規の情報を記録可能なCD−R,CD−RW,DVD−R,DVD−RAM,MD,MOなどの光ディスクである。
【0017】
光ピックアップ101は、光源(例えば半導体レーザ(LD))102からの出射光を情報記録媒体100に照射して情報の記録を行ったり、情報記録媒体100からの反射光を受光して受光信号に変換するものであり、図示を省略した光源102を駆動する光源駆動装置(その詳しい説明は後述する)を内蔵し、反射光を受光して受光信号に変換する受光部103などが配置されている。
また、光ピックアップ101には光源102の出射光の一部をモニタするモニタ受光部(公知技術であり、図示を省略)も配置されており、その出力であるモニタ信号に基づいて光源102の出射光量変動を制御する。
【0018】
さらに、情報記録媒体100の照射光に対する傾き(「チルト」と呼ぶ)を検知するためのチルト検出受光部(同じく公知であり、図示を省略)などが配置される場合もある。
さらにまた、異なる媒体フォーマットが定められた複数種類の情報記録媒体に対応する情報記録再生装置の場合(例えば、DVD及びCD両対応装置など)、それぞれの情報記録媒体に好適な波長の光源を持つ場合があり、それぞれの光源出射時に情報記録媒体からの反射光を受光する受光部やモニタ受光部を別個に備える場合もある。
【0019】
信号処理部104は、光ピックアップ101に配置された各種受光部からの受光信号が入力され、様々な信号処理が行われる。
例えば、受光信号から情報を再生したり、情報記録媒体100の回転に伴う面振れやトラックの半径方向の振れなどの変動に対して常に所定の誤差内で光を照射するように制御(フォーカスサーボ制御及びトラックサーボ制御)するために受光信号からサーボエラー信号を生成し、そのサーボエラー信号に従って光ピックアップ101を制御する。また、記録すべき情報を所定の規則に従って変調し、記録信号として光源102(または光源駆動部)に出力したり、光源102の出力光量制御を行う。
【0020】
回転駆動部105は、情報記録媒体100を回転させるものであり、信号処理部104によって回転速度が制御(スピンドルサーボ制御)される。
CLV回転制御を行う際には、より精度よく回転制御をするために情報記録媒体100に埋め込まれた回転制御信号を光ピックアップ101を介して検出し、その回転制御信号に基づいて回転制御を行う。
回転制御信号には、例えば再生情報記録媒体などでは記録された情報に所定間隔で配置された同期信号や、記録可能な情報記録媒体では記録トラックが所定の周波数で蛇行したウォブルなどを用いる。
【0021】
コントローラ106は、ホストコンピュータとの記録再生情報の受け渡しやコマンド通信を行って装置全体の制御を行う。
なお、光ピックアップ101は情報記録媒体半径方向に可動(この動作を「シーク動作」と呼ぶ)させるため、光ピックアップ101と信号処理部104等が搭載されている回路基板とはフレキシブルプリント回路(Flexible Print Circuit:FPC)基板(またはケーブル)と呼ばれる基板(またはケーブル)で接続されるのが一般であり、光源102や受光部103等の光ピックアップ101に搭載される部品はこのFPC基板に実装されることも多い。
【0022】
次に、駆動・制御対象となる光源について説明する。
図2は、駆動電流−光出力特性の一例を示す線図である。
通常、光源のLD駆動電流ILDに対する光出力Poは次の数1に示す式に基づく演算処理で近似することができる。ここで、η:微分量子効率,Ith:閾値電流である。
【0023】
【数1】
Po=η・(ILD−Ith)
【0024】
所望の光変調波形P(図2の(b))を得るためには、LD駆動電流ILDをバイアス電流Ibと変調電流Imの和(Ib+Im)とした場合、バイアス電流Ibは閾値電流Ithにほぼ等しく、変調電流Imは同図の(c)のようなP=η・Imになる電流を駆動すればよい。
しかし、一般に、この閾値電流Ithと、微分量子効率ηは個体間のばらつきのみならず、温度変化によっても変動するため、所望の光変調波形Pを常時得るためには、閾値電流Ith及び微分量子効率ηの変動に伴ってバイアス電流Ibと変調電流Imを制御することが望ましい。
例えば、図2の(ii)のように閾値電流がIth′に、微分量子効率がη′に変動した場合、所望の光変調波形Pを得るためには、バイアス電流Ib′を閾値電流Ith′に、変調電流Im′を同図の(d)のようにP=η′・Im′となるように制御すればよい。
【0025】
次に、この情報記録再生装置における第一の光源駆動方法(光源制御処理)について説明する(この発明の請求項1に係る光源駆動方法の説明)。
図3乃至図5は、図1に示した光源102の特性と駆動電流が変化した場合の各波形図である。
各図の(c)は光源102のLD駆動電流ILDに対する光出力Poの特性図、(a−i)(a−ii)はある駆動電流(b)に対する光源102の光出力波形Pを示す図、(d)は所望の目標光出力信号Ptargetの波形を示す図である。
【0026】
図3は、光源102の特性が同図の(c)に示す(i)の場合(閾値電流がIth,微分量子効率がη)であり、同図の(a−i)に示す光出力波形Pが、同図の(d)に示す所望の目標光出力信号Ptargetと一致するようにLD駆動電流を制御しているものとする(つまり、バイアス電流Ibは閾値電流Ithとほぼ等しく、変調電流Imは微分量子効率ηに適合したものとなっている)。その時、光源102の特性が同図の(c)の(ii)のように(閾値電流がIth′,微分量子効率がη′)変化したとすると、駆動電流が同図の(b)に示すような波形のままでは同図の(a−ii)に示すような光波形Pしか得られず、同図の(d)に示すような目標光出力信号Ptargetとは異なってしまい、正確な記録ができなくなる。
【0027】
そこで、図4に示すように、光源102の特性変化に対してバイアス電流Ibの制御を行った場合、同図の(d)に示す目標光出力のスペースレベルPt0と同図の(a−ii)に示す光出力PのスペースレベルP0とが等しくなるようにバイアス電流を制御すると、微分量子効率η′の変化に対して変調電流Imを制御していないので、目標光出力信号Ptargetを得るには不十分である。
この光源駆動制御処理では、図5に示すように、光源102の特性変化に対してバイアス電流Ibの制御に加えて変調電流Imも制御する。
【0028】
すなわち、この第一の光源駆動処理では、上述と同じように、同図の(d)に示す目標光出力のスペースレベルPt0と同図の(a−ii)に示す光出力PのスペースレベルP0とが等しくなるようにバイアス電流を制御した上で、同図の(d)中に一点鎖線で示す目標光出力の平均値レベルPtAvgと同図の(a−ii)中に一点鎖線で示す光出力Pの平均値レベルPavgとが等しくなるように変調電流Imのスケールを制御する。その変調電流Imのスケール制御は、変調電流をDACによって生成している場合にはDACのフルスケールを変更したり、また変調電流の電流増幅率を変更したりするなどの方法によって実現できる。
【0029】
このようにして、バイアス電流と変調電流を制御することにより、光源102の閾値電流及び微分量子効率変動に対しても常に所望の光出力が得られ、正確な記録が可能になる。
また、バイアス電流制御と変調電流制御のうち、一方の制御帯域を他方に比べ十分速く(あるいは遅く)すること(この発明の請求項5に係る光源駆動方法の説明)によって全体の収束性を向上させることができる。通常の光源は微分量子効率の変動が閾値電流の変動に比べて比較的緩やかに起こるので、バイアス電流の制御帯域を速くしておくとよい。
【0030】
次に、この情報記録再生装置における光源駆動処理の他の処理例である第二の光源駆動処理について説明する(この発明の請求項2に係る光源駆動方法の説明)。
図6乃至図8は、図1に示した光源102の特性と駆動電流が変化した場合の他の例の各波形を示す図である。
各図の(c)は光源102のLD駆動電流ILDに対する光出力Poの特性図、(a−i)(a−ii)はある駆動電流(b)に対する光源102の光出力波形Pを示す図、(d)は所望の目標光出力信号Ptargetを示す図である。以下図3乃至図5と同様の個所はその説明を省略する。
【0031】
この第二の光源駆動制御処理では、まず、図7に示すように、同図の(d)中に一点鎖線で示す目標光出力の平均値レベルPtAvgと同図の(a−ii)中に一点鎖線で示す光出力Pの平均値レベルPavgとが等しくなるようにバイアス電流を制御する。さらに図7で示したようなバイアス電流制御に加え、図8に示すように、同図の(d)に示す目標光出力のスペースレベルPt0と同図の(a−ii)に示す光出力PのスペースレベルP0とが等しくなるように変調電流Imのスケールを制御する。
このようにして、光源の閾値電流及び微分量子効率変動に対しても常に所望の光出力が得られるようになる。
【0032】
つぎに、再度図3乃至図5に基づいてこの情報記録再生装置における光源駆動処理のさらに他の処理例である第三の光源駆動処理について説明する(この発明の請求項3に係る光源駆動方法の説明)。
この第三の光源駆動制御処理では、図5に示すように、目標光出力のスペースレベルPt0と光出力PのスペースレベルP0とが等しくなるようにバイアス電流を制御した上で、目標光出力の平均値レベルPtAvgとスペースレベルPt0との差分ΔPtと光出力Pの平均値レベルPavgとスペースレベルP0との差分ΔPとが等しくなるように変調電流Imのスケールを制御する。
このようにすれば、上述と同様に光源の閾値電流及び微分量子効率変動に対しても常に所望の光出力が得られるようになる。
【0033】
つぎに、再度図6乃至図8に基づいてこの情報記録再生装置における光源駆動処理のさらにまた他の処理例である第四の光源駆動処理について説明する(この発明の請求項4に係る光源駆動方法の説明)。
この第四の光源駆動制御処理では、図8に示すように、目標光出力の平均値レベルPtAvgと光出力Pの平均値レベルPavgとが等しくなるようにバイアス電流を制御した上で、目標光出力の平均値レベルPtAvgとスペースレベルPt0との差分ΔPtと光出力Pの平均値レベルPavgとスペースレベルP0との差分ΔPとが等しくなるように変調電流Imのスケールを制御する。
このようにすれば、上述と同様に光源の閾値電流及び微分量子効率変動に対しても常に所望の光出力が得られるようになる。
上述の例では、検出値としてスペースレベルと平均値レベルの場合について説明したが、他のレベルを検出して制御しても同様の効果が得られる。
【0034】
次に、上記光源駆動装置(光源制御装置)の実施形態を説明する(この発明の請求項5に係る光源駆動装置の説明)。
図9は、図1に示した光ピックアップ101に内蔵された光源制御部を含む光源駆動装置1の構成図である。この光源駆動装置1は駆動する光源102の近傍に配置され、光ピックアップ101に搭載される。
光源駆動装置1は、信号処理部104から供給される記録クロック信号WCK及び記録データ信号Wdataから変調スイッチ信号Smod及び目標レベル信号Dtargetを生成するストラテジ変調部5と、ストラテジ変調部5から供給される変調スイッチ信号Smod及びスケール信号Scaleに基づいてLD変調電流Imodを生成する変調部(Data−Modulation)6(この発明の請求項6,7,8,9の変調手段の機能を果たす)と、FSPD端子に光源の出射光の一部をモニタするモニタ受光部29からのモニタ受光信号を入力してオフセット調整及びゲイン調整を行ってモニタ信号Imonを出力するPDアンプ部(PD−AMP)2を備えている。
【0035】
また、ストラテジ変調部5から供給される目標レベル信号Dtargetから発光基準信号Itargetを生成する基準信号生成部7と、PDアンプ部2から供給されるモニタ信号Imonが発光基準信号Itargetと一致するようにバイアス電流Ibiasを制御するバイアス電流制御部(Bias−Control)4(この発明の請求項6,8の第一の制御手段の機能を果たす)と、モニタ信号Imon及び発光基準信号Itargetから駆動している光源の微分量子効率ηを検出してその検出結果に応じてLD変調電流のスケールScaleを制御する微分量子効率制御部(η−Control)3(この発明の請求項6の第二の制御手段の機能を果たす)と、バイアス電流Ibiasと変調電流Imodを加算する電流加算部8(電流駆動部9と共にこの発明の請求項6,7,8,9の駆動手段の機能を果たす)と、電流加算部8から供給される電流を増幅して光源のLD駆動電流ILDを供給する電流駆動部9(電流加算部8と共にこの発明の請求項6,7,8,9の駆動手段の機能を果たす)と、コントローラ106から(あるいは信号処理部104を介して)供給される制御コマンドを受けて各部へ制御信号を供給する制御部10も備えている。
なお、高周波重畳部などの公知の光源駆動装置に搭載されていても本実施形態の要旨に関係のないものは図示及び説明を省く。
【0036】
図10は、図9に示した各部の出力する信号波形の一例を示す図であり、記録マークを形成するのに複数のパルス列で記録(以下マルチパルス記録と称する)する情報記録媒体を想定する。また、説明を簡単にするために記録パワーはP0,P1の二値レベルとした。
以下、図9及び図10に基づいて図9に示した各部の構成と動作の詳細説明を行う。
【0037】
[ストラテジ変調部]
ストラテジ変調部5は、発光レベルに対応した変調データDmod0,Dmod1,・・・,Dmodnを供給し、図1の信号処理部104から供給される記録クロック信号WCK及び記録データ信号Wdataから発光レベルの選択信号となる変調スイッチ信号Smodを生成する。
また、変調データDmod0,Dmod1,・・・,Dmodnを変調スイッチ信号Smodに従って選択して生成したデータである目標レベル信号Dtargetを供給する。その変調データDmod0,Dmod1,・・・,Dmodnは、制御部10を介して所望の発光レベルに予め設定される。また、変調スイッチ信号Smodの変調タイミングは、情報記録媒体や記録速度などに応じて決められ、そのタイミング情報も保持している。
さらには、記録クロック信号WCK及び記録データ信号Wdataから変調スイッチ信号Smodに合せ、後述する各部の制御タイミング信号(例えば、ApcSmp信号など)も生成する。
【0038】
[変調部]
変調部6は、ストラテジ変調部5から供給される変調データDmod0,Dmod1,・・・,Dmodn及び変調スイッチ信号Smodに基づいてLD変調電流Imodを生成する。
そのP0DAC22aは、変調データDmod0に基づいて電流I0を供給する電流出力DAC(D/Aコンバータ)であり、P1DAC22bは変調データDmodbに基づいて電流I1を供給する電流出力DACである。以下、PnDAC22nまで同様である。各DACはそれぞれ発光レベルに相当する電流を出力する。ここでは二値レベルでの記録を想定しているので、P0DAC22a,P1DAC22bを用いる場合について説明する(多値レベル記録時には同様にして考えればよい)。
【0039】
スイッチ23は、変調スイッチ信号Smodに従ってP0DAC22a,P1DAC22bあるいはPnDAC22nの出力電流を選択してLD変調電流Imodを出力する。また、P0DAC22a〜PnDAC22nのフルスケールKmはスケールDAC(ScaleDAC)24から供給され、これは微分量子効率制御部3から供給されるスケール信号Scaleに従って設定される。また、スケールDAC24のフルスケールIfullはηREFから供給され、使用する光源の微分量子効率から定めればよい。フルスケールKmの算出・設定方法については後述する。
したがって、P0DAC22a,P1DAC22bの各出力電流I0,I1はそれぞれ以下に示す数2と数3に示す式に基づく演算処理で求めることができる。ここでは、P0DAC22a,P1DAC22b及びスケールDAC24は8ビット(bit)DACとしている。
【0040】
【数2】
I0=(Dmod0/255)*(Scale/255)*Ifull
【0041】
【数3】
I1=(Dmod1/255)*(Scale/255)*Ifull
【0042】
したがって、LD変調電流Imodは次の数4に示す式に基づく演算処理で求めることができ、図10の(i)にそのImodの波形例を示す。
ここで、Imn=(Dmodn/255),Km=(Scale/255)*Ifull(n=0,1)である。
【0043】
【数4】
Imod=Imn*Km
【0044】
[電流駆動部]
電流加算部8は、バイアス電流Ibiasと変調電流Imodを加算する。
電流駆動部9は、電流加算部8から供給される電流を所定の増幅率Aiで増幅し、光源のLD駆動電流ILDを供給する。したがって、その時のLD駆動電流ILDは次の数5に示す式に基づく演算処理で求めることができる。
また、Ib=Ai*Ibias,Im=Ai*Imodとし、図2に示したようにIbが閾値電流Ithと等しくなるように制御されれば、Imすなわち変調電流Imodは光波形に比例した波形となる。
【0045】
【数5】
ILD=Ai*(Ibias+Imod)
【0046】
[PDアンプ部]
PDアンプ部2は、光源の出射光の一部をモニタするモニタ受光部29からのモニタ受光信号を入力してオフセット調整及びゲイン調整を行う。
モニタ受光部29には、受光素子(Photo Detector:PDなど)単体でモニタ受光信号が電流として出力されるタイプのものと、電流電圧変換器を内蔵し、モニタ受光信号が電圧として出力されるタイプのものとがある。本実施形態ではどちらのタイプでも対応可能としており、MUX12で選択する。
つまり、電流出力型の場合は入力されるモニタ受光信号が電流電圧変換器11で電圧に変換したものを、電圧出力型の場合は電流電圧変換器11を経由しない信号をそれぞれ選択する。
【0047】
加算器14は、モニタ受光信号のオフセット調整をするものであり、オフセット(Offset)DAC13から供給されるオフセット電圧を加減算する。
ゲイン切換アンプ(GCA)15は、オフセット調整したモニタ受光信号をゲイン切換え信号PDGainに従ってゲインを切換え(例えば、1/4/8/16倍の4段階の切換え)ゲイン調整を行う。一般に、再生光量と記録光量とは大きく異なるので、少なくとも記録/再生時でゲインを切換えるようにするとよい。受光素子PDの受光電流Ipdは、LD出射光Poに対する光利用効率をα、PDの受光感度をSとすると、次の数6に示す式に基づく演算処理で求めることができる。
【0048】
【数6】
Ipd=α・S・Po
【0049】
また、電流電圧変換器(11あるいはモニタ受光部内蔵のもの)の変換ゲインをGiv,ゲイン切換アンプ15のゲインをGpdとすると、モニタ信号Imonは次の数7に示す式に基づく演算処理で求めることができる。ここで、Kpd=Giv・α・Sとなる。なお、オフセットDAC13から供給されるオフセット電圧は省略した。
【0050】
【数7】
Imon=Gpd・Giv・Ipd=Gpd・Kpd・Po
【0051】
[基準信号生成部]
基準信号生成部7は、ストラテジ変調部5から供給される目標レベル信号Dtargetから発光基準信号Itargetを生成する。
ターゲット(Target)DAC25は、目標レベル信号Dtargetに応じて発光基準信号Itargetを出力する。
ここで、出射光量Ptと発光基準信号Itargetとの比例係数をKとすると、次の数8に示す式に基づく演算処理で求めることができる。
【0052】
【数8】
Itarget=K・Pt
【0053】
また、この比例係数KはターゲットDAC25のスケールKtを設定することにより決定され、予めK=Kpdとなるように設定する。スケールKtの設定はDACや外部からの電圧/電流印加により行えばよい。Kpdは使用する受光素子PDのLD出射光Poに対する光利用効率α,受光感度Sのバラツキによって変わるので、初期調整時にこの設定を行うとよい。
また、ゲイン切換アンプ15のゲインGpdに合わせて(つまり、K=Kpd・Gpdとなるように)スケールKtを変更するようにしてもよい。さらには、Ktを一定とし、Gpdを調整することにより(この場合、ゲイン切換アンプ15はより多段階のゲイン調整を可能とする)、K=Kpd・Gpdとなるようにしてもよい。
したがって、LD出射光Poが目標出射光量Ptと等しい場合、Imon=Itargetとなる。
【0054】
また、基準信号生成部7は、図11に示すように、変調部6と同様にして発光レベルに対応した複数個のP0DAC30a〜PnDAC30nと変調スイッチ信号Smodに従って出力が選択されるスイッチ31により構成してもよい。
なお、各DACのスケールは上述のスケールKtを設定する。このようにすれば高速応答性を持ったDACの実現が困難な場合に好適である。
さらには、これらDACとスイッチを共有化するため、図15に示すような構成にしてもよい。ここで、可変ゲインアンプ35はスケールDAC24の出力Km′(=Km/Kt)に応じて設定されたゲインで発光基準信号Itargetを増幅し、LD変調電流Imodを生成する。
【0055】
[バイアス電流制御部]
バイアス電流制御部4は、PDアンプ部2から供給されるモニタ信号Imonが基準信号生成部7から供給される発光基準信号Itargetと一致するようバイアス電流Ibiasを制御する。
発光基準信号Itargetは目標出射光量を示しているので、出射光量をモニタしているモニタ信号Imonが発光基準信号Itargetと一致するようにすれば光源を目標照射光量で照射させることができる。
誤差アンプ20は、モニタ信号Imonと発光基準信号Itargetとの差分信号を増幅し、次段に供給する。
【0056】
S/H積分器21は、誤差アンプ20から供給される増幅された差分信号を積分し、バイアス電流Ibiasを出力するものであり、制御タイミング信号ApcSmp信号によってサンプル時(例えば、ApcSmp=ハイ(High)とする)には積分動作を行ってバイアス電流制御を行い、ホールド時には制御値であるバイアス電流Ibiasをホールドする。
このようにして差分信号がゼロとなるように、すなわちモニタ信号Imonと発光基準信号Itargetとが一致するようにバイアス電流Ibiasを制御する。また、ホールド時は誤差アンプ20出力を積分しないので、誤差アンプの回路オフセットによる制御値のドリフトなどを低減できる。
【0057】
一般に、受光素子PDの受光信号は使用する受光素子PDや回路によって帯域制限を受けており、モニタ信号Imonは、例えば図10の(e)に示すような波形になる。また、同図の(e′)は、より帯域の低い場合のモニタ信号Imon′の波形例であり、記録速度が上がると光源の変調帯域も高くなるので、PD帯域が同等でも相対的にこのような波形になる。
したがって、光源を高速変調している期間(マルチパルス発光時)は、モニタ信号Imonから正確な発光レベルを得ることは困難である。
この実施形態ではこのような問題も考慮してあり、モニタ信号Imon(またはImon′)の値が整定した期間のみモニタ信号Imonと発光基準信号Itargetとの比較を行っている。
【0058】
つまり、上述のように制御タイミング信号ApcSmp信号が「ハイ(Hi)」の期間のみ差分信号の積分動作を行うようにし、この制御タイミング信号ApcSmpをスペースレベルP0照射時の所定期間(モニタ信号の帯域を考慮して決める)「ハイ(Hi)」となるように生成するようにしている。さらには、モニタ信号の帯域によっては所定の長さ以上のスペースでサンプルを行い、それ以下ではサンプルしないようにしてもよい。例えば、図10において二つ目のスペースではサンプルしないものとする。
このようにして、スペースレベルP0が常に目標値Pt0に等しくなるように制御することができる。
また、SRSel信号によって制御速度を変更することができる。これは積分器への充放電電流(例えば、誤差アンプ20の出力電流)を変更することによって行う。これにより、記録/再生時にそれぞれ制御速度を最適値に設定することが可能になる。
【0059】
また、バイアス電流制御部4を、図12のように構成しても同様にスペースレベルP0が常に目標値Pt0に等しくなるように制御することができる(この発明の請求項6,8の第一の制御手段の機能を果たす)。
S/H32は、制御タイミング信号ApcSmpのタイミングによってモニタ信号Imonをサンプルするサンプルホールド回路であり、ここではスペースレベルP0照射時の値Imon0をサンプルする。
BtDAC33は、スペースレベルの発光基準信号It0を生成するDACであり、スペースレベルを示す変調データDmod0が入力される。
誤差アンプ34は、S/H32の出力とBtDAC33の出力との差分信号を増幅し、バイアス電流Ibiasを出力する。また、誤差信号の積分機能も兼ねる。これにより、Imon0とIt0が一致するようにバイアス電流を制御することができる。
【0060】
[微分量子効率制御部]
微分量子効率制御部3は、駆動している光源の微分量子効率ηを検出してその検出結果に応じてLD変調電流のスケールScaleを制御する。
これはバイアス電流を制御するレベル(ここではスペースレベルP0)とは異なるレベル(ここでは平均値レベルPavg)でのモニタ信号を検出し、これがそのレベルの発光基準信号Itargetと一致するようにスケールScaleを制御する。
LPF16は、モニタ信号Imonの平均値レベルを抽出するローパスフィルタであり、図10の(g)に示すような波形のモニタ平均値レベル信号ImonAvgを出力する。
【0061】
LPF17は、発光基準信号Itargetの平均値レベルを抽出するローパスフィルタであり、図10の(h)に示すような波形の発光基準平均値レベル信号ItAvgを出力する。これら二つのローパスフィルタのカットオフ周波数は記録データ信号Wdataの信号帯域に比べて十分低いものとし、ほぼ等しくなるようにする。
比較器(Comp)18は、モニタ平均値レベル信号ImonAvgと発光基準平均値レベル信号ItAvgとを比較し、モニタ平均値レベル信号ImonAvgが発光基準平均値レベル信号ItAvgよりも小さかったらアップ(Up)信号を、大きかったらダウン(Down)信号を出力する。
【0062】
カウンタ(Count)19は、比較器18の出力する比較結果アップ/ダウン(Up/Down)信号によってカウンタ値を増減する。そのカウンタ値の更新はC−CK信号の立上りで行う。このカウント値はScale信号として変調部6に供給され、Scale信号の増減に併せてLD変調電流Imodが増減し、発光量が増減する。したがって、このC−CK信号の周波数を変更することによってこの制御帯域を変更することができる。
カウンタ19の初期値はCLD信号によって設定され、PScale(記録時初期値)あるいはRScale(再生時初期値)が設定される。
【0063】
情報記録媒体がCDやDVDの場合、記録データ信号Wdataは直流成分がほぼゼロとなるように変調規則が定められているので、モニタ平均値レベル信号ImonAvgと発光基準平均値レベル信号ItAvgはほぼ一定レベルとなり、容易にこれらの比較が行えるため、この実施形態が好適である。
より詳細には、モニタ平均値レベル信号ImonAvgと発光基準平均値レベル信号ItAvgがほぼ一定になるほどLPF16,LPF17のカットオフ周波数は低くせず、データパターン依存によって多少変動する(図10の(g)と(h)に破線で示す部分)。また、精度よい記録を行うためにデータパターンなどに応じてマルチパルスのデューティー比を変更するため、これによっても多少変動する。
【0064】
しかし、上述したようにLPF16,LPF17のカットオフ周波数をほぼ等しくしたので、二つの信号の変動量はほぼ等しく、同時刻の信号を比較すれば(この発明の請求項11に係る光源駆動装置の説明)、上記のような変動の影響は問題ない。換言すれば、これらの変動量を抑制するほどカットオフ周波数を下げる必要がないので、これによって制御帯域が低くなったり、ここでの位相遅れなどによって安定性が低下することはない。
さらにデータパターンによる検出値の変動を抑制するには所定のデータパターンでの所定タイミングでカウンタの更新を行うようにC−CK信号を生成すればよい。
また、記録速度などにより最適なカットオフ周波数は異なるので、LPF16,LPF17のカットオフ周波数はカットオフ周波数制御信号FcCtrlによって連動して設定可能としておくとよい。
【0065】
上述のようにして、バイアス電流制御と微分量子効率制御を行うと、光源の閾値電流及び微分量子効率変動に対しても常に所望の光出力が得られ、正確な記録が可能となる。図9に示した光源駆動装置1は、上述の第一の光源駆動処理を実施するときの構成である。
また、バイアス電流制御と微分量子効率制御のうち、一方の制御帯域を他方に比べ十分速く(遅く)することにより(この発明の請求項10に係る光源駆動装置の説明)収束性を向上させることができる。通常の光源は微分量子効率の変動が閾値電流の変動に比べ比較的緩やかに起こるので、バイアス電流の制御帯域を速くしておくとよい。
【0066】
次に、図13に基づいて上記微分量子効率制御部3及び上記バイアス電流制御部4の他の内部構成例を説明する。これは上述の第二の光源駆動処理を実現するための構成を示しており、図9と同じ機能を果たすブロックについては図示とその説明を省略する。(この発明の請求項7に係る光源駆動装置の説明)
図13において、バイアス電流制御部4(この発明の請求項7の第一の制御手段の機能を果たす)のLPF42は、モニタ信号Imonの平均値レベルImonAvgを抽出するローパスフィルタである。
LPF43は、発光基準信号Itargetの平均値レベルItAvgを抽出するローパスフィルタである。この二つのLPFはそれぞれ図9のLPF16,LPF17と同様の機能を果たし、その出力信号は図10の(g)と(h)に示すような波形になる。
【0067】
誤差アンプ20は、モニタ平均値レベル信号ImonAvgと発光基準平均値レベル信号ItAvgとの差分信号を増幅し、次段に供給する。
S/H積分器21は、上述と同様に誤差アンプ20から供給される増幅された差分信号を積分し、バイアス電流Ibiasを出力するものであり、ここでは常に制御タイミング信号ApcSmpは「ハイ(Hi)」として積分動作を行い、バイアス電流Ibiasを供給する。
このようにして、モニタ信号と発光基準信号の平均値レベルが等しくなるようにバイアス電流Ibiasを制御することができる。また、制御タイミング信号ApcSmpによって所定の期間だけ積分動作を行うようにしてもよい。
【0068】
上述と同様の理由で、LPF42とLPF43のカットオフ周波数はほぼ同じとするとよい。また、このカットオフ周波数を変更可能としておくとよい。
微分量子効率制御部3(この発明の請求項7の第二の制御手段の機能を果たす)のS/H40は、EtaSmp信号のタイミングでモニタ信号Imonをサンプルするサンプルホールド回路である。ここではスペースレベルP0をサンプルするものとし、EtaSmp信号のタイミングは図10の(j)に示すような波形の制御タイミング信号ApcSmpと同様にすればよい。
EtaDAC41は、スペースレベルの発光基準信号Pt0を生成するDACであり、変調データDmod0が入力され、このDACのスケールはTargetDAC25のスケールKtと等しくする。
【0069】
比較器18は、S/H40の出力とEtaDAC41の出力とを比較し、その比較結果によってアップ/ダウン(Up/Down)信号を出力する。カウンタ19は上述と同様に比較結果によってカウンタ値を増減する。
このようにして、バイアス電流制御と微分量子効率制御を行うと、光源の閾値電流及び微分量子効率変動に対しても常に所望の光出力が得らるようになる。
【0070】
図14は、上記微分量子効率制御部3のさらに他の内部構成例を示すブロック図である。(この発明の請求項8,9に係る光源駆動装置の説明)
S/H44は、EtaSmp信号のタイミングでモニタ信号Imonをサンプルするサンプルホールド回路である。ここではスペースレベルP0をサンプルするものとする。
LPF45は、モニタ信号Imonのモニタ平均値レベル信号ImonAvgを抽出するローパスフィルタである。
差分器46は、S/H44の出力とLPF45の出力との差分信号ΔImonを生成する。その差分信号ΔImonは、光出力のスペースレベルと平均値レベル差ΔP(図3乃至図5または図6乃至図8に示す)に相当する。すなわち、上記44〜46の各部がこの発明の請求項8,9の検出手段の機能を果たす。
【0071】
EtaDAC47は、目標光出力の平均値レベルPtAvgとスペースレベルPt0との差分ΔPtに相当する基準値ηtarget(=ItAvg−It0)を生成する。
比較器18及びカウンタ19は、上述と同様の動作を行う。これにより、スペースレベルと平均値レベルの二点間のレベル差から微分量子効率が検出でき、これが所望値になるように制御することができる。
この微分量子効率制御部3(この発明の請求項8,9の第二の制御手段の機能を果たす)と図13に示した構成のバイアス電流制御部とを組み合わせれば、上述の第三の光源駆動処理を実施することができる。
また、この微分量子効率制御部3と図13に示した構成のバイアス電流制御部とを組み合わせれば、上述の第四の光源駆動処理を実施することができる。
【0072】
図17は、上記微分量子効率制御部3及び上記バイアス電流制御部4のさらに他の内部構成例を示す図である。(この発明の請求項6〜9に係り、スイッチ設定によってその何れかの請求項に係る機能を果たす)
反転アンプ50は、発光基準信号ItargetをVref基準に反転させる反転アンプである。この場合のバイアス電流制御部4及び微分量子効率制御部3は、モニタ信号Imonと反転した発光基準信号Itarget′を入力し、それぞれ図9あるいは図13に示した微分量子効率制御部3及びバイアス電流制御部4とそれぞれ同様の制御を行う。それぞれスイッチS1〜S11の設定により、制御方法を変更できる。以下、各スイッチ設定における制御動作を説明する。
【0073】
[バイアス電流制御部]
(1)平均値制御方法
このバイアス電流制御部4は、このモードでは、スイッチS2,S3をオンし、スイッチS1,S4をオフし、またスイッチS5は常時オンとなるように制御タイミング信号ApcSmpを生成する。このモードでは図13に示したバイアス電流制御部4と同様の動作を行う。
抵抗R1,抵抗R2,コンデンサC1及びアンプ52でローパスフィルタを構成し、モニタ信号Imonと反転発光基準信号Itarget′の和の平均値レベルを抽出する。つまり、モニタ信号Imonと発光基準信号Itargetの差分の平均値レベルを抽出する。これはLPF42,LPF43及び誤差アンプ20に対応する。ここで、R1=R2とすればそれぞれの信号のカットオフ周波数は等しくなり、LPF42,LPF43の機能が簡便に実現できる。
【0074】
スイッチS5とコンデンサCs2とでサンプルホールド回路53が構成されるが、ここではスイッチS5は常時オンとしているのでアンプ52が積分され、バッファアンプ54を介してバイアス電流Ibiasを供給する。
したがって、モニタ信号Imonと発光基準信号Itargetの差分の平均値レベルがゼロとなるように、つまり二つの平均値レベルが等しくなるように制御が働く。
また、制御タイミング信号ApcSmpを用いるようにすれば、所定期間のみ誤差分をサンプルして積分できる。
【0075】
(2)サンプル制御方法
このバイアス電流制御部4は、このモードではスイッチS1,S4をオンし、スイッチS2,S3をオフする。また、スイッチS5は制御タイミング信号ApcSmpに従ってオンオフするものとし、図9に示したバイアス電流制御部4と同様の動作を行う。
アンプ52は、モニタ信号Imonと反転発光基準信号Itarget′の和信号、つまりモニタ信号Imonと発光基準信号Itargetの誤差信号を出力する。
サンプルホールド回路53は、制御タイミング信号ApcSmpがハイ(Hi)の期間に誤差信号を積分し、バッファアンプ54を介してバイアス電流Ibiasを供給する。すなわち図9に示したサンプルホールド回路と同様の機能を果たす。
【0076】
[微分量子効率制御部]
(1)サンプル制御方法
この微分量子効率制御部3は、このモードでは、スイッチS6,S7をオフ、スイッチS10をオン、スイッチS11をオフとし、スイッチS8をEtaSmp信号に従ってオンオフするものとし、図13に示した微分量子効率制御部3と同様の動作を行う。
バッファアンプ55とスイッチS8とコンデンサCs1により、EtaSmp信号に従ってモニタ信号Imonをサンプルするサンプルホールド回路57を構成する。これはS/H40に対応する。そして、アンプ56,アンプ58(正転アンプとして機能する)を経てコンパレータ60に供給される。また、EtaDAC59の出力も同様にコンパレータ60に供給され、比較を行い、比較結果に従ってアップ/ダウン(Up/Down)信号を出力する。当然これらはEtaDAC41及び比較器18に対応する。
【0077】
EXOR61は、CntUp/Dn信号に基づいてUp/Down信号の極性を選択する。
カウンタ62は、EXOR61の出力のUP信号に従ってC−CK信号のタイミングでカウンタ値の増減を行い、スケール信号Scaleを出力する。これはカウンタ19に対応する。すなわち、図13に示したカウンタと同様の機能を果たす。
また、スイッチS9をオンにすると、サンプルホールド回路57の出力を増幅することができ、サンプルレベルが低レベルである時有効である。
【0078】
(2)平均値制御方法
この微分量子効率制御部3は、このモードでは、スイッチS6,S7をオン、スイッチS10をオフ、スイッチS11をオンとし、図9に示した微分量子効率制御部3と同様の動作を行う。上述と同様に、抵抗R3,抵抗R4,コンデンサC2及びアンプ58でローパスフィルタを構成し、モニタ信号Imonと反転発光基準信号Itarget′の和の平均値レベルを抽出する。
一方、EtaDAC59はVrefを出力するように設定しておき、これとアンプ58の出力を比較することにより、モニタ信号Imonの平均値レベルImonAvgと発光基準信号の平均値レベルItAvgを比較しているのと同等になる。他は上述の通りである。これにより図9に示したものと同様の機能を果たす。上記からわかるように、この実施形態ではスイッチの設定により、上記第一あるいは第二の光源駆動処理の処理を実施できる。
【0079】
上述までの例では、検出値としてスペースレベルと平均値レベルの場合について説明したが、他のレベルを検出して制御しても同様の効果が得られる。例えば、記録マークを形成するのに図16の(d)に示すような一つの矩形パルスの光波形で記録する場合、モニタ信号Imonは制限される帯域によっては、ピークレベルP1を検出できるようになる。あるいは、所定のマーク長であれば可能となる。したがって、上述の実施形態をピークレベルと平均値レベル、あるいはピークレベルとスペースレベルに置き換えて実施するようにしてもよい。
【0080】
この実施形態の情報記録再生装置によれば、光源の閾値電流及び微分量子効率が変動しても、本来の発光動作を妨げることなく常に所望の出力光量が得られるので、データ欠損を生じさせる特殊記録パルスの発生や記録動作中断を行わずとも、常に所望の出力光量が得られ、安定でかつ正確な記録が行える。
また、全体の制御系の収束性を向上させることができる。
さらに、二つの信号の平均値レベルが、発光データパターンや記録パルスのデューティー比の変化に応じて変動する場合であっても、正確に制御ができる。
また、適用する記録データ変調方式の特性上、確実に検出期間が現れ、また検出期間が長く確保できるので、精度よく確実に制御できる。
さらに、微分量子効率を制御する際に検出する二つのレベル差を大きく取ることができ、検出精度を向上させることができる。
【0081】
【発明の効果】
以上説明してきたように、この発明の光源駆動方法と光源駆動装置と情報記録装置によれば、光源の閾値電流及び微分量子効率が変動してもデータ欠損を生じさせる特殊記録パルスの発生や記録動作中断を行わずに常に所望の出力光量が得られるようにすることができる。
【図面の簡単な説明】
【図1】
本発明の光源駆動装置を適用する情報記録再生装置の一実施形態の全体構成を示すブロック図である。
【図2】駆動電流−光出力特性の一例を示す線図である。
【図3】図1に示した光源102の特性と駆動電流が変化した場合の各波形図である。
【図4】同じく図1に示した光源102の特性と駆動電流が変化した場合の各波形図である。
【図5】同じく図1に示した光源102の特性と駆動電流が変化した場合の各波形図である。
【図6】図1に示した光源102の特性と駆動電流が変化した場合の他の例の各波形を示す図である。
【図7】同じく図1に示した光源102の特性と駆動電流が変化した場合の他の例の各波形を示す図である。
【図8】同じく図1に示した光源102の特性と駆動電流が変化した場合の他の例の各波形を示す図である。
【図9】図1に示した光ピックアップ101に内蔵された光源制御部を含む光源駆動装置1の構成図である。
【図10】図9に示した各部の出力する信号波形の一例を示す図である。
【図11】図9に示した基準信号生成部7の他の内部構成例を示すブロック図である。
【図12】図9に示したバイアス電流制御部4の他の内部構成例を示すブロック図である。
【図13】図9に示した微分量子効率制御部3及びバイアス電流制御部4の他の内部構成例を示すブロック図である。
【図14】図9に示した微分量子効率制御部3のさらに他の内部構成例を示すブロック図である。
【図15】図9に示した変調部6と基準信号生成部7の他の内部構成例を示すブロック図である。
【図16】スペースレベルと平均値レベル以外の信号のレベルを検出して光源駆動を実施するときの説明に供する信号波形図である。
【図17】図9に示した微分量子効率制御部3及び上記バイアス電流制御部4のさらに他の内部構成例を示す図である。
【符号の説明】
1:光源駆動装置 2:PDアンプ部
3:微分量子効率制御部 4:バイアス電流制御部
5:ストラテジ変調部 6:変調部
7:基準信号生成部 8:電流加算部
9:電流駆動部 10:制御部
11:電流電圧変換器 12:MUX
13:オフセットDAC 14:加算器
15:ゲイン切換アンプ
16,17,42,43,45:ローパスフィルタ(LPF)
18:比較器 19,62:カウンタ
20,34:誤差アンプ
21:サンプルホールド(S/H)積分器
22a〜22n,30a〜30n:DAC
23,31:スイッチ
24:スケールDAC 25:ターゲットDAC
29:モニタ受光部
30a〜30n:P0DAC〜PnDAC
32,40,44,53,57:サンプルホールド回路
33:BtDAC 35:可変ゲインアンプ
41,47,59:EtaDAC
46:差分器 50:反転アンプ
52,56,58:アンプ
54,55:バッファアンプ
60:コンパレータ 61:EXOR
100:情報記録媒体 101:光ピックアップ 102:光源
103:受光部 104:信号処理部
105:回転駆動部 106:コントローラ
【発明の属する技術分野】
この発明は、半導体レーザ光源等の光源の出力光量を制御して駆動する光源駆動方法とその光源駆動方法を実施する光源駆動装置と、その光源駆動装置を搭載するCD−Rドライブ装置,CD−RWドライブ装置,DVD−Rドライブ装置,DVD−RWドライブ装置,DVD+RWドライブ装置,DVD−RAMドライブ装置などの情報記録装置とに関する。
【0002】
【従来の技術】
記録可能な光ディスク(情報記録媒体)に対して光ピックアップに搭載された光源である半導体レーザ光源(Laser Diode:LD)から照射するレーザ光の光変調によって情報の記録を行う光ディスク装置においては、1ビームオーバーライト技術や、情報記録の高密度化のための記録マーク形状制御のために光変調波形をマルチパルス化,多値レベル化して制御する技術が必須になっており、光源の照射光量が常に所望の値になるように制御する必要がある。
一般には、光源(LD)は温度変化などによって閾値電流が変動するので、一定の駆動電流を保つだけでは光量変動が起こってしまう。そのため、光源の出射光量の一部を受光素子でモニタ受光し、そのモニタ受光信号が所定の目標値と一致するように光源の駆動電流を制御するAPC(Automatic Power Control)制御と呼ばれる方法が用いられる。
【0003】
但し、情報の高速化記録,情報の高密度化記録を行うためには光変調周波数が高くなり、周波数帯域の限られた受光素子では正確な出射光量をモニタすることは困難になっている。そのため、通常はモニタ受光信号の低周波成分を検出し、予め算出した平均照射光量に対応する目標値に一致するように制御(この制御方法を「平均値制御方法」と呼ぶ)したり、照射光量の一定の期間が比較的長い時(モニタ受光信号が整定したレベル)をサンプルし、そのサンプルしたレベルが目標値に一致するように制御(この制御方法を「サンプルホールド制御方法」と呼ぶ)したりしている。
【0004】
また、半導体レーザ光源の駆動電流−光出力特性の勾配(「微分量子効率」と呼ぶ)も温度変化などによって大きく変動し、その微分量子効率も出射光量変動の要因になる。その変動による不具合を解決するには、微分量子効率を測定し、その測定結果に応じて光源の駆動電流を補正する方法、すなわち、所定の2点の照射光量に対するモニタ受光信号のレベルを検出し、その検出した2つのモニタ受光信号のレベル差から微分量子効率を算出し、その算出結果に応じて光源の駆動電流を補正する方法(例えば、特開2000−294871号公報,特開平08−235629公報参照)が提案されている。その微分量子効率の算出方法としては、所定のキャリブレーション期間を設けて検出し、その検出結果に応じて制御している。
【0005】
【発明が解決しようとする課題】
しかしながら、上述したような光源の駆動電流を補正する方法では、情報記録装置に適用する場合には、連続記録時間が1時間以上にも及ぶこともあり、その連続記録の間はキャリブレーション期間を挿入できないので、記録前に算出した微分量子効率では長時間(使用LDによっては数分程度でも)の記録に対しては大きくずれてしまって不十分である。
一方、記録の途中にキャリブレーション期間を挿入するには一旦記録動作を中止し、情報記録媒体(または情報記録領域)の無いところまで光ピックアップを移動したりデフォーカスして情報記録媒体に記録されない状態にしたりして、キャリブレーションを行う必要があり、記録速度が低下するという問題があった。また、光ピックアップによっては合焦時と非合焦時では戻り光の影響などによって異なる値が取得されるので、上述のような非合焦時にキャリブレーションをする方法では誤った値に制御されてしまうという問題が生じる場合もあった。
【0006】
さらに、記録動作中に微分量子効率を検出して制御する方法として、記録時に生じる低頻度のデータ欠損は再生時のエラー訂正機能によって影響が低減されるという考えのもとに、データ欠損は覚悟して本来の記録パルスとは異なる特殊な微分量子効率検出用のパルスを挿入して制御するという方法が提案されている。しかしながら、このような方法では、データ欠損が起こるのは事実であり、また検出パルスは頻繁には挿入できないので、制御帯域をあげることができないなどの問題があった。
この発明は上記の課題を解決するためになされたものであり、光源の閾値電流及び微分量子効率が変動してもデータ欠損を生じさせる特殊記録パルスの発生や記録動作中断を行わずに常に所望の出力光量が得られるようにすることを目的とする。
【0007】
【課題を解決するための手段】
この発明は上記の目的を達成するため、次の(1)〜(5)の光源駆動方法を提供する。
(1) 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の所定光量発光時のレベルと上記光源の目標光出力波形に比例した発光基準信号の所定光量発光時のレベルとがほぼ一致するようにバイアス電流を制御する第一の制御工程と、上記モニタ受光信号の平均値レベルと上記発光基準信号の平均値レベルとがほぼ一致するように変調電流のスケールを制御する第二の制御工程と、上記第一の制御工程によって制御されたバイアス電流と上記第二の制御工程によって制御された変調電流との和を上記光源の駆動電流とする駆動電流生成工程とからなる光源駆動方法。
【0008】
(2) 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の平均値レベルと上記光源の目標光出力波形に比例した発光基準信号の平均値レベルとがほぼ一致するようにバイアス電流を制御する第一の制御工程と、上記モニタ受光信号の所定光量発光時のレベルと上記発光基準信号の所定光量発光時のレベルとがほぼ一致するように変調電流のスケールを制御する第二の制御工程と、上記第一の制御工程によって制御されたバイアス電流と上記第二の制御工程によって制御された変調電流との和を上記光源の駆動電流とする駆動電流生成工程とからなる光源駆動方法。
【0009】
(3) 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の所定光量発光時のレベルと上記光源の目標光出力波形に比例した発光基準信号の所定光量発光時のレベルとがほぼ一致するようにバイアス電流を制御する第一の制御工程と、上記モニタ受光信号の所定光量発光時のレベルと平均値レベルとの差分と、上記発光基準信号の所定光量発光時のレベルと平均値レベルとの差分とがほぼ一致するように変調電流のスケールを制御する第二の制御工程と、上記第一の制御工程によって制御されたバイアス電流と上記第二の制御工程によって制御された変調電流との和を上記光源の駆動電流とする駆動電流生成工程とからなる光源駆動方法。
【0010】
(4) 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の平均値レベルと上記光源の目標光出力波形に比例した発光基準信号の平均値レベルとがほぼ一致するようにバイアス電流を制御する第一の制御工程と、上記モニタ受光信号の所定光量発光時のレベルと平均値レベルとの差分と、上記発光基準信号の所定光量発光時のレベルと平均値レベルとの差分とがほぼ一致するように変調電流のスケールを制御する第二の制御工程と、上記第一の制御工程によって制御されたバイアス電流と上記第二の制御工程によって制御された変調電流との和を上記光源の駆動電流とする駆動電流生成工程とからなる光源駆動方法。(5) (1)乃至(4)のいずれかの光源駆動方法において、上記第一の制御工程と上記第二の制御工程のうちの何れか一方の工程における制御帯域をもう一方の工程における制御帯域よりも速くする光源駆動方法。
【0011】
また、次の(6)〜(11)の光源駆動装置も提供する。
(6) 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の所定光量発光時のレベルと上記光源の目標光出力波形に比例した発光基準信号の所定光量発光時のレベルとがほぼ一致するようにバイアス電流を制御する第一の制御手段と、変調データに基づいて変調電流を生成し、その変調電流のスケールをスケール信号に基づいて変更する変調手段と、上記モニタ受光信号の平均値レベルと上記発光基準信号の平均値レベルとがほぼ一致するように上記変調手段のスケール信号を制御する第二の制御手段と、上記第一の制御手段によって制御されたバイアス電流と上記変調手段によって変更された変調電流との和を上記光源の駆動電流とする駆動手段を備えた光源駆動装置。
【0012】
(7) 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の平均値レベルと上記光源の目標光出力波形に比例した発光基準信号の平均値レベルとがほぼ一致するようにバイアス電流を制御する第一の制御手段と、変調データに基づいて変調電流を生成し、その変調電流のスケールをスケール信号に基づいて変更する変調手段と、上記モニタ受光信号の所定光量発光時のレベルと上記発光基準信号の所定光量発光時のレベルとがほぼ一致するように上記変調手段のスケール信号を制御する第二の制御手段と、上記第一の制御手段によって制御されたバイアス電流と上記変調手段によって変更された変調電流との和を上記光源の駆動電流とする駆動手段を備えた光源駆動装置。
【0013】
(8) 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の所定光量発光時のレベルと上記光源の目標光出力波形に比例した発光基準信号の所定光量発光時のレベルとがほぼ一致するようにバイアス電流を制御する第一の制御手段と、変調データに基づいて変調電流を生成し、その変調電流のスケールをスケール信号に基づいて変更する変調手段と、上記モニタ受光信号の所定光量発光時のレベルと平均値レベルとの差分を検出する検出手段と、その検出手段によって検出された差分と上記発光基準信号の所定光量発光時のレベルと平均値レベルとの差分とがほぼ一致するように上記変調手段のスケール信号を制御する第二の制御手段と、上記第一の制御手段によって制御されたバイアス電流と上記変調手段によって変更された変調電流との和を上記光源の駆動電流とする駆動手段を備えた光源駆動装置。
【0014】
(9) 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の平均値レベルと上記光源の目標光出力波形に比例した発光基準信号の平均値レベルとがほぼ一致するようにバイアス電流を制御する第一の制御手段と、変調データに基づいて変調電流を生成し、その変調電流のスケールをスケール信号に基づいて変更する変調手段と、上記モニタ受光信号の所定光量発光時のレベルと平均値レベルとの差分を検出する検出手段と、その検出手段によって検出された差分と上記発光基準信号の所定光量発光時のレベルと平均値レベルとの差分とがほぼ一致するように上記変調手段のスケール信号を制御する第二の制御手段と、上記第一の制御手段によって制御されたバイアス電流と上記変調手段によって変更された変調電流との和を上記光源の駆動電流とする駆動手段を備えた光源駆動装置。
【0015】
(10) (6)乃至(9)のいずれかの光源駆動装置において、上記第一の制御手段と上記第二の制御手段のうちの何れか一方の手段によって制御する制御帯域をもう一方の手段によって制御する制御帯域よりも速くするようにした光源駆動装置。
(11) (6)乃至(9)のいずれかの光源駆動装置において、上記モニタ受光信号の平均値レベルの検出帯域と上記発光基準信号の平均値レベルの検出帯域をほぼ等しくするようにした光源駆動装置。
さらに、次の(12)と(13)の情報記録装置も提供する。
(12) (6)乃至(11)のいずれかの光源駆動装置を備えた情報記録装置において、上記所定光量をスペースパワーにするようにした情報記録装置。
(13) (6)乃至(11)のいずれかの光源駆動装置を備えた情報記録装置において、上記所定光量を記録パワーの一つにするようにした情報記録装置。
【0016】
【発明の実施の形態】
以下、この発明の実施形態を図面に基づいて具体的に説明する。
本発明の光源駆動装置を適用し、その光源駆動方法を実施する情報記録再生装置の全体構成及び動作概要を図面に基づいて説明する。
図1は、本発明の光源駆動装置と光源駆動方法を適用する情報記録再生装置の一実施形態の全体構成を示すブロック図である。
図1において、情報記録媒体100は、再生すべき情報が予め記録されたCD−ROM,DVD−ROM等の光ディスク、または情報が未記録であってユーザが任意に新規の情報を記録可能なCD−R,CD−RW,DVD−R,DVD−RAM,MD,MOなどの光ディスクである。
【0017】
光ピックアップ101は、光源(例えば半導体レーザ(LD))102からの出射光を情報記録媒体100に照射して情報の記録を行ったり、情報記録媒体100からの反射光を受光して受光信号に変換するものであり、図示を省略した光源102を駆動する光源駆動装置(その詳しい説明は後述する)を内蔵し、反射光を受光して受光信号に変換する受光部103などが配置されている。
また、光ピックアップ101には光源102の出射光の一部をモニタするモニタ受光部(公知技術であり、図示を省略)も配置されており、その出力であるモニタ信号に基づいて光源102の出射光量変動を制御する。
【0018】
さらに、情報記録媒体100の照射光に対する傾き(「チルト」と呼ぶ)を検知するためのチルト検出受光部(同じく公知であり、図示を省略)などが配置される場合もある。
さらにまた、異なる媒体フォーマットが定められた複数種類の情報記録媒体に対応する情報記録再生装置の場合(例えば、DVD及びCD両対応装置など)、それぞれの情報記録媒体に好適な波長の光源を持つ場合があり、それぞれの光源出射時に情報記録媒体からの反射光を受光する受光部やモニタ受光部を別個に備える場合もある。
【0019】
信号処理部104は、光ピックアップ101に配置された各種受光部からの受光信号が入力され、様々な信号処理が行われる。
例えば、受光信号から情報を再生したり、情報記録媒体100の回転に伴う面振れやトラックの半径方向の振れなどの変動に対して常に所定の誤差内で光を照射するように制御(フォーカスサーボ制御及びトラックサーボ制御)するために受光信号からサーボエラー信号を生成し、そのサーボエラー信号に従って光ピックアップ101を制御する。また、記録すべき情報を所定の規則に従って変調し、記録信号として光源102(または光源駆動部)に出力したり、光源102の出力光量制御を行う。
【0020】
回転駆動部105は、情報記録媒体100を回転させるものであり、信号処理部104によって回転速度が制御(スピンドルサーボ制御)される。
CLV回転制御を行う際には、より精度よく回転制御をするために情報記録媒体100に埋め込まれた回転制御信号を光ピックアップ101を介して検出し、その回転制御信号に基づいて回転制御を行う。
回転制御信号には、例えば再生情報記録媒体などでは記録された情報に所定間隔で配置された同期信号や、記録可能な情報記録媒体では記録トラックが所定の周波数で蛇行したウォブルなどを用いる。
【0021】
コントローラ106は、ホストコンピュータとの記録再生情報の受け渡しやコマンド通信を行って装置全体の制御を行う。
なお、光ピックアップ101は情報記録媒体半径方向に可動(この動作を「シーク動作」と呼ぶ)させるため、光ピックアップ101と信号処理部104等が搭載されている回路基板とはフレキシブルプリント回路(Flexible Print Circuit:FPC)基板(またはケーブル)と呼ばれる基板(またはケーブル)で接続されるのが一般であり、光源102や受光部103等の光ピックアップ101に搭載される部品はこのFPC基板に実装されることも多い。
【0022】
次に、駆動・制御対象となる光源について説明する。
図2は、駆動電流−光出力特性の一例を示す線図である。
通常、光源のLD駆動電流ILDに対する光出力Poは次の数1に示す式に基づく演算処理で近似することができる。ここで、η:微分量子効率,Ith:閾値電流である。
【0023】
【数1】
Po=η・(ILD−Ith)
【0024】
所望の光変調波形P(図2の(b))を得るためには、LD駆動電流ILDをバイアス電流Ibと変調電流Imの和(Ib+Im)とした場合、バイアス電流Ibは閾値電流Ithにほぼ等しく、変調電流Imは同図の(c)のようなP=η・Imになる電流を駆動すればよい。
しかし、一般に、この閾値電流Ithと、微分量子効率ηは個体間のばらつきのみならず、温度変化によっても変動するため、所望の光変調波形Pを常時得るためには、閾値電流Ith及び微分量子効率ηの変動に伴ってバイアス電流Ibと変調電流Imを制御することが望ましい。
例えば、図2の(ii)のように閾値電流がIth′に、微分量子効率がη′に変動した場合、所望の光変調波形Pを得るためには、バイアス電流Ib′を閾値電流Ith′に、変調電流Im′を同図の(d)のようにP=η′・Im′となるように制御すればよい。
【0025】
次に、この情報記録再生装置における第一の光源駆動方法(光源制御処理)について説明する(この発明の請求項1に係る光源駆動方法の説明)。
図3乃至図5は、図1に示した光源102の特性と駆動電流が変化した場合の各波形図である。
各図の(c)は光源102のLD駆動電流ILDに対する光出力Poの特性図、(a−i)(a−ii)はある駆動電流(b)に対する光源102の光出力波形Pを示す図、(d)は所望の目標光出力信号Ptargetの波形を示す図である。
【0026】
図3は、光源102の特性が同図の(c)に示す(i)の場合(閾値電流がIth,微分量子効率がη)であり、同図の(a−i)に示す光出力波形Pが、同図の(d)に示す所望の目標光出力信号Ptargetと一致するようにLD駆動電流を制御しているものとする(つまり、バイアス電流Ibは閾値電流Ithとほぼ等しく、変調電流Imは微分量子効率ηに適合したものとなっている)。その時、光源102の特性が同図の(c)の(ii)のように(閾値電流がIth′,微分量子効率がη′)変化したとすると、駆動電流が同図の(b)に示すような波形のままでは同図の(a−ii)に示すような光波形Pしか得られず、同図の(d)に示すような目標光出力信号Ptargetとは異なってしまい、正確な記録ができなくなる。
【0027】
そこで、図4に示すように、光源102の特性変化に対してバイアス電流Ibの制御を行った場合、同図の(d)に示す目標光出力のスペースレベルPt0と同図の(a−ii)に示す光出力PのスペースレベルP0とが等しくなるようにバイアス電流を制御すると、微分量子効率η′の変化に対して変調電流Imを制御していないので、目標光出力信号Ptargetを得るには不十分である。
この光源駆動制御処理では、図5に示すように、光源102の特性変化に対してバイアス電流Ibの制御に加えて変調電流Imも制御する。
【0028】
すなわち、この第一の光源駆動処理では、上述と同じように、同図の(d)に示す目標光出力のスペースレベルPt0と同図の(a−ii)に示す光出力PのスペースレベルP0とが等しくなるようにバイアス電流を制御した上で、同図の(d)中に一点鎖線で示す目標光出力の平均値レベルPtAvgと同図の(a−ii)中に一点鎖線で示す光出力Pの平均値レベルPavgとが等しくなるように変調電流Imのスケールを制御する。その変調電流Imのスケール制御は、変調電流をDACによって生成している場合にはDACのフルスケールを変更したり、また変調電流の電流増幅率を変更したりするなどの方法によって実現できる。
【0029】
このようにして、バイアス電流と変調電流を制御することにより、光源102の閾値電流及び微分量子効率変動に対しても常に所望の光出力が得られ、正確な記録が可能になる。
また、バイアス電流制御と変調電流制御のうち、一方の制御帯域を他方に比べ十分速く(あるいは遅く)すること(この発明の請求項5に係る光源駆動方法の説明)によって全体の収束性を向上させることができる。通常の光源は微分量子効率の変動が閾値電流の変動に比べて比較的緩やかに起こるので、バイアス電流の制御帯域を速くしておくとよい。
【0030】
次に、この情報記録再生装置における光源駆動処理の他の処理例である第二の光源駆動処理について説明する(この発明の請求項2に係る光源駆動方法の説明)。
図6乃至図8は、図1に示した光源102の特性と駆動電流が変化した場合の他の例の各波形を示す図である。
各図の(c)は光源102のLD駆動電流ILDに対する光出力Poの特性図、(a−i)(a−ii)はある駆動電流(b)に対する光源102の光出力波形Pを示す図、(d)は所望の目標光出力信号Ptargetを示す図である。以下図3乃至図5と同様の個所はその説明を省略する。
【0031】
この第二の光源駆動制御処理では、まず、図7に示すように、同図の(d)中に一点鎖線で示す目標光出力の平均値レベルPtAvgと同図の(a−ii)中に一点鎖線で示す光出力Pの平均値レベルPavgとが等しくなるようにバイアス電流を制御する。さらに図7で示したようなバイアス電流制御に加え、図8に示すように、同図の(d)に示す目標光出力のスペースレベルPt0と同図の(a−ii)に示す光出力PのスペースレベルP0とが等しくなるように変調電流Imのスケールを制御する。
このようにして、光源の閾値電流及び微分量子効率変動に対しても常に所望の光出力が得られるようになる。
【0032】
つぎに、再度図3乃至図5に基づいてこの情報記録再生装置における光源駆動処理のさらに他の処理例である第三の光源駆動処理について説明する(この発明の請求項3に係る光源駆動方法の説明)。
この第三の光源駆動制御処理では、図5に示すように、目標光出力のスペースレベルPt0と光出力PのスペースレベルP0とが等しくなるようにバイアス電流を制御した上で、目標光出力の平均値レベルPtAvgとスペースレベルPt0との差分ΔPtと光出力Pの平均値レベルPavgとスペースレベルP0との差分ΔPとが等しくなるように変調電流Imのスケールを制御する。
このようにすれば、上述と同様に光源の閾値電流及び微分量子効率変動に対しても常に所望の光出力が得られるようになる。
【0033】
つぎに、再度図6乃至図8に基づいてこの情報記録再生装置における光源駆動処理のさらにまた他の処理例である第四の光源駆動処理について説明する(この発明の請求項4に係る光源駆動方法の説明)。
この第四の光源駆動制御処理では、図8に示すように、目標光出力の平均値レベルPtAvgと光出力Pの平均値レベルPavgとが等しくなるようにバイアス電流を制御した上で、目標光出力の平均値レベルPtAvgとスペースレベルPt0との差分ΔPtと光出力Pの平均値レベルPavgとスペースレベルP0との差分ΔPとが等しくなるように変調電流Imのスケールを制御する。
このようにすれば、上述と同様に光源の閾値電流及び微分量子効率変動に対しても常に所望の光出力が得られるようになる。
上述の例では、検出値としてスペースレベルと平均値レベルの場合について説明したが、他のレベルを検出して制御しても同様の効果が得られる。
【0034】
次に、上記光源駆動装置(光源制御装置)の実施形態を説明する(この発明の請求項5に係る光源駆動装置の説明)。
図9は、図1に示した光ピックアップ101に内蔵された光源制御部を含む光源駆動装置1の構成図である。この光源駆動装置1は駆動する光源102の近傍に配置され、光ピックアップ101に搭載される。
光源駆動装置1は、信号処理部104から供給される記録クロック信号WCK及び記録データ信号Wdataから変調スイッチ信号Smod及び目標レベル信号Dtargetを生成するストラテジ変調部5と、ストラテジ変調部5から供給される変調スイッチ信号Smod及びスケール信号Scaleに基づいてLD変調電流Imodを生成する変調部(Data−Modulation)6(この発明の請求項6,7,8,9の変調手段の機能を果たす)と、FSPD端子に光源の出射光の一部をモニタするモニタ受光部29からのモニタ受光信号を入力してオフセット調整及びゲイン調整を行ってモニタ信号Imonを出力するPDアンプ部(PD−AMP)2を備えている。
【0035】
また、ストラテジ変調部5から供給される目標レベル信号Dtargetから発光基準信号Itargetを生成する基準信号生成部7と、PDアンプ部2から供給されるモニタ信号Imonが発光基準信号Itargetと一致するようにバイアス電流Ibiasを制御するバイアス電流制御部(Bias−Control)4(この発明の請求項6,8の第一の制御手段の機能を果たす)と、モニタ信号Imon及び発光基準信号Itargetから駆動している光源の微分量子効率ηを検出してその検出結果に応じてLD変調電流のスケールScaleを制御する微分量子効率制御部(η−Control)3(この発明の請求項6の第二の制御手段の機能を果たす)と、バイアス電流Ibiasと変調電流Imodを加算する電流加算部8(電流駆動部9と共にこの発明の請求項6,7,8,9の駆動手段の機能を果たす)と、電流加算部8から供給される電流を増幅して光源のLD駆動電流ILDを供給する電流駆動部9(電流加算部8と共にこの発明の請求項6,7,8,9の駆動手段の機能を果たす)と、コントローラ106から(あるいは信号処理部104を介して)供給される制御コマンドを受けて各部へ制御信号を供給する制御部10も備えている。
なお、高周波重畳部などの公知の光源駆動装置に搭載されていても本実施形態の要旨に関係のないものは図示及び説明を省く。
【0036】
図10は、図9に示した各部の出力する信号波形の一例を示す図であり、記録マークを形成するのに複数のパルス列で記録(以下マルチパルス記録と称する)する情報記録媒体を想定する。また、説明を簡単にするために記録パワーはP0,P1の二値レベルとした。
以下、図9及び図10に基づいて図9に示した各部の構成と動作の詳細説明を行う。
【0037】
[ストラテジ変調部]
ストラテジ変調部5は、発光レベルに対応した変調データDmod0,Dmod1,・・・,Dmodnを供給し、図1の信号処理部104から供給される記録クロック信号WCK及び記録データ信号Wdataから発光レベルの選択信号となる変調スイッチ信号Smodを生成する。
また、変調データDmod0,Dmod1,・・・,Dmodnを変調スイッチ信号Smodに従って選択して生成したデータである目標レベル信号Dtargetを供給する。その変調データDmod0,Dmod1,・・・,Dmodnは、制御部10を介して所望の発光レベルに予め設定される。また、変調スイッチ信号Smodの変調タイミングは、情報記録媒体や記録速度などに応じて決められ、そのタイミング情報も保持している。
さらには、記録クロック信号WCK及び記録データ信号Wdataから変調スイッチ信号Smodに合せ、後述する各部の制御タイミング信号(例えば、ApcSmp信号など)も生成する。
【0038】
[変調部]
変調部6は、ストラテジ変調部5から供給される変調データDmod0,Dmod1,・・・,Dmodn及び変調スイッチ信号Smodに基づいてLD変調電流Imodを生成する。
そのP0DAC22aは、変調データDmod0に基づいて電流I0を供給する電流出力DAC(D/Aコンバータ)であり、P1DAC22bは変調データDmodbに基づいて電流I1を供給する電流出力DACである。以下、PnDAC22nまで同様である。各DACはそれぞれ発光レベルに相当する電流を出力する。ここでは二値レベルでの記録を想定しているので、P0DAC22a,P1DAC22bを用いる場合について説明する(多値レベル記録時には同様にして考えればよい)。
【0039】
スイッチ23は、変調スイッチ信号Smodに従ってP0DAC22a,P1DAC22bあるいはPnDAC22nの出力電流を選択してLD変調電流Imodを出力する。また、P0DAC22a〜PnDAC22nのフルスケールKmはスケールDAC(ScaleDAC)24から供給され、これは微分量子効率制御部3から供給されるスケール信号Scaleに従って設定される。また、スケールDAC24のフルスケールIfullはηREFから供給され、使用する光源の微分量子効率から定めればよい。フルスケールKmの算出・設定方法については後述する。
したがって、P0DAC22a,P1DAC22bの各出力電流I0,I1はそれぞれ以下に示す数2と数3に示す式に基づく演算処理で求めることができる。ここでは、P0DAC22a,P1DAC22b及びスケールDAC24は8ビット(bit)DACとしている。
【0040】
【数2】
I0=(Dmod0/255)*(Scale/255)*Ifull
【0041】
【数3】
I1=(Dmod1/255)*(Scale/255)*Ifull
【0042】
したがって、LD変調電流Imodは次の数4に示す式に基づく演算処理で求めることができ、図10の(i)にそのImodの波形例を示す。
ここで、Imn=(Dmodn/255),Km=(Scale/255)*Ifull(n=0,1)である。
【0043】
【数4】
Imod=Imn*Km
【0044】
[電流駆動部]
電流加算部8は、バイアス電流Ibiasと変調電流Imodを加算する。
電流駆動部9は、電流加算部8から供給される電流を所定の増幅率Aiで増幅し、光源のLD駆動電流ILDを供給する。したがって、その時のLD駆動電流ILDは次の数5に示す式に基づく演算処理で求めることができる。
また、Ib=Ai*Ibias,Im=Ai*Imodとし、図2に示したようにIbが閾値電流Ithと等しくなるように制御されれば、Imすなわち変調電流Imodは光波形に比例した波形となる。
【0045】
【数5】
ILD=Ai*(Ibias+Imod)
【0046】
[PDアンプ部]
PDアンプ部2は、光源の出射光の一部をモニタするモニタ受光部29からのモニタ受光信号を入力してオフセット調整及びゲイン調整を行う。
モニタ受光部29には、受光素子(Photo Detector:PDなど)単体でモニタ受光信号が電流として出力されるタイプのものと、電流電圧変換器を内蔵し、モニタ受光信号が電圧として出力されるタイプのものとがある。本実施形態ではどちらのタイプでも対応可能としており、MUX12で選択する。
つまり、電流出力型の場合は入力されるモニタ受光信号が電流電圧変換器11で電圧に変換したものを、電圧出力型の場合は電流電圧変換器11を経由しない信号をそれぞれ選択する。
【0047】
加算器14は、モニタ受光信号のオフセット調整をするものであり、オフセット(Offset)DAC13から供給されるオフセット電圧を加減算する。
ゲイン切換アンプ(GCA)15は、オフセット調整したモニタ受光信号をゲイン切換え信号PDGainに従ってゲインを切換え(例えば、1/4/8/16倍の4段階の切換え)ゲイン調整を行う。一般に、再生光量と記録光量とは大きく異なるので、少なくとも記録/再生時でゲインを切換えるようにするとよい。受光素子PDの受光電流Ipdは、LD出射光Poに対する光利用効率をα、PDの受光感度をSとすると、次の数6に示す式に基づく演算処理で求めることができる。
【0048】
【数6】
Ipd=α・S・Po
【0049】
また、電流電圧変換器(11あるいはモニタ受光部内蔵のもの)の変換ゲインをGiv,ゲイン切換アンプ15のゲインをGpdとすると、モニタ信号Imonは次の数7に示す式に基づく演算処理で求めることができる。ここで、Kpd=Giv・α・Sとなる。なお、オフセットDAC13から供給されるオフセット電圧は省略した。
【0050】
【数7】
Imon=Gpd・Giv・Ipd=Gpd・Kpd・Po
【0051】
[基準信号生成部]
基準信号生成部7は、ストラテジ変調部5から供給される目標レベル信号Dtargetから発光基準信号Itargetを生成する。
ターゲット(Target)DAC25は、目標レベル信号Dtargetに応じて発光基準信号Itargetを出力する。
ここで、出射光量Ptと発光基準信号Itargetとの比例係数をKとすると、次の数8に示す式に基づく演算処理で求めることができる。
【0052】
【数8】
Itarget=K・Pt
【0053】
また、この比例係数KはターゲットDAC25のスケールKtを設定することにより決定され、予めK=Kpdとなるように設定する。スケールKtの設定はDACや外部からの電圧/電流印加により行えばよい。Kpdは使用する受光素子PDのLD出射光Poに対する光利用効率α,受光感度Sのバラツキによって変わるので、初期調整時にこの設定を行うとよい。
また、ゲイン切換アンプ15のゲインGpdに合わせて(つまり、K=Kpd・Gpdとなるように)スケールKtを変更するようにしてもよい。さらには、Ktを一定とし、Gpdを調整することにより(この場合、ゲイン切換アンプ15はより多段階のゲイン調整を可能とする)、K=Kpd・Gpdとなるようにしてもよい。
したがって、LD出射光Poが目標出射光量Ptと等しい場合、Imon=Itargetとなる。
【0054】
また、基準信号生成部7は、図11に示すように、変調部6と同様にして発光レベルに対応した複数個のP0DAC30a〜PnDAC30nと変調スイッチ信号Smodに従って出力が選択されるスイッチ31により構成してもよい。
なお、各DACのスケールは上述のスケールKtを設定する。このようにすれば高速応答性を持ったDACの実現が困難な場合に好適である。
さらには、これらDACとスイッチを共有化するため、図15に示すような構成にしてもよい。ここで、可変ゲインアンプ35はスケールDAC24の出力Km′(=Km/Kt)に応じて設定されたゲインで発光基準信号Itargetを増幅し、LD変調電流Imodを生成する。
【0055】
[バイアス電流制御部]
バイアス電流制御部4は、PDアンプ部2から供給されるモニタ信号Imonが基準信号生成部7から供給される発光基準信号Itargetと一致するようバイアス電流Ibiasを制御する。
発光基準信号Itargetは目標出射光量を示しているので、出射光量をモニタしているモニタ信号Imonが発光基準信号Itargetと一致するようにすれば光源を目標照射光量で照射させることができる。
誤差アンプ20は、モニタ信号Imonと発光基準信号Itargetとの差分信号を増幅し、次段に供給する。
【0056】
S/H積分器21は、誤差アンプ20から供給される増幅された差分信号を積分し、バイアス電流Ibiasを出力するものであり、制御タイミング信号ApcSmp信号によってサンプル時(例えば、ApcSmp=ハイ(High)とする)には積分動作を行ってバイアス電流制御を行い、ホールド時には制御値であるバイアス電流Ibiasをホールドする。
このようにして差分信号がゼロとなるように、すなわちモニタ信号Imonと発光基準信号Itargetとが一致するようにバイアス電流Ibiasを制御する。また、ホールド時は誤差アンプ20出力を積分しないので、誤差アンプの回路オフセットによる制御値のドリフトなどを低減できる。
【0057】
一般に、受光素子PDの受光信号は使用する受光素子PDや回路によって帯域制限を受けており、モニタ信号Imonは、例えば図10の(e)に示すような波形になる。また、同図の(e′)は、より帯域の低い場合のモニタ信号Imon′の波形例であり、記録速度が上がると光源の変調帯域も高くなるので、PD帯域が同等でも相対的にこのような波形になる。
したがって、光源を高速変調している期間(マルチパルス発光時)は、モニタ信号Imonから正確な発光レベルを得ることは困難である。
この実施形態ではこのような問題も考慮してあり、モニタ信号Imon(またはImon′)の値が整定した期間のみモニタ信号Imonと発光基準信号Itargetとの比較を行っている。
【0058】
つまり、上述のように制御タイミング信号ApcSmp信号が「ハイ(Hi)」の期間のみ差分信号の積分動作を行うようにし、この制御タイミング信号ApcSmpをスペースレベルP0照射時の所定期間(モニタ信号の帯域を考慮して決める)「ハイ(Hi)」となるように生成するようにしている。さらには、モニタ信号の帯域によっては所定の長さ以上のスペースでサンプルを行い、それ以下ではサンプルしないようにしてもよい。例えば、図10において二つ目のスペースではサンプルしないものとする。
このようにして、スペースレベルP0が常に目標値Pt0に等しくなるように制御することができる。
また、SRSel信号によって制御速度を変更することができる。これは積分器への充放電電流(例えば、誤差アンプ20の出力電流)を変更することによって行う。これにより、記録/再生時にそれぞれ制御速度を最適値に設定することが可能になる。
【0059】
また、バイアス電流制御部4を、図12のように構成しても同様にスペースレベルP0が常に目標値Pt0に等しくなるように制御することができる(この発明の請求項6,8の第一の制御手段の機能を果たす)。
S/H32は、制御タイミング信号ApcSmpのタイミングによってモニタ信号Imonをサンプルするサンプルホールド回路であり、ここではスペースレベルP0照射時の値Imon0をサンプルする。
BtDAC33は、スペースレベルの発光基準信号It0を生成するDACであり、スペースレベルを示す変調データDmod0が入力される。
誤差アンプ34は、S/H32の出力とBtDAC33の出力との差分信号を増幅し、バイアス電流Ibiasを出力する。また、誤差信号の積分機能も兼ねる。これにより、Imon0とIt0が一致するようにバイアス電流を制御することができる。
【0060】
[微分量子効率制御部]
微分量子効率制御部3は、駆動している光源の微分量子効率ηを検出してその検出結果に応じてLD変調電流のスケールScaleを制御する。
これはバイアス電流を制御するレベル(ここではスペースレベルP0)とは異なるレベル(ここでは平均値レベルPavg)でのモニタ信号を検出し、これがそのレベルの発光基準信号Itargetと一致するようにスケールScaleを制御する。
LPF16は、モニタ信号Imonの平均値レベルを抽出するローパスフィルタであり、図10の(g)に示すような波形のモニタ平均値レベル信号ImonAvgを出力する。
【0061】
LPF17は、発光基準信号Itargetの平均値レベルを抽出するローパスフィルタであり、図10の(h)に示すような波形の発光基準平均値レベル信号ItAvgを出力する。これら二つのローパスフィルタのカットオフ周波数は記録データ信号Wdataの信号帯域に比べて十分低いものとし、ほぼ等しくなるようにする。
比較器(Comp)18は、モニタ平均値レベル信号ImonAvgと発光基準平均値レベル信号ItAvgとを比較し、モニタ平均値レベル信号ImonAvgが発光基準平均値レベル信号ItAvgよりも小さかったらアップ(Up)信号を、大きかったらダウン(Down)信号を出力する。
【0062】
カウンタ(Count)19は、比較器18の出力する比較結果アップ/ダウン(Up/Down)信号によってカウンタ値を増減する。そのカウンタ値の更新はC−CK信号の立上りで行う。このカウント値はScale信号として変調部6に供給され、Scale信号の増減に併せてLD変調電流Imodが増減し、発光量が増減する。したがって、このC−CK信号の周波数を変更することによってこの制御帯域を変更することができる。
カウンタ19の初期値はCLD信号によって設定され、PScale(記録時初期値)あるいはRScale(再生時初期値)が設定される。
【0063】
情報記録媒体がCDやDVDの場合、記録データ信号Wdataは直流成分がほぼゼロとなるように変調規則が定められているので、モニタ平均値レベル信号ImonAvgと発光基準平均値レベル信号ItAvgはほぼ一定レベルとなり、容易にこれらの比較が行えるため、この実施形態が好適である。
より詳細には、モニタ平均値レベル信号ImonAvgと発光基準平均値レベル信号ItAvgがほぼ一定になるほどLPF16,LPF17のカットオフ周波数は低くせず、データパターン依存によって多少変動する(図10の(g)と(h)に破線で示す部分)。また、精度よい記録を行うためにデータパターンなどに応じてマルチパルスのデューティー比を変更するため、これによっても多少変動する。
【0064】
しかし、上述したようにLPF16,LPF17のカットオフ周波数をほぼ等しくしたので、二つの信号の変動量はほぼ等しく、同時刻の信号を比較すれば(この発明の請求項11に係る光源駆動装置の説明)、上記のような変動の影響は問題ない。換言すれば、これらの変動量を抑制するほどカットオフ周波数を下げる必要がないので、これによって制御帯域が低くなったり、ここでの位相遅れなどによって安定性が低下することはない。
さらにデータパターンによる検出値の変動を抑制するには所定のデータパターンでの所定タイミングでカウンタの更新を行うようにC−CK信号を生成すればよい。
また、記録速度などにより最適なカットオフ周波数は異なるので、LPF16,LPF17のカットオフ周波数はカットオフ周波数制御信号FcCtrlによって連動して設定可能としておくとよい。
【0065】
上述のようにして、バイアス電流制御と微分量子効率制御を行うと、光源の閾値電流及び微分量子効率変動に対しても常に所望の光出力が得られ、正確な記録が可能となる。図9に示した光源駆動装置1は、上述の第一の光源駆動処理を実施するときの構成である。
また、バイアス電流制御と微分量子効率制御のうち、一方の制御帯域を他方に比べ十分速く(遅く)することにより(この発明の請求項10に係る光源駆動装置の説明)収束性を向上させることができる。通常の光源は微分量子効率の変動が閾値電流の変動に比べ比較的緩やかに起こるので、バイアス電流の制御帯域を速くしておくとよい。
【0066】
次に、図13に基づいて上記微分量子効率制御部3及び上記バイアス電流制御部4の他の内部構成例を説明する。これは上述の第二の光源駆動処理を実現するための構成を示しており、図9と同じ機能を果たすブロックについては図示とその説明を省略する。(この発明の請求項7に係る光源駆動装置の説明)
図13において、バイアス電流制御部4(この発明の請求項7の第一の制御手段の機能を果たす)のLPF42は、モニタ信号Imonの平均値レベルImonAvgを抽出するローパスフィルタである。
LPF43は、発光基準信号Itargetの平均値レベルItAvgを抽出するローパスフィルタである。この二つのLPFはそれぞれ図9のLPF16,LPF17と同様の機能を果たし、その出力信号は図10の(g)と(h)に示すような波形になる。
【0067】
誤差アンプ20は、モニタ平均値レベル信号ImonAvgと発光基準平均値レベル信号ItAvgとの差分信号を増幅し、次段に供給する。
S/H積分器21は、上述と同様に誤差アンプ20から供給される増幅された差分信号を積分し、バイアス電流Ibiasを出力するものであり、ここでは常に制御タイミング信号ApcSmpは「ハイ(Hi)」として積分動作を行い、バイアス電流Ibiasを供給する。
このようにして、モニタ信号と発光基準信号の平均値レベルが等しくなるようにバイアス電流Ibiasを制御することができる。また、制御タイミング信号ApcSmpによって所定の期間だけ積分動作を行うようにしてもよい。
【0068】
上述と同様の理由で、LPF42とLPF43のカットオフ周波数はほぼ同じとするとよい。また、このカットオフ周波数を変更可能としておくとよい。
微分量子効率制御部3(この発明の請求項7の第二の制御手段の機能を果たす)のS/H40は、EtaSmp信号のタイミングでモニタ信号Imonをサンプルするサンプルホールド回路である。ここではスペースレベルP0をサンプルするものとし、EtaSmp信号のタイミングは図10の(j)に示すような波形の制御タイミング信号ApcSmpと同様にすればよい。
EtaDAC41は、スペースレベルの発光基準信号Pt0を生成するDACであり、変調データDmod0が入力され、このDACのスケールはTargetDAC25のスケールKtと等しくする。
【0069】
比較器18は、S/H40の出力とEtaDAC41の出力とを比較し、その比較結果によってアップ/ダウン(Up/Down)信号を出力する。カウンタ19は上述と同様に比較結果によってカウンタ値を増減する。
このようにして、バイアス電流制御と微分量子効率制御を行うと、光源の閾値電流及び微分量子効率変動に対しても常に所望の光出力が得らるようになる。
【0070】
図14は、上記微分量子効率制御部3のさらに他の内部構成例を示すブロック図である。(この発明の請求項8,9に係る光源駆動装置の説明)
S/H44は、EtaSmp信号のタイミングでモニタ信号Imonをサンプルするサンプルホールド回路である。ここではスペースレベルP0をサンプルするものとする。
LPF45は、モニタ信号Imonのモニタ平均値レベル信号ImonAvgを抽出するローパスフィルタである。
差分器46は、S/H44の出力とLPF45の出力との差分信号ΔImonを生成する。その差分信号ΔImonは、光出力のスペースレベルと平均値レベル差ΔP(図3乃至図5または図6乃至図8に示す)に相当する。すなわち、上記44〜46の各部がこの発明の請求項8,9の検出手段の機能を果たす。
【0071】
EtaDAC47は、目標光出力の平均値レベルPtAvgとスペースレベルPt0との差分ΔPtに相当する基準値ηtarget(=ItAvg−It0)を生成する。
比較器18及びカウンタ19は、上述と同様の動作を行う。これにより、スペースレベルと平均値レベルの二点間のレベル差から微分量子効率が検出でき、これが所望値になるように制御することができる。
この微分量子効率制御部3(この発明の請求項8,9の第二の制御手段の機能を果たす)と図13に示した構成のバイアス電流制御部とを組み合わせれば、上述の第三の光源駆動処理を実施することができる。
また、この微分量子効率制御部3と図13に示した構成のバイアス電流制御部とを組み合わせれば、上述の第四の光源駆動処理を実施することができる。
【0072】
図17は、上記微分量子効率制御部3及び上記バイアス電流制御部4のさらに他の内部構成例を示す図である。(この発明の請求項6〜9に係り、スイッチ設定によってその何れかの請求項に係る機能を果たす)
反転アンプ50は、発光基準信号ItargetをVref基準に反転させる反転アンプである。この場合のバイアス電流制御部4及び微分量子効率制御部3は、モニタ信号Imonと反転した発光基準信号Itarget′を入力し、それぞれ図9あるいは図13に示した微分量子効率制御部3及びバイアス電流制御部4とそれぞれ同様の制御を行う。それぞれスイッチS1〜S11の設定により、制御方法を変更できる。以下、各スイッチ設定における制御動作を説明する。
【0073】
[バイアス電流制御部]
(1)平均値制御方法
このバイアス電流制御部4は、このモードでは、スイッチS2,S3をオンし、スイッチS1,S4をオフし、またスイッチS5は常時オンとなるように制御タイミング信号ApcSmpを生成する。このモードでは図13に示したバイアス電流制御部4と同様の動作を行う。
抵抗R1,抵抗R2,コンデンサC1及びアンプ52でローパスフィルタを構成し、モニタ信号Imonと反転発光基準信号Itarget′の和の平均値レベルを抽出する。つまり、モニタ信号Imonと発光基準信号Itargetの差分の平均値レベルを抽出する。これはLPF42,LPF43及び誤差アンプ20に対応する。ここで、R1=R2とすればそれぞれの信号のカットオフ周波数は等しくなり、LPF42,LPF43の機能が簡便に実現できる。
【0074】
スイッチS5とコンデンサCs2とでサンプルホールド回路53が構成されるが、ここではスイッチS5は常時オンとしているのでアンプ52が積分され、バッファアンプ54を介してバイアス電流Ibiasを供給する。
したがって、モニタ信号Imonと発光基準信号Itargetの差分の平均値レベルがゼロとなるように、つまり二つの平均値レベルが等しくなるように制御が働く。
また、制御タイミング信号ApcSmpを用いるようにすれば、所定期間のみ誤差分をサンプルして積分できる。
【0075】
(2)サンプル制御方法
このバイアス電流制御部4は、このモードではスイッチS1,S4をオンし、スイッチS2,S3をオフする。また、スイッチS5は制御タイミング信号ApcSmpに従ってオンオフするものとし、図9に示したバイアス電流制御部4と同様の動作を行う。
アンプ52は、モニタ信号Imonと反転発光基準信号Itarget′の和信号、つまりモニタ信号Imonと発光基準信号Itargetの誤差信号を出力する。
サンプルホールド回路53は、制御タイミング信号ApcSmpがハイ(Hi)の期間に誤差信号を積分し、バッファアンプ54を介してバイアス電流Ibiasを供給する。すなわち図9に示したサンプルホールド回路と同様の機能を果たす。
【0076】
[微分量子効率制御部]
(1)サンプル制御方法
この微分量子効率制御部3は、このモードでは、スイッチS6,S7をオフ、スイッチS10をオン、スイッチS11をオフとし、スイッチS8をEtaSmp信号に従ってオンオフするものとし、図13に示した微分量子効率制御部3と同様の動作を行う。
バッファアンプ55とスイッチS8とコンデンサCs1により、EtaSmp信号に従ってモニタ信号Imonをサンプルするサンプルホールド回路57を構成する。これはS/H40に対応する。そして、アンプ56,アンプ58(正転アンプとして機能する)を経てコンパレータ60に供給される。また、EtaDAC59の出力も同様にコンパレータ60に供給され、比較を行い、比較結果に従ってアップ/ダウン(Up/Down)信号を出力する。当然これらはEtaDAC41及び比較器18に対応する。
【0077】
EXOR61は、CntUp/Dn信号に基づいてUp/Down信号の極性を選択する。
カウンタ62は、EXOR61の出力のUP信号に従ってC−CK信号のタイミングでカウンタ値の増減を行い、スケール信号Scaleを出力する。これはカウンタ19に対応する。すなわち、図13に示したカウンタと同様の機能を果たす。
また、スイッチS9をオンにすると、サンプルホールド回路57の出力を増幅することができ、サンプルレベルが低レベルである時有効である。
【0078】
(2)平均値制御方法
この微分量子効率制御部3は、このモードでは、スイッチS6,S7をオン、スイッチS10をオフ、スイッチS11をオンとし、図9に示した微分量子効率制御部3と同様の動作を行う。上述と同様に、抵抗R3,抵抗R4,コンデンサC2及びアンプ58でローパスフィルタを構成し、モニタ信号Imonと反転発光基準信号Itarget′の和の平均値レベルを抽出する。
一方、EtaDAC59はVrefを出力するように設定しておき、これとアンプ58の出力を比較することにより、モニタ信号Imonの平均値レベルImonAvgと発光基準信号の平均値レベルItAvgを比較しているのと同等になる。他は上述の通りである。これにより図9に示したものと同様の機能を果たす。上記からわかるように、この実施形態ではスイッチの設定により、上記第一あるいは第二の光源駆動処理の処理を実施できる。
【0079】
上述までの例では、検出値としてスペースレベルと平均値レベルの場合について説明したが、他のレベルを検出して制御しても同様の効果が得られる。例えば、記録マークを形成するのに図16の(d)に示すような一つの矩形パルスの光波形で記録する場合、モニタ信号Imonは制限される帯域によっては、ピークレベルP1を検出できるようになる。あるいは、所定のマーク長であれば可能となる。したがって、上述の実施形態をピークレベルと平均値レベル、あるいはピークレベルとスペースレベルに置き換えて実施するようにしてもよい。
【0080】
この実施形態の情報記録再生装置によれば、光源の閾値電流及び微分量子効率が変動しても、本来の発光動作を妨げることなく常に所望の出力光量が得られるので、データ欠損を生じさせる特殊記録パルスの発生や記録動作中断を行わずとも、常に所望の出力光量が得られ、安定でかつ正確な記録が行える。
また、全体の制御系の収束性を向上させることができる。
さらに、二つの信号の平均値レベルが、発光データパターンや記録パルスのデューティー比の変化に応じて変動する場合であっても、正確に制御ができる。
また、適用する記録データ変調方式の特性上、確実に検出期間が現れ、また検出期間が長く確保できるので、精度よく確実に制御できる。
さらに、微分量子効率を制御する際に検出する二つのレベル差を大きく取ることができ、検出精度を向上させることができる。
【0081】
【発明の効果】
以上説明してきたように、この発明の光源駆動方法と光源駆動装置と情報記録装置によれば、光源の閾値電流及び微分量子効率が変動してもデータ欠損を生じさせる特殊記録パルスの発生や記録動作中断を行わずに常に所望の出力光量が得られるようにすることができる。
【図面の簡単な説明】
【図1】
本発明の光源駆動装置を適用する情報記録再生装置の一実施形態の全体構成を示すブロック図である。
【図2】駆動電流−光出力特性の一例を示す線図である。
【図3】図1に示した光源102の特性と駆動電流が変化した場合の各波形図である。
【図4】同じく図1に示した光源102の特性と駆動電流が変化した場合の各波形図である。
【図5】同じく図1に示した光源102の特性と駆動電流が変化した場合の各波形図である。
【図6】図1に示した光源102の特性と駆動電流が変化した場合の他の例の各波形を示す図である。
【図7】同じく図1に示した光源102の特性と駆動電流が変化した場合の他の例の各波形を示す図である。
【図8】同じく図1に示した光源102の特性と駆動電流が変化した場合の他の例の各波形を示す図である。
【図9】図1に示した光ピックアップ101に内蔵された光源制御部を含む光源駆動装置1の構成図である。
【図10】図9に示した各部の出力する信号波形の一例を示す図である。
【図11】図9に示した基準信号生成部7の他の内部構成例を示すブロック図である。
【図12】図9に示したバイアス電流制御部4の他の内部構成例を示すブロック図である。
【図13】図9に示した微分量子効率制御部3及びバイアス電流制御部4の他の内部構成例を示すブロック図である。
【図14】図9に示した微分量子効率制御部3のさらに他の内部構成例を示すブロック図である。
【図15】図9に示した変調部6と基準信号生成部7の他の内部構成例を示すブロック図である。
【図16】スペースレベルと平均値レベル以外の信号のレベルを検出して光源駆動を実施するときの説明に供する信号波形図である。
【図17】図9に示した微分量子効率制御部3及び上記バイアス電流制御部4のさらに他の内部構成例を示す図である。
【符号の説明】
1:光源駆動装置 2:PDアンプ部
3:微分量子効率制御部 4:バイアス電流制御部
5:ストラテジ変調部 6:変調部
7:基準信号生成部 8:電流加算部
9:電流駆動部 10:制御部
11:電流電圧変換器 12:MUX
13:オフセットDAC 14:加算器
15:ゲイン切換アンプ
16,17,42,43,45:ローパスフィルタ(LPF)
18:比較器 19,62:カウンタ
20,34:誤差アンプ
21:サンプルホールド(S/H)積分器
22a〜22n,30a〜30n:DAC
23,31:スイッチ
24:スケールDAC 25:ターゲットDAC
29:モニタ受光部
30a〜30n:P0DAC〜PnDAC
32,40,44,53,57:サンプルホールド回路
33:BtDAC 35:可変ゲインアンプ
41,47,59:EtaDAC
46:差分器 50:反転アンプ
52,56,58:アンプ
54,55:バッファアンプ
60:コンパレータ 61:EXOR
100:情報記録媒体 101:光ピックアップ 102:光源
103:受光部 104:信号処理部
105:回転駆動部 106:コントローラ
Claims (13)
- 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の所定光量発光時のレベルと前記光源の目標光出力波形に比例した発光基準信号の所定光量発光時のレベルとがほぼ一致するようにバイアス電流を制御する第一の制御工程と、前記モニタ受光信号の平均値レベルと前記発光基準信号の平均値レベルとがほぼ一致するように変調電流のスケールを制御する第二の制御工程と、前記第一の制御工程によって制御されたバイアス電流と前記第二の制御工程によって制御された変調電流との和を前記光源の駆動電流とする駆動電流生成工程とからなることを特徴とする光源駆動方法。
- 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の平均値レベルと前記光源の目標光出力波形に比例した発光基準信号の平均値レベルとがほぼ一致するようにバイアス電流を制御する第一の制御工程と、前記モニタ受光信号の所定光量発光時のレベルと前記発光基準信号の所定光量発光時のレベルとがほぼ一致するように変調電流のスケールを制御する第二の制御工程と、前記第一の制御工程によって制御されたバイアス電流と前記第二の制御工程によって制御された変調電流との和を前記光源の駆動電流とする駆動電流生成工程とからなることを特徴とする光源駆動方法。
- 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の所定光量発光時のレベルと前記光源の目標光出力波形に比例した発光基準信号の所定光量発光時のレベルとがほぼ一致するようにバイアス電流を制御する第一の制御工程と、前記モニタ受光信号の所定光量発光時のレベルと平均値レベルとの差分と、前記発光基準信号の所定光量発光時のレベルと平均値レベルとの差分とがほぼ一致するように変調電流のスケールを制御する第二の制御工程と、前記第一の制御工程によって制御されたバイアス電流と前記第二の制御工程によって制御された変調電流との和を前記光源の駆動電流とする駆動電流生成工程とからなることを特徴とする光源駆動方法。
- 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の平均値レベルと前記光源の目標光出力波形に比例した発光基準信号の平均値レベルとがほぼ一致するようにバイアス電流を制御する第一の制御工程と、前記モニタ受光信号の所定光量発光時のレベルと平均値レベルとの差分と、前記発光基準信号の所定光量発光時のレベルと平均値レベルとの差分とがほぼ一致するように変調電流のスケールを制御する第二の制御工程と、前記第一の制御工程によって制御されたバイアス電流と前記第二の制御工程によって制御された変調電流との和を前記光源の駆動電流とする駆動電流生成工程とからなることを特徴とする光源駆動方法。
- 請求項1乃至4のいずれか一項に記載の光源駆動方法において、前記第一の制御工程と前記第二の制御工程のうちの何れか一方の工程における制御帯域をもう一方の工程における制御帯域よりも速くすることを特徴とする光源駆動方法。
- 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の所定光量発光時のレベルと前記光源の目標光出力波形に比例した発光基準信号の所定光量発光時のレベルとがほぼ一致するようにバイアス電流を制御する第一の制御手段と、変調データに基づいて変調電流を生成し、該変調電流のスケールをスケール信号に基づいて変更する変調手段と、前記モニタ受光信号の平均値レベルと前記発光基準信号の平均値レベルとがほぼ一致するように前記変調手段のスケール信号を制御する第二の制御手段と、前記第一の制御手段によって制御されたバイアス電流と前記変調手段によって変更された変調電流との和を前記光源の駆動電流とする駆動手段とを備えたことを特徴とする光源駆動装置。
- 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の平均値レベルと前記光源の目標光出力波形に比例した発光基準信号の平均値レベルとがほぼ一致するようにバイアス電流を制御する第一の制御手段と、変調データに基づいて変調電流を生成し、該変調電流のスケールをスケール信号に基づいて変更する変調手段と、前記モニタ受光信号の所定光量発光時のレベルと前記発光基準信号の所定光量発光時のレベルとがほぼ一致するように前記変調手段のスケール信号を制御する第二の制御手段と、前記第一の制御手段によって制御されたバイアス電流と前記変調手段によって変更された変調電流との和を前記光源の駆動電流とする駆動手段とを備えたことを特徴とする光源駆動装置。
- 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の所定光量発光時のレベルと前記光源の目標光出力波形に比例した発光基準信号の所定光量発光時のレベルとがほぼ一致するようにバイアス電流を制御する第一の制御手段と、変調データに基づいて変調電流を生成し、該変調電流のスケールをスケール信号に基づいて変更する変調手段と、前記モニタ受光信号の所定光量発光時のレベルと平均値レベルとの差分を検出する検出手段と、該検出手段によって検出された差分と前記発光基準信号の所定光量発光時のレベルと平均値レベルとの差分とがほぼ一致するように前記変調手段のスケール信号を制御する第二の制御手段と、前記第一の制御手段によって制御されたバイアス電流と前記変調手段によって変更された変調電流との和を前記光源の駆動電流とする駆動手段とを備えたことを特徴とする光源駆動装置。
- 光源の出射光量の一部を受光素子でモニタして生成されるモニタ受光信号の平均値レベルと前記光源の目標光出力波形に比例した発光基準信号の平均値レベルとがほぼ一致するようにバイアス電流を制御する第一の制御手段と、変調データに基づいて変調電流を生成し、該変調電流のスケールをスケール信号に基づいて変更する変調手段と、前記モニタ受光信号の所定光量発光時のレベルと平均値レベルとの差分を検出する検出手段と、該検出手段によって検出された差分と前記発光基準信号の所定光量発光時のレベルと平均値レベルとの差分とがほぼ一致するように前記変調手段のスケール信号を制御する第二の制御手段と、前記第一の制御手段によって制御されたバイアス電流と前記変調手段によって変更された変調電流との和を前記光源の駆動電流とする駆動手段とを備えたことを特徴とする光源駆動装置。
- 請求項6乃至9のいずれか一項に記載の光源駆動装置において、前記第一の制御手段と前記第二の制御手段のうちの何れか一方の手段によって制御する制御帯域をもう一方の手段によって制御する制御帯域よりも速くするようにしたことを特徴とする光源駆動装置。
- 請求項6乃至9のいずれか一項に記載の光源駆動装置において、前記モニタ受光信号の平均値レベルの検出帯域と前記発光基準信号の平均値レベルの検出帯域をほぼ等しくするようにしたことを特徴とする光源駆動装置。
- 請求項6乃至11のいずれか一項に記載の光源駆動装置を備えた情報記録装置において、前記所定光量をスペースパワーにするようにしたことを特徴とする情報記録装置。
- 請求項6乃至11のいずれか一項に記載の光源駆動装置を備えた情報記録装置において、前記所定光量を記録パワーの一つにするようにしたことを特徴とする情報記録装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002156994A JP2004005782A (ja) | 2002-05-30 | 2002-05-30 | 光源駆動方法と光源駆動装置と情報記録装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002156994A JP2004005782A (ja) | 2002-05-30 | 2002-05-30 | 光源駆動方法と光源駆動装置と情報記録装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004005782A true JP2004005782A (ja) | 2004-01-08 |
Family
ID=30428373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002156994A Pending JP2004005782A (ja) | 2002-05-30 | 2002-05-30 | 光源駆動方法と光源駆動装置と情報記録装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004005782A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005317666A (ja) * | 2004-04-27 | 2005-11-10 | Sumitomo Electric Ind Ltd | レーザ駆動回路 |
JP2010093123A (ja) * | 2008-10-09 | 2010-04-22 | Opnext Japan Inc | 光送信装置、及び光送信信号の制御方法 |
-
2002
- 2002-05-30 JP JP2002156994A patent/JP2004005782A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005317666A (ja) * | 2004-04-27 | 2005-11-10 | Sumitomo Electric Ind Ltd | レーザ駆動回路 |
JP2010093123A (ja) * | 2008-10-09 | 2010-04-22 | Opnext Japan Inc | 光送信装置、及び光送信信号の制御方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101162371B1 (ko) | 레이저 구동 방법 및 레이저 구동 장치 | |
US5436880A (en) | Laser power control in an optical recording system using partial correction of reflected signal error | |
KR100440834B1 (ko) | 레이저 제어 장치 | |
JP4076947B2 (ja) | 情報記録方法及び情報記録装置 | |
US7212477B2 (en) | Optical recording/reproducing apparatus with APC and SPS processes | |
JP3814476B2 (ja) | 情報記録方法及び情報記録装置 | |
US7474603B2 (en) | Optical information recording method, apparatus, and medium, laser control circuit, wobble signal detection method, and servo signal detection method | |
JP3730084B2 (ja) | 光制御回路 | |
JP3708015B2 (ja) | 半導体レーザ制御回路およびレーザ光源 | |
JP3961883B2 (ja) | 情報記録装置 | |
JP2004005782A (ja) | 光源駆動方法と光源駆動装置と情報記録装置 | |
US7109462B2 (en) | Light beam output control apparatus, optical pickup apparatus, light beam emission control method and computer-readable recorded medium in which light beam emission control program is recorded | |
JP2004213763A (ja) | 光源駆動装置と情報記録装置 | |
JP3257287B2 (ja) | 光ディスク記録装置 | |
JP3875533B2 (ja) | 光源駆動装置 | |
US6754156B2 (en) | Recording apparatus for use with optical recording medium and method thereof | |
KR20050000602A (ko) | 광디스크 드라이브의 자동 레이저 다이오드 출력 제어방법 및 이에 적합한 장치 | |
JP4077283B2 (ja) | 光ディスク装置 | |
JP3756704B2 (ja) | 光情報記録再生装置 | |
JP4071453B2 (ja) | 光ディスク装置 | |
JP4906201B2 (ja) | レーザ駆動方法および駆動装置 | |
JP3875534B2 (ja) | 光情報記録装置 | |
JP4187958B2 (ja) | 光源駆動装置とその光源駆動装置を備えた光情報記録再生装置 | |
JP3720721B2 (ja) | 情報記録装置 | |
JP3973338B2 (ja) | 光ディスク装置、情報処理装置及び光ディスク装置のレーザパワー制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061024 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070306 |