JP2004003823A - Method for preventing gas leak from waste casting device of gasification melting furnace, and waste input device - Google Patents

Method for preventing gas leak from waste casting device of gasification melting furnace, and waste input device Download PDF

Info

Publication number
JP2004003823A
JP2004003823A JP2003079920A JP2003079920A JP2004003823A JP 2004003823 A JP2004003823 A JP 2004003823A JP 2003079920 A JP2003079920 A JP 2003079920A JP 2003079920 A JP2003079920 A JP 2003079920A JP 2004003823 A JP2004003823 A JP 2004003823A
Authority
JP
Japan
Prior art keywords
waste
gasification
melting furnace
hopper
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003079920A
Other languages
Japanese (ja)
Inventor
Kazuyuki Inoue
井上 和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2003079920A priority Critical patent/JP2004003823A/en
Publication of JP2004003823A publication Critical patent/JP2004003823A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preventing gas leak from waste casting device of gasification melting furnace, which perfectly prevents the gas leak from a waste casting device even in operation at a positive pressure, and also to provide the waste input device. <P>SOLUTION: When a waste is supplied to the body of the gasification melting furnace through the casting device having a hopper and a pusher, the steam evaporated from the waste is cooled and condensed between the outlet of the casting device and the body of the gasification melting furnace, and the pores within the waste layer are filled with the condensate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ガス化溶融炉の廃棄物投入装置からのガス漏れ防止方法及び廃棄物投入装置に係わり、詳しくは、ごみや廃棄物を無害化処理するガス化溶融炉へ、処理対象の廃棄物等を供給するために設けられた廃棄物投入装置からのガス漏れを防止する技術及び防止対策を施した新規な廃棄物投入装置に関する。
【0002】
【従来の技術】
近年、ごみや廃棄物の減容化及び無害化を同時に実現可能なガス化溶融炉が注目されている(例えば、図4参照)。このようなガス化溶融炉1は、ほとんどが従来より炉内圧を負圧として操業されている。そして、処理対象物の廃棄物2等を該ガス化溶融炉1へ装入する投入装置3には、ホッパ7から炉内に過剰な空気が入らないように、図3(a)及び(b)に示すプッシャ4及びダンパ5の組合せ、ロータリバルブ6等の機械的な仕切手段を設け、これら仕切手段と廃棄物2自体の層厚とによってガスシールを行うようにしている。
【0003】
ところで、負圧で運転する場合には、上記したシールでも十分にその役割を果たしていたが、ガス化溶融炉では可燃性ガスを発生し、空気が進入すると爆発の危険性があることから、正圧で操業するガス化溶融炉が増加している。この正圧での操業に対しては、上記したダンパ5、ロータリバルブ6等の仕切手段と廃棄物2自体の層厚とによるシールでは、多少なりとも間隙があるので、炉内からのガスが廃棄物投入装置のホッパ開口に漏れる場合があった(ただし、ホッパ内は換気されているので、外部環境を悪化することはない)。
【0004】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑み、正圧で操業しても、廃棄物投入装置からのガス漏れを完全に防止可能なガス化溶融炉の廃棄物投入装置からのガス漏れ防止方法及び廃棄物投入装置を提供することを目的としている。
【0005】
【課題を解決するための手段】
発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。
【0006】
すなわち、本発明は、ガス化溶融炉の本体へ、ホッパ及びプッシャを備えた投入装置を介して廃棄物を供給するに際して、投入装置の出口からガス化溶融炉の本体間で廃棄物から蒸発した水蒸気を冷却して凝縮させ、その凝縮物で廃棄物層内の間隙を埋めることを特徴とするガス化溶融炉の廃棄物投入装置からのガス漏れ防止方法である。ここで、前記水蒸気に加えて廃棄物のガス化成分も冷却して凝固することがある。また、本発明では、前記ホッパの開口でガス漏れを検出し、そのガス漏れ量に応じて調整した量の水分を前記廃棄物に噴霧して該廃棄物中の水分を高めると共に、投入装置の出口からガス化溶融炉の本体間で廃棄物から蒸発した水蒸気を冷却して凝縮し、その凝縮物で廃棄物の間隙を埋めることが好ましい。この場合、前記ガス漏れ量を、前記ホッパの開口周辺での大気中CO濃度で判定するのが好適であり、前記水分として水や水蒸気が利用でき、さらに汚泥又はスラリーを含んでいても良い。
【0007】
さらに、本発明では、前記投入装置出口とガス化溶融炉の本体との間の廃棄物通路の外周壁を、廃棄物中水分の蒸発が促進するよう間接加熱するのが良い。間接加熱にあたっては、外周壁に熱風や水蒸気等の熱流体の流通路を設けても良いし、あるいは電気ヒータやマイクロ波印加装置等、電気加熱をしても良い。
【0008】
また、本発明は、上部が開口し、廃棄物を受け入れるホッパと、該ホッパの底部に設けられた廃棄物を押し出すプッシャと、該廃棄物をガス化溶融炉の本体へ導く廃棄物通路とを備えたガス化溶融炉の廃棄物投入装置において、前記廃棄物通路の冷却手段とを備えることを特徴とするガス化溶融炉の廃棄物投入装置である。また、本発明では、前記ホッパの開口部近傍でガス成分を測定するガス濃度計と、前記廃棄物通路の入側に設けられ、廃棄物に散水するスプレーノズルと、前記廃棄物通路の冷却手段とを備えると共に、前記ガス濃度計での測定値に基づき散水量を決定し、スプレーノズルへ連なる開閉弁の開度を調整する水量制御器とを備えることが好ましい。この場合、前記廃棄物通路の入側に、該通路を遮断自在にするダンパを設けたり、あるいは前記ホッパの底部に設けられた廃棄物を押し出すプッシャ及び前記廃棄物通路の入側に設けた通路を遮断自在にするダンパに代え、ロータリバルブを設けても良い。また、前記廃棄物通路の冷却手段が水冷ジャケットであることが好ましい。さらに、本発明では、前記冷却手段とガス化溶融炉との間の廃棄物通路の外周壁に、該外周壁を間接加熱する熱源を設けるのが好ましい。
【0009】
本発明では、ガス化溶融炉の廃棄物投入装置において、炉内からの輻射熱又はその他の加熱源により、該廃棄物中の水分を蒸発させた後、炉へ廃棄物を導く通路でその発生した蒸気を冷却して凝縮し、その凝縮物で廃棄物の間隙を埋めるようにするので、十分なシール性を確保できるようになる。廃棄物自身の水分が少ない場合は、廃棄物に水分を噴霧し、廃棄物の水分を高めることにより上記効果が得られる。また、本発明では、水の噴霧量をガス濃度計で測定したガス漏れ量に応じて調整するようにしたので、従来のようなダンパやロータリバルブを利用しなくても、廃棄物投入装置からのガス漏れがほぼ完全に防止できるようになる。このとき、廃棄物通路の冷却手段とガス化溶融炉の間で、廃棄物通路の外周壁に熱源を設けると、廃棄物中の水分を廃棄物通路中で十分蒸発させることができ、冷却手段で多量の水蒸気を凝縮できるようになる。これにより、廃棄物中の含水量が比較的少ない場合でも廃棄物投入装置からのガス漏れ防止効果が大きい。
【0010】
【発明の実施の形態】
以下、発明をなすに至った経緯をまじえ、本発明の実施の形態を説明する。
【0011】
まず、発明者は、図1に示したような上部が開口し、廃棄物2を受け入れるホッパ7と、該ホッパ7の底部に設けられた廃棄物2を押し出すプッシャ4と、廃棄物2をガス化溶融炉1の本体へ導く廃棄物通路9とを備えた廃棄物投入装置3を用い、圧縮した廃棄物2をガス化溶融炉1へ供給し、炉内を20〜30kPaの正圧にして操業を行い、該廃棄物投入装置3からのガス漏れの実態を調査した。その結果、炉内のガスが廃棄物投入装置3内を通過して、ホッパ7より炉外に漏れ出すことがあった。そのような場合、従来は、漏れ出すガスを換気装置で屋外に排出すると共に、廃棄物2の処理量を減らして、炉内圧力を低減する対策を行ってきたが、ガス中毒やガス爆発の恐れがあるばかりでなく、処理量の低減等の問題が発生していた。
【0012】
そこで、発明者は、ガス漏れの原因が廃棄物の間隙であることを突きとめ、ガス漏れを防止するために、廃棄物に含まれる水分を利用できることに着眼した。つまり、投入装置の出口からガス化溶融炉の本体間で廃棄物に含まれる水を蒸発させ、この水蒸気を冷却して凝縮させ、その凝縮物でガス漏れの原因である廃棄物の間隙を埋めることによりガス漏れを防止できると考えた。そして、図2(a)に示すように、廃棄物2中の水分は、炉内からの輻射熱(又はその他の加熱源を設けても良い)により蒸発し、廃棄物2の間隙14に充満するが、その間隙14を通って炉内からのガスが漏れる。そこで、本発明では、図2(b)に示すように、前記の廃棄物通路9でその発生した蒸気15を冷却して凝縮し、その凝縮物で廃棄物2の間隙14を埋めるようにする。ここで、蒸気15は、廃棄物の水分に由来する水蒸気以外に廃棄物成分自体がガス化した蒸気も含んでも良い。具体的な冷却手段としては、該廃棄物通路9を水冷ジャケット16で形成すれば良い。このようにすることで、ガス漏れをある程度防止することが可能となった。しかしながら、廃棄物の種類によっては、この上記した方法でも、まだガス漏れの生じることが多かった。
【0013】
そこで、完全にガス漏れを解決するには、ガス漏れ量を測定することが必要と考え、廃棄物投入装置3の前記ホッパ7の開口部近傍に、微量な量のガス成分を連続的に測定できるガス濃度計10(この場合は、測定対象成分はCO,CO,HS)を設置し、測定した成分濃度の大小でガス漏れ量を評価するようにした。なお、ガス濃度計としては、連続測定が可能なもので、環境への負荷を考慮すると、CO濃度計が好ましい。そして、発明者は、それらガス濃度の測定結果を解析し、廃棄物2中の水分量が少ないとガス漏れ量が多くなり、水分量が多くなるとガス漏れ量が少なくなることを知見した。これにより、水分量の少ない廃棄物には、水を噴霧するとガス漏れを防止できると考えた。ただし、その水の使用量は極力減らして効率の良いシールにすることを模索し、前述のように、廃棄物に由来する水蒸気又はガス化成分を廃棄物2の間隙14で凝縮させるのが良いと考えた。この考えを具体化するには、廃棄物2中の水分量を調整可能にする必要があるが、ガス漏れ量(CO数ppm〜)に応じて廃棄物中の水分を適量投入できるようにすれば良い。そこで、廃棄物投入装置3の出口、つまり前記廃棄物通路9の入側に、廃棄物2に散水するスプレーノズル11を設けることにした。これにより、ガス濃度計10の測定値に基づき散水量をリニアにコントロールできるようになる。具体的には、予めガス中のある成分の濃度と散水量との関係を求めておき、それを演算器12(又は水量制御器)に記憶し、測定した前記濃度を該関係に対照して散水量を決め、その信号に基づいて、スプレーノズル11へ連なる開閉弁13の開度を調整するようにすれば良い。また、この水分の調整は、上記のような自動制御にしなくても、上記関係を利用すれば、作業者の手動による開閉弁13の操作でも可能である。
【0014】
そして、このようにして調整した廃棄物2中の水分は、図2(b)に示すように、廃棄物通路9でその発生した蒸気15又は廃棄物のガス化成分を冷却して凝縮し、その凝縮物で廃棄物2層内の間隙14を埋めるようにする。具体的な冷却手段としては、該廃棄物通路9を水冷ジャケット16で形成すれば良い。
【0015】
ガス化溶融炉1にこのような本発明に係る廃棄物投入装置3を適用すると、廃棄物の種類が変わった時のわずかなガス漏れに対しても、即座に対応して散水を実施でき、炉内からのガス漏れを解消して、該ガス化溶融炉1は廃棄物2を安定して処理できるようになる。
【0016】
なお、図1には、使用する水として工業用水を示してあるが、水蒸気や、汚泥、並びに水分及びその他蒸発し易い液体を含んだスラリーを散布しても同様の効果を得ることができる。
【0017】
【実施例】
図4に示したガス化溶融炉に本発明に係る廃棄物投入装置を配設し、圧縮した産業廃棄物を連続供給してガス化処理の操業を行った。その際、産業廃棄物の供給量は、6トン/時間、炉内温度は1200℃、炉内圧力は25kPaとした。そして、廃棄物投入装置のホッパの開口部近傍に設けたガス濃度計で雰囲気のCO濃度を常時測定し、その測定値を水量制御器に入力して産業廃棄物に散布する水量を調整した。
【0018】
一方、本発明の効果を確認するため、本発明を実施する前に、従来の廃棄物投入装置を配設し、同じ条件の操業を行った。
【0019】
その操業結果は、ガス漏れ量を代表する前記CO濃度で評価することにし、図5(a)〜(c)にCO濃度の経時変化で示した。ここで、図5(a)は、廃棄物通路に冷却手段を設けない場合の例(従来法)、図5(b)は、廃棄物通路に冷却手段を設けた場合の例(本発明法)及び図5(c)は、廃棄物通路に冷却手段を設けると共に、CO濃度計を設けてCO濃度を検知し、その測定値が50ppmを超えたら水噴霧を行うようにした場合の例(本発明法)である。
【0020】
これら図5(a)〜(c)より、本発明によれば、ホッパ内のガス漏れがほとんど解消されることが明らかである。
【0021】
さらに、図4に示したガス化溶融炉において、図6に示すように、廃棄物通路の上下に熱風20の流通路21を設置して、廃棄物通路9中の廃棄物2に含まれる水の蒸発を促進するようにし、前記水冷手段16で冷却を行った。
【0022】
図6に示すような廃棄物通路を備えたガス化溶融炉1を用いて、熱風の流通路21へ供給する熱風20の温度を種々変化させながら、廃棄物2中の水分量と廃棄物投入装置入口で測定したCO濃度との関係を求めた。その結果を図7に示す。
【0023】
図7より明らかなように、廃棄物中の水分が十分高い場合には、熱風20の流通路21中へ熱風を供給しなくても、廃棄物投入装置入口でのガス漏れはない。しかしながら、水分量が低下してくると、ガス漏れが観測されるようになる。この場合は、廃棄物通路に設置した熱風の流通路21へ熱風20を供給すれば、廃棄物中の水分が低くても、廃棄物投入装置入口でのガス漏れの程度が小さくなる。従って、本発明によれば、通常の一般廃棄物に含まれる40〜60%程度の水分範囲では、熱風の流通路21へ送る熱風の温度を400℃以上にしておけば、廃棄物投入装置入口からのガス漏れを実用上問題ない程度にまで低減することが可能である。
【0024】
【発明の効果】
以上述べたように、本発明により、ダンパやロータリバルブ等の機械的シールに頼ること無く、廃棄物自体を利用して廃棄物投入装置のガスシールが達成できるようになる。その結果、正圧で操業する廃棄物のガス化溶融炉からのガス漏れが解消された。
【図面の簡単な説明】
【図1】本発明に係るガス化溶融炉の投入装置を示す横断面図である。
【図2】廃棄物層内における炉内ガスの挙動を説明する上記図1の丸で囲んだ部分の拡大図であり、(a)は廃棄物の水分が不足している場合、(a)は、廃棄物層の間隙を凝縮水で生めた場合を示している。
【図3】従来のガス化溶融炉の廃棄物投入装置を示す横断面図であり、(a)は、ホッパにプッシャ及びダンパを備えた方式、(b)は、ホッパにロータリバルブを備えた方式である。
【図4】ガス化溶融炉の一例を示す横断面図である。
【図5】廃棄物投入装置のホッパの開口部近傍で測定したCO濃度の経時変化を示す図であり、(a)は、廃棄物通路に冷却手段を設けない場合(従来法)、(b)は、廃棄物通路に冷却手段を設けた場合(本発明法)及び(c)は、廃棄物通路に冷却手段を設けると共に、CO濃度計を設けてCO濃度を検知した場合(本発明法)である。
【図6】図1に示した本発明に係るガス化溶融炉の投入装置の別形態を示す横断面図である。
【図7】図6に示したガス化溶融炉での廃棄物中の水分量と廃棄物投入装置の入口で測定したCO濃度との関係を示す図である。
【符号の説明】
1  ガス化溶融炉
2  廃棄物(ごみ)
3  廃棄物投入装置
4  プッシャ
5  ダンパ
6  ロータリバルブ
7  ホッパ
8  廃棄物の切断機
9  廃棄物通路
10 ガス濃度計
11 スプレーノズル
12 演算器(水量制御器)
13 開閉弁
14 間隙
15 蒸気(ガス)
16 水冷ジャケット
17 冷却水
18 溶融物
19 炉内ガスの流れ
20 熱風
21 熱風の流通路
22 熱風の温度計
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for preventing gas leakage from a waste charging device of a gasification and melting furnace and a waste charging device. TECHNICAL FIELD The present invention relates to a technology for preventing gas leakage from a waste input device provided to supply the same and the like, and a novel waste input device provided with preventive measures.
[0002]
[Prior art]
In recent years, a gasification and melting furnace that can simultaneously reduce the volume and detoxification of refuse and waste has attracted attention (see, for example, FIG. 4). Most of such gasification and melting furnaces 1 have been operated with a furnace internal pressure of negative pressure. 3 (a) and 3 (b) so that excessive air does not enter the furnace from the hopper 7 into the charging device 3 for charging the waste 2 or the like to be treated into the gasification and melting furnace 1. ), Mechanical partitioning means such as a combination of a pusher 4 and a damper 5 and a rotary valve 6 are provided, and gas sealing is performed by these partitioning means and the layer thickness of the waste 2 itself.
[0003]
By the way, when operating at negative pressure, the above-mentioned seal also played a sufficient role, but the gasification and melting furnace generates flammable gas, and if air enters, there is a danger of explosion. Gasification and melting furnaces operating under pressure are increasing. For operation at this positive pressure, there is some gap in the sealing by the above-mentioned partitioning means such as the damper 5 and the rotary valve 6 and the thickness of the waste 2 itself. There was a case where it leaked to the hopper opening of the waste input device (however, the inside of the hopper is ventilated, so the external environment does not deteriorate).
[0004]
[Problems to be solved by the invention]
In view of such circumstances, the present invention provides a method of preventing gas leakage from a waste charging device of a gasification and melting furnace and a method of charging waste, which can completely prevent gas leakage from a waste charging device even when operating at a positive pressure. It is intended to provide a device.
[0005]
[Means for Solving the Problems]
The inventor conducted intensive research to achieve the above object, and realized the results in the present invention.
[0006]
That is, in the present invention, when supplying waste to the main body of the gasification and melting furnace through the charging device equipped with a hopper and a pusher, the waste evaporates from the waste between the main bodies of the gasification and melting furnace from the outlet of the charging device. A method for preventing gas leakage from a waste charging device of a gasification and melting furnace, wherein steam is cooled and condensed, and the condensate is used to fill gaps in a waste layer. Here, in addition to the steam, the gasification component of the waste may be cooled and solidified. Further, in the present invention, a gas leak is detected at the opening of the hopper, and an amount of water adjusted according to the amount of the gas leak is sprayed on the waste to increase the moisture in the waste, and a charging device of the charging device is provided. It is preferable to cool and condense the water vapor evaporated from the waste between the main body of the gasification melting furnace from the outlet, and to fill the gap between the waste with the condensate. In this case, it is preferable that the amount of gas leakage is determined based on the concentration of CO in the atmosphere around the opening of the hopper, and water or steam can be used as the moisture, and sludge or slurry may be contained.
[0007]
Further, in the present invention, the outer peripheral wall of the waste passage between the outlet of the charging device and the main body of the gasification and melting furnace may be indirectly heated so as to promote evaporation of moisture in the waste. In the indirect heating, a flow path for a hot fluid such as hot air or water vapor may be provided on the outer peripheral wall, or electric heating may be performed using an electric heater or a microwave application device.
[0008]
The present invention also provides a hopper having an open top and receiving waste, a pusher provided at the bottom of the hopper for pushing waste, and a waste passage for guiding the waste to a main body of the gasification and melting furnace. A waste introduction device for a gasification and melting furnace, comprising: a cooling device for the waste passage. Further, in the present invention, a gas concentration meter for measuring a gas component in the vicinity of an opening of the hopper, a spray nozzle provided on an entrance side of the waste passage and spraying water on the waste, and a cooling means for the waste passage And a water flow controller that determines the amount of water spray based on the value measured by the gas concentration meter and adjusts the opening of an on-off valve connected to the spray nozzle. In this case, on the entrance side of the waste passage, a damper that can shut off the passage is provided, or a pusher provided at the bottom of the hopper for pushing out waste and a passage provided on the entrance side of the waste passage. A rotary valve may be provided in place of the damper that allows the valve to be shut off. Preferably, the cooling means for the waste passage is a water-cooled jacket. Further, in the present invention, it is preferable that a heat source for indirectly heating the outer peripheral wall is provided on the outer peripheral wall of the waste passage between the cooling means and the gasification and melting furnace.
[0009]
In the present invention, in the waste charging device of the gasification and melting furnace, the radiant heat from the furnace or other heating sources evaporates the moisture in the waste, and the waste is generated in a passage leading to the furnace. Since the steam is cooled and condensed, and the condensate is used to fill the gap between the wastes, sufficient sealing performance can be ensured. When the water content of the waste itself is small, the above effect can be obtained by spraying the water with the water and increasing the water content of the waste. Further, in the present invention, since the spray amount of water is adjusted according to the gas leak amount measured by the gas concentration meter, the waste injection device can be used without using a conventional damper or rotary valve. Gas leakage can be almost completely prevented. At this time, if a heat source is provided on the outer peripheral wall of the waste passage between the cooling means for the waste passage and the gasification and melting furnace, the moisture in the waste can be sufficiently evaporated in the waste passage, and the cooling means Can condense a large amount of water vapor. Thereby, even when the water content in the waste is relatively small, the effect of preventing gas leakage from the waste input device is large.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described, taking into account the circumstances that led to the invention.
[0011]
First, the inventor of the present invention opened a top as shown in FIG. 1 to receive the waste 2, a pusher 4 provided at the bottom of the hopper 7 to push out the waste 2, Using a waste introduction device 3 having a waste passage 9 leading to the main body of the gasification and melting furnace 1, the compressed waste 2 is supplied to the gasification and melting furnace 1, and the inside of the furnace is set to a positive pressure of 20 to 30 kPa. The operation was carried out, and the actual state of gas leakage from the waste input device 3 was investigated. As a result, the gas in the furnace may pass through the waste input device 3 and leak out of the furnace from the hopper 7. In such a case, in the past, while venting the leaked gas to the outside with a ventilator, measures have been taken to reduce the amount of waste 2 to reduce the pressure inside the furnace. In addition to the danger, problems such as a reduction in the amount of processing have occurred.
[0012]
Then, the inventor has identified that the cause of the gas leakage is a gap between the wastes, and has focused on the fact that water contained in the waste can be used to prevent the gas leakage. In other words, the water contained in the waste is evaporated between the main body of the gasification and melting furnace from the outlet of the charging device, the water vapor is cooled and condensed, and the condensate fills the gap of the waste causing gas leakage. It was thought that this could prevent gas leakage. Then, as shown in FIG. 2A, the moisture in the waste 2 evaporates due to radiant heat from the furnace (or another heating source may be provided) and fills the gap 14 of the waste 2. However, gas leaks from the furnace through the gap 14. Therefore, in the present invention, as shown in FIG. 2B, the generated steam 15 is cooled and condensed in the waste passage 9 and the condensate fills the gap 14 of the waste 2. . Here, the steam 15 may include, in addition to the water vapor derived from the water content of the waste, a steam in which the waste component itself is gasified. As a specific cooling means, the waste passage 9 may be formed by a water cooling jacket 16. By doing so, gas leakage can be prevented to some extent. However, depending on the type of waste, gas leakage still often occurred even with this method.
[0013]
Therefore, it is considered necessary to measure the amount of gas leakage in order to completely resolve the gas leakage, and a small amount of gas component is continuously measured near the opening of the hopper 7 of the waste input device 3. A possible gas concentration meter 10 (in this case, the components to be measured are CO, CO 2 , H 2 S) was installed, and the amount of gas leakage was evaluated based on the magnitude of the measured component concentration. As a gas concentration meter, a continuous measurement is possible, and a CO concentration meter is preferable in consideration of the load on the environment. Then, the inventor analyzed the measurement results of the gas concentrations, and found that if the amount of water in the waste 2 is small, the amount of gas leakage increases, and if the amount of water increases, the amount of gas leakage decreases. Thus, it was considered that gas leakage can be prevented by spraying water on waste having a small amount of water. However, it is desirable to reduce the amount of water used as much as possible to obtain an efficient seal. As described above, it is preferable to condense water vapor or gasification components derived from the waste in the gap 14 of the waste 2. I thought. In order to materialize this idea, it is necessary to make the amount of water in the waste 2 adjustable. However, it is necessary to adjust the amount of water in the waste according to the amount of gas leakage (from several ppm of CO). Good. Therefore, a spray nozzle 11 for sprinkling water on the waste 2 is provided at the outlet of the waste input device 3, that is, on the input side of the waste passage 9. This makes it possible to linearly control the water spray amount based on the measurement value of the gas concentration meter 10. Specifically, the relationship between the concentration of a certain component in the gas and the amount of water spraying is determined in advance, and the relationship is stored in the calculator 12 (or the water amount controller), and the measured concentration is compared with the relationship. The amount of water spray may be determined, and the opening of the on-off valve 13 connected to the spray nozzle 11 may be adjusted based on the signal. In addition, the adjustment of the moisture can be performed by the operator's manual operation of the on-off valve 13 without using the above-described automatic control and utilizing the above-described relationship.
[0014]
Then, the moisture in the waste 2 adjusted in this manner cools and condenses the generated steam 15 or the gasification component of the waste in the waste passage 9 as shown in FIG. The condensate fills the gap 14 in the waste two layer. As a specific cooling means, the waste passage 9 may be formed by a water cooling jacket 16.
[0015]
When such a waste input device 3 according to the present invention is applied to the gasification and melting furnace 1, even if there is a slight gas leak when the type of waste is changed, watering can be immediately performed, and watering can be performed. By eliminating gas leakage from the furnace, the gasification and melting furnace 1 can stably treat the waste 2.
[0016]
Although FIG. 1 shows industrial water as water to be used, the same effect can be obtained by spraying steam, sludge, or a slurry containing water and other easily vaporizable liquids.
[0017]
【Example】
The waste charging apparatus according to the present invention was disposed in the gasification and melting furnace shown in FIG. 4, and the compressed industrial waste was continuously supplied to perform the gasification treatment. At that time, the supply amount of the industrial waste was 6 tons / hour, the furnace temperature was 1200 ° C., and the furnace pressure was 25 kPa. Then, the CO concentration in the atmosphere was constantly measured by a gas concentration meter provided near the opening of the hopper of the waste input device, and the measured value was input to a water amount controller to adjust the amount of water sprayed to the industrial waste.
[0018]
On the other hand, in order to confirm the effect of the present invention, before carrying out the present invention, a conventional waste charging apparatus was provided and operated under the same conditions.
[0019]
The operation results were evaluated based on the CO concentration, which is representative of the amount of gas leakage, and the change over time in the CO concentration is shown in FIGS. Here, FIG. 5A shows an example in which cooling means is not provided in the waste passage (conventional method), and FIG. 5B shows an example in which cooling means is provided in the waste passage (method of the present invention). 5) and FIG. 5 (c) show an example in which a cooling means is provided in the waste passage and a CO concentration meter is provided to detect the CO concentration, and when the measured value exceeds 50 ppm, water spraying is performed ( The present invention).
[0020]
5 (a) to 5 (c), it is clear that gas leakage in the hopper is almost eliminated according to the present invention.
[0021]
Further, in the gasification and melting furnace shown in FIG. 4, as shown in FIG. 6, flow paths 21 for hot air 20 are installed above and below the waste passage, and water contained in the waste 2 in the waste passage 9 is provided. The water was cooled by the water cooling means 16.
[0022]
Using the gasification and melting furnace 1 provided with a waste passage as shown in FIG. 6, while varying the temperature of the hot air 20 supplied to the hot air flow passage 21, the amount of water in the waste 2 and the introduction of the waste are changed. The relationship with the CO concentration measured at the entrance of the device was determined. FIG. 7 shows the result.
[0023]
As is clear from FIG. 7, when the moisture in the waste is sufficiently high, there is no gas leakage at the entrance of the waste input device even if hot air is not supplied into the flow passage 21 of the hot air 20. However, when the amount of water decreases, gas leakage is observed. In this case, if the hot air 20 is supplied to the hot air flow passage 21 installed in the waste passage, the degree of gas leakage at the entrance of the waste input device is reduced even if the moisture in the waste is low. Therefore, according to the present invention, when the temperature of the hot air sent to the hot air flow passage 21 is set to 400 ° C. or more in the water range of about 40 to 60% contained in ordinary general waste, the waste charging apparatus inlet Gas can be reduced to a level that does not cause a practical problem.
[0024]
【The invention's effect】
As described above, according to the present invention, it is possible to achieve gas sealing of a waste input device using waste itself without relying on a mechanical seal such as a damper or a rotary valve. As a result, gas leakage from the gasification and melting furnace of wastes operated at positive pressure was eliminated.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a charging device for a gasification and melting furnace according to the present invention.
FIG. 2 is an enlarged view of a part circled in FIG. 1 for explaining a behavior of gas in a furnace in a waste layer, wherein (a) shows a case where moisture in the waste is insufficient. Shows a case in which the gap between the waste layers is made of condensed water.
3A and 3B are cross-sectional views showing a conventional waste charging apparatus for a gasification and melting furnace, wherein FIG. 3A is a system in which a hopper is provided with a pusher and a damper, and FIG. 3B is a system in which a hopper is provided with a rotary valve. It is a method.
FIG. 4 is a cross-sectional view showing an example of a gasification melting furnace.
FIG. 5 is a diagram showing a change with time of the CO concentration measured near the opening of the hopper of the waste input device. FIG. 5 (a) shows a case where no cooling means is provided in the waste passage (conventional method); ) Is a case where a cooling means is provided in the waste passage (the method of the present invention), and (c) is a case where a cooling means is provided in the waste passage and a CO concentration meter is provided to detect the CO concentration (the method of the present invention). ).
6 is a cross-sectional view showing another embodiment of the charging apparatus for the gasification and melting furnace according to the present invention shown in FIG.
7 is a diagram showing the relationship between the amount of water in waste in the gasification and melting furnace shown in FIG. 6 and the CO concentration measured at the entrance of the waste input device.
[Explanation of symbols]
1 Gasification and melting furnace 2 Waste (garbage)
Reference Signs List 3 waste input device 4 pusher 5 damper 6 rotary valve 7 hopper 8 waste cutting machine 9 waste passage 10 gas concentration meter 11 spray nozzle 12 arithmetic unit (water flow controller)
13 On-off valve 14 Gap 15 Steam (gas)
16 Water cooling jacket 17 Cooling water 18 Melt 19 Furnace gas flow 20 Hot air 21 Hot air flow path 22 Hot air thermometer

Claims (8)

ガス化溶融炉の本体へ、ホッパ及びプッシャを備えた投入装置を介して廃棄物を供給するに際して、
前記投入装置の出口からガス化溶融炉の本体間で廃棄物から蒸発した水蒸気を冷却して凝縮させ、その凝縮物で廃棄物の間隙を埋めることを特徴とするガス化溶融炉の廃棄物投入装置からのガス漏れ防止方法。
When supplying waste to the main body of the gasification and melting furnace through an input device equipped with a hopper and a pusher,
Cooling the water vapor evaporated from the waste between the main body of the gasification and melting furnace from the outlet of the charging device to condense the water, and filling the gap between the wastes with the condensate; A method for preventing gas leakage from equipment.
ガス化溶融炉の本体へ、ホッパ及びプッシャを備えた投入装置を介して廃棄物を供給するに際して、
前記ホッパの開口でガス漏れを検出し、そのガス漏れ量に応じて調整した量の水分を前記廃棄物に噴霧して該廃棄物中の水分を高めると共に、投入装置の出口からガス化溶融炉の本体間で廃棄物から蒸発した水蒸気を冷却して凝縮させ、その凝縮物で廃棄物の間隙を埋めることを特徴とするガス化溶融炉の廃棄物投入装置からのガス漏れ防止方法。
When supplying waste to the main body of the gasification and melting furnace through an input device equipped with a hopper and a pusher,
A gas leak is detected at the opening of the hopper, and an amount of water adjusted according to the amount of the gas leak is sprayed on the waste to increase the moisture in the waste. A method for preventing gas leakage from a waste charging device of a gasification and melting furnace, wherein water vapor evaporated from waste is cooled and condensed between the main bodies, and the condensate is filled in a gap between the wastes.
前記ガス漏れ量を、前記ホッパの開口周辺での大気中CO濃度で判定することを特徴する請求項2記載のガス化溶融炉の廃棄物投入装置からのガス漏れ防止方法。3. The method according to claim 2, wherein the amount of gas leakage is determined based on an atmospheric CO concentration around an opening of the hopper. 前記投入装置出口とガス化溶融炉の本体との間の廃棄物通路の外周壁を、廃棄物中水分の蒸発が促進するよう間接加熱することを特徴とする請求項2〜3のいずれかに記載のガス化溶融炉の廃棄物投入装置からのガス漏れ防止方法。The indirect heating of the outer peripheral wall of the waste passage between the charging device outlet and the main body of the gasification and melting furnace is performed so that evaporation of moisture in the waste is promoted. The method for preventing gas leakage from a waste introduction device of a gasification and melting furnace as described in the above. 上部が開口し、廃棄物を受け入れるホッパと、該ホッパの底部に設けられた廃棄物を押し出すプッシャと、該廃棄物をガス化溶融炉の本体へ導く廃棄物通路とを備えたガス化溶融炉の廃棄物投入装置において、
前記廃棄物通路に冷却手段を備えたことを特徴とするガス化溶融炉の廃棄物投入装置。
A gasification / melting furnace comprising a hopper having an open top for receiving waste, a pusher provided at the bottom of the hopper for pushing out waste, and a waste passage for guiding the waste to a main body of the gasification / melting furnace; Waste input device,
A waste introduction device for a gasification and melting furnace, comprising a cooling means in the waste passage.
上部が開口し、廃棄物を受け入れるホッパと、該ホッパの底部に設けられた廃棄物を押し出すプッシャと、該廃棄物をガス化溶融炉の本体へ導く廃棄物通路とを備えたガス化溶融炉の廃棄物投入装置において、
前記ホッパの開口部近傍でガス成分を測定するガス濃度計と、前記廃棄物通路の入側に設けられ、廃棄物に散水するスプレーノズルと、前記廃棄物通路の冷却手段とを備えると共に、前記ガス濃度計での測定値に基づき散水量を決定し、スプレーノズルへ連なる開閉弁の開度を調整する水量制御器とを備えることを特徴とするガス化溶融炉の廃棄物投入装置。
A gasification / melting furnace comprising a hopper having an open top for receiving waste, a pusher provided at the bottom of the hopper for pushing out waste, and a waste passage for guiding the waste to a main body of the gasification / melting furnace; Waste input device,
A gas concentration meter for measuring a gas component in the vicinity of the opening of the hopper, a spray nozzle provided on the entrance side of the waste passage, for spraying water on the waste, and cooling means for the waste passage, and A waste gas injection device for a gasification and melting furnace, comprising: a water flow controller that determines a water spray amount based on a value measured by a gas concentration meter and adjusts an opening degree of an on-off valve connected to a spray nozzle.
前記廃棄物通路の冷却手段が水冷ジャケットであることを特徴とする請求項4又は5記載のガス化溶融炉の廃棄物投入装置。The waste charging device of a gasification and melting furnace according to claim 4 or 5, wherein the cooling means of the waste passage is a water-cooled jacket. 前記冷却手段とガス化溶融炉との間の廃棄物通路の外周壁に、該外周壁を間接加熱する熱源を設けたことを特徴とする請求項5〜7のいずれかに記載のガス化溶融炉の廃棄物投入装置。The gasification and melting according to any one of claims 5 to 7, wherein a heat source for indirectly heating the outer peripheral wall is provided on an outer peripheral wall of a waste passage between the cooling unit and the gasification and melting furnace. Furnace waste input device.
JP2003079920A 2002-03-25 2003-03-24 Method for preventing gas leak from waste casting device of gasification melting furnace, and waste input device Withdrawn JP2004003823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079920A JP2004003823A (en) 2002-03-25 2003-03-24 Method for preventing gas leak from waste casting device of gasification melting furnace, and waste input device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002083279 2002-03-25
JP2003079920A JP2004003823A (en) 2002-03-25 2003-03-24 Method for preventing gas leak from waste casting device of gasification melting furnace, and waste input device

Publications (1)

Publication Number Publication Date
JP2004003823A true JP2004003823A (en) 2004-01-08

Family

ID=30445897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079920A Withdrawn JP2004003823A (en) 2002-03-25 2003-03-24 Method for preventing gas leak from waste casting device of gasification melting furnace, and waste input device

Country Status (1)

Country Link
JP (1) JP2004003823A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006114818A1 (en) * 2005-04-01 2006-11-02 Jfe Engineering Corporation Method and apparatus for supplying waste to gasification melting furnace
KR100856653B1 (en) * 2007-07-09 2008-09-04 제이에프이 엔지니어링 가부시키가이샤 Method for supplying waste to gasification melting furnace
KR101282581B1 (en) * 2010-12-30 2013-07-04 권순복 Combustion apparatus of boiler using refuse derived fuel or Refused Plastic Fuel
KR101489961B1 (en) 2013-11-13 2015-02-06 지에스플라텍 주식회사 Apparatus for inserting material of gasification melting furnace and gasification melting furnace system with the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006114818A1 (en) * 2005-04-01 2006-11-02 Jfe Engineering Corporation Method and apparatus for supplying waste to gasification melting furnace
KR100856653B1 (en) * 2007-07-09 2008-09-04 제이에프이 엔지니어링 가부시키가이샤 Method for supplying waste to gasification melting furnace
KR101282581B1 (en) * 2010-12-30 2013-07-04 권순복 Combustion apparatus of boiler using refuse derived fuel or Refused Plastic Fuel
KR101489961B1 (en) 2013-11-13 2015-02-06 지에스플라텍 주식회사 Apparatus for inserting material of gasification melting furnace and gasification melting furnace system with the same

Similar Documents

Publication Publication Date Title
KR100924154B1 (en) Method of processing volatile organic compound, adsorption and desorption apparatus, and system for processing volatile organic compound
JP2004003823A (en) Method for preventing gas leak from waste casting device of gasification melting furnace, and waste input device
US8731383B2 (en) Delivery of iodine gas
KR970001972B1 (en) Air flow visualizing device
EP3693662B1 (en) Inflammable waste combustion and disposal device
KR100488497B1 (en) Food-waste treating machine
JP5393068B2 (en) Method and apparatus for combustion treatment of volatile organic compounds
JP4217376B2 (en) Emergency stop device for dry distillation equipment
JPH11210992A (en) Ammonia storage vaporizing device
JP2011236313A (en) Apparatus and method for treating waste
JPH01200113A (en) Induction heating type waste incinerating device
JP2674930B2 (en) Decaborane evaporator
JP5019327B2 (en) Exhaust gas treatment facility and exhaust gas treatment method
KR200278754Y1 (en) evaporator for pollutant which contains acid
JP2005336293A (en) Carbonization apparatus
JPH11288797A (en) Heat plasma device
JP2000075075A (en) Cesium-introducing device
JPS6014744Y2 (en) Coke cutting device for coke dry extinguishing equipment
JP3195627U (en) Sample drying device
KR200412467Y1 (en) Deaerator
TWM594498U (en) Sulfur waste gas recycling system
JPH11325749A (en) Apparatus for treating exhaust gas from arc furnace
JP2023022938A (en) Substrate water vapor processing method and substrate water vapor processing system
JP2008212911A (en) Apparatus for melting asbestos by electric power
JP4899027B2 (en) Soil conveyor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606