JP2004003306A - Sludge treatment method in prefabricated pile construction, and ground reinforcing structure obtained by method - Google Patents

Sludge treatment method in prefabricated pile construction, and ground reinforcing structure obtained by method Download PDF

Info

Publication number
JP2004003306A
JP2004003306A JP2003094469A JP2003094469A JP2004003306A JP 2004003306 A JP2004003306 A JP 2004003306A JP 2003094469 A JP2003094469 A JP 2003094469A JP 2003094469 A JP2003094469 A JP 2003094469A JP 2004003306 A JP2004003306 A JP 2004003306A
Authority
JP
Japan
Prior art keywords
ready
pile
sludge
hole
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003094469A
Other languages
Japanese (ja)
Other versions
JP4313070B2 (en
Inventor
Shisho Hayashi
林 志翔
Hiroyuki Nanami
名波 裕幸
Katsuhisa Takagi
高木 勝央
Kazuhiro Nagino
梛野 一博
Hiroshi Shamoto
社本 博
Kohei Sonobe
薗部 好平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon High Strength Concrete Co Ltd
Taiheiyo Cement Corp
Nippon Hume Corp
Toyo Asano Foundation Co Ltd
Original Assignee
Nippon High Strength Concrete Co Ltd
Taiheiyo Cement Corp
Nippon Hume Corp
Toyo Asano Foundation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon High Strength Concrete Co Ltd, Taiheiyo Cement Corp, Nippon Hume Corp, Toyo Asano Foundation Co Ltd filed Critical Nippon High Strength Concrete Co Ltd
Priority to JP2003094469A priority Critical patent/JP4313070B2/en
Publication of JP2004003306A publication Critical patent/JP2004003306A/en
Application granted granted Critical
Publication of JP4313070B2 publication Critical patent/JP4313070B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Piles And Underground Anchors (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sludge treatment method and ground reinforcing structure, wherein construction sludge generated in the prefabricated pile construction is not only effectively used, but the total construction cost is reduced, and the ground is reinforced, by using the construction sludge for reinforcing the ground where the prefabricated pile is constructed. <P>SOLUTION: A buried-in pile such as a concrete pile 5 is constructed to penetrate through a soft layer A of the upper part of the ground. Hardening material such as cement is mixed in sludge mixed with excavation liquid such as bentonite waste water discharged in buried-in construction, and the mixture is injected into a post hole 6 dug separately from a pile hole 1 in a construction site. The post hole 6 has a larger diameter and a smaller depth than the pile hole 1, whereby such smaller depth enables excavation without the excavation liquid, and discharged sediment is reused intact as naturally generated earth 8. The sludge containing the hardening material injected into the post pole 6 is hardened so that a soil cement post 10 is formed to directly reinforce the ground, to inhibit liquefaction, and to increase horizontal resisting force at the head of the prefabricated pile 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本願発明は、既製杭施工において発生する建設汚泥を、既製杭が施工される地盤の補強に有効利用することで埋立廃棄処理を必要としない、または最小限に抑えることができる汚泥処理方法および該処理方法により得られる地盤補強構造に関するものである。
【0002】
【従来の技術】
プレボーリング工法、中掘工法、回転圧入工法のような既製杭の埋込み施工法は、振動や騒音などの公害を軽減できることから、既製杭の施工方法として広く用いられている。
【0003】
これらの施工法から排出される汚泥は、ベントナイトまたはセメントからなる掘削液、水とセメントからなる杭周固定液、地下水等が混ざっているため、一般的には、廃棄物処理法に規定する産業廃棄物である建設汚泥として取り扱わなければならない。そのため、膨大な廃棄処理費用がかかるだけでなく、近年、これらの産業廃棄物を処分する最終処分場の受入能力が逼迫している。
【0004】
このような課題に対し、特許文献1には、建設汚泥の有効利用法として、建設汚泥にセメント系安定材を混入して加圧した後、5〜100mm程度の大きさに造粒し、それを盛土、人工地盤、管渠の埋戻し材、サンドドレーン工法のドレーン材またはマット材などに有効利用する方法が開示されている。
【0005】
また、特許文献2や特許文献3には、その改良工法として、造粒時の破砕粉を前工程に戻して処理することや、造粒した改良土の表面にアルカリ性イオンの溶出を防ぐ表面処理を施すことが開示されている。
【0006】
【特許文献1】
特開平04−049315号公報
【特許文献2】
特許第3122913号公報
【特許文献3】
特許第3122914号公報
【0007】
【発明が解決しようとする課題】
上述した建設汚泥にセメント系安定材を混入して改良土を造粒する方法は、産業廃棄物である建設汚泥を廃棄せずに有効利用できるというメリットを有するが、造粒の工程において、セメント類の混入の他、加圧、脱水処理、その解砕、分級、さらに改良土の表面処理や破砕粉の処理が必要であり、それなりの処理設備と費用を要する。
【0008】
また、大量処理のためには処理設備も大型化し、建設汚泥が発生する施工場所に設置することができず、建設汚泥の運搬や造粒化した改良土についても新たな施工現場への搬送が必要となり、コスト的には必ずしも経済的であるとは言えない。
【0009】
また、既製杭による埋込み工法では、表層地盤が軟弱な場合、杭基礎の水平抵抗性が不十分となる。
【0010】
本願発明は、このような課題の解決を図ったものであり、既製杭施工において発生する建設汚泥を、既製杭が施工される地盤の補強に用いることで、単に建設汚泥の有効利用だけでなく、全体の施工コストを低減し、かつ地盤補強、杭補強が可能な汚泥処理方法および地盤補強構造を提供することを目的としている。
【0011】
【課題を解決するための手段】
本願の請求項1に係る汚泥処理方法は、既製杭を埋込み工法により施工する過程で排出される汚泥に硬化性材料を混合してなる改良土を、前記既製杭を埋め込むために掘削した孔(以下、「杭孔」という。)とは別に掘削した孔(以下、「柱孔」という。)に充填することにより、前記既製杭に加え地盤内に前記改良土による柱を築造し、該柱により前記既製杭が埋め込まれた近傍の地盤強度を高めることを特徴とするものである。
【0012】
すなわち、排出される汚泥にセメント等の硬化性材料を混合することで、改良土(ソイルセメント)を製造し、これを用いて既製杭施工現場の地盤内にソイルセメント柱等の形で改良土による柱を築造し、その際、改良土による柱が既製杭施工現場の地盤の強度より高い強度となるようにして、既製杭近傍の地盤強度を高めることができる。
【0013】
本願の請求項2に係る汚泥処理方法は、既製杭を埋込み工法により施工する際に、杭孔を掘削する初期の段階から硬化性材料を混和した掘削液を先端ビットから吐出させながら掘削を行うことで、施工の過程で排出される汚泥に硬化性材料が混合されているようにし、この硬化性材料が混合されている汚泥を改良土として、前記杭孔とは別に掘削した柱孔に充填することにより、前記既製杭に加え地盤内に前記改良土による柱を築造し、該柱により前記既製杭が埋め込まれた近傍の地盤強度を高めることを特徴とするものである。
【0014】
従来の埋込み工法においては、杭周の土砂の強度を高めるため、ある程度の深度まで掘削した段階、あるいはオーガー等の掘削機を引き上げる際に、セメントミルク等の形で硬化性材料を注入することがしばしば行われており、また先端根固め部については、通常、杭周より富配合とした硬化性材料が注入され、攪拌、混合により杭の周囲にソイルセメントが形成される。
【0015】
しかし、従来の工法では、掘削初期の段階では、孔壁の崩壊を防止するためベントナイト等の安定液を使用するが、セメント等の硬化性材料は多く使用しないようにしている。
【0016】
請求項1に係る発明では、汚泥にセメント等の硬化性材料を混合する時期は特に限定しておらず、地上に設置した攪拌混合のための設備を用いて排出された後の汚泥にセメント等の硬化性材料を混合する場合も含めているが、請求項2では上記従来の工法とは異なり杭孔を掘削する初期の段階から硬化性材料を混和した掘削液を先端ビットから吐出させながら掘削を行うことで、汚泥が既に硬化性材料と混合された状態で排出されるようにしたため、地上には攪拌混合のための設備を必要とせず、効率のよい安価な施工が可能となる。
【0017】
なお、請求項2における硬化性材料は、例えばセメントに水等を加えたセメントミルクに必要に応じてベントナイトなどを添加したものであり、オーガー等の掘削機の先端部から吐出することができ、その場合掘削液としての機能も有する。
【0018】
請求項3は、請求項2に係る汚泥処理方法において、硬化性材料が混合された状態で排出されてくる汚泥を誘導するための流路を、前記杭孔から柱孔に向けて設けることを特徴とするものである。
【0019】
一般に埋め込み工法による既製杭の施工の際には、杭孔から排出されてくる汚泥は液体に近い非常に高い流動性を有するものであり、従来は杭孔周辺に汚泥が溜まらないように釜場と呼ばれる浅い窪みを掘り、杭孔上端から溢れ出す汚泥を釜場に一時的に貯留することで、汚泥が杭施工の障害とならないようにしている。
【0020】
請求項3では杭孔から柱孔まで流路を設けることで、既に掘削時に硬化性材料が混合されて排出されてくる汚泥(改良土)をそのまま柱孔に誘導することができ、したがって掘削孔の周辺に汚泥が溜まり作業の支障となることを防ぐことができ、釜場も不要となるとともに、効率よく既製杭の近傍に改良土による柱が築造できる。
【0021】
なお、請求項1および請求項2に係る汚泥処理方法において、改良土による柱により既製杭近傍の地盤強度を高める意義については、地盤そのものを補強する意義、液状化の恐れのあった軟弱地盤では液状化を防止する意義等があり、さらに地震時において地面に近い地盤の水平変位に対する抵抗性を向上する効果が得られる。
【0022】
既製杭としては、PHC杭、SC杭、PRC杭、PC杭、ST杭、節杭や各種鋼管杭等が挙げられる。
【0023】
硬化性材料としては、セメント、セメント組成物、スラグ系硬化材、石灰系硬化材、その他ソイルセメントを製造するのに用いられている硬化性材料等が挙げられ、中でもセメント系硬化材が一般的であるが、特に限定されない。
【0024】
扱いやすさやコストを考えた場合、セメント系材料が好ましい。その場合に得られるソイルセメント柱は従来のものと同等のものである。
【0025】
本願発明では、通常は、従来の技術の項で述べた従来技術のような複雑な処理工程による造粒は考えておらず、排出される汚泥について、必要に応じ脱水処理を施す程度で、そのままセメント等の硬化性材料を加え、掘削した孔に従来の方法で投入することでソイルセメント柱を築造できるので、基本的には施工現場で生じた汚泥は同じ施工現場内で簡単な設備により全て処理し得る。
【0026】
汚泥と硬化性材料との配合割合は特に限定されないが、周辺地盤の強度より高くするために汚泥の含水比に応じて硬化性材料を50〜500kg/m3 添加することが好ましい。
【0027】
本願発明はこのように、建設施工現場(建設汚泥発生現場)において建設汚泥を処理すると同時に、汚泥自体を有効利用して、該現場の地盤強度を高め、液状化を抑止し、あるいは杭基礎の水平変位に対する抵抗性を向上させるものである。
【0028】
しかも、請求項1に係る発明で地上に排出された後の汚泥に硬化性材料を混ぜて改良土を製造する場合でも、汚泥と硬化性材料との混合設備以外は特別の設備を必要とせず、さらに請求項2に係る発明では地上の混合設備も必要とせず、経済性にも優れている。
【0029】
汚泥に対する硬化性材料の混合、練り混ぜ方法としては、請求項1に係る発明で地上に排出された後の汚泥を用いて改良土を製造する場合、タンクに溜めた汚泥をミキサーによりセメント等の硬化性材料と混ぜる方法、汚泥を溜めたタンクに直接硬化性材料を加えて混ぜる方法、発生した汚泥をポンプを用いて柱孔に圧送し、その先端でセメントスラリー等と混合する方法、汚泥をポンプ等を用いて充填しながらセメント等の硬化性材料を添加し、オーガー等を用いて柱孔内で攪拌する方法等が考えられる。なお、請求項2に係る発明の場合は、前述のように既に硬化性材料が混合された状態で杭孔から排出されてくる。
【0030】
改良土による柱の深さは、通常は浅くてよいため、他の特別な要因がなければベントナイト泥水などの掘削液を必要としない深さまでとすることで、安価に施工することができる。
【0031】
既製杭を埋め込むために掘削した孔とは別に掘削する孔(柱孔)の掘削方法は特に限定されるものではないが、既製杭の施工に用いるオーガー等の掘削機を利用することができ、その際、水、ベントナイトやセメントなどからなる掘削液を使用せずに掘削することで、発生土はほとんどの場合、コーン指数が200kN/m2 以上となり、一般発生残土として処理することができる。なお、ここで言うコーン指数は処理土の品質判定に用いられているものであり、地盤工学会基準の「締固めた土のコーン指数試験」(JGS T 716)に準拠したものである。また、ケーシング方法による掘削方法を用いることもできる。
【0032】
請求項4は、請求項1〜3に係る汚泥処理方法において、柱孔の深さが、近傍に位置する杭孔より浅いものである場合を限定したものである。
【0033】
建物その他の上部構造の支持は基本的には構造物の形態に応じて、所定位置に配置される杭が支持し、本願発明の汚泥処理を兼ねた改良土の柱の位置や径は必ずしも限定されず、施工性の面や杭基礎の水平変位に対する抵抗性を向上させるといった地盤補強の観点からは既製杭より浅い方が有利である。
【0034】
また、液状化の恐れのある部分は地盤の上層部である場合が多く、杭頭補強の観点からも地盤の上層部が補強されることが効果的である。
【0035】
なお、施工現場の地盤の地質が不均一な場合や傾斜地である場合、構造物の形態が特殊な場合等、施工される杭の長さがその位置によって異なる場合もあり、請求項4では柱孔を、近傍の杭孔より浅くすることとした。
【0036】
具体的には、請求項1〜4に係る汚泥処理方法において、改良土による柱を築造するための柱孔の深さは、1m以上10m以下程度が望ましく、より望ましくは2m以上6m以下である。
【0037】
改良土による柱が1m未満では、汚泥処理の観点からは十分な容積が確保されず、汚泥の利用効率が悪い。また、10mより深い場合、地下水が出やすく、土質によっては掘削液を使用しなければ孔壁が崩壊し、掘削し難くなる場合があり、改良土の充填にも問題を生ずる場合がある。また、掘削液を使用した場合は、前述の通り、一般発生土として処理し難くなる。
【0038】
請求項5は請求項1〜4に係る汚泥処理方法において、前記改良土による柱を築造するための柱孔の径を、前記既製杭を埋め込むための近傍の杭孔の径より大きい径とする場合を限定したものである。
【0039】
上述のように、一般的には改良土の柱の深さは既製杭の深さよりかなり浅い場合が多く、仮に既製杭の埋設過程で排出された汚泥を全て発生現場内で利用するためには、改良土の柱の径を大きくするか、本数を増やすか、またはその両方とする必要がある。汚泥の一部を発生現場外で利用する場合も基本的には同様である。
【0040】
また、施工面では多数の孔を掘削するより大きい径の浅い孔を掘削する方が容易であるとともに、地盤補強効果も得られる。
【0041】
この柱孔の径としては、400mm以上1200mm以下が望ましい。杭径や杭長に応じて決まる発生汚泥の量にも関連するが、一般的に400mm未満では1本当たりの汚泥を処理できる容積が小さく、同一量の汚泥を処理するため、かつ地盤補強のために必要な本数が増え、極端に効率が悪くなる。
【0042】
一方、1200mmより大きくなると、従来の一般的な既製杭用機械での掘削が困難となる。ただし、掘削深さが浅く、バックホウなどを利用できる場合にはより大きな径の掘削も考えられるが、改良土の充填作業性や他の建設工事への影響の点から著しく大きな径にすることは好ましくない。
【0043】
本願の請求項6に係る地盤補強構造は、複数の既製杭が施工された地盤内に、前記既製杭を埋め込むために孔を掘削した際に発生する汚泥に硬化性材料あるいは硬化性材料を含む掘削液を混合した改良土からなる柱が、前記既製杭の近傍や既製杭間に上述の条件で適宜混在する形で分散配置されていることを特徴とするものである。なお、ここでいう近傍について具体的な数値を挙げるとすると、地盤補強や地震時の水平抵抗力の向上を考えた場合、既製杭と柱の外周間の距離が2m以内であることが望ましい。
【0044】
分散配置の形態は特に限定されないが、地盤をできるだけ均一に補強するためにある程度均等に分散させる場合と、杭頭部の補強効果を向上させるためにできるだけ既製杭に近づけて配置する場合とが考えられる。
【0045】
請求項7は、請求項6に係る地盤補強構造において、前記既製杭と前記改良土からなる柱が、既製杭を施工した地盤内に壁状に分散配置されている場合を限定したものである。
【0046】
従来のソイルセメント柱による地盤改良形式としては、ソイルセメント柱に杭的な機能も期待して杭形式の配置とする場合、1列または複数列の壁状の配置とする場合、内側の地盤の取り囲む壁状の配置とする場合、格子状の壁配置とする場合等があり、また各柱を分散させる場合と、一部をオーバーラップさせる場合とがある。
【0047】
しかし、何れもソイルセメント柱のみか、あるいは既製杭を補強するためにその周囲にソイルセメントを配したものである。本願発明では埋込み杭としての既製杭と改良土による柱が混在しており、請求項7はこれらを壁状に配置する場合を限定したものである。なと、改良土による柱が連続して一列に並べ場合は、各々をつなげて壁にすることもできる。
【0048】
請求項8は、請求項6または7に係る地盤補強構造において、前記改良土による柱が近傍にある既製杭より短くかつ太いものである場合を限定したものであり、改良土による柱の形態としては、請求項4と請求項5の組み合わせに相当する。
【0049】
【発明の実施の形態】
図1は、本願の請求項1に係る汚泥処理方法の基本概念を示したもので、軟弱層Aを貫通するようにコンクリート既製杭5等の埋込み杭が施工され、この埋込み施工の際に排出されるベントナイト泥水等の掘削液が混入した汚泥にセメント等の硬化性材料を混合し、それを施工現場内に、杭孔1とは別に掘削した杭孔1に比べて太径で短い柱孔6に充填することで、汚泥を施工現場外に出さずに処理することができる。
【0050】
一方、柱孔6は浅いため、掘削液を使用しないで掘削することができ、この柱孔6の掘削で排出される土砂は一般発生土8としてそのまま再利用することができる。
【0051】
なお、埋込み杭施工の際に排出される汚泥は、全て同じ施工現場の場内で有効利用の形で処理するのが理想であるが、種々の条件により一部を施工現場外に搬出して処理することもあり得る。また、逆に、汚泥が不足した場合は一般発生土8の一部を利用することもあり得る。
【0052】
図2〜図6は、本願の請求項1に係る汚泥処理方法の具体的な一実施形態における施工手順を示したものであり、以下の手順で施工を行う。
【0053】
オーガー2で杭孔1を掘削し、その際に排出される掘削液を含んだ汚泥3をタンク4に貯留する(図2参照)。
【0054】
コンクリート杭などの既製杭5を杭孔1に沈設して行く。その際にも汚泥3が排出され、タンク4に貯留する(図3参照)。
【0055】
埋設した既製杭5の近傍に杭孔1より径が大きく、浅い柱孔6をオーガー7で掘削する(図4参照)。このオーガー7は、図2の杭孔1を掘削するオーガー2を転用すればよく、必要に応じアタッチメント等を替える。
【0056】
柱孔6の掘削は、掘削液を使用しないで行うことで、排出される土砂は一般発生土8として、再利用することができる。なお、図4は既製杭5を杭孔1に沈設した後に柱孔6の掘削を行うことを示すものではなく、状況によって一部同時進行もあり得る。
【0057】
タンク4に貯留した汚泥3に、セメント等の硬化性材料を混合し、改良土9としてのソイルセメントを柱孔6に充填する(図5参照)。
【0058】
柱孔6内で改良土9が硬化することで、既製杭5の近傍やこれらの間に地盤補強効果を有するソイルセメント柱10が形成される(図6参照)。また、ソイルセメント柱10は少なくとも既製杭5の近傍に配置されることで、既製杭5の頭部における水平抵抗力を増すことができ、その他地震時における地盤の液状化防止効果も期待できる。
【0059】
図7〜図9は、本願の請求項2に係る汚泥処理方法の一実施形態における施工手順を示したものであり、以下の手順で施工を行う。
【0060】
掘削する杭孔1の近傍に、オーガー7であらかじめソイルセメント柱孔6を掘削する(図7参照)。掘削液等を使用しない場合、掘削排土は一般発生土8として処理することができる。
【0061】
硬化性材料を混合した掘削液(硬化性材料+水、必要に応じてベントナイト添加)をオーガー2の先端ビット2a部分等から吐出しながら杭孔1を掘削するとともに、柱孔1から柱孔6に向けて溝21を形成し、杭孔1からオーバーフローした硬化性材料を含む汚泥3を、流路としての溝21を通して柱孔6に流し込む(図8参照)。
【0062】
杭孔1に既製杭5を建て込み、オーバーフローした硬化性材料を含む汚泥3を、同様に流路としての溝21を通して柱孔6に流し込む(図9参照)。
【0063】
図10は、上述した図7〜9の実施形態における施工手順をフローチャートとして示したものである。ただし、図10に示したフローチャートはあくまで一具体例であり、本願の発明の趣旨から逸脱しない範囲で種々の改変が可能である。
【0064】
図10のフローチャートにおける掘削液、根固め液、杭周固定液は、それぞれセメント等の硬化性材料と水に必要に応じベントナイト等を添加したものであり、通常は根固め液については硬化性材料の添加量を多くする。
【0065】
セメントミルク等の硬化性材料の量は、ソイルセメントとして硬化したものが周辺地盤より高強度となるように決定される。
【0066】
図11は、本願発明の地盤補強構造の一実施形態における既製杭とソイルセメント柱の配置例を示したものである。
【0067】
図11(a)の例では、上部構造物11を支持する埋込み杭としての既製杭5の近傍や間にソイルセメント柱10を格子状の壁状に並べ、格子壁構造的に地盤を補強しつつ、既製杭5の頭部における水平抵抗力を高めている。
【0068】
図11(b)の例では、上部構造物11を支持する埋込み杭としての既製杭5の近傍や間にソイルセメント柱10を壁状に並べ、壁構造的に地盤を補強しつつ、既製杭5の頭部における水平抵抗力を高めている。
【0069】
図11(c)の例では、上部構造物11を支持する埋込み杭としての既製杭5の間にソイルセメント柱10を杭状に並べ、杭構造的に地盤を補強しつつ、既製杭5の頭部における水平抵抗力を高めている。
【0070】
その他、ソイルセメント柱10の配置は地盤補強、液状化防止、杭頭における水平抵抗力の増大等の観点から種々の配置が考えられる。
【0071】
【発明の効果】
本願発明の汚泥処理方法では、既製杭埋込み工法による建設施工現場において建設汚泥を処理すると同時に、汚泥自体をソイルセメント柱等の形で改良土として有効利用し、既製杭とソイルセメント柱からなる地盤補強構造を築造することにより、地盤強度を高め、液状化を抑止し、あるいは杭基礎の水平変形に対する抵抗性を向上させることができる。
【0072】
汚泥処理や再利用のための複雑な工程や特別の設備を必要とせず、特に請求項2の場合は地上部に攪拌混合のための設備等も必要とせず、経済性にも優れている。
【図面の簡単な説明】
【図1】本願発明の既製杭施工における汚泥処理方法の基本概念を示す断面図である。
【図2】本願の請求項1に係る発明の一実施形態における施工手順を示す断面図である。
【図3】図2に続く施工手順を示す断面図である。
【図4】図3に続く施工手順を示す断面図である。
【図5】図4に続く施工手順を示す断面図である。
【図6】図5に続く施工手順を示す断面図である。
【図7】本願の請求項2に係る発明の一実施形態における施工手順の概要を示す断面図である。
【図8】図7に続く施工手順を示す断面図である。
【図9】図8に続く施工手順を示す断面図である。
【図10】図7〜9の実施形態における施工手順の具体例を示すフローチャートである。
【図11】本願発明の地盤補強構造の一実施形態における既製杭とソイルセメント柱の配置例を示す平面図である。
【符号の説明】
A…軟弱層、B…支持層、
1…杭孔、2…オーガー、2a…先端ビット、3…汚泥、4…タンク、5…既製杭、6…柱孔、7…オーガー、8…一般発生土、9…改良土、10…柱、11…上部構造物、21…溝
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating sludge that does not require or minimize landfill disposal by effectively utilizing construction sludge generated during construction of ready-made piles to reinforce the ground on which ready-made piles are constructed. It relates to a ground reinforcement structure obtained by a processing method.
[0002]
[Prior art]
Embedding methods of prefabricated piles such as pre-boring method, excavation method, and rotary press-fitting method are widely used as methods of constructing prefabricated piles because they can reduce pollution such as vibration and noise.
[0003]
The sludge discharged from these construction methods is mixed with drilling fluid consisting of bentonite or cement, fixation fluid around the pile consisting of water and cement, groundwater, etc. It must be treated as construction sludge, which is waste. For this reason, not only is a huge waste disposal cost required, but also in recent years, the receiving capacity of a final disposal site for disposing of these industrial wastes is becoming tight.
[0004]
To cope with such a problem, Patent Literature 1 discloses a method for effectively utilizing construction sludge, in which a cement-based stabilizer is mixed into construction sludge and pressurized, and then granulated to a size of about 5 to 100 mm. A method is disclosed in which the material is effectively used as an embankment, artificial ground, backfill material for a sewer, a drain material or a mat material in a sand drain method.
[0005]
Patent Literature 2 and Patent Literature 3 disclose, as an improvement method, a method of returning crushed powder during granulation to a previous step and treating it, and a surface treatment for preventing elution of alkaline ions on the surface of the granulated improved soil. Is disclosed.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 04-049315 [Patent Document 2]
Japanese Patent No. 3122913 [Patent Document 3]
Japanese Patent No. 3122914
[Problems to be solved by the invention]
The method of granulating the improved soil by mixing the cement-based stabilizer with the construction sludge as described above has an advantage that the construction sludge, which is industrial waste, can be effectively used without being discarded. In addition to the mixing of materials, pressurization, dehydration, crushing and classification, surface treatment of the improved soil, and treatment of the crushed powder are required, which requires a certain treatment facility and cost.
[0008]
In addition, large-scale treatment requires large-scale treatment equipment, which cannot be installed at construction sites where construction sludge is generated.Therefore, construction sludge is transported and granulated improved soil is transported to new construction sites. It is necessary and cost is not always economical.
[0009]
In addition, in the embedding method using ready-made piles, when the surface ground is soft, the horizontal resistance of the pile foundation is insufficient.
[0010]
The present invention is intended to solve such problems, the construction sludge generated in the construction of the ready-made pile, by using the ground for the construction of the ready-made pile, not only effective use of construction sludge, It is an object of the present invention to provide a sludge treatment method and a ground reinforcement structure capable of reducing the entire construction cost and reinforcing the ground and piles.
[0011]
[Means for Solving the Problems]
The method for treating sludge according to claim 1 of the present application is characterized in that an improved soil obtained by mixing a hardening material into sludge discharged in a process of embedding a ready-made pile by an embedding method is excavated to bury the ready-made pile ( In addition to the above-mentioned ready-made piles, a pillar made of the improved soil is built in the ground by filling a hole (hereinafter, referred to as a “pillar hole”) excavated separately from the “pile hole”. Thus, the ground strength near the embedded ready-made pile is increased.
[0012]
That is, an improved soil (soil cement) is manufactured by mixing a hardening material such as cement with the discharged sludge, and the improved soil is used in the form of a soil cement pillar or the like in the ground of a pre-fabricated pile construction site using this. In this case, it is possible to increase the strength of the ground near the ready-made pile by making the pillar of the improved soil have a strength higher than the strength of the ground at the site of the ready-made pile.
[0013]
The sludge treatment method according to claim 2 of the present application performs excavation while discharging a drilling liquid mixed with a curable material from a tip bit from an initial stage of excavating a pile hole when constructing a ready-made pile by an embedding method. By doing so, the curable material is mixed with the sludge discharged in the process of construction, and the sludge mixed with the curable material is used as an improved soil, and is filled in a column hole excavated separately from the pile hole. By doing so, a pillar made of the improved soil is built in the ground in addition to the ready-made pile, and the strength of the ground near the embedded ready-made pile is increased by the pillar.
[0014]
In the conventional embedding method, in order to increase the strength of earth and sand around the pile, when excavating to a certain depth or when lifting an excavator such as an auger, it is necessary to inject a hardening material in the form of cement milk etc. Often, the hardened material at the tip of the pile is usually injected from the periphery of the pile, and the cement is formed around the pile by stirring and mixing.
[0015]
However, in the conventional construction method, in the early stage of excavation, a stabilizing liquid such as bentonite is used to prevent collapse of the hole wall, but a large amount of hardening material such as cement is not used.
[0016]
In the invention according to claim 1, the timing of mixing a hardening material such as cement with the sludge is not particularly limited, and the sludge discharged after the use of the equipment for stirring and mixing installed on the ground is used for the cement or the like. However, unlike the conventional method, the method of claim 2 differs from the above-described conventional method in that the drilling liquid containing the curable material is discharged from the tip bit from the initial stage of drilling the pile hole. By performing the above, the sludge is discharged in a state of being already mixed with the curable material, so that equipment for stirring and mixing is not required on the ground, and efficient and inexpensive construction becomes possible.
[0017]
In addition, the curable material in claim 2 is, for example, a material obtained by adding bentonite or the like to cement milk obtained by adding water or the like to cement, and can be discharged from the tip of an excavator such as an auger, In that case, it also has a function as a drilling fluid.
[0018]
According to a third aspect of the present invention, in the sludge treatment method according to the second aspect, a flow path for guiding sludge discharged in a state where the curable material is mixed is provided from the pile hole toward the pillar hole. It is a feature.
[0019]
Generally, when constructing ready-made piles by the embedding method, the sludge discharged from the pile hole has a very high fluidity close to liquid, and in the past, the sludge was collected so that sludge did not accumulate around the pile hole. By dug a shallow pit called, and temporarily store sludge overflowing from the upper end of the pile hole in the Kamaba, the sludge will not hinder the pile construction.
[0020]
According to the third aspect, by providing a flow path from the pile hole to the column hole, the sludge (improved soil) already mixed with the curable material at the time of excavation and discharged can be directly guided to the column hole. It is possible to prevent sludge from accumulating in the surrounding area and hinder the work, eliminating the need for a kiln and making it possible to efficiently build pillars of improved soil near the ready-made piles.
[0021]
In addition, in the sludge treatment method according to claim 1 and claim 2, regarding the significance of increasing the ground strength near the ready-made pile by the pillars of the improved soil, the significance of reinforcing the ground itself, the soft ground that may be liquefied It has the significance of preventing liquefaction, and has the effect of improving the resistance to horizontal displacement of the ground near the ground during an earthquake.
[0022]
Examples of the ready-made pile include a PHC pile, an SC pile, a PRC pile, a PC pile, an ST pile, a node pile, various steel pipe piles, and the like.
[0023]
Examples of the curable material include cement, a cement composition, a slag-based hardener, a lime-based hardener, and other hardenable materials used for producing soil cement, among which cement-based hardeners are generally used. However, there is no particular limitation.
[0024]
In view of ease of handling and cost, a cement-based material is preferable. The soil cement pillar obtained in that case is equivalent to the conventional one.
[0025]
In the present invention, usually, granulation by a complicated processing step as in the prior art described in the section of the prior art is not considered, and the discharged sludge is subjected to a dehydration treatment as needed, Soil cement columns can be built by adding a hardening material such as cement and pouring it into a drilled hole by a conventional method, so basically, sludge generated at the construction site is all collected by simple equipment in the same construction site. Can be processed.
[0026]
The mixing ratio of the sludge and the curable material is not particularly limited, but it is preferable to add the curable material in an amount of 50 to 500 kg / m 3 depending on the water content of the sludge in order to increase the strength of the surrounding ground.
[0027]
As described above, the present invention treats construction sludge at a construction site (construction site where construction sludge is generated), and at the same time, effectively uses the sludge itself to increase the ground strength at the site, suppress liquefaction, or improve the pile foundation. This is to improve the resistance to horizontal displacement.
[0028]
Moreover, even when the improved soil is produced by mixing the curable material with the sludge discharged to the ground according to the invention of claim 1, no special equipment is required except for the equipment for mixing the sludge and the curable material. Further, the invention according to claim 2 does not require a mixing facility on the ground, and is excellent in economy.
[0029]
As a method of mixing and kneading the curable material with the sludge, when producing the improved soil using the sludge discharged to the ground in the invention according to claim 1, the sludge stored in the tank is mixed with cement or the like using a mixer. Method of mixing with curable material, method of adding and mixing curable material directly into tank storing sludge, method of pumping generated sludge into pillar hole using pump, mixing with cement slurry etc. at the tip, sludge A method in which a curable material such as cement is added while filling with a pump or the like, and stirring is performed in a pillar hole using an auger or the like is considered. Incidentally, in the case of the invention according to claim 2, as described above, the curable material is discharged from the pile hole in a state of being mixed.
[0030]
Since the depth of the column made of the improved soil can be usually shallow, it can be constructed inexpensively by setting it to a depth that does not require a drilling fluid such as bentonite mud without other special factors.
[0031]
The method of drilling a hole (column hole) to be drilled separately from the hole drilled for embedding the ready-made pile is not particularly limited, but an excavator such as an auger used for construction of the ready-made pile can be used. At that time, by excavating without using a drilling liquid composed of water, bentonite, cement, or the like, the generated soil has a cone index of 200 kN / m 2 or more in most cases, and can be treated as general generated residual soil. The cone index used here is used for judging the quality of the treated soil, and is based on the JGS T 716 of the "Joint Cone Index Test of Compacted Soil" of the Japanese Geotechnical Society. Further, an excavation method by a casing method can be used.
[0032]
Claim 4 limits the case where the depth of the pillar hole is shallower than the nearby pile hole in the sludge treatment method according to Claims 1 to 3.
[0033]
The support of buildings and other superstructures is basically supported by piles arranged at predetermined positions in accordance with the form of the structure, and the position and diameter of pillars of improved soil which also serves as sludge treatment of the present invention are not necessarily limited. However, shallower than prefabricated piles is advantageous from the standpoint of ground reinforcement, such as improving workability and resistance to horizontal displacement of the pile foundation.
[0034]
In addition, the portion that may be liquefied is often the upper layer of the ground, and it is effective to reinforce the upper layer of the ground from the viewpoint of pile head reinforcement.
[0035]
In addition, when the geology of the ground at the construction site is uneven, when the ground is sloping, when the form of the structure is special, etc., the length of the pile to be constructed may vary depending on its position. The hole was made shallower than the nearby pile hole.
[0036]
Specifically, in the sludge treatment method according to any one of claims 1 to 4, the depth of the column hole for constructing the column with the improved soil is preferably about 1 m or more and 10 m or less, and more preferably 2 m or more and 6 m or less. .
[0037]
If the column made of the improved soil is less than 1 m, a sufficient volume is not secured from the viewpoint of sludge treatment, and sludge utilization efficiency is poor. If the depth is more than 10 m, groundwater is likely to flow out, and depending on the soil quality, the hole wall may collapse without using drilling liquid, making it difficult to excavate, and there may be a problem in filling the improved soil. In addition, when the drilling liquid is used, as described above, it is difficult to treat the soil as general generated soil.
[0038]
Claim 5 is the sludge treatment method according to Claims 1 to 4, wherein the diameter of the pillar hole for constructing the pillar by the improved soil is larger than the diameter of the neighboring pile hole for embedding the ready-made pile. The case is limited.
[0039]
As described above, in general, the depth of pillars of improved soil is often much shallower than the depth of ready-made piles.In order to use all sludge discharged during the burial process of ready-made piles at the generation site, It is necessary to increase the diameter of pillars of the improved soil, increase the number of pillars, or both. The same applies basically when part of the sludge is used outside the generation site.
[0040]
In addition, in terms of construction, it is easier to drill a shallow hole with a larger diameter than to drill a large number of holes, and a ground reinforcing effect can be obtained.
[0041]
The diameter of the pillar hole is desirably 400 mm or more and 1200 mm or less. Although it is related to the amount of generated sludge determined according to the pile diameter and the pile length, generally, when the thickness is less than 400 mm, the volume that can process one sludge is small, and in order to process the same amount of sludge, and for ground reinforcement. Therefore, the number of lines required increases, and the efficiency becomes extremely low.
[0042]
On the other hand, when it is larger than 1200 mm, it becomes difficult to excavate with a conventional general ready-made pile machine. However, if the excavation depth is shallow and a backhoe can be used, a larger diameter excavation is conceivable.However, it is not possible to make the diameter significantly larger from the viewpoint of workability of filling the improved soil and affecting other construction works. Not preferred.
[0043]
The ground reinforcement structure according to claim 6 of the present application includes a hardening material or a hardening material in sludge generated when a hole is excavated to bury the ready-made pile in a ground on which a plurality of ready-made piles are constructed. Pillars made of the improved soil mixed with drilling liquid are dispersed and arranged in the vicinity of the ready-made stakes or between the ready-made stakes under the aforementioned conditions as appropriate. In addition, assuming specific numerical values for the vicinity in this case, in consideration of ground reinforcement and improvement of horizontal resistance in the event of an earthquake, it is desirable that the distance between the ready-made pile and the outer periphery of the column be within 2 m.
[0044]
Although the form of the dispersal arrangement is not particularly limited, there are two cases: one is to disperse the ground to some extent evenly to reinforce the ground as uniformly as possible, and the other is to arrange it as close to the ready-made pile as possible to improve the reinforcing effect of the pile head. Can be
[0045]
Claim 7 restricts the case in which the column made of the ready-made pile and the improved soil is distributed and arranged in a wall shape in the ground on which the ready-made pile is constructed, in the ground reinforcing structure according to claim 6. .
[0046]
As the soil improvement type using the conventional soil cement columns, when the soil cement columns are also expected to have a pile-like function, when the pile type arrangement is used, when one or more rows of wall-like arrangements are used, There may be a case of a wall-like arrangement surrounding the cell, a case of a lattice-like wall arrangement, and the like. In addition, there are a case where the columns are dispersed and a case where a part of the columns is overlapped.
[0047]
However, in each case, only the soil cement column is used, or soil cement is arranged around the column to reinforce the ready-made pile. In the present invention, a ready-made pile as an embedded pile and columns made of improved soil are mixed, and claim 7 limits the case where these are arranged in a wall shape. If the columns made of the improved soil are continuously arranged in a row, they can be connected to form a wall.
[0048]
Claim 8 restricts the case in which the pillar made of the improved soil is shorter and thicker than a nearby ready-made pile in the ground reinforcement structure according to claim 6 or 7, and has a form of a pillar made of the improved soil. Corresponds to a combination of claims 4 and 5.
[0049]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows the basic concept of the sludge treatment method according to claim 1 of the present application, in which an embedded pile such as a precast concrete pile 5 is constructed so as to penetrate the soft layer A, and discharge is performed during this embedding. A hardening material such as cement is mixed with sludge mixed with a drilling fluid such as bentonite muddy water, and the mixture is placed in a construction site at a diameter larger and shorter than the hole 1 excavated separately from the hole 1. 6, the sludge can be treated without leaving it outside the construction site.
[0050]
On the other hand, since the column hole 6 is shallow, excavation can be performed without using a drilling liquid, and the earth and sand discharged by excavation of the column hole 6 can be reused as the general generated soil 8 as it is.
[0051]
Ideally, all sludge discharged during embedding of piles should be disposed of at the same construction site for effective use. It could be. Conversely, when sludge is insufficient, a part of the general generated soil 8 may be used.
[0052]
2 to 6 show a construction procedure in a specific embodiment of the sludge treatment method according to claim 1 of the present application, and the construction is performed according to the following procedure.
[0053]
The pile hole 1 is excavated by the auger 2, and the sludge 3 containing the excavated liquid discharged at that time is stored in the tank 4 (see FIG. 2).
[0054]
A ready-made pile 5 such as a concrete pile is sunk into the pile hole 1. At this time, the sludge 3 is discharged and stored in the tank 4 (see FIG. 3).
[0055]
An auger 7 excavates a shallow column hole 6 having a diameter larger than the pile hole 1 near the buried ready-made pile 5 (see FIG. 4). As the auger 7, the auger 2 for excavating the pile hole 1 in FIG. 2 may be diverted, and the attachment and the like are changed as necessary.
[0056]
The excavation of the column hole 6 is performed without using the drilling liquid, so that the discharged earth and sand can be reused as the general generated soil 8. Note that FIG. 4 does not show that the column hole 6 is excavated after the ready-made pile 5 is laid in the pile hole 1, and that part of the excavation may proceed simultaneously depending on the situation.
[0057]
A hardening material such as cement is mixed with the sludge 3 stored in the tank 4, and soil cement as the improved soil 9 is filled in the column hole 6 (see FIG. 5).
[0058]
As the improved soil 9 hardens in the column hole 6, a soil cement column 10 having a ground reinforcing effect is formed in the vicinity of the ready-made piles 5 and between them. In addition, by arranging the soil cement column 10 at least in the vicinity of the ready-made stake 5, the horizontal resistance at the head of the ready-made stake 5 can be increased, and the effect of preventing liquefaction of the ground during an earthquake can be expected.
[0059]
7 to 9 show the construction procedure in one embodiment of the sludge treatment method according to claim 2 of the present application, and the construction is performed according to the following procedure.
[0060]
A soil cement column hole 6 is excavated in advance near the excavated pile hole 1 with an auger 7 (see FIG. 7). When no drilling fluid or the like is used, the excavated soil can be treated as the generally generated soil 8.
[0061]
The drill hole 1 is excavated while the drilling liquid mixed with the curable material (curable material + water, and if necessary bentonite is added) is discharged from the tip bit 2 a of the auger 2, and the column hole 1 to the column hole 6. The sludge 3 containing the curable material overflowing from the pile hole 1 is poured into the column hole 6 through the groove 21 as a flow path (see FIG. 8).
[0062]
The ready-made stake 5 is built in the stake hole 1, and the sludge 3 containing the hardened material which overflows is similarly poured into the column hole 6 through the groove 21 as a flow path (see FIG. 9).
[0063]
FIG. 10 is a flowchart showing a construction procedure in the embodiment of FIGS. 7 to 9 described above. However, the flowchart shown in FIG. 10 is merely a specific example, and various modifications can be made without departing from the spirit of the present invention.
[0064]
The drilling liquid, the root compaction liquid and the pile circumference fixing liquid in the flowchart of FIG. 10 are respectively obtained by adding bentonite and the like to a hardening material such as cement and water as needed. Increase the amount of addition.
[0065]
The amount of the curable material such as cement milk is determined so that the material cured as soil cement has higher strength than the surrounding ground.
[0066]
FIG. 11 shows an example of arrangement of ready-made piles and soil cement columns in one embodiment of the ground reinforcement structure of the present invention.
[0067]
In the example of FIG. 11A, soil cement columns 10 are arranged in a grid-like wall shape near or between ready-made piles 5 as embedded piles that support the upper structure 11, and the ground is reinforced in a lattice wall structure. Meanwhile, the horizontal resistance at the head of the ready-made pile 5 is increased.
[0068]
In the example of FIG. 11B, the soil cement columns 10 are arranged in a wall shape near or between the ready-made piles 5 as embedded piles that support the upper structure 11, and while the ground is reinforced in a wall structure, the ready-made piles are provided. The horizontal resistance at the head of No. 5 is increased.
[0069]
In the example of FIG. 11C, the soil cement columns 10 are arranged in a pile shape between the ready-made piles 5 as embedded piles that support the upper structure 11, and while reinforcing the ground in a pile structure, Increases horizontal resistance at the head.
[0070]
In addition, various arrangements of the soil cement columns 10 are conceivable from the viewpoint of ground reinforcement, prevention of liquefaction, increase in horizontal resistance at the pile head, and the like.
[0071]
【The invention's effect】
In the sludge treatment method of the present invention, at the same time as treating construction sludge at a construction site using a ready-built pile embedding method, the sludge itself is effectively used as improved soil in the form of soil cement columns, etc. By constructing the reinforcing structure, the ground strength can be increased, liquefaction can be suppressed, or the resistance of the pile foundation to horizontal deformation can be improved.
[0072]
There is no need for complicated processes or special equipment for sludge treatment and reuse. Especially in the case of the second aspect, no equipment for stirring and mixing is required on the above-ground part, and the economy is excellent.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a basic concept of a sludge treatment method in construction of a ready-made pile according to the present invention.
FIG. 2 is a sectional view showing a construction procedure in one embodiment of the invention according to claim 1 of the present application.
FIG. 3 is a sectional view showing a construction procedure following FIG. 2;
FIG. 4 is a cross-sectional view showing a construction procedure following FIG. 3;
FIG. 5 is a sectional view showing a construction procedure following FIG. 4;
FIG. 6 is a sectional view showing a construction procedure following FIG. 5;
FIG. 7 is a cross-sectional view showing an outline of a construction procedure in one embodiment of the invention according to claim 2 of the present application.
FIG. 8 is a sectional view showing a construction procedure following FIG. 7;
FIG. 9 is a sectional view showing a construction procedure following FIG. 8;
FIG. 10 is a flowchart showing a specific example of a construction procedure in the embodiment of FIGS.
FIG. 11 is a plan view showing an example of the arrangement of ready-made piles and soil cement columns in one embodiment of the ground reinforcement structure of the present invention.
[Explanation of symbols]
A: soft layer, B: support layer,
DESCRIPTION OF SYMBOLS 1 ... Pile hole, 2 ... Auger, 2a ... Tip bit, 3 ... Sludge, 4 ... Tank, 5 ... Ready-made pile, 6 ... Pillar hole, 7 ... Auger, 8 ... General soil, 9 ... Improved soil, 10 ... Column , 11 ... superstructure, 21 ... groove

Claims (8)

既製杭を埋込み工法により施工する過程で排出される汚泥に硬化性材料を混合してなる改良土を、前記既製杭を埋め込むために掘削した孔とは別に掘削した孔に充填することにより、前記既製杭に加え地盤内に前記改良土による柱を築造し、該柱により前記既製杭が埋め込まれた近傍の地盤強度を高めることを特徴とする既製杭施工における汚泥処理方法。By filling the excavated hole separately from the hole excavated for embedding the ready-made pile, the improved soil obtained by mixing the hardening material into the sludge discharged in the process of constructing the ready-made pile by the embedding method is used, A method for treating sludge in the construction of a ready-made pile, comprising: building a pillar made of the improved soil in the ground in addition to the ready-made pile, and increasing the strength of the ground near the embedded ready-made pile by the pillar. 既製杭を埋込み工法により施工する際に、既製杭を埋め込むための孔を掘削する初期の段階から硬化性材料を混和した掘削液を先端ビットから吐出させながら掘削を行うことで、施工の過程で排出される汚泥に硬化性材料が混合されているようにし、この硬化性材料が混合されている汚泥を改良土として、前記既製杭を埋め込むために掘削した孔とは別に掘削した孔に充填することにより、前記既製杭に加え地盤内に前記改良土による柱を築造し、該柱により前記既製杭が埋め込まれた近傍の地盤強度を高めることを特徴とする既製杭施工における汚泥処理方法。When constructing a ready-made pile by the embedding method, drilling while discharging the drilling liquid mixed with hardening material from the tip bit from the initial stage of drilling a hole for embedding the ready-made pile, The curable material is mixed with the discharged sludge, and the sludge mixed with the curable material is used as an improved soil, and is filled in a hole excavated separately from the hole excavated for embedding the ready-made pile. Thus, a method of treating sludge in the construction of a ready-made pile is characterized in that a pillar made of the improved soil is built in the ground in addition to the ready-made pile, and the strength of the ground near the embedded pile is increased by the pillar. 前記硬化性材料が混合された状態で排出されてくる汚泥を誘導するための流路を、前記既製杭を埋め込むための孔から該孔とは別に掘削した孔に向けて設けることを特徴とする請求項2記載の既製杭施工における汚泥処理方法。A flow path for guiding sludge discharged in a state where the curable material is mixed is provided from a hole for embedding the ready-made pile to a hole excavated separately from the hole. A method for treating sludge in the construction of ready-made piles according to claim 2. 前記改良土による柱を築造するための孔の深さが、既製杭を埋め込むために掘削された近傍の孔より浅いものである請求項1、2または3記載の既製杭施工における汚泥処理方法。4. The sludge treatment method according to claim 1, 2 or 3, wherein a depth of the hole for constructing the pillar made of the improved soil is shallower than a nearby hole excavated for embedding a ready-made pile. 前記改良土による柱を築造するための孔の径を、前記既製杭を埋め込むために掘削された近傍の孔の径より大きい径とする請求項1、2、3または4記載の既製杭施工における汚泥処理方法。The diameter of a hole for constructing a pillar made of the improved soil is larger than the diameter of a nearby hole excavated for embedding the ready-made pile. Sludge treatment method. 複数の既製杭が施工された地盤内に、前記既製杭を埋め込むために孔を掘削した際に発生する汚泥に硬化性材料あるいは硬化性材料を含む掘削液を混合した改良土からなる柱が、前記既製杭の近傍に混在する形で分散配置されていることを特徴とする地盤補強構造。In the ground where a plurality of ready-made piles have been constructed, a column made of an improved soil obtained by mixing a drilling liquid containing a hardening material or a hardening material into sludge generated when a hole is excavated to embed the ready-made pile, A ground reinforcement structure, wherein the ground reinforcement structure is dispersedly arranged near the ready-made piles. 前記既製杭と前記改良土からなる柱が、既製杭を施工した地盤内に壁状に分散配置されている請求項6記載の地盤補強構造。The ground reinforcement structure according to claim 6, wherein the pillars made of the ready-made pile and the improved soil are distributed and arranged in a wall shape in the ground on which the ready-made pile is constructed. 前記改良土による柱は近傍にある前記既製杭より短くかつ太いものである請求項6または7記載の地盤補強構造。The ground reinforcement structure according to claim 6 or 7, wherein the pillar made of the improved soil is shorter and thicker than the neighboring ready-made pile.
JP2003094469A 2002-03-29 2003-03-31 Sludge treatment method in ready-made pile construction and ground reinforcement structure obtained by the treatment method Expired - Lifetime JP4313070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003094469A JP4313070B2 (en) 2002-03-29 2003-03-31 Sludge treatment method in ready-made pile construction and ground reinforcement structure obtained by the treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002095467 2002-03-29
JP2003094469A JP4313070B2 (en) 2002-03-29 2003-03-31 Sludge treatment method in ready-made pile construction and ground reinforcement structure obtained by the treatment method

Publications (2)

Publication Number Publication Date
JP2004003306A true JP2004003306A (en) 2004-01-08
JP4313070B2 JP4313070B2 (en) 2009-08-12

Family

ID=30446381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003094469A Expired - Lifetime JP4313070B2 (en) 2002-03-29 2003-03-31 Sludge treatment method in ready-made pile construction and ground reinforcement structure obtained by the treatment method

Country Status (1)

Country Link
JP (1) JP4313070B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720184A (en) * 2012-06-28 2012-10-10 中铁十六局集团第五工程有限公司 Method for controlling soft foundation treatment post-construction settlement of propping box type small bridge
JP2017128877A (en) * 2016-01-19 2017-07-27 株式会社トーヨーアサノ Construction method of precast pile
CN113638409A (en) * 2021-08-19 2021-11-12 天津智城工程技术有限公司 Mud digestion pile planting method
CN114370050A (en) * 2022-02-07 2022-04-19 江苏省海洋资源开发研究院(连云港) Phosphorus-doped tailing sand powder-jet pile reinforced by cotton straws and construction method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105951752B (en) * 2016-05-09 2018-10-26 江苏鸿基节能新技术股份有限公司 Large size prefabricated component underground construction device, assembly and construction method
CN105926635B (en) * 2016-05-09 2018-06-08 江苏鸿基节能新技术股份有限公司 A kind of vertical rectangular prefabricated components construction equipment, assembly and construction method
KR102315656B1 (en) * 2020-08-20 2021-10-21 현정엽 ecology-friendly basic method of construction using slime

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144410A (en) * 1988-11-25 1990-06-04 Yoshikiyo Fukushima Foundation practice combining premolded pile and soil cement, etc.
JPH0657739A (en) * 1992-07-08 1994-03-01 Toyo Lock Soil Kk Joint between improved soil and earth retaining wall and construction method thereof
JPH1060879A (en) * 1996-08-19 1998-03-03 Nippon Concrete Ind Co Ltd Building foundation and construction method thereof
JP2000073354A (en) * 1998-08-28 2000-03-07 Shohei Senda Preparating method of ground improving body and preparating method of continuous walls

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144410A (en) * 1988-11-25 1990-06-04 Yoshikiyo Fukushima Foundation practice combining premolded pile and soil cement, etc.
JPH0657739A (en) * 1992-07-08 1994-03-01 Toyo Lock Soil Kk Joint between improved soil and earth retaining wall and construction method thereof
JPH1060879A (en) * 1996-08-19 1998-03-03 Nippon Concrete Ind Co Ltd Building foundation and construction method thereof
JP2000073354A (en) * 1998-08-28 2000-03-07 Shohei Senda Preparating method of ground improving body and preparating method of continuous walls

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720184A (en) * 2012-06-28 2012-10-10 中铁十六局集团第五工程有限公司 Method for controlling soft foundation treatment post-construction settlement of propping box type small bridge
JP2017128877A (en) * 2016-01-19 2017-07-27 株式会社トーヨーアサノ Construction method of precast pile
CN113638409A (en) * 2021-08-19 2021-11-12 天津智城工程技术有限公司 Mud digestion pile planting method
CN114370050A (en) * 2022-02-07 2022-04-19 江苏省海洋资源开发研究院(连云港) Phosphorus-doped tailing sand powder-jet pile reinforced by cotton straws and construction method thereof
CN114370050B (en) * 2022-02-07 2023-09-15 江苏海洋大学 Powder spraying pile doped with phosphate tailing sand and reinforced with cotton straw and construction method thereof

Also Published As

Publication number Publication date
JP4313070B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
KR100964796B1 (en) Method for constructing the steel pipe-concrete composite pile structurized of burying and unifying into the bedrock, and a pile construction
CN201245846Y (en) Clamshell excavator stirring concrete enclosure wall
KR100760293B1 (en) Tunnel construction method for shallow overburden tunnel
KR100956880B1 (en) bearing power reinforce method by casing exclusion type step grouting of microfile
KR102223856B1 (en) Foundation structure of waste landfill site and construction method thereof
CN113445516A (en) Drilling and pouring type cement soil pile and construction method thereof
RU2331736C1 (en) Method for improving massive of loessial collapsible soil in base of buildings and structures
JP4313070B2 (en) Sludge treatment method in ready-made pile construction and ground reinforcement structure obtained by the treatment method
CN110080169A (en) A kind of construction method reclaimed fields from the sea utilized based on basement
JP2003147782A (en) Foundation structure for constructing new building on existing basement and its construction method
CN114164726B (en) Local deep excavation backfill structural roadbed and rapid construction method
CN106917402A (en) A kind of CFG pile precast piles head and CFG pile construction methods
CN213897154U (en) Soft soil foundation pit bottom curing structure
KR102344100B1 (en) A method of reducing sacrificial steel pipe for cast-in-place concrete piles at sea and on water
JP5157814B2 (en) Installation method of ready-made piles
KR101021913B1 (en) A method for constructing cut-off temporary structure for sheathing work
JPH06228947A (en) Construction of landslide protection wall in ground filled up with wastes
KR20130073336A (en) Pile structure and construction methods
JP3881961B2 (en) Pile embedding method and excavator used for the method
JP4092411B2 (en) Soil disposal method, foundation pile construction method to treat the soil
JP2010281038A (en) Earth retaining method
KR102315656B1 (en) ecology-friendly basic method of construction using slime
JP2005146756A (en) Earth retaining impervious wall construction method and earth retaining impervious wall formed by it
JPH11269874A (en) Pile construction method for foundation pile
JP2004124452A (en) Foundation pile structure in bearing ground and working method of foundation pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4313070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term