JP2004001355A - Absorber, absorbent article, water absorbent resin, and its manufacturing method and evaluating method - Google Patents

Absorber, absorbent article, water absorbent resin, and its manufacturing method and evaluating method Download PDF

Info

Publication number
JP2004001355A
JP2004001355A JP2002270652A JP2002270652A JP2004001355A JP 2004001355 A JP2004001355 A JP 2004001355A JP 2002270652 A JP2002270652 A JP 2002270652A JP 2002270652 A JP2002270652 A JP 2002270652A JP 2004001355 A JP2004001355 A JP 2004001355A
Authority
JP
Japan
Prior art keywords
water
liquid
absorbent resin
height
absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002270652A
Other languages
Japanese (ja)
Other versions
JP2004001355A5 (en
JP4261853B2 (en
Inventor
Kinya Nagasuna
長砂 欣也
Norisuke Suminaga
角永 憲資
Mitsuko Mihashi
三橋 晃子
Motohiro Imura
井村 元洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2002270652A priority Critical patent/JP4261853B2/en
Publication of JP2004001355A publication Critical patent/JP2004001355A/en
Publication of JP2004001355A5 publication Critical patent/JP2004001355A5/ja
Application granted granted Critical
Publication of JP4261853B2 publication Critical patent/JP4261853B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorber, an absorbent article and a water absorbent resin which can be used suitable for this absorber, the absorbent article which realize both diffusing capability and storing capability of liquid, realize in dry feeling and return volume of liquid and which provides thin shape more and weight reduction. <P>SOLUTION: The absorber includes a liquid diffusing member and the water absorbent resin. When a capillary absorption index in height of 40cm of the liquid diffusing member is referred to as A (concerning A≥0.10), a capillary absorption index B in height of 40cm as the water absorbing resin satisfies formula 1 (B/A≥0.7) is used. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は紙おむつや生理ナプキン、いわゆる失禁パット等の衛生材料、結露吸水シート、農園芸保水材、土木用止水材、メディカルシーツ等の医療材料、食品用鮮度保持材、食品用ドリップ吸収材等の用途に好適に用いられる吸収体、吸収性物品、吸水性樹脂、およびその製造方法と評価方法に関するものである。
【0002】
【従来の技術】
現在、紙おむつや生理用ナプキン、いわゆる失禁パット等の衛生材料には、体液を吸収させることを目的としてパルプ等の親水性繊維およびアクリル酸(塩)等を主原料とする水膨潤性架橋重合体である吸水性樹脂がその構成材料として幅広く利用されている。近年、これら紙おむつや生理用ナプキン等の衛生材料は、高機能かつ薄型化が進み、衛生材料1枚あたりの吸水性樹脂の使用量や、吸水性樹脂と親水性繊維等からなる吸収体全体に対する吸水性樹脂の重量割合が増加する傾向にある。つまり、かさ比重の小さい親水性繊維を少なくし、吸水性に優れ、かつ、かさ比重の大きい吸水性樹脂を多く使用することにより、吸収体における吸水性樹脂の比率を高め、これにより吸水量を低下させることなく衛生材料の薄型化を図っている。
【0003】
しかしながらこのように親水性繊維の比率を低め、吸水性樹脂を増加させた衛生材料は単純に液体を貯蔵するという観点からは好ましい方向であるが、実際のおむつの使用状況における液体の分配・拡散を考えた場合には、むしろ問題が生じてくる。多量の吸水性樹脂は吸水により柔らかいゲル状となり、いわゆるゲルブロッキングという液の拡散を大きく妨げる現象をひき起こす。このような問題を避け、吸収体の吸収特性を維持するためには親水性繊維と吸水性樹脂の比率はおのずと制限され、衛生材料の薄型化にも限界が生じてくる。
従来吸収体中の液の拡散を高め、吸収材料をより効率的に使用するために液の分配・拡散方法や液拡散部材が種々検討されており、これらの部材を用いた吸収性物品も種々知られている。これらの例としては、吸収体の親水性繊維の特定領域が高密度に圧縮された吸収パッド(米国特許4,781,710号)、強度、比表面積の異なる2種以上の繊維を湿式で成形、結合させた、特定の吸い上げ特性を有する流体分配材料(国際特許97/45087号)、高内部相エマルションを用いて製造された連続気泡を有するフォーム状吸収材料(米国特許5,387,207号、米国特許5,134,007号、米国特許6,107,538号)、好ましくは連続気泡を有するフォーム状吸収材料を用いた狭いクロッチ幅を有し、クロッチ領域の吸収能力が吸収性コアの全吸収能力の40%以下である吸収性コア(国際特許98/43573号、特表2000−510365号)等が挙げられる。
【0004】
また紙おむつのような吸収性物品の液の吸収効率を高め、保持するために液獲得のための部材が提案されている。このような液獲得部材としては架橋されたセルロース(特開昭63−264971号)、特定の液浸透率指数を有する排出処理層(特開平5−261126号)等が知られている。
しかしながら、上記液拡散部材により分配・拡散された液を貯蔵させるための貯蔵材料として吸水性樹脂を用いた場合、用いる液拡散部材によってはその中の液がほとんど吸水性樹脂に移行して吸収されず吸水性樹脂が液貯蔵部材として効率よく作用しないことが判明した。特に液拡散部材として垂直方向の吸い上げ能力が非常に高い材料、たとえば先述したような高内部相エマルションを用いて製造された内部に微細な連続気泡を有する多孔質重合体等を用いた場合には、驚くべきことにその性状によっては吸水性樹脂が該多孔質重合体からほとんど液を吸収できず、吸水性樹脂本来の貯蔵機能を全く発揮できない場合があることが判明した。そのため液が吸収体中で十分に拡散できたとしても、それを貯蔵する機能が良好に働かないため、期待された吸収量よりはるかに少ない容量で吸収性物品から液漏れが生じる等の現象が認められた。
【0005】
この問題を解決すべき技術として、上記吸水性樹脂のような浸透圧による吸収材と表面積の大きい材料(たとえば上記高内部相エマルションを用いて製造された連続気泡を有する粒子状の多孔質フォーム状吸収材料や、ガラスマイクロ繊維等)とを組み合わせた、毛管吸収能力の高い液貯蔵部材が開示されている(例えば、特許文献1および特許文献2を参照。)。
しかしこの手法によれば液貯蔵部材として上記のような複数の材料を組み合わせ用いるため、これらの材料を組み合わせて液貯蔵材料を製造するための新たな装置が必要で工程が煩雑になるのみならず、吸水性樹脂の吸収能力はその周辺に表面積の大きい材料が存在しても、まだまだ低いレベルにあるという問題がある。さらに用いる表面積の大きい材料が吸水性樹脂よりも吸収能力が低い場合には、全体の液貯蔵部材としての液吸収貯蔵能力が低下するという問題もある。
【0006】
また、前述のように液獲得部材を存在させることにより、たしかに初期の状態において液は迅速に吸収体中に取り込まれるが、吸収量が増大するにつれ、ある時期以降においては吸水性樹脂と親水性繊維等からなる吸収体が液獲得部材中に存在する液を吸収しきれなくなり、吸収速度が逆に遅くなったり、戻り量が増大したりする場合が認められた。
また現状の薄型といわれる吸収性物品においても、まだまだその重量は重く、厚みも厚いものであり、商品の流通、陳列スペース、購入、外出時の使用等においてはまだまだ満足のいくものではなく、さらなる薄型化の要求がある。このために吸収体中の吸水性樹脂濃度をさらに増加させた場合、たとえば嵩高い親水性繊維の使用量を低減し、吸水性樹脂を主体とする吸水性樹脂層を液貯蔵部材として用いようとした場合には、先述したような吸水性樹脂のゲルブロッキングという問題が一段とクローズアップされ、目的とする吸収容量が実現できなくなる場合があった。
【0007】
吸水性樹脂を主体とする吸水性樹脂層を液貯蔵部材として用いる技術としては、第1の繊維材料と第1の超吸収材料からなる第1の構造体と、第2の繊維材料と第1の超吸収材料より吸収速度の速い第2の超吸収材料からなる第2の構造体を備えた吸収コア(例えば、特許文献3参照。)、液捕捉層とゲル層透過値が特定量以上の超吸収材料からなる超吸収材層とからなる上部組立体および、液体の貯蔵のための空隙空間をもった上層と加圧下吸収倍率が特定範囲の超吸収材層とを収容する下層を有する特定構造の下部組立体を有する吸収体(例えば、特許文献4参照。)、吸水性ポリマーが不織布の繊維間に保持された第1吸収層と、親水性繊維の集合体からなる第2吸収層を有しており、第1吸収層が液透過性表面シート側に位置している吸収性物品(例えば、特許文献5参照)、湿潤可能な繊維と表面架橋された吸水性樹脂からなるゲルブロッキングのない吸収体で、繊維と該表面架橋された吸水性樹脂中の吸水性樹脂の重量割合が75〜95重量%であり、荷重下での体積増加率が600秒後15%以上である吸収体(例えば、特許文献6参照。)等が知られている。
【0008】
これらの上記特許文献3や特許文献4には吸収体中の液貯蔵位置を下部から上部に移していく吸収体の構成に関する技術、特許文献5にはおむつの裏面シートのざらつきをなくする技術、特許文献6には吸収体の膨潤状態の空隙率を規定した技術が開示されているが、液を受け止めた液獲得部材と吸水性樹脂層との液の分配関係は述べられていない。
またパルプと吸水性樹脂の合計量に対して吸水性樹脂の比率が10〜90重量%の体液吸収物品で、パルプ繊維空間に保持された液をポリマーに移行させるために体液吸引吸収性能が特定の吸水性ポリマーを用いる技術も出願されている(例えば、特許文献7参照。)。
【0009】
しかしこの場合に用いられているポリマーは嵩比重の比較的小さい、不定形度の高いポリマーであり、ポリマーの周囲にあるパルプの隙間に保持した液を素早く吸収させるという、いわゆる吸水速度が重要視されており、同様に液獲得部材と吸水性樹脂層との液の分配関係については記載されていない。
なお、従来、吸水性樹脂の吸収能力を測定した例として、負の圧力の無い状態での吸収能力の測定についての開示がある(例えば、特許文献8参照。)。
【0010】
【特許文献1】
国際公開第99/47184号パンフレット
【0011】
【特許文献2】
米国特許第6107538号明細書
【0012】
【特許文献3】
特表平8−511973号公報
【0013】
【特許文献4】
特表平8−511974号公報
【0014】
【特許文献5】
特開2000−286505号公報
【0015】
【特許文献6】
国際公開第01/30290号パンフレット
【0016】
【特許文献7】
特開2001−276124号公報
【0017】
【特許文献8】
国際公開第88/01282号パンフレット
【0018】
【発明が解決しようとする課題】
従って、本発明の目的は、上述した問題点を解決するため、液拡散部材および吸水性樹脂を用いる吸収体や吸収性物品において、表面積の大きい材料等の補助材料を用いずとも液拡散部材から吸水性樹脂に液が十分に受け渡され吸収される、すなわち液の拡散能力および貯蔵能力の両者に優れた吸収体、吸収性物品、および該吸収体、吸収性物品に好適に使用できる吸水性樹脂を提供すること、および、液獲得部材および吸水性樹脂を用いる吸収体や吸収性物品において、吸水性樹脂濃度をより高めた場合であっても、液獲得部材から吸水性樹脂に液が良好に移行し、繰り返し液を吸収してもその液獲得機能が大きく低下せず、ドライ感、液の戻り量に優れ、かつより薄型、軽量化を実現する吸収体、吸収性物品、および該吸収体、吸収性物品に好適に使用できる吸水性樹脂を提供することにある。
【0019】
【課題を解決するための手段】
本発明者は上記目的を達成すべく鋭意検討した結果、これまでに吸水性樹脂の能力としては知られていない吸水性樹脂単体の毛管吸収能力という性能に着目し、液拡散部材や液獲得部材の毛管吸収能力と吸水性樹脂の毛管吸収能力との間に以下に述べる特定の関係を成立させることで、上記特許文献1(国際公開第99/47184号パンフレット)に記載されているような表面積の大きい材料等の他の補助的な吸い上げ材料を用いなくても吸水性樹脂が液拡散部材から液を良好に吸収しうること、および、吸水性樹脂が液獲得部材から液を良好に吸収しうることを見いだした。前記毛管吸収能力とは、後に詳しく説明するが、図1に略図を示した装置を用いて測定するものであり、測定試料(吸水性樹脂)を液溜容器の生理食塩水の水面より数十cm高い位置に置いて、その高さでの水柱による負の圧力に抗して液を吸い上げる毛管吸収能力を測定するものである。従来、負の圧力の無い状態、つまり、液溜容器の液面と試料位置が同じ高さでの吸収能力を測定した例は見られるが(特許文献8:国際公開第88/01282号パンフレット)、吸水性樹脂単体について、このような負の圧力下における毛管吸収能力が測定された例はなく、本発明の方法で測定した吸水性樹脂の毛管吸収能力と吸収体の性能との相関関係も知られていなかった。すなわち液拡散部材や液獲得部材の特性に応じて上記関係を維持するような性能を有する吸水性樹脂を用いて吸収体および吸収性物品を作成すれば、吸収体中で液の拡散から貯蔵、獲得から貯蔵、または獲得から貯蔵・拡散というシステムが良好に作用し、非常に簡単な製造プロセスで非常に優れた液吸収能力を示す吸収体および吸収性物品が提供できる事を見いだし、本発明を完成させるに至った。
【0020】
さらに、重量平均粒子径(本発明の吸水性樹脂の重量平均粒子径測定法は、後に説明する通り、篩い分けによって求められるもので、篩目径の重量平均である)が特定範囲にあり、粒子に吸液させた時の無加圧下における飽和膨潤時の粒子間隙間率と無加圧下における飽和膨潤時の粒子間平均隙間半径が特定範囲にある吸水性樹脂を原料粉末として使用すること、及び、水分散性微粒子の分散液をバインダーとして使用すると、極めて効率よく、吸水性樹脂微粉末を造粒することができ、かつ強固な接着性、かつ再分散性を有する、本発明の吸収体、吸収性物品に好適に使用できる吸水性樹脂粒子を容易に得られ、優れた吸収特性を有することを見出し、本発明を完成するに至った。
【0021】
すなわち、本発明にかかる吸収体は、液拡散部材と吸水性樹脂を含む吸収体であって、前記液拡散部材の40cmの高さにおける毛管吸収指数をA(ただしA≧0.10)としたときに、前記吸水性樹脂として40cmの高さにおける毛管吸収指数Bが以下の式を満足するものを用いることを特徴とする。
B/A≧0.7   …(式1)
本発明にかかる別の吸収体は、液拡散部材と吸水性樹脂を含む吸収体であって、前記液拡散部材の40cmの高さにおける毛管吸収倍率をC(ただしC≧2.0(g/g))としたときに、前記吸水性樹脂として40cmの高さにおける毛管吸収倍率Dが以下の式を満足するものを用いることを特徴とする。
【0022】
D/C≧0.7   …(式2)
本発明にかかる別の吸収体は、液拡散部材と液貯蔵部材を含む吸収体であって、前記液拡散部材として吸い上げ高さ30cm以上の部材、前記液貯蔵部材として40cmの高さにおける毛管吸収倍率Dが15(g/g)以上の吸水性樹脂を用いることを特徴とする。
本発明にかかる別の吸収体は、液拡散部材と液貯蔵部材を含む吸収体であって、前記液拡散部材として吸い上げ高さ30cm以上の部材、前記液貯蔵部材として表面架橋処理された重量平均粒子径250μm以下の吸水性樹脂を用いることを特徴とする。
【0023】
本発明にかかる別の吸収体は、液拡散部材とポリアクリル酸(塩)系架橋重合体を主成分とする吸水性樹脂を含む吸収体であって、前記液拡散部材が高内部相エマルションを重合して得られる多孔質重合体であり、前記液拡散部材と前記吸水性樹脂の合計重量に対する吸水性樹脂の重量割合が75重量%以上90重量%以下であることを特徴とする。
本発明にかかる別の吸収体は、液獲得部材および吸水性樹脂の散布量が250g/m以上の吸水性樹脂層を含む吸収体であって、前記液獲得部材の40cmの高さにおける毛管吸収指数をE(ただしE<0.1)としたときに、前記吸水性樹脂として40cmの高さにおける毛管吸収指数Bが以下の式を満足するものを用いることを特徴とする。
【0024】
B/E≧10   …(式3)
本発明にかかる別の吸収体は、液獲得部材および吸水性樹脂の散布量が250g/m以上の吸水性樹脂層を含む吸収体であって、前記液獲得部材の40cmの高さにおける毛管吸収指数をE(ただしE<0.1)としたときに、前記吸水性樹脂層の40cmの高さにおける毛管吸収指数Fが以下の式を満足することを特徴とする。
F/E≧10   …(式4)
本発明にかかる別の吸収体は、液獲得部材および吸水性樹脂の散布量が250g/m以上の吸水性樹脂層を含む吸収体であって、前記液獲得部材の40cmの高さにおける毛管吸収倍率Gが1.0(g/g)以下であり、前記吸水性樹脂として40cmの高さにおける毛管吸収倍率Dが5(g/g)以上のものを用いることを特徴とする。
【0025】
本発明にかかる別の吸収体は、液獲得部材および吸水性樹脂の散布量が250g/m以上の吸水性樹脂層を含む吸収体であって、前記液獲得部材の40cmの高さにおける毛管吸収倍率Gが1.0(g/g)以下であり、前記吸水性樹脂層の40cmの高さにおける毛管吸収倍率Hが5(g/g)以上であることを特徴とする。
本発明にかかる吸収性物品は、本発明の吸収体を含む。
本発明にかかる吸水性樹脂粒子は、重量平均粒子径が50〜300μm、生理食塩水(0.9重量%NaCl水溶液)に飽和膨潤させた時の無加圧下における飽和膨潤時の粒子間隙間率が30〜50%、かつ無加圧下における飽和膨潤時の粒子間平均隙間半径が80〜150μmの吸水性樹脂を造粒してなる吸水性樹脂粒子であって、前記吸水性樹脂粒子の重量平均粒子径が造粒前から50%以上上昇されてなる。
【0026】
本発明にかかる別の吸水性樹脂粒子は、ポリアクリル酸(塩)系架橋重合体を主成分とする吸水性樹脂粒子であって、40cmの高さにおける毛管吸収倍率Dが25(g/g)以上である。
本発明にかかる吸水性樹脂粒子の製造方法は、重量平均粒子径が50〜300μm、生理食塩水(0.9重量%NaCl水溶液)に飽和膨潤させた時の無加圧下における飽和膨潤時の粒子間隙間率が30〜50%、かつ無加圧下における飽和膨潤時の粒子間平均隙間半径が80〜150μmの吸水性樹脂に、水分散性微粒子の分散液を添加することにより重量平均粒子径を50%以上上昇させることを特徴とする。
【0027】
本発明にかかる吸収性物品は、本発明の吸水性樹脂粒子を含む。
本発明にかかる吸水性樹脂は、ポリアクリル酸(塩)系架橋重合体を主成分とする吸水性樹脂であって、40cmの高さにおける毛管吸収倍率Dが25(g/g)以上である。
本発明にかかる吸収性物品は、本発明の吸水性樹脂を含む。
本発明にかかる吸水性樹脂の評価方法は、吸液位置の高さH1が液貯蔵容器の液面の高さH2よりも高い位置にある状態で吸水性樹脂が所定時間内に吸収する液の吸収倍率を測定する。
【0028】
【発明の実施の形態】
[1]毛管吸収能力
本発明で用いる毛管吸収能力は、一般的に、紙、パルプ等のような毛細管現象によって液を吸い上げ、吸収する材料の吸収力を評価するために従来から用いられている評価項目であり、後述する装置を用いて吸液位置を種々の高さに変化させた状態で試料の単位重量あたりに吸収する液量を測定することにより、試料の有する毛管吸収力、液の吸上げ能力を評価する。本発明における毛管吸収能力である毛管吸収倍率の具体的な測定方法については後述する実施例において詳細に記載するが、同一原理の下での測定法がたとえば Textile Research Journal Vol.57, 356(1967)、“Absorbency”(Chatterjee, Textile Science and Technology, Vol.7, 1985)、特開平8−52349号公報、国際特許99/47184号等にも記載されている。
【0029】
本発明における、吸液位置の高さH1が液貯蔵容器の液面の高さH2よりも高い位置にある状態で吸水性樹脂が所定時間内に吸収する液の吸収倍率を測定する吸水性樹脂の評価方法は上述した手法を吸水性樹脂ではじめて行うことにより、その値により、吸水性樹脂の、液拡散部材や液獲得部材等の他の基材からの液吸収能力を正しく判断しうることを見いだしたものである。その測定精度を高め、吸収体の性能との相関性を高くするためには吸液位置の高さH1と液貯蔵容器の液面の高さH2の高度差が20〜60cmの状態で評価することが好ましく、30〜50cmの高度差を付けることがより好ましい。
【0030】
本発明における毛管吸収能力には毛管吸収倍率および毛管吸収指数の2種類がある。本発明における毛管吸収倍率は、その吸液位置と液貯蔵容器の液面とに高低差をつけた状態で30分間に試料が吸収する液の量(倍率)を測定する。吸液位置と液貯蔵容器の液面との高低差が40cmの場合が「40cmの高さにおける毛管吸収倍率」、吸液位置と液貯蔵容器の液面との高低差が0cmの場合が「0cmの高さにおける毛管吸収倍率」と定義される。
また本発明における毛管吸収指数は、その吸液位置と液貯蔵容器の液面とに高低差をつけた状態で30分間に試料が吸収する毛管吸収倍率の値を、液貯蔵容器の液面との高さの差を0cmとして30分間に試料が吸収する0cmの高さにおける毛管吸収倍率の値で除することにより求められる。「40cmの高さにおける毛管吸収指数」とは吸液位置と液貯蔵容器の液面との高低差が40cmの場合の「40cmの高さにおける毛管吸収倍率」の値を、液貯蔵容器の液面との高低差が0cmの場合の「0cmの高さにおける毛管吸収倍率」の値で除することにより求められる。
【0031】
現在市販されて多量に衛生材料に用いられている吸水性樹脂はアクリル酸(塩)を主原料とするポリアクリル酸(塩)架橋重合体であり、液体を吸収するメカニズムは、パルプのような毛管吸収ではなく、基本的には被吸収液と高分子電解質であるポリマー自身の浸透圧差に由来する。しかし液の垂直方向の吸上げ能力に優れた液拡散部材や液獲得部材から該部材が保持している液を吸水する吸水性樹脂の能力はこれまでに吸水性樹脂の能力として一般的に知られている吸収倍率、吸水速度、加圧下の吸収倍率、ゲル層の液通液性等の吸収特性からだけでは全く予測できないものであった。
【0032】
本発明者らは液拡散部材や液獲得部材と同様に吸水性樹脂においても毛管吸収能力という能力に着目し検討したところ、吸水性樹脂の種類により毛管吸収能力が大きく異なること、さらに液拡散部材や液獲得部材の毛管吸収能力と特定の関係を有する毛管吸収能力の吸水性樹脂を該液拡散部材や液獲得部材と組み合わせて用いることによって、液拡散部材や液獲得部材から吸水性樹脂が液を良好に吸収、貯蔵できることを見いだした。さらにこの関係を維持するように設計した吸収体は非常に優れた液吸収効率をしめすこと、またこのような吸収体を用いた紙おむつ等の吸収性物品は吸水性樹脂がおむつ全体にわたって非常に有効に使われるため、おむつ全体の吸収能力も非常に大きくできること、またこの高い吸収能力を所望の実使用レベルの吸収能力に調整することで、より部材の少ない、薄型の、動きやすいおむつが製造できることを見いだした。
【0033】
本発明において吸水性樹脂の毛管吸収能力を発現させるためには、吸水性樹脂の物理的形状に由来する毛管吸引力と、表面架橋処理することで発現する種々のポリマー自身の浸透圧に由来する吸水特性とのバランスが非常に重要であると考えられる。
[2]液拡散部材と吸水性樹脂を含む吸収体
(2−1)液拡散部材と吸水性樹脂の毛管吸収能力の関係
本発明における、液拡散部材と吸水性樹脂の毛管吸収能力の関係について説明する。
【0034】
本発明に用いることのできる吸水性樹脂としては、液拡散部材の40cmの高さにおける毛管吸収指数をA(ただしA≧0.10)としたときに、該吸水性樹脂として40cmの高さにおける毛管吸収指数Bが以下の式を満足するものである。
B/A≧0.7   …(式1)
本発明に必要な吸水性樹脂の40cmの高さにおける毛管吸収指数Bの値は用いる液拡散部材の特性、すなわち用いる液拡散部材の40cmの高さにおける毛管吸収指数Aによって異なり、上記B/A≧0.7の関係を満足しておれば液拡散部材から吸水性樹脂へ液が良好に分配され、吸水性樹脂が良好に液を吸収貯蔵することができる。B/Aが0.7に満たない場合は吸水性樹脂が液拡散部材から液を吸収することが困難で、液拡散部材からの液分配率が低くなり、おむつにこれらの吸収体を組み込んでも吸水性樹脂の吸収量が向上しない場合があり、液貯蔵部材として吸水性樹脂が良好に作用しない。好ましくは吸水性樹脂としてB/A≧1.3を満たすもの、より好ましくは吸水性樹脂としてB/A≧1.5を満たすものである。またB/Aの値が2.0を越える場合には、液拡散部材の液拡散率が低下する場合があり、注意を有する。なお、以降、B/Aの値のことを液拡散貯蔵係数1と称する場合がある。
【0035】
また本発明に用いることのできる別の吸水性樹脂としては、該液拡散部材の40cmの高さにおける毛管吸収倍率をC(ただしC≧2.0(g/g))としたときに、該吸水性樹脂として40cmの高さにおける毛管吸収倍率Dが以下の式を満足するものである。
D/C≧0.7   …(式2)
本発明に必要な吸水性樹脂の40cmの高さにおける毛管吸収倍率Dの値は用いる液拡散部材の特性、すなわち用いる液拡散部材の40cmの高さにおける毛管吸収倍率Cによって異なり、上記D/C≧0.7の関係さえ満足しておれば液拡散部材から吸水性樹脂へ液が良好に分配され、吸水性樹脂が良好に液を吸収貯蔵することができる。D/Cが0.7に満たない場合は吸水性樹脂が液拡散部材から液を吸収することが困難で、液貯蔵部材として良好に作用しない。好ましくは吸水性樹脂としてD/C≧1.3を満たすもの、より好ましくは吸水性樹脂としてD/C≧1.5を満たすものである。またD/Cの値が10を越える場合には、液拡散部材の液拡散率が低下する場合があり、注意を有する。なお以降D/Cの値のことを液拡散貯蔵係数2と称する場合がある。
【0036】
本発明では、上記した液拡散貯蔵係数1、液拡散貯蔵係数2いずれもが本発明の範囲を満たしていることがより好ましい。片方のみしか満たしていない場合には、吸水性樹脂の液拡散部材からの液吸収能力が使用条件によっては良好に発揮されないこともあるので注意を有する。
また本発明は、特定の関係を有する液拡散部材と吸収性樹脂からなる吸収体であるが特定の関係を有する液拡散部材と吸収性樹脂からなる液移送・吸収システムとしても作用する。すなわち本発明は、液拡散部材と吸水性樹脂を含む吸収体であって、該液拡散部材の40cmの高さにおける毛管吸収指数をA(ただしA≧0.10)としたときに、該吸水性樹脂として40cmの高さにおける毛管吸収指数Bが以下の式を満足するものを用いることを特徴とする液移送・吸収システム、
B/A≧0.7   …(式1)
および、液拡散部材と吸水性樹脂を含む吸収体であって、該液拡散部材の40cmの高さにおける毛管吸収倍率をC(ただしC≧2.0(g/g))としたときに、該吸水性樹脂として40cmの高さにおける毛管吸収倍率Dが以下の式を満足するものを用いることを特徴とする液移送・吸収システム、
D/C≧0.7   …(式2)
をも提供することができる。
(2−2)液拡散部材
本発明に使用することのできる液拡散部材とは、40cmの高さにおける毛管吸収指数Aが0.10以上であり、かつ、40cmの高さにおける毛管吸収倍率Cが2.0(g/g)以上である、本質的にヒドロゲル形成能を持たない材料と定義され、吸収体または吸収体を有する吸収性物品に加えられた液を、その吸収体のより広い面積に拡散させるための材料であり、特に実使用の形態においてもそのような機能を十分に発揮できるために、多孔質構造を有し垂直方向の液吸い上げ能力に優れているものである。また液拡散部材自体が一定レベルの液の保持、吸収、貯蔵能力を有しているものがより好ましい。
【0037】
本発明に用いることのできる液拡散部材は、液の拡散・吸い上げ能力に優れているものであり、40cmの高さにおける毛管吸収指数Aが0.10以上であることが必要である。従来の紙おむつ用に用いられるフラップパルプ等の40cmの高さにおける毛管吸収指数Aは本発明の測定法によれば0.05以下であり、このような毛管吸収指数Aが0.10未満の材料では液の垂直方向の吸い上げ能力が小さく、拡散部材全面や吸収体全体に液を拡散させることが困難であり、吸収体全体の材料が効率的に使用されない。好ましくは40cmの高さにおける毛管吸収指数Aが0.20以上、より好ましくは0.30以上、もっとも好ましくは0.40以上のものである。
【0038】
また、本発明に用いることのできる液拡散部材は、0cmの高さの毛管吸収倍率が10(g/g)以上であることが好ましい。0cmの高さの毛管吸収倍率が高いほど、液拡散部材として液の輸送容量が大きく、液の吸収、保持、貯蔵という観点からも機能できるため優れた吸収体が得られる。より好ましくは0cmの高さの毛管吸収倍率が20(g/g)以上、さらに好ましくは0cmの高さの毛管吸収倍率が30(g/g)以上である。
本発明に用いることのできる別の液拡散部材は、40cmの高さにおける毛管吸収倍率Cが2.0(g/g)以上であることが必要である。従来の紙おむつ用に用いられるフラップパルプ等の40cmの高さにおける毛管吸収倍率Cは1.0(g/g)以下であり、このような40cmの高さにおける毛管吸収倍率Cが2.0(g/g)未満の材料では液の垂直方向の吸い上げ能力が小さく、液拡散部材全面や吸収体全体に液を拡散させることが困難であり、吸収体全体の材料が効率的に使用されない。好ましくは40cmの高さにおける毛管吸収倍率Cが5.0(g/g)以上、より好ましくは10.0(g/g)以上のものである。
【0039】
また同様に、本発明に用いることのできる別の液拡散部材は0cmの高さの毛管吸収倍率が10(g/g)以上であることが好ましい。0cmの高さの毛管吸収倍率が高いほど、液拡散部材として液の輸送容量が大きく、液の吸収、保持、貯蔵という観点からも機能できるため優れた吸収体が得られる。より好ましくは0cmの高さの毛管吸収倍率が20(g/g)以上、さらに好ましくは0cmの高さの毛管吸収倍率が30(g/g)以上である。
本発明に用いることのできる液拡散部材は上記条件を満たしたものであり、かつ吸水性樹脂と併用され吸収体に使用される。
【0040】
両者の関係は先述したように液拡散部材の40cmの高さにおける毛管吸収指数をAとしたときに、該吸水性樹脂として40cmの高さにおける毛管吸収指数BがB/A≧0.7を満足すること、好ましくはB/A≧1.3を満足すること、または、液拡散部材の40cmの高さにおける毛管吸収倍率をC(ただしC≧2.0(g/g))としたときに、該吸水性樹脂として40cmの高さにおける毛管吸収倍率DがD/C≧0.7を満足すること、好ましくはD/C≧1.3を満足することが必要である。また、両者がB/A≧0.7およびD/C≧0.7を同時に満たすことがより好ましい。さらに好ましくは両者がB/A≧1.3およびD/C≧1.3を同時に満たすことである。
【0041】
また、本発明に用いることのできる液拡散部材は、後述する液の垂直方向に液を吸い上げる能力である吸い上げ高さが30cm以上のものが好ましく、より好ましくは40cm以上、さらに好ましくは50cm以上のものである。30cm以下の場合は、吸収体の液拡散率が低く、吸収体全体が有効に利用できない。
液拡散部材の形状としては、シート状、繊維状、粒子状、短冊状等の形状をとり得るが、一般的にはシート状が好ましい。その際、液拡散部材の坪量としては50〜500g/m程度が好ましく、より好ましくは100〜200g/m程度である。
【0042】
また、液拡散部材がその部材内で密度差や密度勾配、拡散能力差や拡散能力勾配を有する場合や、本発明の関係を満たさない第2の液拡散部材をさらに用いる場合には、吸水性樹脂により近い部分の液拡散部材の毛管吸収能力が上記関係をみたすようにすることが好ましい。
このような液拡散部材としては高内部相エマルション(HIPE)を重合して得られる多孔質重合体、所定密度を有する繊維材(たとえばセルロースパルプや不織布)、ウレタンスポンジやセルローススポンジ等のフォーム材料等が挙げられる。好ましくは優れた垂直方向の吸い上げ能力、吸い上げ量、吸い上げ速度を有するものであり、中でも以下に説明する高内部相エマルション(HIPE)を重合して得られる多孔質重合体が好ましい。
【0043】
a.高内部相エマルション(HIPE)を重合して得られる多孔質重合体からなる液拡散部材
本発明における液拡散部材として好適に用いることのできる多孔質重合体は、分散相(内相)である水相と外相である油相の比率(W/O比)が約3/1以上の高内部相エマルション(HIPE)を重合させることにより得られる。HIPEから多孔質重合体を製造する方法としては、例えば、米国特許5,189,070号、米国特許5,250,576号、米国特許5,252,619号、米国特許5,290,820号、米国特許5,358,974号、米国特許5,252,619号、米国特許5,670,101号、米国特許6,204,298号等に記載されているが、このようにして得られた多孔質重合体は、孔径の微細な連続気泡の低密度のフォーム状態のものであり、条件を選ぶことで所望の吸収特性、たとえば非常に優れた液の拡散・吸い上げ特性等を有する重合体フォームを製造することができる。
【0044】
HIPEの使用原料は、重合性単量体成分、および界面活性剤を含有する油相と水を含有する水相であり、重合性単量体成分としては重合により架橋構造を形成しうる分子内に1個の重合性不飽和基を有する重合性単量体および/または分子内に少なくとも2個の重合性不飽和基を有する架橋性単量体等が挙げられる。さらに、必要に応じて、重合開始剤、塩類、その他の添加剤を油相および/または水相を構成する任意成分として含有するものであってもよい。
重合性単量体としては、好ましくは、少なくとも1部は(メタ)アクリル酸エステルを含むものであり、具体的には、スチレン等のアリレン単量体;スチレン、エチルスチレン、アルファメチルスチレン、ビニルトルエン、ビニルエチルベンゼンなどのモノアルキレンアリレン単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジルなどの(メタ)アクリル酸エステル;塩化ビニル、塩化ビニリデン、クロロメチルスチレン等の塩素含有単量体;アクリロニトリル、メタクリロニトリル等のアクリロニトリル化合物;その他、酢酸ビニル、プロピオン酸ビニル、N−オクタデシルアクリルアミド、エチレン、プロピレン、ブテン等が例示できる。これらは、1種を単独で使用する他、2種以上を併用してもよい。
【0045】
上記架橋性単量体としては、分子内に少なくとも2個の重合性不飽和基を有する化合物、または重合により架橋構造を形成できる化合物であればよく、上記重合性単量体と同様に、分散または油中水滴型高分散相エマルション中で重合可能であれば特に制限されるものではない。具体的には、架橋性単量体としては、ジビニルベンゼン、トリビニルベンゼン、ジビニルトルエン、ジビニルキシレン、p−エチル−ビニルベンゼン、ジビニルナフタレン、ジビニルアルキルベンゼン類、ジビニルフェナンスレン、ジビニルビフェニル、ジビニルジフェニルメタン、ジビニルベンジル、ジビニルフェニルエーテル、ジビニルジフェニルスルフィド等の芳香族系単量体;ジビニルフラン等の酸素含有単量体;ジビニルスルフィド、ジビニルスルフォン等の硫黄含有単量体;ブタジエン、イソプレン、ペンタジエン等の脂肪族単量体;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、オクタンジオールジ(メタ)アクリレート、デカンジオールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、N,N´−メチレンビス(メタ)アクリルアミド、イソシアヌル酸トリアリル、トリアリルアミン、テトラアリロキシエタン、並びにヒドロキノン、カテコール、レゾルシノール、ソルビトールなどの多価アルコールとアクリル酸又はメタクリル酸とのエステル化合物などが例示できる。これらは、1種を単独で使用する他、2種以上を併用してもよい。
【0046】
上記架橋性単量体の使用量は、上記重合性単量体と該架橋性単量体からなる重合性単量体成分全体の重量に対し、0.1〜90重量%の範囲であることが好ましく、より好ましくは1〜70重量%、特に好ましくは5〜50重量%の範囲である。
また油相中に用いる界面活性剤としては、水相を乳化し得るものであれば特に制限はなく、従来公知のノニオン性界面活性剤、カチオン性界面活性剤、アニオン性界面活性剤、両性界面活性剤等を使用することができる。なかでもノニオン性界面活性剤とカチオン性界面活性剤を併用するとHIPEの安定性が改良される場合がある。
【0047】
上記界面活性剤の使用量は、重合性単量体と架橋性単量体からなる重合性単量体成分全体の重量100重量部に対し、1〜30重量部であることが好ましく、より好ましくは3〜15重量部である。
上記水は、水道水、純水、イオン交換水の他、多孔質重合体を製造して得た廃水をそのまま、または所定の処理を行ったものを使用することができる。上記水の使用量は、所望する液拡散性能によって適宜選択することができる。すなわち、水の使用量は、HIPEの水相/油相(W/O)比を変化させることによって多孔質重合体の空孔比率が決定されることから目的に合致する空孔比率になるようにW/O比を選択すれば、自ずと決定される。
【0048】
重合開始剤としては、通常の重合で使用できるものであればよく、2,2´−アゾビス(2−アミジノプロパン)二塩酸塩等のアゾ化合物;過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の過硫酸塩;過酢酸カリウム、過酢酸ナトリウム、過炭酸カリウム、過炭酸ナトリウム等の過酸化物等の水溶性重合開始剤や油溶性重合開始剤の何れも使用することができる。さらに、上記重合開始剤と還元剤とを組み合わせてなるレドックス重合開始剤系を使用しても良い。この場合、重合開始剤としては、水溶性、油溶性の何れも使用することができ、水溶性レドックス重合開始剤系と油溶性レドックス重合開始剤系とを併用してもよい。
【0049】
塩類としては、HIPEの安定性を改良するために必要であれば使用してもよい。上記塩類としては、具体的には、塩化カルシウム、硫酸ナトリウム、塩化ナトリウム、硫酸マグネシウムなどのアルカリ金属、アルカリ土類金属のハロゲン化物、硫酸塩、硝酸塩などの水溶性塩が挙げられる。これらの塩類は、単独で用いてもよく、また、2種類以上を併用してもよい。これらの塩類は、水相中に添加することが好ましい。なかでも、重合時のHIPEの安定性の観点から多価金属塩が好ましい。
この様な塩類の使用量は、水100重量部に対し、0.1〜20重量部とすることが好ましく、より好ましくは0.5〜10重量部である。
【0050】
さらに、他の各種添加剤が有する性能・機能を付加することにより液拡散部材としての多孔質重合体の性能の向上につながるものであれば、そのような各種添加剤を適当に使用しても良く、例えば、pH調整のために、塩基および/または緩衝剤を加えても良い。このような添加剤としては、活性炭、無機粉末、有機粉末、金属粉末、消臭剤、抗菌剤、防かび剤、香料、各種高分子、界面活性剤などが例示できる。
本発明に用いることのできるHIPEの乳化方法については、特に制限されるものではないが、例えば、重合性単量体成分および界面活性剤、さらに必要に応じて添加し得る重合開始剤、その他の添加剤からなる油相を構成する成分を所定温度で撹拌し均一の油相を調製し、一方、目的とする使用量にて、水に、さらに必要に応じて添加し得る重合開始剤、塩類、その他の添加剤からなる水相を構成する成分を加えながら撹拌し、所定のHIPEの温度に加温して均一の水相を調製する。次に、上記により調製された、重合性単量体成分、界面活性剤などの混合物である油相と、水、水溶性塩などの混合物である水相とを合一し、所定のHIPEの乳化温度にて、効率良く混合撹拌して最適な剪断力をかけ、乳化することによってHIPEを安定に調製することができる。
【0051】
HIPEの水相/油相(W/O)比(重量比)は、適宜選択することができるものであり、特に制限されるものではなく、先に規定したとおり3/1以上のものであればよいが、好ましくは10/1〜250/1、特には10/1〜100/1である。W/O比を変化させることによって多孔質重合体の空孔比率が決定され、それによって液拡散部材の液拡散能力、液吸い上げ能力、液保持能力が変化しうる。したがって、本発明の目的とする液拡散部材を製造する場合、W/O比は10/1〜100/1程度、より好ましくは20/1〜80/1程度である。
【0052】
上記HIPEの製造装置としては、特に制限されるものではなく、従来公知の製造装置、例えば、プロペラ型、櫂型、タービン型などの羽根の撹拌機、ホモミキサー類、ピンミキサー類、ラインミキサー類、スタティックミキサー類などが例示でき、これらを単独、またはこれらを種々組み合わせて用いれば良い。
油中水滴型高分散相エマルションを形成させる乳化工程でのHIPEの乳化温度は、通常40〜110℃の範囲である。
重合開始剤を混合したHIPEは、所望の形態に成形される。本発明では得られた多孔質重合体を液拡散部材として用いるために成形の形状はシート状であることが好ましいが、円筒容器にHIPEを加えて重合させた後にシート状に切り出しても良いし、種々の形態(粒子状、繊維状、フィルム状等)の多孔質重合体を最終製品として液拡散機能を有する形態に加工しても良い。シート状の場合、その厚さは問わないが、最終製品の形態として厚みが10mm以下が好ましく、より好ましくは5mm以下、さらに好ましくは3mm以下、特に好ましくは1mm以下、最も好ましくは0.5mm以下程度である。あまり厚い場合には液拡散部材として吸収性物品に用いた場合に装着感が低下する恐れがある。
【0053】
HIPEの重合方法は特に制限されるものではなく、従来公知のHIPEの重合法を適宜利用することができる。通常は、HIPE中の構造が破壊されない条件下、静置重合法で熱を与える事で重合させる。この場合、かかるHIPEをバッチごとに重合するバッチ重合でも、あるいは連続的にたとえば加熱ゾーン中にフィードしながら、キャストして重合する連続重合でもよい。該重合温度は、通常40〜110℃の範囲であるが、生産性を考慮した場合、重合温度は高い方が好ましく、例えば、好ましくは60℃〜110℃、より好ましくは80℃〜105℃程度、重合時間は数十秒〜30分の範囲で均一な性状の多孔質重合体を得ることが生産性の上から好ましい。これらの詳細な製造方法としては特願平2000−203744等に記載されている。
【0054】
重合後得られた多孔質重合体は、通常、圧縮、減圧吸引およびこれらの組み合わせによって脱水され、その種類によっては元の厚みの数分の1に圧縮した形態にすることができる。さらに多孔質重合体の表面状態を改良するなどの目的で、多孔質重合体を純水や任意の添加剤を含む水溶液、溶剤で洗浄してもよいし、そののち必要であれば、熱風、赤外線、マイクロ波などで加熱乾燥してもよく、また加湿して水分を調整してもよい。さらに最終製品に用いられるための所望の形状、サイズに切断して各種用途に応じた製品に加工してもよい。
b.その他の液拡散部材
本発明で用いることのできるその他の液拡散部材としては、ポリウレタン、ポリスチレン、ポリエチレン、ポリプロピレン、ポリエステル、ポリビニルアルコール、ブタジエンスチレンゴム(SBR)、ニトリルブタジエンゴム等の合成高分子からなる発泡体;ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ナイロン等の合成繊維を接着または結合させた繊維集合体;レーヨン繊維;セルロース、酢酸セルロース、ニトロセルロース等のセルロース繊維、ポリアミド繊維等の親水性繊維を圧着、接着または結合した繊維集合体等が例示され、形状としてはシート状、繊維状、粒子状があげられるが、中でもシート状のものが好ましい。好ましくはセルロース繊維、レーヨン繊維等の親水性繊維を圧着、または接着、結合した繊維集合体である。これらの液拡散部材は吸収体や吸収性物品の製造時にライン中で製造してもよい。
【0055】
本発明におけるこれらa.b.に示した液拡散部材の必要性能は前述したとおりである。
(2−3)吸水性樹脂
本発明の吸水性樹脂とは、親水性架橋重合体であって、水性液体と、例えば粒子状の前記重合体が接触すると該重合体粒子が該液体を粒子内に吸収して膨潤し、水性液体を含んだヒドロゲルを形成しうる性質を持つ重合体(水膨潤性水不溶性ヒドロゲル形成性重合体)、および、該水膨潤性水不溶性ヒドロゲル形成性重合体に添加剤を加えたものであって、該添加剤の量が該水膨潤性水不溶性ヒドロゲル形成性重合体と該添加剤の合計量に対して30重量%未満であるものを包含するものである。
【0056】
これまで吸水性樹脂は樹脂の内外の浸透圧差によって液を吸収するものとして紙おむつ等液貯蔵部材として用いられてきたが、本発明者は吸水性樹脂の吸収倍率、加圧下の吸収倍率等これまで知られている物性が同じ場合でも樹脂の種類により液拡散部材等から液を吸収する場合にその吸収挙動が大きく異なることに着目した。そして、本発明者が鋭意検討したところ、吸水性樹脂単体でも、毛管吸収能力が大きく異なること、液拡散部材の毛管吸収能力と吸水性樹脂の毛管吸収能力の関係がある特定の条件を満たした場合に、吸水性樹脂は液拡散部材より良好に液を受け取り貯蔵できることを見いだした。
【0057】
本発明に用いることのできる吸水性樹脂としては、先述したように液拡散部材の40cmの高さにおける毛管吸収指数をA(ただしA≧0.10)としたときに、該吸水性樹脂として40cmの高さにおける毛管吸収指数Bが、B/A≧0.7を満足するもの、好ましくはB/A≧1.3を満足するもの、さらに好ましくはB/A≧1.40を満足するものである。
本発明に必要な吸水性樹脂の40cmの高さにおける毛管吸収指数Bの値は用いる液拡散部材の特性、すなわち用いる液拡散部材の40cmの高さにおける毛管吸収指数Aによって異なり、上記B/A≧0.7の関係を満足しておれば液拡散部材から吸水性樹脂へ液が良好に分配され、吸水性樹脂が液を良好に吸収貯蔵することができる。好ましくは吸水性樹脂として40cmの高さにおける毛管吸収指数Bが0.4以上、より好ましくは0.5以上、さらに好ましくは0.6以上のものである。
【0058】
また本発明に使用する吸水性樹脂は、0cmの高さの毛管吸収倍率が30(g/g)以上であることが好ましい。0cmの高さの毛管吸収倍率が高いほど、液拡散部材から吸い上げた液を多量に把持できるため液の吸収能力という観点から優れた吸収体が得られる。より好ましくは0cmの高さの毛管吸収倍率が40(g/g)以上、さらに好ましくは0cmの高さの毛管吸収倍率が50(g/g)以上の吸水性樹脂である。
また本発明に用いることのできる別の吸水性樹脂としては、該液拡散部材の40cmの高さにおける毛管吸収倍率をC(ただしC≧2.0(g/g))としたときに、該吸水性樹脂として40cmの高さにおける毛管吸収倍率DがD/C≧0.7を満足するもの、好ましくはD/C≧1.3を満足するもの、さらに好ましくはD/C≧1.40を満足するものである。
【0059】
本発明に必要な別の吸水性樹脂の40cmの高さにおける毛管吸収倍率Dの値は、用いる液拡散部材の特性、すなわち用いる液拡散部材の40cmの高さにおける毛管吸収倍率Cによって異なり、上記D/C≧0.7の関係を満足しておれば液拡散部材から吸水性樹脂へ液が良好に分配され、吸水性樹脂が液を良好に吸収貯蔵することができる。好ましくは吸水性樹脂として40cmの高さにおける毛管吸収倍率Dが15(g/g)以上、より好ましくは20(g/g)以上、さらに好ましくは25(g/g)以上、最も好ましくは30(g/g)以上のものである。
【0060】
また同様に、本発明に使用する吸水性樹脂は、0cmの高さの毛管吸収倍率が30(g/g)以上であることが好ましい。0cmの高さの毛管吸収倍率が高いほど、液拡散部材から吸い上げた液を多量に把持できるため液の吸収能力という観点から優れた吸収体が得られる。より好ましくは0cmの高さの毛管吸収倍率が40(g/g)以上、さらに好ましくは0cmの高さの毛管吸収倍率が50(g/g)以上の吸水性樹脂である。
また、本発明に使用する吸水性樹脂は、2.07kPa(0.3psi)加圧下の吸水倍率が20〜50g/gのものであると、吸収体が加圧された状態にあっても良好な吸収性を維持できるので好ましく、25〜40g/gのものがより好ましい。
【0061】
本発明に用いることのできる吸水性樹脂は上記条件を満たしたものであり、液拡散部材と併用され吸収体に使用される。
吸水性樹脂の形状としては粒子状、繊維状、シート状、短冊状等をとり得るが、一般的には粒子状のものが好ましい。好ましくはアクリル酸(塩)を主原料とする基本粒子の重量平均粒子径が250μm以下の粒子状のもので、粒子の粒径分布が狭いものが好ましい。また製法としては水溶液重合、逆相懸濁重合等を用いることができるが、逆相懸濁重合により得られたものが好ましい。また取り扱い性の面から、本発明の毛管吸収能力を維持しながら上記基本粒子からなる吸水性樹脂は造粒され、重量平均粒子径が上記範囲よりはずれてもよい。
【0062】
本発明では吸水性樹脂として上記関係を満たす樹脂と上記関係を満たさない吸水性樹脂を併用してもよいが、本発明の効果を最大限に発揮させるには上記関係を満たした樹脂のみを用いることが好ましい。また、液拡散部材により近い部分の吸水性樹脂の毛管吸収能力が上記関係をみたすものとなるように樹脂を配置することが好ましい。
本発明で用いることができる吸水性樹脂としては、例えば、親水性単量体を重合して得ることができる水膨潤性架橋重合体が例示でき、なかでもアクリル酸またはその塩等を主成分とするポリアクリル酸(塩)系架橋重合体が好ましい。具体的には部分中和架橋ポリアクリル酸重合体(米国特許第4625001号、同第4654039号、同第5250640号、同第5275773号、欧州特許第456136号等)、架橋され部分的に中和された澱粉−アクリル酸グラフトポリマー(米国特許第4076663号)、イソブチレン−マレイン酸共重合体(米国特許第4389513号)、酢酸ビニル−アクリル酸共重合体のケン化物(米国特許第4124748号)、アクリルアミド(共)重合体の加水分解物(米国特許第3959569号)、アクリロニトリル重合体の加水分解物(米国特許第3935099号)等が挙げられる。ポリアクリル酸(塩)系架橋重合体としては、重合体中の酸基の50〜90モル%が中和されていることが好ましく、塩としてはアルカリ金属塩、アンモニウム塩、アミン塩などを例示する事ができる。
【0063】
本発明に用いられる吸水性樹脂や中でも好ましく用いられるポリアクリル酸(塩)系架橋重合体としては、主成分として用いられる単量体(たとえば上記アクリル酸またはその塩)に併用して、必要により他の単量体を共重合させたものであってもよい。他の単量体の具体例としては、メタアクリル酸、マレイン酸、ビニルスルホン酸、スチレンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、2−(メタ)アクリロイルエタンスルホン酸、2−(メタ)アクリロイルプロパンスルホン酸などのアニオン性不飽和単量体およびその塩;アクリルアミド、メタアクリルアミド、N−エチル(メタ)アクリルアミド、N−n−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ビニルピリジン、N−ビニルピロリドン、N−アクリロイルピペリジン、N−アクリロイルピロリジンなどのノニオン性の親水基含有不飽和単量体;N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリルアミドおよびそれらの四級塩などのカチオン性不飽和単量体などを挙げることができる。これらのアクリル酸以外の他の単量体の使用量は通常全単量体中0〜30モル%が好ましく、より好ましくは0〜10モル%である。
【0064】
本発明に用いられる吸水性樹脂に架橋構造を導入する方法として、架橋剤を使用しない自己架橋型のものや、2個以上の重合性不飽和基或は2個以上の反応性基を有する内部架橋剤を共重合または反応させるもの等を例示できる。好ましくは内部架橋剤を共重合または反応させたものである。
これらの内部架橋剤の具体例としては、例えば、N,N´−メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンアクリレートメタクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレ−ト、ジペンタエリスリトールヘキサ(メタ)アクリレ−ト、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルホスフェート、トリアリルアミン、ポリ(メタ)アリロキシアルカン、(ポリ)エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、エチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、エチレンジアミン、ポリエチレンイミン、グリシジル(メタ)アクリレートなどを挙げることが出来る。またこれらの内部架橋剤は2種以上使用してもよい。中でも、得られる吸水性樹脂の吸水特性などから、2個以上の重合性不飽和基を有する化合物を内部架橋剤として必須に用いることが好ましく、その使用量としては前記単量体成分に対して0.005〜3モル%、より好ましくは0.01〜1.5モル%である。
【0065】
なお重合に際しては、澱粉・セルロ−ス、澱粉・セルロ−スの誘導体、ポリビニルアルコ−ル、ポリアクリル酸(塩)、ポリアクリル酸(塩)架橋体等の親水性高分子や、次亜リン酸(塩)等の連鎖移動剤を添加してもよい。
本発明に用いられる吸水性樹脂を得る為に上記したアクリル酸またはその塩を主成分とする単量体を重合するに際しては、バルク重合や沈澱重合を行うことも可能であるが、性能面や重合の制御の容易さから、単量体を水溶液として、水溶液重合、逆相懸濁重合を行うことが好ましい。かかる重合方法は、従来公知であって例えば、米国特許第4625001号、同4769427号、同4873299号、同4093776号、同4367323号、同4446261号、同4683274号、同4690996号、同4721647号、同4738867号、同4748076号などに記載されている。
【0066】
また重合を行うにあたり、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、t−ブチルハイドロパーオキサイド、過酸化水素、2,2´−アゾビス(2−アミジノプロパン)二塩酸塩等のラジカル重合開始剤、紫外線や電子線などの活性エネルギー線等を用いることができる。また、酸化性ラジカル重合開始剤を用いる場合、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、L−アスコルビン酸等の還元剤を併用してレドックス重合としても良い。これらの重合開始剤の使用量は通常0.001〜2モル%、好ましくは0.01〜0.5モル%である。
【0067】
上記の重合により得られた吸水性樹脂の形状は一般に不定形破砕状、球状、繊維状、棒状、略球状、偏平状等である。
本発明に用いられる40cmの高さにおける毛管吸収指数や毛管吸収倍率に優れた吸水性樹脂を得る為には、その粒子表面が表面架橋剤によって架橋されていることが好ましい。
吸水性樹脂の表面架橋に用いることの出来る表面架橋剤としては例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、1,3−プロパンジオール、ジプロピレングリコール、2,2,4−トリメチル−1,3−ペンタンジオール、ポリプロピレングリコール、グリセリン、ポリグリセリン、2−ブテン−1,4−ジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,2−シクロヘキサンジメタノール、1,2−シクロヘキサノール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピレン、オキシエチレン−オキシプロピレンブロック共重合体、ペンタエリスリトール、ソルビトール等の多価アルコール化合物;エチレングリコールジグリシジルエーテル、ポリエチレンジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、グリシドール等のエポキシ化合物;エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリエチレンイミン等の多価アミン化合物や、それらの無機塩ないし有機塩(例えば、アジチニウム塩等);2,4−トリレンジイソシアネート、ヘキサメチレンジイソシアネート等の多価イソシアネート化合物;1,2−エチレンビスオキサゾリン等の多価オキサゾリン化合物;1,3−ジオキソラン−2−オン、4−メチル−1,3−ジオキソラン−2−オン、4,5−ジメチル−1,3−ジオキソラン−2−オン、4,4−ジメチル−1,3−ジオキソラン−2−オン、4−エチル−1,3−ジオキソラン−2−オン、4−ヒドロキシメチル−1,3−ジオキソラン−2−オン、1,3−ジオキサン−2−オン、4−メチル−1,3−ジオキサン−2−オン、4,6−ジメチル−1,3−ジオキサン−2−オン、1,3−ジオキソパン−2−オン等のアルキレンカーボネート化合物;エピクロロヒドリン、エピブロムヒドリン、α−メチルエピクロロヒドリン等のハロエポキシ化合物、および、その多価アミン付加物(例えばハーキュレス製カイメン;登録商標);γ−グリシドキシプロピルトリメトキシシラン、γーアミノプロピルトリエトキシシラン等のシランカップリング剤;亜鉛、カルシウム、マグネシウム、アルミニウム、鉄、ジルコニウム等の水酸化物又は塩化物等の多価金属化合物等が挙げられる。
【0068】
なかでも溶解度パラメーターが互いに異なる表面架橋剤を組み合わせて用いることが好ましい。好ましくは溶解度パラメーターが25.6[(J/cm1/2](12.5[(cal/cm1/2])以上の第一表面架橋剤、溶解度パラメーターが25.6[(J/cm1/2](12.5[(cal/cm1/2])未満の第二表面架橋剤を組み合わせたものである。表面架橋剤の溶解度パラメーターに関しては米国特許5,422,405等に記載されている。
表面架橋剤の使用量は吸水性樹脂100重量部に対して0.001〜5重量部程度が好ましい。5重量部を越える場合や、0.001重量部未満の場合には、本発明の範囲内の表面架橋層を得ることが困難になる場合がある。
【0069】
本発明の表面架橋剤と吸水性樹脂との混合の際には水を用いてもよい。水の使用量も一般に、吸水性樹脂の固形分100重量部に対して、0.5重量部を越え、10重量部以下が好ましく、1重量部〜5重量部の範囲内がより好ましい。
また、表面架橋剤やその水溶液を混合する際には、親水性有機溶媒や、第三物質を用いてもよい。親水性有機溶媒を用いる場合には、例えば、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、t−ブチルアルコール等の低級アルコール類;アセトン等のケトン類;ジオキサン、テトラヒドロフラン、メトキシ(ポリ)エチレングリコール等のエーテル類;ε−カプロラクタム、N,N−ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類;エチレングリコール、ジエチレングリコール、プロピレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、1,3−プロパンジオール、ジプロピレングリコール、2,2,4−トリメチル−1,3−ペンタンジオール、ポリプロピレングリコール、グリセリン、ポリグリセリン、2−ブテン−1,4−ジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,2−シクロヘキサンジメタノール、1,2−シクロヘキサノール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピレン、オキシエチレン−オキシプロピレンブロック共重合体、ペンタエリスリトール、ソルビトール等の多価アルコール類等が挙げられる。親水性有機溶媒の使用量は、吸水性樹脂の種類や粒径、含水率等にもよるが、吸水性樹脂の固形分100重量部に対して、50重量部以下が好ましく、0.1重量部〜10重量部の範囲内がより好ましい。また、第三物質として欧州特許第0668080号公報に示された無機酸、有機酸、ポリアミノ酸等を存在させてもよい。
【0070】
吸水性樹脂と表面架橋剤とを混合する混合方法は特に限定されないが、たとえば、吸水性樹脂を親水性有機溶剤に浸漬し、必要に応じて水および/または親水性有機溶媒に溶解させた表面架橋剤を混合する方法、吸水性樹脂に直接、水および/または親水性有機溶媒に溶解させた表面架橋剤を噴霧若しくは滴下して混合する方法等が例示できる。また混合温度、すなわち、混合前の吸水性樹脂粉末の温度、表面架橋剤を含む処理剤の温度をともに特定の範囲に制御することで表面架橋層の厚みや重量割合が本発明の範囲にコントロールしやすい場合がある。また水を用いて混合する場合には、水に不溶な微粒子状の粉体や、界面活性剤等を共存させてもよい。
【0071】
吸水性樹脂と表面架橋剤とを混合した後、通常加熱処理を行い、架橋反応を遂行させる。上記加熱処理温度は、用いる表面架橋剤にもよるが、吸水性樹脂粉体温度を40℃以上250℃以下とするのが好ましい。処理温度が40℃未満の場合には、優れた吸水特性を有する吸水剤を得ることができないことがある。処理温度が250℃を越える場合には、吸水性樹脂の劣化を引き起こし、性能が低下する場合があり注意を要する。加熱処理時間は1分〜2時間程度、好ましくは5分〜1時間程度である。
以上述べてきた中でも本発明に用いることのできる40cmの高さにおける毛管吸収指数B、40cmの高さにおける毛管吸収倍率Dに優れた吸水性樹脂を得るための好ましい方法としては、
(1)重量平均粒子径が250μm以下、好ましくは40〜200μm、より好ましくは70〜150μmの範囲のカルボキシル基を有する吸水性樹脂前駆体を、該カルボキシル基と反応可能な、溶解度パラメーターが25.6[(J/cm1/2](12.5[(cal/cm1/2])以上の第1表面架橋剤、および、溶解度パラメーター25.6[(J/cm1/2](12.5[(cal/cm1/2])未満の第2表面架橋剤の存在下に加熱処理する方法、
(2)逆相懸濁重合で得られた重量平均粒子径が250μm以下、好ましくは40〜200μm、より好ましくは70〜150μmの範囲のカルボキシル基を有する吸水性樹脂前駆体を、含水率が10%以下で表面架橋剤の存在下に2.07kPa(0.3psi)下での加圧下の吸収倍率が20(g/g)以上、好ましくは25(g/g)以上、好ましくは30(g/g)以上になるように加熱処理した後に溶剤で処理する方法、
(3)重量平均粒子径100〜1000μmのカルボキシル基を有する吸水性樹脂前駆体を、多価アルコール、またはアルキレンカーボネートの存在下表面架橋処理を行った後に特定粒度の篩により分級し、重量平均粒子径が300μm以下、好ましくは重量平均粒子径が10〜250μm、より好ましくは70〜150μmの粒子を得る方法、
等が例示できる。
【0072】
このような手法により、40cmの高さにおける毛管吸収倍率Dが例えば15(g/g)以上、好ましくは20(g/g)以上、もっとも好ましくは25(g/g)以上の吸水性樹脂が得られ本発明に好適に使用できる。また上記手法により40cmの高さにおける毛管吸収指数Bが例えば0.4以上、好ましくは0.5以上、さらに好ましくは0.6以上という吸水性樹脂が得られ本発明に好適に使用できる。
なかでも上記(2)の方法の表面架橋処理された重量平均粒子径250μm以下の逆相懸濁重合で得られたポリアクリル酸(塩)系架橋重合体を主成分とする吸水性樹脂が好ましく、条件を選択することにより、40cmの高さにおける毛管吸収倍率Dが例えば25(g/g)以上という、これまでになく優れた樹脂が得られる。なお表面架橋処理の有無は特願平11−309105号記載の方法等で判別することができる。
【0073】
なお本発明の吸水性樹脂は水膨潤性水不溶性ヒドロゲル形成性重合体にさらに二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、タルク、リン酸カルシウム、リン酸バリウム、珪酸またはその塩、粘土、珪藻土、ゼオライト、ベントナイト、カオリン、ハイドロタルサイト、活性白等塩類等の水不溶性微粒子状無機粉体;消臭剤、香料、抗菌剤、ポリアミン等のカチオン性高分子化合物、接着剤、粘着剤、発泡剤、顔料、染料、肥料、酸化剤、還元剤、水等の添加剤を添加して、該水膨潤性水不溶性ヒドロゲル形成性重合体に内包または付着させることによって、吸水性樹脂にさらなる機能を付与、あるいは高めたものであってもよい。上記添加剤の使用割合は、水膨潤性水不溶性ヒドロゲル形成性重合体と添加剤の合計量に対して30重量%未満が好ましく、より好ましくは10重量%未満、さらに好ましくは5重量%未満、特に好ましくは1重量%未満である。
(2−4)吸収体
本発明の吸収体は、液拡散部材および吸水性樹脂を、本発明の液拡散貯蔵係数1およびまたは液拡散貯蔵係数2を満足するように組み合わせて得られる。
【0074】
また、本発明の吸収体は、吸い上げ高さ30cm以上の液拡散部材、および液貯蔵部材に40cmの高さにおける毛管吸収倍率Dが15(g/g)以上の吸水性樹脂を用いることでも得られる。
さらに本発明の吸収体は、吸い上げ高さ30cm以上の液拡散部材、および液貯蔵部材に表面架橋処理された重量平均粒子径250μm以下の吸水性樹脂を用いることでも得られる。
本発明の吸収体は、液拡散部材、吸水性樹脂の他に、本発明の意図する液拡散・貯蔵システムを妨げない限り、他の材料を用いてもよい。他の材料の例としては親水性繊維、不織布、紙、ティッシュ等が例示できる。上記の親水性繊維としては、例えば、木材から得られるメカニカルパルプやケミカルパルプ、セミケミカルパルプ、溶解パルプ等のセルロース繊維、レーヨン、アセテート等の繊維等が挙げられる。上記例示の繊維のうち、セルロース繊維が好ましい。また、親水性繊維は、ポリアミドやポリエステル、ポリオレフィン等の合成繊維を含有していてもよい。尚、親水性繊維は、上記例示の繊維に限定されるものではない。不織布としてはスパンボンド、ケミカルボンド、スパンレース方式等のポリエステル、ポリエチレン、ポリプロピレン、ナイロン、レーヨン等の不織布が例示できる。
【0075】
吸収体における吸水性樹脂と液拡散部材の割合は任意の範囲で選択が可能であるが、吸水性樹脂と液拡散部材の合計量に対する吸水性樹脂の重量割合は、好ましくは5重量%以上99重量%以下、より好ましくは20重量%以上90重量%以下、さらに好ましくは30重量%以上80重量%以下である。
特に、吸水性樹脂と液拡散部材の合計量に対する吸水性樹脂の重量割合が75重量%以上90重量%以下の場合には、相対的に液拡散部材の使用量を少なくすることができるため、形状面において、より軽量で薄型の吸収体が作製できるために好ましい。また吸水性樹脂と液拡散部材の合計量に対する吸水性樹脂の重量が75重量%以上90重量%以下の吸収体を製造する為には該吸水性樹脂として吸水性樹脂が40cmの高さにおける毛管吸収倍率Dが15(g/g)以上のものを用いることがより好ましい。吸水性樹脂として40cmの高さにおける毛管吸収倍率Dが15(g/g)以上のものを用いた場合には、液拡散部材から吸水性樹脂への液の移行、分配が良好になるため、液拡散部材としての貯蔵能力があまり求められなくなり、液拡散部材の使用量を大きく低減できる。その際の液拡散部材としては高内部相エマルションを重合して得られる多孔質重合体であり、その吸い上げ高さが30cm以上のものを用いることが好ましい。
【0076】
吸水性樹脂の配置位置としては、液拡散部材の背面、液拡散部材の前面、液拡散部材の背面側の一部、液拡散部材の前面側の一部、液拡散部材の間、液拡散部材中等が例示でき、これらの配置方法を組み合わせてもよい。なかでも液拡散部材の背面側に吸水性樹脂を配置することが好ましく、さらに吸水性樹脂は層状で存在していることが好ましい。また吸水性樹脂の坪量としては50〜500g/m程度である。
吸水性樹脂の配置状態としては、液拡散部材の全面に対して均一に存在している状態、特定のパターン状に存在している状態、密度勾配をもって存在している状態、液拡散部材の中央にのみ存在している状態、液拡散部材の前後のみに存在している状態等が例示される。
【0077】
また、吸水性樹脂は、それ自体を従来公知の手法でシート状にしたり、固定化する基材上に散布したり、袋詰めにしたり、粘着性を付与させたりした後に液拡散部材と組み合わせても良い。さらに吸水性樹脂と液拡散部材とは接着性バインダーを用いて接着させてもよい。
上記の接着性バインダーとしては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、1−ブテン−エチレン共重合体等のポリオレフィン繊維等の熱融着繊維や接着性を有するエマルション、ホットメルト接着剤等が例示できる。これら接着性バインダーは、単独で用いてもよく、また、2種類以上を混合して用いてもよい。
【0078】
なお本発明の吸収体においても、さらに、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、タルク、リン酸カルシウム、リン酸バリウム、珪酸またはその塩、粘土、珪藻土、ゼオライト、ベントナイト、カオリン、ハイドロタルサイト、活性白等塩類等の水不溶性微粒子状無機粉体;消臭剤、香料、抗菌剤、ポリアミン等のカチオン性高分子化合物、発泡剤、顔料、染料、親水性短繊維、肥料、酸化剤、還元剤、水等を添加し、吸収体にさらなる機能を付与させることもできる。
[3]液獲得部材と吸水性樹脂層を含む吸収体
(3−1)液獲得部材と吸水性樹脂(層)の毛管吸収能力の関係
本発明における、液獲得部材と吸水性樹脂(層)の毛管吸収能力の関係について説明する。
【0079】
液獲得部材と組み合わせられる吸水性樹脂層は、吸水性樹脂を250g/m以上の散布量で含むことが好ましく、膨潤時に吸水性樹脂が実質連続層となるように構成される。250g/m未満の場合には吸収体の飽和吸収量が小さくなり、液獲得層を十分に乾かすことができず、ドライ感に劣り、液の戻り量が増大する傾向が見られる。より好ましくは吸水性樹脂層の散布量は300g/m以上、さらに好ましくは350g/m以上、特に好ましくは400g/m以上である。
吸水性樹脂層は、吸水性樹脂のみ、または、吸水性樹脂と他の吸水性あるいは親水性材料との混合物で構成される。吸水性樹脂以外の吸水性あるいは親水性材料としては、パルプ、レーヨン、ポリエステル、ナイロンなどの天然繊維、再生繊維、合成繊維などの繊維、およびこれらの親水性化処理物などを例示することができる。吸水性樹脂層における吸水性樹脂の割合は、吸収体を薄く、しかも吸水量を多くできる点で、好ましくは70重量%以上、より好ましくは80重量%以上、さらに好ましくは90重量%以上であり、吸水性樹脂のみからなること(すなわち、100重量%)が特に好ましい。
【0080】
本発明に用いることのできる吸水性樹脂としては、該液獲得部材の40cmの高さにおける毛管吸収指数をE(ただしE<0.1)としたときに、該吸水性樹脂として40cmの高さにおける毛管吸収指数Bが以下の式を満足するものである。
B/E≧10   …(式3)
また、本発明に用いることのできる吸水性樹脂層としては、前記液獲得部材の40cmの高さにおける毛管吸収指数をE(ただしE<0.1)としたときに、前記吸水性樹脂層の40cmの高さにおける毛管吸収指数Fが以下の式を満足するものである。
【0081】
F/E≧10   …(式4)
本発明に必要な吸水性樹脂または吸水性樹脂層の40cmの高さにおける毛管吸収指数BまたはFの値は、用いる液獲得部材の特性、すなわち用いる液獲得部材の40cmの高さにおける毛管吸収指数Eによって異なり、上記B/E≧10またはF/E≧10の関係を満足しておれば液獲得部材から吸水性樹脂へ液が良好に吸収され、吸水性樹脂が液獲得部材を十分に乾かすことができる。B/EまたはF/Eが10に満たない場合は吸水性樹脂が液獲得部材から液を十分吸収できず、液獲得部材は濡れた感じのままであり、次回の液を瞬時に受け止めることができない。好ましくは吸水性樹脂としてB/E≧20またはF/E≧20を満たすもの、より好ましくは吸水性樹脂としてB/E≧30またはF/E≧30を満たすものである。なお、以降、B/EまたはF/Eの値のことを液獲得貯蔵係数1と称する場合がある。また、Bは吸水性樹脂単独、Fは吸水性樹脂層から吸水性樹脂が単離困難な場合などに吸水性樹脂層をそのまま用いて求めた毛管吸収指数を意味する。
【0082】
本発明に用いることのできる吸収体としては、液獲得部材の40cmの高さにおける毛管吸収倍率Gが1.0(g/g)以下であり、前記吸水性樹脂の40cmの高さにおける毛管吸収倍率Dが5(g/g)以上のものである。
また、本発明に用いることのできる別の吸収体としては、前記液獲得部材の40cmの高さにおける毛管吸収倍率Gが1.0(g/g)以下であり、前記吸水性樹脂層の40cmの高さにおける毛管吸収倍率Hが5(g/g)以上のものである。
液獲得部材と吸水性樹脂または吸水性樹脂層がこれらの関係を満足しておれば、液獲得部材から吸水性樹脂へ液が良好に分配され、吸水性樹脂が良好に液獲得部材を乾かせ、かつ液を吸収貯蔵することができる。
【0083】
DまたはHが5(g/g)に満たない場合は吸水性樹脂が液獲得部材から液を十分に吸収することが困難で、液獲得部材が乾かずに戻り量の非常に多いものとなる。好ましくは、本発明に必要な吸水性樹脂または吸水性樹脂層の40cmの高さにおける毛管吸収倍率DまたはHの値は10(g/g)以上、より好ましくは15(g/g)以上、最も好ましくは20(g/g)以上である。また、以降、液獲得部材のD/FまたはH/Fの値を液獲得貯蔵係数2とした場合、好ましくはこの値が30以上、より好ましくは50以上である。
本発明では、上記した液獲得貯蔵係数1、D、Hの値のいずれもが本発明の範囲を満たしていることがより好ましい。片方のみしか満たしていない場合には吸水性樹脂の液獲得部材からの液吸収能力が使用条件によっては良好に発揮されないこともあるので注意を要する。前述と同様に、Dは吸水性樹脂単独、Hは吸水性樹脂層から吸水性樹脂が単離困難な場合などに吸水性樹脂層をそのまま用いて求めた毛管吸収倍率を意味する。
(3−2)液獲得部材
本発明に使用することのできる液獲得部材とは、吸収体または吸収体を有する吸収性物品に加えられた液を、瞬時に捕捉し、吸収体の外部に出さない役割を担う部材であり、40cmの高さにおける毛管吸収指数Eが0.10未満であり、かつ、40cmの高さにおける毛管吸収倍率Gが1.0(g/g)以下である材料と定義され、一般的には、力がかかったり、吸水した後でも液を捕捉するための空間を維持できるような構造を有するものである。
【0084】
本発明に用いることのできる液獲得部材は、液の獲得能力、液の放出能力に優れているものであり、40cmの高さにおける毛管吸収指数Eが0.1未満であることが必要である。従来の紙おむつ用に用いられるフラップパルプ等の40cmの高さにおける毛管吸収指数Eは本発明の測定法によれば0.04であり、このようなものも本発明の液獲得部材として用いることができるが、この値が小さい方が液獲得性、液放出性に優れるため好ましい。毛管吸収指数Eが0.10以上の材料は液を比較的強く材内部に保持してしまい、繰り返し液を吸収する場合にその液獲得性能が急激に低下するため、もれや、ウエット感、戻り量等が改善されにくい。好ましくは40cmの高さにおける毛管吸収指数Eが0.03以下のものである。
【0085】
また、本発明に用いることのできる液獲得部材は、0cmの高さの毛管吸収倍率が5(g/g)以上であることが好ましい。0cmの高さの毛管吸収倍率が高いほど、液獲得部材として液の獲得量が大きく、液の瞬間吸収、一時貯蔵に優れた吸収体が得られる。より好ましくは0cmの高さの毛管吸収倍率が10(g/g)以上、さらに好ましくは0cmの高さの毛管吸収倍率が15(g/g)以上である。
本発明に用いることのできる別の液獲得部材は、40cmの高さにおける毛管吸収倍率Gが1.0(g/g)以下であることが必要である。従来の紙おむつ用に用いられるフラップパルプ等の40cmの高さにおける毛管吸収倍率Gは0.5(g/g)程度であり、このようなものも本発明の液獲得部材として用いることができるが、この値が小さい方が液獲得性、液放出性に優れるため好ましい。40cmの高さにおける毛管吸収倍率Gが1.0(g/g)を越える材料は液を比較的強く部材内部に保持してしまい、繰り返し液を吸収する場合に、その液獲得性能が急激に低下するため、もれや、ウエット感、戻り量等が改善されにくい。好ましくは40cmの高さにおける毛管吸収倍率Gが0.4(g/g)以下、より好ましくは0.2(g/g)以下のものである。
【0086】
また同様に、本発明に用いることのできる別の液獲得部材は0cmの高さの毛管吸収倍率が5(g/g)以上であることが好ましいが、液の保持を大きな目的としない場合にはこの限りではない。しかし、一般に、0cmの高さの毛管吸収倍率が高いほど、液獲得部材として液の獲得量が大きく、液の瞬間吸収、一時貯蔵に優れた吸収体が得られる。より好ましくは0cmの高さの毛管吸収倍率が10(g/g)以上、さらに好ましくは0cmの高さの毛管吸収倍率が15(g/g)以上である。
本発明に用いることのできる液獲得部材は上記条件を満たしたものであり、かつ吸水性樹脂(層)と併用され吸収体に使用される。
【0087】
両者の関係は先述したように液獲得部材の40cmの高さにおける毛管吸収指数をE(ただしE<0.1)としたときに、該吸水性樹脂として40cmの高さにおける毛管吸収指数BがB/E≧10を満足すること、または、該吸水性樹脂層として40cmの高さにおける毛管吸収指数FがF/E≧10を満足することが必要である。
また、両者の関係は液獲得部材の40cmの高さにおける毛管吸収倍率をG(ただしG≦1.0(g/g))としたときに、該吸水性樹脂として40cmの高さにおける毛管吸収倍率Dが5(g/g)以上を満足すること、または、該吸水性樹脂層として40cmの高さにおける毛管吸収倍率Hが5(g/g)以上を満足することが必要である。
【0088】
さらに、両者がB/E≧10およびD≧5.0を同時に満たすこと、または両者がF/E≧10およびH≧5.0を同時に満たすことがより好ましい。
液獲得部材の形状としては、シート状、繊維状、繊維集合体、粒子状、短冊状等の形状をとり得るが、一般的にはシート状が好ましい。その際、液獲得部材の坪量としては50〜500g/m程度が好ましく、より好ましくは100〜200g/m程度である。
また、液獲得部材がその部材内で密度差や密度勾配、獲得能力差や獲得能力勾配を有する場合や、本発明の関係を満たさない第2の液獲得部材・液拡散部材をさらに用いる場合には、吸水性樹脂により近い部分の液獲得部材の毛管吸収能力が上記関係をみたすようにすることが好ましい。
【0089】
本発明で用いることのできる液獲得部材としては、フラップパルプ、架橋処理を施したセルロース繊維、嵩高い構造の不織布等の合成繊維、高内部相エマルション(HIPE)を重合して得られる多孔質重合体、ポリウレタン、ポリスチレン、ポリエチレン、ポリプロピレン、ポリエステル、ポリビニルアルコール、ブタジエンスチレンゴム(SBR)、ニトリルブタジエンゴム等の合成高分子からなる発泡体;ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ナイロン等の合成繊維を接着または結合させた繊維集合体;レーヨン繊維;セルロース、酢酸セルロース、ニトロセルロース等のセルロース繊維、ポリアミド繊維等の親水性繊維を圧着、接着または結合した繊維集合体等が例示される。好ましくは架橋処理を施したセルロース繊維、嵩高い構造の不織布等の合成繊維、高内部相エマルション(HIPE)を重合して得られる多孔質重合体である。
(3−3)吸水性樹脂
これまで吸水性樹脂は樹脂の内外の浸透圧差によって液を吸収するものとして紙おむつ等液貯蔵部材として用いられてきたが、本発明者は吸水性樹脂の吸収倍率、加圧下の吸収倍率等これまで知られている物性が同じ場合でも樹脂の種類により液獲得部材等から液を吸収する場合にその吸収挙動が大きく異なることに着目した。そして、本発明者が鋭意検討したところ、吸水性樹脂単体でも、毛管吸収能力が大きく異なること、液獲得部材の毛管吸収能力と吸水性樹脂の毛管吸収能力の関係がある特定の条件を満たした場合に、吸水性樹脂は液獲得部材より良好に液を受け取り貯蔵できることを見いだした。
【0090】
本発明に用いることのできる吸水性樹脂としては、先述したように液獲得部材の40cmの高さにおける毛管吸収指数をE(ただしE<0.10)としたときに、該吸水性樹脂として40cmの高さにおける毛管吸収指数Bが、B/E≧10を満足するもの、好ましくはB/E≧20を満足するもの、さらに好ましくはB/E≧30を満足するものである。吸水性樹脂は吸収体から取り出した吸収性樹脂層のまま測定してもよく、その場合、該吸水性樹脂層として40cmの高さにおける毛管吸収指数Fが、F/E≧10を満足するもの、好ましくはF/E≧20を満足するもの、さらに好ましくはF/E≧30を満足するものである。
【0091】
本発明に必要な吸水性樹脂の40cmの高さにおける毛管吸収指数Bや吸水性樹脂層の40cmの高さにおける毛管吸収指数Fの値は用いる液獲得部材の特性、すなわち用いる液獲得部材の40cmの高さにおける毛管吸収指数Eによって異なり、上記B/E≧10あるいはF/E≧10の関係を満足しておれば液獲得部材から吸水性樹脂、または吸水性樹脂層へ液が良好に移行され、吸水性樹脂が液を良好に吸収貯蔵し、液獲得部材を乾かすことができる。好ましくは吸水性樹脂として40cmの高さにおける毛管吸収指数Bや吸水性樹脂層の40cmの高さにおける毛管吸収指数Fが0.2以上、より好ましくは0.4以上、さらに好ましくは0.6以上のものである。
【0092】
また本発明に使用する吸水性樹脂は、0cmの高さの毛管吸収倍率が20(g/g)以上であることが好ましい。0cmの高さの毛管吸収倍率が高いほど、液獲得部材から吸い上げた液を多量に把持できるため液の吸収能力という観点から優れた吸収体が得られる。より好ましくは0cmの高さの毛管吸収倍率が30(g/g)以上、さらに好ましくは0cmの高さの毛管吸収倍率が40(g/g)以上の吸水性樹脂である、さらに好ましくは0cmの高さの毛管吸収倍率が50(g/g)以上の吸水性樹脂であるが、この0cmの高さの毛管吸収倍率があまり高い場合には液拡散部材を使用していても吸収体の中に液が進入しにくくなる場合があり注意を要する。
【0093】
また本発明に用いることのできる別の吸水性樹脂としては、吸水性樹脂として40cmの高さにおける毛管吸収倍率Dが、好ましくは5(g/g)以上のもの、より好ましくは10(g/g)以上を満足するもの、さらに好ましくは15(g/g)以上のもの、最も好ましくは20(g/g)以上のものである。吸水性樹脂は吸収体から取り出した吸収性樹脂層のまま測定してもよく、その場合、該吸水性樹脂層として40cmの高さにおける毛管吸収倍率Hが、好ましくは5(g/g)以上のもの、より好ましくは10(g/g)以上を満足するもの、さらに好ましくは15(g/g)以上のもの、最も好ましくは20(g/g)以上のものである。
【0094】
本発明に用いることのできる吸水性樹脂は上記条件を満たしたものであり、本発明の要件を満たす液獲得部材と併用され吸収体に使用される。
吸水性樹脂の形状としては粒子状、繊維状、シート状、短冊状等をとり得るが、一般的には粒子状のものが好ましい。また製法としては水溶液重合、逆相懸濁重合等を用いることができる。
本発明では吸水性樹脂として上記関係を満たす樹脂と上記関係を満たさない吸水性樹脂を併用してもよいが、本発明の効果を最大限に発揮させるには上記関係を満たした樹脂のみを用いることが好ましい。また、液獲得部材により近い部分の吸水性樹脂の毛管吸収能力が上記関係をみたすものとなるように樹脂を配置することが好ましい。
【0095】
本発明で用いることができる吸水性樹脂の例示、当該吸水性樹脂の原料となる単量体の例示と使用量、架橋構造の導入方法、内部架橋に関する説明、重合の際の添加剤の例示と使用量、重合方法、得られる吸水性樹脂の形状、表面架橋に関する説明、吸水性樹脂にさらなる機能を付与するための添加剤の説明は、先の(2−3)の項で述べたものと同様である。
本発明に用いることのできる40cmの高さにおける毛管吸収指数B、40cmの高さにおける毛管吸収倍率Dに優れた吸水性樹脂を得るための好ましい方法としては、
(1)重量平均粒子径が100〜500μm、より好ましくは200〜400μmの範囲のカルボキシル基を有する吸水性樹脂前駆体を、該カルボキシル基と反応可能な、溶解度パラメーターが25.6[(J/cm1/2](12.5[(cal/cm1/2])以上の第1表面架橋剤、および、溶解度パラメーター25.6[(J/cm1/2](12.5[(cal/cm1/2])未満の第2表面架橋剤の存在下に加熱処理する方法、
(2)逆相懸濁重合で得られた重量平均粒子径が250μm以下、好ましくは40〜200μm、より好ましくは70〜150μmの範囲のカルボキシル基を有する吸水性樹脂前駆体を、含水率が10%以下で表面架橋剤の存在下に0.3psi下での加圧下の吸収倍率が20(g/g)以上、好ましくは25(g/g)以上、好ましくは30(g/g)以上になるように加熱処理した後に溶剤で処理する方法、
(3)重量平均粒子径100〜600μmのカルボキシル基を有する吸水性樹脂前駆体を、多価アルコール、またはアルキレンカーボネートの存在下で特定表面架橋層を有するように処理を行った後に特定粒度の篩により分級し、重量平均粒子径が400μm以下、好ましくは重量平均粒子径が100〜400μmの粒子を得る方法、
等が例示できる。
【0096】
このような手法により、40cmの高さにおける毛管吸収倍率Dが例えば10(g/g)以上、好ましくは15(g/g)以上、もっとも好ましくは25(g/g)以上の吸水性樹脂が得られ本発明に好適に使用できる。また上記手法により40cmの高さにおける毛管吸収指数Bが例えば0.2以上、好ましくは0.4以上、さらに好ましくは0.6以上という吸水性樹脂が得られ本発明に好適に使用できる。
(3−4)吸収体
本発明の吸収体は、上記特性を満足した液獲得部材および吸水性樹脂層を組み合わせて得られる。その吸水性樹脂層は、先に記載した通りの吸水性樹脂量と構成を有するものである。
【0097】
本発明の吸収体中には、その吸水性樹脂層は250g/m以上の散布量であることが好ましく、膨潤時に吸水性樹脂が実質連続層となるように構成される。250g/m未満の場合には吸収体の飽和吸収量が小さくなり、液獲得層を十分に乾かすことができず、ドライ感に劣り、液の戻り量が増大する傾向が見られる。好ましくは吸水性樹脂層の散布量は300g/m以上、より好ましくは350g/m以上、さらに好ましくは400g/m以上である。
本発明で用いることができる吸水性樹脂は、本発明の意図する液獲得・貯蔵システムを妨げない限り、当該吸水性樹脂に少量の親水性繊維、合成繊維等の他の基材を組み合わせてもよいが、液獲得部材からの液の移行を最大限に発揮させるためには吸水性樹脂それ自体を散布し、上記した散布量の吸水性樹脂層を形成させることが好ましい。
【0098】
本発明の吸収体中には、液獲得部材、吸水性樹脂に加えて、本発明の意図する液獲得・貯蔵システムを妨げない限り、他の材料を用いてもよい。他の材料の例としては親水性繊維、不織布、紙、ティッシュ等が例示できる。上記の親水性繊維としては、例えば、木材から得られるメカニカルパルプやケミカルパルプ、セミケミカルパルプ、溶解パルプ等のセルロース繊維、レーヨン、アセテート等の繊維等が挙げられる。上記例示の繊維のうち、セルロース繊維が好ましい。また、親水性繊維は、ポリアミドやポリエステル、ポリオレフィン等の合成繊維を含有していてもよい。尚、親水性繊維は、上記例示の繊維に限定されるものではない。不織布としてはスパンボンド、ケミカルボンド、スパンレース方式等のポリエステル、ポリエチレン、ポリプロピレン、ナイロン、レーヨン等の不織布が例示できる。
【0099】
本発明の吸収体は、液獲得部材と吸水性樹脂層がそれぞれ1層づつからなることが好ましい。液獲得部材が2層以上ある場合には吸収性物品中のすべての液獲得部材から吸水性樹脂層に液が良好に吸収されず、ドライ感や、戻り量に劣ったものとなる場合がある。
吸収体における吸水性樹脂層と液獲得部材の割合は任意の範囲で選択が可能であるが、液獲得部材と吸水性樹脂層の総重量に対する吸水性樹脂層の重量割合が70重量%以上であることが好ましい。より好ましくは80重量%以上95重量%以下である。
【0100】
また吸収体の液飽和吸収量における吸水性樹脂層の液吸収量の重量割合が80重量%以上であることが好ましい。より好ましくは80重量%以上95重量%以下、さらに好ましくは90重量%以上95重量%以下である。
本発明の液獲得部材、吸水性樹脂層の使用量は目的とする吸収性物品の大きさにもよるが、子供用おむつのLサイズを想定した場合、液獲得部材で好ましくは0.5〜4g、より好ましくは1〜2g程度、吸水性樹脂層で好ましくは10〜30g、より好ましくは15〜20g程度である。
吸水性樹脂層の配置位置としては、液獲得部材の背面(吸収性物品の液不透過性裏面シート側)、液獲得部材の前面、液獲得部材の背面側の一部、液獲得部材の前面側の一部、液獲得部材の間、液獲得部材中等が例示でき、これらの配置方法を組み合わせてもよい。なかでも液獲得部材の背面側に吸水性樹脂層を配置することが好ましい。吸水性樹脂層の配置状態としては、液獲得部材の全面に対して均一に存在している状態、特定のパターン状に存在している状態、筋状に存在している状態、密度勾配をもって存在している状態、液獲得部材の中央にのみ存在している状態、液獲得部材の前後のみに存在している状態等が例示されるが、液獲得部材の存在する面積より吸水性樹脂層の存在する面積の方が大きいことが好ましい。好ましくは液獲得部材の面積1に対する吸水性樹脂層の面積比は1.2以上、より好ましくは2以上である。
【0101】
また、吸水性樹脂や吸水性樹脂層は、それ自体を従来公知の手法でシート状にしたり、固定化する基材上に散布したり、袋詰めにしたり、粘着性を付与させたりした後に液獲得部材と組み合わせても良い。さらに吸水性樹脂層と液獲得部材とは接着性バインダーを用いて接着させてもよい。
上記の接着性バインダーとしては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、1−ブテン−エチレン共重合体等のポリオレフィン繊維等の熱融着繊維や接着性を有するエマルション、ホットメルト接着剤等が例示できる。これら接着性バインダーは、単独で用いてもよく、また、2種類以上を混合して用いてもよい。この場合は吸水性樹脂単独のみならず、固定化された状態での吸水性樹脂層としての毛管吸収能力が本発明の範囲を満たしていることがより好ましい。
【0102】
なお本発明の吸収体においてもさらに二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、タルク、リン酸カルシウム、リン酸バリウム、珪酸またはその塩、粘土、珪藻土、ゼオライト、ベントナイト、カオリン、ハイドロタルサイト、活性白等塩類等の水不溶性微粒子状無機粉体;消臭剤、香料、抗菌剤、ポリアミン等のカチオン性高分子化合物、発泡剤、顔料、染料、親水性短繊維、肥料、酸化剤、還元剤、水等を添加し、吸収体にさらなる機能を付与させることもできる。
なお、本発明にかかる前記の吸収体、すなわち、液獲得部材と吸水性樹脂層を含む吸収体は、前述の液拡散部材をさらに含んでいても良い。この場合、前述の、本発明にかかる液拡散部材と吸水性樹脂を含む吸収体の有する特徴と、本発明にかかる液獲得部材と吸水性樹脂層を含む吸収体の有する特徴との両方を併せ持つ吸収体は、本発明の効果をより一層発揮できるために好ましい。
[4]吸収性物品
本発明にかかる吸収性物品は、一般的には上記構成の本発明にかかる吸収体、すなわち、前記の液拡散部材と吸水性樹脂を含む吸収体、あるいは、前記の液獲得部材と吸水性樹脂層を含む吸収体を、液透過性シートと、液不透過性シートとで挟持してなる。そして、該吸収性物品は、上記構成の吸収体を有してなるので、上述したような優れた吸水特性を備えている。吸収性物品としては、具体的には、例えば、紙おむつや生理用ナプキン、いわゆる失禁パット等の衛生材料、メディカルシート、結露吸水シート等が挙げられるが、特に限定されるものではない。本発明の吸収性物品は優れた吸水特性を備えているので、例えば該吸収性物品が紙おむつである場合には、液の吸収効率が非常に高くなり、尿の漏れを防止することができると共に、いわゆるドライ感を付与したり、薄型軽量化を実現することができる。
【0103】
上記の液透過性シートと称する材料は水性液体を透過する性質を備えた材料、例えば不織布;織布;ポリエチレンやポリプロピレン、ポリエステル、ポリアミド等からなる多孔質の合成樹脂フィルム等が挙げられる。上記の液不透過性シートは、水性液体を透過しない性質を備えた材料、例えば、ポリエチレン、ポリプロピレン、エチレンビニルアセテート、ポリ塩化ビニル等からなる合成樹脂フィルム;これら合成樹脂と不織布との複合材からなるフィルム;上記合成樹脂と織布との複合材からなるフィルム等が挙げられる。尚、液不透過性シートは、蒸気を透過する性質を備えていてもよい。
【0104】
以上のように、本発明では液拡散部材や液獲得部材の毛管吸収能力と特定の関係を有する毛管吸収能力の吸水性樹脂を該液拡散部材や液獲得部材と組み合わせて用いるため、液拡散部材や液獲得部材から吸水性樹脂が液を良好に吸収、貯蔵でき、非常に優れた液吸収効率を示す。すなわち本発明によれば液の拡散から貯蔵というシステムが良好に作用し、非常に簡単な製造プロセスで非常に優れた液拡散・貯蔵能力を示す吸収体および吸収性物品が提供できる。
このような吸収体を用いて製造した紙おむつや生理用ナプキン、いわゆる失禁パット等の吸収性物品は部材の液の吸収効率が高いため部材全体が液吸収のために有効に使われ、高い吸収能力を示す。またこのような吸収効率の高い吸収体や吸収性物品の吸収能力を、従来の市販おむつの吸収量レベルと同等に設計した場合には、使用する液拡散部材や液獲得部材、あるいは吸水性樹脂の使用量が従来品よりより低減でき、軽い、薄型おむつを経済的に製造できる。
[5]吸水性樹脂粒子
本発明にかかる吸水体および吸水性物品に用いることができる吸水性樹脂は、前述に述べた通りであるが、特に好適な吸水性樹脂として、本発明においては、以下に説明するような吸水性樹脂粒子とその製造方法をも提供する。
【0105】
本発明にかかる吸水性樹脂粒子の製造方法は、重量平均粒子径が50〜300μm、生理食塩水(0.9重量%NaCl水溶液)に飽和膨潤させた時の無加圧下における飽和膨潤時の粒子間隙間率が30〜50%、かつ無加圧下における飽和膨潤時の粒子間平均隙間半径が80〜150μmの吸水性樹脂に、水分散性微粒子の分散液を添加することにより重量平均粒子径を50%以上上昇させることを特徴とする。
本発明にかかる吸水性樹脂粒子の製造方法において用いることのできる吸水性樹脂は、重量平均粒子径が50〜300μm、生理食塩水(0.9重量%NaCl水溶液)に飽和膨潤させた時の無加圧下における飽和膨潤時の粒子間隙間率が30〜50%、かつ無加圧下における飽和膨潤時の粒子間平均隙間半径が80〜150μmのものである。
【0106】
これらのものは、前述した本発明の吸水体や吸水性物品に用いる吸水性樹脂を製造する際に、重量平均粒子径、粒度分布、表面架橋剤、表面架橋層の厚み等を最適化することで得られる。たとえばその手法としては
▲1▼カルボキシル基を有する吸水性樹脂を、多価アルコール、エポキシ化合物、オキサゾリン化合物、またはアルキレンカーボネート、またはオキサゾリドン化合物等の該カルボキシル基と反応可能な、表面架橋剤の存在下に加熱処理し、該表面架橋層が一定の範囲内になるように表面架橋処理する方法、
▲2▼カルボキシル基を有する吸水性樹脂を、該カルボキシル基と反応可能な、表面架橋剤の存在下に加熱処理し、かつ特定範囲の分子量のカチオン性ポリマーを添加する方法、
等が例示できる。なお表面架橋層の厚みの求め方については特願2000−329501号等に記載されている。カチオン性ポリマーは特開平5−31360号、特開平6−370号等に例示されている。
【0107】
このような手法により得られた無荷重下における飽和膨潤時の粒子間隙間率が30〜50%かつ無荷重下における飽和膨潤時の粒子間平均隙間半径が80〜150μmの吸水性樹脂を原料粉末として使用する。
また、本発明の吸水性樹脂粒子は、乾燥時には強固な造粒性を有するものであるが、多量の液と接触時には結合が外れ再分散性を有するものである。造粒粒子を、例えば生理食塩水(0.9重量%NaCl水溶液)に飽和膨潤させた時は、再分散して自由に吸液、膨潤する状態をもたらし、無加圧下における飽和膨潤時の粒子間隙間率が30〜50%、かつ無加圧下における飽和膨潤時の粒子間平均隙間半径が80〜150μmを有するものである。
【0108】
本発明にかかる吸水性樹脂粒子の製造方法において用いることのできる吸水性樹脂の重量平均粒子径は50〜300μmであるが、より効果的に本発明にかかる吸水性樹脂粒子を得るためには、好ましくは100〜300μm、より好ましくは150〜250μmである。
本発明にかかる吸水性樹脂粒子の製造方法において用いることのできる吸水性樹脂の、生理食塩水(0.9重量%NaCl水溶液)に飽和膨潤させた時の無加圧下における飽和膨潤時の粒子間隙間率は30〜50%であるが、より効果的に本発明にかかる吸水性樹脂粒子を得るためには、好ましくは35〜45%である。
【0109】
本発明にかかる吸水性樹脂粒子の製造方法において用いることのできる吸水性樹脂の、無加圧下における飽和膨潤時の粒子間平均隙間半径は80〜150μmである。
本発明にかかる吸水性樹脂粒子の製造方法は、上述の特徴を有する吸水性樹脂に、水分散性微粒子の分散液を添加することにより重量平均粒子径を50%以上上昇させることを特徴とする。
本発明で使用できる水分散性微粒子としては、例えば、粉末状無機物質としては、二酸化珪素、酸化アルミニウム、酸化亜鉛、酸化マグネシウム、二酸化チタン、リン酸カルシウム、リン酸バリウム、炭酸カルシウム、タルク、リン酸マグネシウム、硫酸カルシウム、珪酸またはその塩、粘度、珪藻土、ベントナイト、ゼオライト、カオリン、ハイドロタルサイト、活性白等塩類等の水不溶性微粒子状無機粉体やその他の金属酸化物などがあげられる。特に二酸化珪素、酸化アルミニウム、二酸化チタンが好ましい。
【0110】
この水分散性微粒子は、一般的には重量平均1次粒子径(個々の粒子の重量平均粒子径。複数個の粒子が凝集し、あるいは造粒されている場合は、凝集あるいは造粒される前の個々の粒子の重量平均粒子径。)が3.0μm以下であることが好ましく、3.0μm〜0.005μmであることがより好ましく、平均で0.1μmもしくはそれ以下の極めて細い粒子状物であることが好ましい。
上記含有させる水分散性微粒子の使用量は、吸水性樹脂100重量部に対して一般的に0.1〜5重量部であることが好ましく、好ましくは0.3〜2.0重量部の範囲である。一般に粉末状無機物質の添加量が0.1重量部未満では造粒物が得られないか、得られても効果が乏しい。一方、分散微粒子の量が5重量部より多い場合は、造粒物としては塊状物が得られるか、造粒物が得られても粗大粒子となり吸収性能に悪影響を及ぼすことがあり、また添加に見合うさらなる効果が期待できず不経済である。これらの範囲で添加量を変化させることにより粒度分布の範囲の狭い任意の粒子径を有する粒子が得られる。
【0111】
本発明に用いる水分散性微粒子は、水の浸透性、吸水性樹脂の膨潤性を阻害しないような性質を持ち、結合する成分が液の浸透吸収を妨げず、しかも膨潤時のブロッキングを起こさずに吸水性樹脂の吸収能力を十分発揮させる。また造粒された吸水性樹脂粒子は、強固な造粒性を有するものであり乾燥時には粉塵もなく、吸液時には水分散性微粒子が水を導入、分配するとともに結合が外れ、吸水性樹脂が自由に吸液、膨潤する特性を持つことを見出した。
本発明では前記の水分散性微粒子を水または水性媒体に分散させた分散液として使用する。
【0112】
使用する分散液の量は、吸水性樹脂100重量部に対して、好ましくは3〜100重量部の範囲である。分散液の量が3重量部未満では造粒物が得られないか、得られても効果が乏しい。一方、分散液の量が100重量部を超えると造粒物としては塊状物が得られるか、造粒物が得られても粗大粒子となり好ましくない。
水分散性微粒子としては、水性媒体中に分散したときに、いわゆる構造粘性を示し、6.7重量%濃度分散液の粘度(ブルックフィールド回転粘度計、6rpm、25℃)が0.5Pa・s以上であるものが好ましい。
【0113】
水分散性微粒子量および分散液中の水量は、吸水性樹脂の粒子表面積や表面状態により、最適造粒状態を得るために、それぞれの添加量を設定選択することが必要である。
本発明の吸水性樹脂粒子は、吸水性樹脂と水分散性微粒子の分散液とを混合し、得られた混合物を加熱乾燥して得られる。吸水性樹脂と水分散性微粒子の分散液を混合する方法としては、吸水性樹脂粉体に該処理溶液を噴霧或いは滴下・混合するのが一般的である。混合に使用する混合機としては、均一に混合するために混合力の大きいものが好ましいが、通常の混合機、捏和機を用いることができる。例えば円筒型混合機、二重円錐型混合機、V型混合機、リボン型混合機、スクリュー型混合機、流動化型混合機、回転円板型混合機、気流型混合機、双腕型捏和機、インターナルミキサー、マラー型捏和機、ロールミキサー、スクリュー型押出機等である。吸水性樹脂粉体にこれらの処理溶液を混合して得られた混合物を加熱するには、通常の乾燥器や加熱炉を用いることができる。例えば溝型攪拌乾燥器、回転乾燥器、円盤乾燥器、捏和乾燥器、流動層乾燥器、気流乾燥器、赤外線乾燥器、誘電加熱乾燥器等である。加熱処理温度は、好ましくは40〜250℃、より好ましくは80〜200℃の範囲である。
【0114】
本発明にかかる吸水性樹脂粒子の製造方法においては、上記水分散性微粒子の分散液の添加によって、得られる吸水性樹脂粒子の重量平均粒子径が添加前から50%以上上昇する。
上記方法により得られた本発明の吸水性樹脂粒子は、高い毛管吸引力をなど、従来の方法では得ることのできなかった吸収特性を有するものである。さらに、水溶性微粒子の分散液が優れたバインダーとして働くために、得られた顆粒の機械的強度が著しく向上しており、実使用にあっては吸水性樹脂微粉末の飛散を著しく押さえることができるものである。
【0115】
すなわち、本発明にかかる吸水性樹脂粒子は、重量平均粒子径が50〜300μm、生理食塩水(0.9重量%NaCl水溶液)に飽和膨潤させた時の無加圧下における飽和膨潤時の粒子間隙間率が30〜50%、かつ無加圧下における飽和膨潤時の粒子間平均隙間半径が80〜150μmの吸水性樹脂を造粒してなる吸水性樹脂粒子であって、前記吸水性樹脂粒子の重量平均粒子径が造粒前から50%以上上昇されてなる。
本発明にかかる吸水性樹脂粒子の重量平均粒子径は、好ましくは150〜600μm、より好ましくは200〜500μm、さらに好ましくは200〜400μmである。
【0116】
本発明にかかる吸水性樹脂粒子は、40cmにおける毛管吸収倍率が7g/g以上であることが好ましく、より好ましくは15g/g以上、さらに好ましくは25g/g以上である。
本発明の吸水性樹脂粒子は、その改善された吸収特性のため、例えば粉砕バルブと混合されて使用されることによって特に優れた効果を発揮するものである。粉砕パルプとの混合物は、マット状に成形されることにより、例えば紙おむつ、生理用ナプキン等の吸収体の吸水性樹脂層として好適に使用できる。本発明者によって、吸収速度を限りなく速くすることは、逆にその荷重下における吸収速度が低下するものであることが実証された。従って、適当な範囲に吸収速度が制御されることは特にこの用途に好ましい。40cmにおける毛管吸収倍率が7(g/g)以上の範囲に制御されることは、本発明において臨界的な意味を持つものである。更に、本発明の吸水性樹脂粒子は150μmの金網を通過する粒子の割合が造粒前の50%以下であるので粉塵の飛散が少ない利点をも有しており、これまでにない新規な吸水性樹脂粒子を提供するものである。
【0117】
【実施例】
以下、実施例および比較例により、本発明をさらに詳細に説明するが、本発明はこれらにより何ら限定されるものではない。尚、液拡散部材、液獲得部材、吸水性樹脂、吸収体および吸収性物品の諸性能は以下の方法で測定した。
吸水性樹脂などの試料は、ポリプロピレン製密封容器などの湿気を通さない容器に保存したものを使用し、以下の各種測定は25±1℃、60±5%RHの条件下で行った。
1.毛管吸収倍率および毛管吸収指数
本発明の毛管吸収倍率および毛管吸収指数は、0cm(等水位)および40cmの負の圧力勾配における所定時間内での吸水性樹脂と液拡散部材または液獲得部材の液体の吸収能力を0.419kPa(0.06psi)荷重下で測定する。第1図、第2図を参照して、これらの毛管吸収能力を測定するための装置および方法を記載する。
1−A.40cmの高さにおける毛管吸収能力(図1)
1)多孔質ガラス板1の液吸収面を有する直径60mmのグラスフィルター2(グラスフィルター粒子番号#3、(株)相互理化学硝子製作所製のBuchner型フィルター、TOP17G−3(code No.1175−03))の下部に導管3をつなぎ、この導管3を直径10cmの液溜容器4の下部に備え付けられている口に接続する。前記グラスフィルターの多孔質ガラス板は平均孔径が20〜30μmであって、その毛管力によって60cmの液面高さの差を付けた状態でも水柱の負圧に抗して多孔質ガラス板内に水を保持することができ、空気の導入がない状態を保てるものである。グラスフィルター2に高さを上下させるための支持リング5をはめ、系に生理食塩水(0.9重量%NaCl水溶液)6を満たし、液溜容器を天秤上7に載せる。導管中、およびグラスフィルターの多孔質ガラス板の下部に空気がないことを確認してから液溜容器4中の生理食塩水6上部の液面レベルと多孔質ガラス板1の上部のレベルの高さの差が40cmになるように調節してグラスフィルターをスタンド8に固定する。
2)多孔質ガラス板1上に測定試料9(吸水性樹脂、液拡散部材または液獲得部材)を以下の条件で載置し、さらにその上に直径59mmの荷重10(0.06psi)を載せ、30分後に測定試料9に吸収された生理食塩水の値(W40)を測定する。
・測定試料9が吸水性樹脂の場合:0.44gをロート中のガラスフイルター上に均一にすばやく散布する。
・測定試料9が液拡散部材または液獲得部材の場合:直径57mmの円形に打ち抜いたサンプルを作成し、乾燥状態での重量(Wi)を測定したのち多孔質ガラス板1上載置し測定する。
1−B.0cmの高さにおける毛管吸収能力(図2)
図2に示す、外気吸入パイプ11、導管12、ガラスフィルター13、生理食塩水14を貯蔵するための液溜容器15および天秤16を有する測定装置(ただし外気吸入パイプ11の下端は生理食塩水中14に没しており、ガラスフィルター13の位置は外気吸入パイプ11の下端よりごくわずかに高い位置に固定されている)のガラスフィルター13上にろ紙17を載せた。ろ紙17表面全体は生理食塩水で濡れた状態になっている。
【0118】
底に400メッシュ(目開き38μm)の金網18を貼着した直径60mmのプラスチック円筒19の金網上に測定試料9を上記条件で載せ、さらにその上に直径59mmの荷重10(0.06psi)を載せた吸液器具を用意した。ガラスフィルター13上のろ紙17上にこの吸液器具を載置し30分後に測定試料9に吸収された生理食塩水の値(W)を測定する。
本発明の毛管吸収倍率、毛管吸収指数は以下の式で求められる。
1) 液拡散部材の40cmの高さの毛管吸収倍率C(g/g)=吸収量(W40)(g)/吸液前の測定試料の重量(Wi)(g)
2) 液獲得部材の40cmの高さの毛管吸収倍率G(g/g)=吸収量(W40)(g)/吸液前の測定試料の重量(Wi)(g)
3) 吸水性樹脂の40cmの高さの毛管吸収倍率D(g/g)=吸収量(W40)(g)/0.44(g)
4) 液拡散部材の0cmの高さの毛管吸収倍率(g/g)=吸収量(W)(g)/吸液前の測定試料の重量(Wi)(g)
5) 液獲得部材の0cmの高さの毛管吸収倍率(g/g)=吸収量(W)(g)/吸液前の測定試料の重量(Wi)(g)
6) 吸水性樹脂の0cmの高さの毛管吸収倍率(g/g)=吸収量(W)(g)/0.44(g)
7) 液拡散部材の40cmの高さの毛管吸収指数A=液拡散部材の40cmの高さの毛管吸収倍率C(g/g)/液拡散部材の0cmの高さの毛管吸収倍率(g/g)
8) 液獲得部材の40cmの高さの毛管吸収指数E=液獲得部材の40cmの高さの毛管吸収倍率G(g/g)/液獲得部材の0cmの高さの毛管吸収倍率(g/g)
9) 吸水性樹脂の40cmの高さの毛管吸収指数B=吸水性樹脂の40cmの高さの毛管吸収倍率D(g/g)/吸水性樹脂の0cmの高さの毛管吸収倍率(g/g)
2.吸い上げ高さ
液拡散部材を幅2cm、長さ90cmの状態に準備する。液拡散部材の下端2cm程度が生理食塩水に浸かるようにして液拡散部材を垂直90度に立てかける。液の蒸発がない様にして72時間後に吸液した高さをもとめる。液拡散部材の下端0〜10cmの吸収倍率を100とし、高さ方向に2cmきざみで材をカッターナイフを用いて切断してそれぞれの吸収倍率を求め、下端の吸収倍率の90%の吸収倍率を示す高さを液拡散部材の吸い上げ高さ(cm)とした。
3.吸収倍率
約0.20g(Wp1)の吸水性樹脂を不織布製の袋(60x60mm)に均一に入れ、0.9重量%塩化ナトリウム水溶液(生理食塩水)中に浸漬した。60分後に袋を引き上げ、遠心分離機を用いて250Gで3分間水切りを行った後、重量Wa(g)を測定した。また、同様の操作を吸水性樹脂を用いないで行い、そのときの重量Wb(g)を測定した。そして、これらの重量Wa、Wbから、次式に従って吸水性樹脂の吸収倍率(g/g)を算出した。
【0119】
吸収倍率(g/g)=[重量Wa(g)−重量Wb(g)]/吸水性樹脂の重量Wp1(g)
4.加圧下の吸収倍率
1−Bと同様の図2の装置を用い、加圧下の吸収倍率を測定した。荷重10の代わりに重量を増加させ2.07kPa(0.3psi)および4.83kPa(0.7psi)の圧力になるようにそれぞれ調整した荷重20および荷重21を準備した。底に400メッシュ(目開き38μm)の金網18を貼着した直径60mmのプラスチック円筒19の金網上に吸水性樹脂約0.44g(Wp2)を散布しその上に上記荷重20(2.07kPa(0.3psi)時)または荷重21(4.83kPa(0.7psi)時)を載せた吸液器具を図2のガラスフィルター13上のろ紙17上に載置し30分後に吸水性樹脂に吸収された生理食塩水の値(Wc)を測定する。以下の式を用いて2.07kPa(0.3psi)、4.83kPa(0.7psi)それぞれの加圧下の吸収倍率を求めた。
【0120】
加圧下の吸収倍率(g/g)=Wc/Wp2
5.粒度分布・重量平均粒子径
吸水性樹脂を目開き850μm、600μm、500μm、300μm、150μm、75μm、45μmの篩(必要であれば、さらにJIS標準篩を追加する)を用いて分級し、各篩上に残った樹脂の重量割合を求めた。また重量平均粒子径は分級した後残留百分率Rを対数確率紙にプロットし、R=50%に相当する粒径を重量平均粒子径とした。
6.液拡散部材から吸水性樹脂への液分配率
液拡散部材を直径57mm円形に裁断したのち予め乾燥、秤量(Wd)(g)した後、この液拡散部材を十分な量の生理食塩水(0.9重量%NaCl水溶液)に浸した。液を吸収して膨潤した試料を容器から取り出し、試料の一端を支持して1分間つるして液切りした後、直ちに吸液した試料の重量(We)(g)を測定した。
【0121】
上記液切り後の液拡散部材上に、吸水性樹脂0.44gを均一になるように撒き、吸収体を作成した。0.41kPa(0.06psi)荷重下で30分間吸水性樹脂を接触させた後の液拡散部材の重量(Wf)(g)を再度測定し、以下の式により吸収体の液拡散部材中からの液の分配率を測定した。
液分配率(%)=(We−Wf)/(We−Wd)×100
7.液拡散部材を含む吸収体、吸収性物品の製造例と吸収性物品(モデルおむつ)の性能評価
約14gの吸水性樹脂をヒートロンペーパー(帝国パルプ工業、GSP−22、目付け22.4g/m)上に11×38cmの範囲に均一に散布したのち、吸水性樹脂に対して5〜10重量%のイオン交換水をスプレーして湿潤させ、吸水性樹脂をシート状に成形した。該シートを一夜放置して乾燥した後にその上に大きさ11×38cmの各種液拡散部材を積層し、ヒートロンペーパーの余剰部分で全体を包んで、液拡散部材と吸水性樹脂からなる本発明の吸収体を作成した。
【0122】
大きさ12×40cmの液非透過性の長方形ポリエチレンフィルム(坪量18g/m)の上に、上記吸収体を液拡散部材が上部になるように載せ、その上から大きさ12×40cmの液透過性ポリエステル不織布を積層し、サイドをテープで接着して吸収性物品(モデルおむつ)を作製した(図3および図4)。
直径14.7cm、長さ46cmの塩ビ管を垂直方向に半分に切り取り、その半円筒の両端、接線方向に20×30cmの大きさの板を貼付けることでU字型の器具を準備した。このU字型器具を90度倒した状態(⊂の形状)に置き、その内側に上記モデルおむつを固定した。この状態は子供がうつ伏せ寝をしたおむつの装着状態を想定している。このおむつを上記器具ごと37℃に保ち、このうつ伏せ寝想定の状態で生理食塩水50ccを20分間隔でおむつ中心部より漏れるまで追尿を続けた。
【0123】
漏れが発生した時点でおむつを取り出し、液拡散部材中の液の拡散率(%)、漏れた時点でのおむつの総吸収量(おむつ最終重量−吸液前のおむつ重量)(g)、おむつ中の吸水性樹脂の液吸収量(g)、おむつの上部半分(うつ伏せ寝を想定したお尻側)の吸水性樹脂の液吸収量(g)を求めた。
8.液獲得部材を含む吸収体、吸収性物品の製造例と吸収性物品の性能評価方法液体非透過性の裏面シートとして大きさ14×40cmの長方形ポリエチレンフィルム(坪量18g/m)の上に、吸水性樹脂を12×38cmの面積に16.4g散布した(吸水性樹脂の散布量360g/m)。排尿位置を考えてその中央部よりややずらした位置に大きさ8×24cm(坪量160g/m)の液獲得部材を積層して吸収体を構成した。
【0124】
その上に液透過性表面材として12×40cmの長方形ポリエステル不織布(坪量20g/m)を載置して、モデル的な吸収性物品を得た。
上記吸収性物品を机上に平面状に固定し、その上に12×40cmのアクリル板(中央部分に液注入のための直径70mmの円筒が具備されている)および、1.3kgの荷重を載せた。
37℃に調整した生理食塩水75mlを円筒の中に注ぎ、表面シートから液が吸収性物品内部に中に吸収し終わった時間(通液時間)と液透過性表面材から液が液獲得部材または吸水性樹脂に吸収され液透過性表面材の表面近傍に空気が入り表面材表面が白くなるまでの時間(白化時間)を測定した。
【0125】
60分経過後に液獲得部材を吸収性物品より取り出しその重量を測定した。その値よりもとの液獲得部材重量を差し引き、液獲得部材中の残存液量を求めた。測定後、再び元の吸収性物品に戻した。
さらにこれらの操作を計4回、60分毎に繰り返し、4回目注入後の60分間後にアクリル板を取除き、液獲得部材の重量を測定し、吸収性物品に戻した後に、吸収性物品をキッチンペーパー(王子製紙(株)ネピア、46×22cm)15枚を重ねたもので覆い、12kgの荷重(アクリル板14×40cm込)を1分間かけて、キッチンペーパーに逆戻りした液量(戻り量)を測定した。
【0126】
また、前記4回目注入後の60分間後に液透過性表面材の上部より吸収コア中の液拡散面積を測定した(Scm)。
本発明の吸収性物品中の拡散面積は以下の式で求められる。
拡散面積(%)=液拡散面積(Scm)/吸収体面積(12×38cm)
9.吸水性樹脂の飽和膨潤時の粒子間隙間率および吸水性樹脂の粒子間平均隙間半径、吸水性樹脂粒子の飽和膨潤時の隙間率および吸水性樹脂粒子の平均隙間半径
図1に示す測定装置を用いて吸水性樹脂および吸水性樹脂粒子の飽和膨潤時の隙間率および平均隙間半径を測定した。
【0127】
毛細管力で半径Rの管を液体が上昇する高さhは、液体の表面張力をγ、接触角をθ、重力加速度をg、液体の密度をρとすると、h=2γcosθ/ρgRと表わされる(P.K.Chatterjee編、「ABSORBENCY」(ELSEVIER)のp36の式(2)p=2γcosθ/Rc(Laplace equation)、及びp37の式(5)Leq=p/ρgの両式から誘導し、Leqをh、RcをRと表記した)。図1の装置においてタンクと測定セルとのヘッド差を0からh(cm)まで持ち上げることにより、膨潤ゲルや吸収体においてそのゲル粒子間や吸収体の隙間に存在していた液体のうちR(μm)という毛細管半径(隙間)より大きい径に保持されていた隙間水が放出され抜け出ていく。従って飽和膨潤され、隙間空間を完全に液で満たされたゲルを高さ0cmから上昇させていき、それぞれ所定の高さでのゲル層の残存隙間液量を測定することで、膨潤ゲル中の隙間半径(毛細管半径)の分布が求められる。
【0128】
以下本発明では、h=2γcosθ/ρgRの式を用いて各々の高さhにおいて求められるサンプルの毛細管半径Rの値をサンプルの隙間半径と定義する。タンクと測定セルとのヘッド差を0から60(cm)まで1cm、2cm、5cm、10cm、20cm、30cm、60cmと段階的に持ち上げることで、それぞれの高さに対応するRの値を有する隙間に保持されていた液が排出されていく。この排出液量を測定することでサンプルの隙間半径(毛細管半径)の分布が計算でき、その値を対数確率紙にプロットし、d50の値を平均隙間半径とする。本実施例ではh=2γcosθ/ρgRの式においてγ:生理食塩水(0.9重量%NaCl水溶液)の表面張力(0.0728N/m)、θ:接触角(0°)、ρ:生理食塩水の密度(1000kg/m)、g:重力加速度9.8m/sの値を用いるものとする。これにより1cm、2cm、5cm、10cm、20cm、30cm、60cmの位置で保持されている液体はそれぞれ1485、743、297、149、74.3、49.5、24.8μmの隙間半径(毛細管半径)に保持されていると求められる。
10.無荷重下の隙間率および平均隙間半径
1)多孔質ガラス板1(グラスフィルター粒子番号#3;平均孔径20〜30μm程度で60cmの高さの差を付けた状態で空気の導入がないもの)の液吸収面を有する直径60mmのグラスフィルター2の下部に導管3をつなぎ、この導管3を直径10cmの液溜容器4の下部に備え付けられている口に接続する。グラスフィルター2に高さを上下させるための支持リング5をはめ、系に生理食塩水6を満たし、液溜容器を天秤上7に載せる。導管中、およびグラスフィルターの多孔質ガラス板の下部に空気がないことを確認してから液溜容器4中の生理食塩水6上部の液面レベルと多孔質ガラス板1の上部のレベルの高さの差が60cmになるように調節してグラスフィルターをスタンド8に固定し天秤の値を0にする。
2)多孔質ガラス板1上に測定試料9(吸水性樹脂、吸収体)を以下の条件で載置する。
・測定試料9が吸水性樹脂の場合:約0.9g(W)をグラスフィルターの多孔質ガラス板1上に均一にすばやく散布する。
・測定試料9が吸収体の場合:直径57mmの円形に打ち抜いたサンプルを作成し、乾燥状態での重量(W)を測定したのち多孔質ガラス板1上に載置し測定する。
3)液溜容器4中の生理食塩水6上部の液面レベルと多孔質ガラス板1の上部のレベルの高さの差を−3cmにして(多孔質ガラス板1の方が低い位置)20分間試料を膨潤させる。この時、試料が生理食塩水で完全に浸り、空気の泡が無い状態にする。
4)液溜容器4中の生理食塩水6上部の液面レベルと多孔質ガラス板1の上部のレベルの高さの差を0cmにして40分放置し飽和膨潤させに天秤の値を記録する(A0)。なお40分で飽和膨潤しない試料の場合には時間を延長する場合もある。
5)液溜容器4中の生理食塩水6上部の液面レベルと多孔質ガラス板1の上部のレベルの高さの差を1cmにして7分間後に天秤の値を記録する(A1)。この隙間水が排出されるまでの平衡時間は試料の隙間径により延長した方がいい場合もある。
6)同様に液溜容器4中の生理食塩水6上部の液面レベルと多孔質ガラス板1の上部のレベルの高さの差を2、5、10、20、30、60cmと上昇させていきそれぞれ7分間後に天秤の値を記録する(A2、A5、A10、A20、A30、A60)。
7)液溜容器4中の生理食塩水6上部の液面レベルと多孔質ガラス板1の上部のレベルの高さの差60cmで保持している隙間水を完全に取り除くため試料を取り出し遠心分離(250G、6分)してその重量Bを測定する。
8)(A0−B)が試料中の全隙間水の量であり、(A1、A2、A5、A10、A20、A30、A60)からそれぞれBの値を引いた値が1、2、5、10、20、30、60cmの高さで累積隙間水量となる。先述したように1cm、2cm、5cm、10cm、20cm、30cm、60cmの位置で保持されている液体はそれぞれ最大1485、743、297、149、74.3、49.5、24.8μmの隙間半径(毛細管半径)に保持されていると求められるため、全隙間水量(A0−B)に対するそれぞれの高さでの累積隙間水量の%を計算し、この値と上記毛細管半径の値とを対数確率紙にプロットする(一例を挙げれば、(A2−B)/(A0−B)×100の値がグラフの743μm上にプロットされる)。このグラフの累積隙間量の50%に相当する隙間半径の値(d50)を求め試料の平均隙間半径(μm)とする。
9)試料隙間率は以下の式で求められる。
【0129】
隙間率=(A0−B)/{A0+W/(サンプルの真比重)}×100
10)さらに測定値を確認するため標準サンプルとして350〜500μmおよび1000〜1180μmの球状ガラスビーズを用いて本手法により平均隙間半径を求めたところ、それぞれ86μm、217μmと求められた。
(参考例1)吸水性樹脂(1)の製造方法
アクリル酸21.6部及びアクリル酸ナトリウムの37重量%水溶液228.6部、N,N´−メチレンビスアクリルアミド0.0185部(対モノマー0.01モル%)、ヒドロキシエチルセルロース0.106部、イオン交換水53部を用いてモノマー濃度35重量%、中和率75%の単量体水溶液を得、この単量体水溶液に過硫酸カリウム0.09部を溶解させ、窒素ガスを吹き込んで溶存酸素を追い出した。
【0130】
撹拌機、還流冷却器、温度計、窒素ガス導入管および滴下ロートを付した四つ口セパラブルフラスコ中にシクロヘキサン800部を取り、分散剤としてショ糖脂肪酸エステル(HLB=6)4部を加えて溶解させ、窒素ガスを吹き込んで溶存酸素を追い出した。次いで、単量体水溶液を上記セパラブルフラスコに攪拌下に加えて分散させた。その後、浴温を65℃に昇温して重合反応を開始させた後、2時間この温度に保持して重合を完結させた。重合終了後、共沸脱水により大部分の水分を取除いた後、濾過し更に100℃で減圧乾燥することにより含水率8%の樹脂を得た。ステンレス製ビーカー中で、得られた樹脂100部にエチレングリコールジグリシジルエーテル0.1部、水3部、イソプロパノール1部を混合し、得られた混合物を120℃で30分間加熱処理を行なったのち粒子を前記と同様のセパラブルフラスコに移し、粒子の5倍量(重量)のメタノールを加えて、60℃で10分間攪拌し、次いで濾紙で濾過して粒子を分離した後、60℃で2時間、50〜100mmHg減圧下で乾燥して、吸水性樹脂(1)を得た。吸水性樹脂(1)の重量平均粒子径は105μmであった。また吸水性樹脂の0cmの高さにおける毛管吸収倍率は45.5(g/g)、40cmの高さにおける毛管吸収倍率Dは27.4(g/g)、40cmの高さにおける毛管吸収指数Bは0.60であった。
【0131】
(参考例2)吸水性樹脂(2)の製造方法
アクリル酸ナトリウム(中和率75モル%)の33重量%水溶液5500部に、ポリエチレングリコールジアクリレート(n=8)5部を溶解させて反応液とした。次に、この反応液を窒素ガス雰囲気下で30分間脱気した。次いで、開閉可能な蓋付きのシグマ型羽根を2本有するジャケット付きステンレス製双腕型ニーダーに上記反応液を供給し、反応液を30℃に保ちながら系を窒素ガス置換した。続いて、反応液を撹拌しながら、過硫酸アンモニウム2.4部およびL−アスコルビン酸0.12部を添加したところ、凡そ1分後に重合が開始した。そして、30〜90℃で重合を行い、重合を開始して60分後に含水ゲル状重合体を取り出した。
【0132】
得られた含水ゲル状重合体は、その径が約5mmに細分化されていた。この細分化された含水ゲル状重合体を50メッシュの金網上に広げ、150℃で90分間熱風乾燥した。次いで、乾燥物を振動ミルを用いて粉砕し、さらに20メッシュの金網で分級することにより、重量平均粒子径が360μmで、しかも、粒径が106μm未満の粒子の割合が3重量%の不定形破砕状の樹脂を得た。
得られた樹脂100重量部に、エチレングリコールジグリシジルエーテル0.05重量部と、グリセリン0.75重量部と、水3重量部、乳酸0.3部、イソプロピルアルコール1重量部とからなる表面架橋剤組成液を混合した。上記の混合物を195℃で40分間加熱処理することにより、吸水性樹脂(2´)を得た。得られた吸水性樹脂(2´)をさらに目開き250μmの金網を通過させ、篩い下の吸水性樹脂(2)を得た。吸水性樹脂(2)の重量平均粒子径は120μmであった。また吸水性樹脂の0cmの高さにおける毛管吸収倍率は33.8(g/g)、40cmの高さにおける毛管吸収倍率Dは19.4(g/g)、40cmの高さにおける毛管吸収指数Bは0.57であった。吸水性樹脂(2)の粒度分布は、150〜850μmが31%、150μm以下は69%であった。
【0133】
(参考例3)吸水性樹脂(3)の製造方法
アクリル酸ナトリウム(中和率71モル%)の38重量%水溶液5500部に、ポリエチレングリコールジアクリレート(n=8)8.1部を溶解させて反応液とした。次に、この反応液を窒素ガス雰囲気下で30分間脱気した。次いで、開閉可能な蓋付きのシグマ型羽根を2本有するジャケット付きステンレス製双腕型ニーダーに上記反応液を供給し、反応液を30℃に保ちながら系を窒素ガス置換した。続いて、反応液を撹拌しながら、過硫酸アンモニウム2.4部およびL−アスコルビン酸0.12部を添加したところ、凡そ1分後に重合が開始した。そして、20〜95℃で重合を行い、重合を開始して60分後に含水ゲル状重合体を取り出した。
【0134】
得られた含水ゲル状重合体は、その径が約5mmに細分化されていた。この細分化された含水ゲル状重合体を50メッシュの金網上に広げ、150℃で90分間熱風乾燥した。次いで、乾燥物を振動ミルを用いて粉砕し、さらに目開き850μmの篩を通過し106μmの篩上に残る、重量平均粒子径が400μmの不定形破砕状の樹脂を得た。
得られた樹脂100重量部に、1,4−ブタンジオール0.3重量部と、プロピレングリコール0.5重量部、水3重量部とからなる表面架橋剤組成液を混合した。上記の混合物を210℃で30分間加熱処理することにより、吸水性樹脂(3)を得た。吸水性樹脂(3)の重量平均粒子径は420μmであった。また吸水性樹脂の0cmの高さにおける毛管吸収倍率は37.8(g/g)、40cmの高さにおける毛管吸収倍率Dは4.30(g/g)、40cmの高さにおける毛管吸収指数Bは0.11であった。吸水性樹脂(3)の粒度分布は、150〜850μmが95%、150μm以下は5%であった。
【0135】
(参考例4)液拡散部材(1)の製造方法
高内部相油中水型エマルション(HIPE)を用い多孔質架橋重合体の液拡散部材を製造した。HIPEを形成するための水相として、無水塩化カルシウム20.7部と過硫酸カリウム0.415部を純水394部に溶解した。別にスチレン0.438部、2−エチルヘキシルアクリレート5.449部、55%ジビニルベンゼン3.459部の混合物にジグリセロールモノオレエート0.654部を添加し油相とした。水相は温度80℃、流量75.2cm/s、油相は温度22℃、流量1.88g/sでそれぞれ別々にピン型の攪拌羽根付き混合装置に連続供給し、1600rpmで攪拌混合することにより、79℃の高内部相油中水型エマルションを得た。
【0136】
得られた高内部相油中水型エマルションをPETフィルムで覆われた駆動ベルト上に厚みを5mmで成形し、上面をさらにPETフィルムで覆い、内部温度95℃に設定された硬化炉を移動速度1.5m/minで通過させて10分間で重合させ、湿潤状態の多孔質架橋重合体を得た。この湿潤状態の重合体を脱水し、含水率20%まで乾燥して、厚さ1mmの多孔質重合体である液拡散部材(1)を得た。液拡散部材(1)の0cmの高さにおける毛管吸収倍率は33.6(g/g)、40cmの高さにおける毛管吸収倍率Cは14.2(g/g)、40cmの高さにおける毛管吸収指数Aは0.42であった。また吸い上げ高さは45cmであった。
【0137】
(参考例5)液拡散部材(2)の製造方法
液拡散部材(1)の製造方法で用いた油相を、スチレン1.649部、2−エチルヘキシルアクリレート5.449部、55%ジビニルベンゼン2.248部の混合物にジグリセロールモノオレエート0.654部を添加したものに変更した以外は同様の操作を行い含水率22%、厚さ1mmの液拡散部材(2)を得た。液拡散部材(2)の0cmの高さにおける毛管吸収倍率は27.0(g/g)、40cmの高さにおける毛管吸収倍率Cは7.6(g/g)、40cmの高さにおける毛管吸収指数Aは0.28であった。また吸い上げ高さは35cmであった。
【0138】
(参考例6)液拡散部材(3)の製造方法
子供用使い捨ておむつに使用する綿状パルプを湿潤させ、吸引後圧縮することにより、密度0.3g/cmで坪量260g/mに積層された液拡散部材(3)を得た。液拡散部材(3)の0cmの高さにおける毛管吸収倍率は6.6(g/g)、40cmの高さにおける毛管吸収倍率Cは2.1(g/g)、40cmの高さにおける毛管吸収指数Aは0.32であった。また吸い上げ高さは30cmであった。
(参考例7)液拡散部材(4)の製造方法
子供用使い捨ておむつに使用する綿状パルプ(密度0.03g/cmで坪量260g/m)を液拡散部材(4)として使用した。液拡散部材(4)の0cmの高さにおける毛管吸収倍率は13.7(g/g)、40cmの高さにおける毛管吸収倍率Cは0.5(g/g)、40cmの高さにおける毛管吸収指数Aは0.04であった。また吸い上げ高さは10cm未満であった。
【0139】
(実施例1)
液拡散部材を含む吸収体と吸収性物品の製造例の項に記載した方法によって、吸水性樹脂(1)と液拡散部材(1)を組合せた吸収体(1)を得た。該吸収体を構成する吸水性樹脂(1)および液拡散部材(1)の毛管吸収指数と毛管吸収倍率は各参考例に示した通りであり、液拡散部材(1)の40cmの高さにおける毛管吸収指数Aに対する吸水性樹脂(1)の40cmの高さにおける毛管吸収指数Bの比B/A=1.4、液拡散部材(1)の40cmの高さにおける毛管吸収倍率Cに対する吸水性樹脂(1)の40cmの高さにおける毛管吸収倍率Dの比、D/C=1.9であった。
【0140】
吸収体(1)を用いて液拡散部材から吸水性樹脂への液分配率を求め、さらに吸収体(1)を用いてモデルおむつとしての吸収性物品(1)を作成し、液拡散部材中の液の拡散率、漏れた時点でのおむつの総吸収量、おむつ中の吸水性樹脂の液吸収量、おむつの上部半分の吸水性樹脂の液吸収量を求めた。結果を表1に示したが、液拡散部材から吸水性樹脂への液分配率、俯せ寝を想定したおむつの上側半分での吸水性樹脂の液拡散部材からの液の吸収能力がそれぞれ47%、165gと非常に優れた値を示した。
(実施例2)
吸水性樹脂(2)と液拡散部材(1)を組合わせた吸収体(2)を得た。液拡散部材(1)の40cmの高さにおける毛管吸収指数Aに対する吸水性樹脂(2)の40cmの高さにおける毛管吸収指数Bの比B/A=1.4、液拡散部材(1)の40cmの高さにおける毛管吸収倍率Cに対する吸水性樹脂(2)の40cmの高さにおける毛管吸収倍率Dの比、D/C=1.4であった。
【0141】
吸収体(2)を用いて液拡散部材から吸水性樹脂への液分配率を求め、さらに吸収体(2)を用いてモデルおむつとしての吸収性物品(2)を作成し、液拡散部材中の液の拡散率、漏れた時点でのおむつの総吸収量、おむつ中の吸水性樹脂の液吸収量、おむつの上部半分の吸水性樹脂の液吸収量を求めた。結果を表1に示したが、液拡散部材から吸水性樹脂への液分配率、俯せ寝を想定したおむつの上側半分での吸水性樹脂の液拡散部材からの液の吸収能力がそれぞれ23%、102gと優れた値を示した。
(比較例1)
吸水性樹脂(3)と液拡散部材(1)を組合わせた吸収体(3)を得た。液拡散部材(1)の40cmの高さにおける毛管吸収指数Aに対する吸水性樹脂(3)の40cmの高さにおける毛管吸収指数Bの比B/A=0.3、液拡散部材(1)の40cmの高さにおける毛管吸収倍率Cに対する吸水性樹脂(3)の40cmの高さにおける毛管吸収倍率Dの比、D/C=0.3であった。
【0142】
吸収体(3)を用いて液拡散部材から吸水性樹脂への液分配率を求め、さらに吸収体(3)を用いてモデルおむつとしての吸収性物品(3)を作成し、液拡散部材中の液の拡散率、漏れた時点でのおむつの総吸収量、おむつ中の吸水性樹脂の液吸収量、おむつの上部半分の吸水性樹脂の液吸収量を求めた。結果を表1に示したが、液拡散部材から吸水性樹脂への液分配率、俯せ寝を想定したおむつの上側半分での吸水性樹脂の液拡散部材からの液の吸収能力がそれぞれ13%、33gであった。
実施例1、2、比較例1より同じ液拡散部材を用いた場合でも吸水性樹脂の毛管吸収能力との関係が本発明の関係をみたすものと、満たさないものでは吸水性樹脂へ液の分配率がことなり、おむつ中の吸水性樹脂の吸収性が大きく異なることが示される。
【0143】
(実施例3)
液拡散部材(1)をさらに半分の厚みになるようにスライスし厚さ約0.5mmの液拡散部材(1´)を得、吸水性樹脂(1)と組合わせた吸収体(4)を得た。液拡散部材(1´)の40cmの高さにおける毛管吸収指数Aに対する吸水性樹脂(1)の40cmの高さにおける毛管吸収指数Bの比B/A=1.9、液拡散部材(1´)の40cmの高さにおける毛管吸収倍率Cに対する吸水性樹脂(1)の40cmの高さにおける毛管吸収倍率Dの比、D/C=2.2であった。吸水性樹脂と液拡散部材の合計量に対する吸水性樹脂の重量割合は80重量%であった。
【0144】
吸収体(4)を用いて液拡散部材から吸水性樹脂への液分配率を求め、さらに吸収体(4)を用いてモデルおむつとしての吸収性物品(4)を作成し、液拡散部材中の液の拡散率、漏れた時点でのおむつの総吸収量、おむつ中の吸水性樹脂の液吸収量、おむつの上部半分の吸水性樹脂の液吸収量を求めた。結果を表1に示したが、液拡散部材から吸水性樹脂への液分配率、俯せ寝を想定したおむつの上側半分での吸水性樹脂の液拡散部材からの液の吸収能力がそれぞれ52%、81gと優れた値を示した。
実施例1、3と比較例4より吸収性物品(1)から液拡散部材の量をさらに低減させた吸水性物品(3)は現状の市販おむつのである比較例4のおむつに比べて使用部材量が30%も低減されているにもかかわらず液の総吸収量はまだまだ高いレベルにある。このように本発明の吸収体を用いることでさらに軽量、薄型のおむつの設計が可能になる。
【0145】
(実施例4)
吸水性樹脂(1)と液拡散部材(2)を組合わせた吸収体(5)を得た。液拡散部材(2)の40cmの高さにおける毛管吸収指数Aに対する吸水性樹脂(1)の40cmの高さにおける毛管吸収指数Bの比B/A=2.1、液拡散部材(2)の40cmの高さにおける毛管吸収倍率Cに対する吸水性樹脂(1)の40cmの高さにおける毛管吸収倍率Dの比、D/C=3.6であった。
吸収体(5)を用いて液拡散部材から吸水性樹脂への液分配率を求め、さらに吸収体(5)を用いてモデルおむつとしての吸収性物品(5)を作成し、液拡散部材中の液の拡散率、漏れた時点でのおむつの総吸収量、おむつ中の吸水性樹脂の液吸収量、おむつの上部半分の吸水性樹脂の液吸収量を求めた。結果を表1に示したが、液拡散部材から吸水性樹脂への液分配率、俯せ寝を想定したおむつの上側半分での吸水性樹脂の液拡散部材からの液の吸収能力がそれぞれ51%、77gと優れた値を示した。この場合おむつに使用する部材が低減でき、より薄型で性能に優れたおむつが製造できる。
【0146】
(比較例2)
吸水性樹脂(3)と液拡散部材(2)を組合わせた吸収体(6)を得た。液拡散部材(2)の40cmの高さにおける毛管吸収指数Aに対する吸水性樹脂(3)の40cmの高さにおける毛管吸収指数Bの比B/A=0.4、液拡散部材(2)の40cmの高さにおける毛管吸収倍率Cに対する吸水性樹脂(3)の40cmの高さにおける毛管吸収倍率Dの比、D/C=0.6であった。
吸収体(6)を用いて液拡散部材から吸水性樹脂への液分配率を求め、さらに吸収体(6)を用いてモデルおむつとしての吸収性物品(6)を作成し、液拡散部材中の液の拡散率、漏れた時点でのおむつの総吸収量、おむつ中の吸水性樹脂の液吸収量、おむつの上部半分の吸水性樹脂の液吸収量を求めた。結果を表1に示したが、液拡散部材から吸水性樹脂への液分配率、俯せ寝を想定したおむつの上側半分での吸水性樹脂の液拡散部材からの液の吸収能力がそれぞれ13%、17gと低かった。
【0147】
実施例4、比較例2からも、同じ液拡散部材を用いているが吸水性樹脂の毛管吸収能力との関係が本発明の関係をみたすものと、満たさないものでは液拡散部材からの吸水性樹脂への液分配率、おむつ中の吸水性樹脂の吸収量が大きく異なることがわかる。
(実施例5)
吸水性樹脂(1)と液拡散部材(3)を組合わせた吸収体(7)を得た。液拡散部材(3)の40cmの高さにおける毛管吸収指数Aに対する吸水性樹脂(1)の40cmの高さにおける毛管吸収指数Bの比B/A=1.9、液拡散部材(3)の40cmの高さにおける毛管吸収倍率Cに対する吸水性樹脂(1)の40cmの高さにおける毛管吸収倍率Dの比、D/C=13.0であった。
【0148】
吸収体(7)を用いて液拡散部材から吸水性樹脂への液分配率を求め、さらに吸収体(7)を用いてモデルおむつとしての吸収性物品(7)を作成し、液拡散部材中の液の拡散率、漏れた時点でのおむつの総吸収量、おむつ中の吸水性樹脂の液吸収量、おむつの上部半分の吸水性樹脂の液吸収量を求めた。結果を表2に示したが、液拡散部材から吸水性樹脂への液分配率、俯せ寝を想定したおむつの上側半分での吸水性樹脂の液拡散部材からの液の吸収能力がそれぞれ87%、121gと優れた値を示した。しかし液拡散部材(3)は0cmの高さにおける毛管吸収倍率が6.6(g/g)と低いためおむつの総吸収量としては低めであった。
【0149】
(実施例6)
吸水性樹脂(2)と液拡散部材(3)を組合わせた吸収体(8)を得た。液拡散部材(3)の40cmの高さにおける毛管吸収指数Aに対する吸水性樹脂(2)の40cmの高さにおける毛管吸収指数Bの比B/A=1.8、液拡散部材(3)の40cmの高さにおける毛管吸収倍率Cに対する吸水性樹脂(2)の40cmの高さにおける毛管吸収倍率Dの比、D/C=9.2であった。
吸収体(8)を用いて液拡散部材から吸水性樹脂への液分配率を求め、さらに吸収体(8)を用いてモデルおむつとしての吸収性物品(8)を作成し、液拡散部材中の液の拡散率、漏れた時点でのおむつの総吸収量、おむつ中の吸水性樹脂の液吸収量、おむつの上部半分の吸水性樹脂の液吸収量を求めた。結果を表2に示したが、液拡散部材から吸水性樹脂への液分配率、俯せ寝を想定したおむつの上側半分での吸水性樹脂の液拡散部材からの液の吸収能力がそれぞれ84%、122gと優れた値を示した。しかし液拡散部材(3)は0cmの高さにおける毛管吸収倍率が6.6(g/g)と低いためおむつの総吸収量としては低めであった。
【0150】
(実施例7)
吸水性樹脂(3)と液拡散部材(3)を組合わせた吸収体(9)を得た。液拡散部材(3)の40cmの高さにおける毛管吸収指数Aに対する吸水性樹脂(3)の40cmの高さにおける毛管吸収指数Bの比B/A=0.4、液拡散部材(3)の40cmの高さにおける毛管吸収倍率Cに対する吸水性樹脂(3)の40cmの高さにおける毛管吸収倍率Dの比、D/C=2.0であった。
吸収体(9)を用いて液拡散部材から吸水性樹脂への液分配率を求め、さらに吸収体(9)を用いてモデルおむつとしての吸収性物品(9)を作成し、液拡散部材中の液の拡散率、漏れた時点でのおむつの総吸収量、おむつ中の吸水性樹脂の液吸収量、おむつの上部半分の吸水性樹脂の液吸収量を求めた。結果を表2に示したが、液拡散部材から吸水性樹脂への液分配率は66%と優れているものの、俯せ寝を想定したおむつの上側半分での吸水性樹脂の液拡散部材からの液の吸収能力は33gであった。このことから吸水性樹脂(3)と液拡散部材(3)の組み合わせは使用方法により吸水性樹脂の液吸収能力が発揮されにくい場合があるため注意を有する。
【0151】
実施例5〜7は0cm、40cmの高さにおける毛管吸収倍率の低い液拡散部材を用いた例である。実施例5,6は液拡散部材から吸水性樹脂の液分配率が高く、液拡散部材からの吸水性樹脂への液分配率、おむつ中の吸水性樹脂の吸収量が大きい。実施例7は液拡散貯蔵係数2のみが本願の範囲の例である。また実施例5〜7は液拡散部材の0cm、40cmの高さにおける毛管吸収倍率が低いためおむつの総吸収量は低い。
(比較例3)
吸水性樹脂(3)と液拡散部材(4)を組合わせた吸収体(10)を得た。液拡散部材(4)の40cmの高さにおける毛管吸収指数Aに対する吸水性樹脂(3)の40cmの高さにおける毛管吸収指数Bの比B/A=2.9、液拡散部材(4)の40cmの高さにおける毛管吸収倍率Cに対する吸水性樹脂(3)の40cmの高さにおける毛管吸収倍率Dの比D/C=8.1と高いものの、液拡散部材(4)の40cmの高さにおける毛管吸収倍率Cは0.5(g/g)であり、液拡散部材(4)の40cmの高さにおける毛管吸収指数Aは0.04(g/g)と低く、液拡散能力が低いものである。
【0152】
吸収体(10)を用いて液拡散部材から吸水性樹脂への液分配率を求め、さらに吸収体(10)を用いてモデルおむつとしての吸収性物品(10)を作成し、液拡散部材中の液の拡散率、漏れた時点でのおむつの総吸収量、おむつ中の吸水性樹脂の液吸収量、おむつの上部半分の吸水性樹脂の液吸収量を求めた。結果を表2に示した。液拡散部材から吸水性樹脂への液分配率は84%と優れているものの、おむつ中の液拡散率は64%と低く、俯せ寝を想定したおむつの上側半分での吸水性樹脂の液の吸収量も16gと非常に低かった。
(比較例4)
本発明の吸収体に代えて、市販の子供用おむつ(P&Gパンパースさらさらケア、サイズL,おむつ重量57g、吸収体重量24.0g:吸水性樹脂12.4g、綿状パルプ12.2g)を吸収性物品(11)とした。吸収性物品(11)の液拡散部材中の液の拡散率、漏れた時点でのおむつの総吸収量を求めた。結果を表2に示したがおむつ中の液拡散率は62%と低かった。
【0153】
【表1】

Figure 2004001355
【0154】
【表2】
Figure 2004001355
【0155】
(参考例8)吸水性樹脂(4)の製造方法
アクリル酸ナトリウム(中和率75モル%)の33重量%水溶液5500部に、ポリエチレングリコールジアクリレート(n=8)4.9部を溶解させて反応液とした。次に、この反応液を窒素ガス雰囲気下で30分間脱気した。次いで、開閉可能な蓋付きのシグマ型羽根を2本有するジャケット付きステンレス製双腕型ニーダーに、上記反応液を供給し、反応液を30℃に保ちながら系を窒素ガス置換した。続いて、反応液を撹拌しながら、過硫酸アンモニウム2.4部およびL−アスコルビン酸0.12部を添加したところ、凡そ1分後に重合が開始した。そして、30〜90℃で重合を行い、重合を開始して60分後に含水ゲル状重合体を取り出した。
【0156】
得られた含水ゲル状重合体は、その径が約5mmに細分化されていた。この細分化された含水ゲル状重合体を50メッシュの金網上に広げ、150℃で90分間熱風乾燥した。次いで、乾燥物を振動ミルを用いて粉砕し、さらに20メッシュの金網で分級することにより、重量平均粒子径が340μmで、しかも、粒径が106μm未満の粒子の割合が3重量%の不定形破砕状の樹脂を得た。
得られた樹脂100重量部に、エチレングリコールジグリシジルエーテル0.05重量部と、プロピレングリコール0.9重量部と、水3重量部、イソプロピルアルコール1重量部とからなる表面架橋剤組成液を混合した。上記の混合物を195℃で40分間加熱処理することにより、吸水性樹脂(4)を得た。吸水性樹脂(4)の重量平均粒子径は347μmであった。また吸水性樹脂(4)の0cmの高さにおける毛管吸収倍率は39.9(g/g)、40cmの高さにおける毛管吸収倍率Dは11.4(g/g)、40cmの高さにおける毛管吸収指数Bは0.29であった。
【0157】
(参考例9)吸水性樹脂(5)の製造方法
アクリル酸ナトリウム(中和率71モル%)の38重量%水溶液5500部に、ポリエチレングリコールジアクリレート(n=8)8.1部を溶解させて反応液とした。次に、この反応液を窒素ガス雰囲気下で30分間脱気した。次いで、開閉可能な蓋付きのシグマ型羽根を2本有するジャケット付きステンレス製双腕型ニーダーに、上記反応液を供給し、反応液を30℃に保ちながら系を窒素ガス置換した。続いて、反応液を撹拌しながら、過硫酸アンモニウム2.4部およびL−アスコルビン酸0.12部を添加したところ、凡そ1分後に重合が開始した。そして、20〜95℃で重合を行い、重合を開始して60分後に含水ゲル状重合体を取り出した。
【0158】
得られた含水ゲル状重合体は、その径が約5mmに細分化されていた。この細分化された含水ゲル状重合体を50メッシュの金網上に広げ、150℃で90分間熱風乾燥した。次いで、乾燥物を振動ミルを用いて粉砕し、さらに目開き850μmの篩を通過し106μmの篩上に残る、重量平均粒子径が400μmの不定形破砕状の樹脂を得た。
得られた樹脂100重量部に、1,4−ブタンジオール0.3重量部と、プロピレングリコール0.5重量部、水3重量部とからなる表面架橋剤組成液を混合した。上記の混合物を210℃で30分間加熱処理したあと親水性二酸化ケイ素微粉末(日本アエロジル社製、アエロジル200)0.5部を加えて表面部分にコーティングし、吸水性樹脂(5)を得た。吸水性樹脂(5)の重量平均粒子径は500μmであった。また吸水性樹脂(5)の0cmの高さにおける毛管吸収倍率は37.4(g/g)、40cmの高さにおける毛管吸収倍率Dは2.8(g/g)、40cmの高さにおける毛管吸収指数Bは0.08であった。
【0159】
(参考例10)液獲得部材(1)
液獲得部材として、市販の子供用おむつ(P&Gパンパースさらさらケア、サイズL,おむつ重量57g)に用いられていた上下を不織布で覆われた状態の架橋セルロースをとりだし、8cm×30cmの大きさで液獲得部材(1)として使用した。また液獲得部材(1)の0cmの高さにおける毛管吸収倍率は14.4(g/g)、40cmの高さにおける毛管吸収倍率Cは0.18(g/g)、40cmの高さにおける毛管吸収指数Aは0.014であった。
(参考例11)液獲得部材(2)
液獲得部材として、子供用おむつに使用する綿状パルプ3gを8cm×30cmの大きさに広げシート化し、液獲得部材(2)として使用した(密度0.03g/cmで坪量260g/m)。液獲得部材(2)の0cmの高さにおける毛管吸収倍率は13.8(g/g)、40cmの高さにおける毛管吸収倍率Cは0.53(g/g)、40cmの高さにおける毛管吸収指数Aは0.038であった。
【0160】
(実施例8)
吸水性樹脂(4)16.4gを12×38cmの面積に散布して散布量360g/mの吸水性樹脂層を形成させ、その上に前述の作成方法に従い液獲得部材(1)(12×24cm、重量3.8g)を載置した吸収体(12)を得た。液獲得部材(1)の40cmの高さにおける毛管吸収指数Aに対する吸水性樹脂(4)の40cmの高さにおける毛管吸収指数Bの比B/A=20.7、液獲得部材(1)の40cmの高さにおける毛管吸収倍率Cは0.18(g/g)であり、吸水性樹脂(4)の40cmの高さにおける毛管吸収倍率Dは11.4(g/g)あった。
【0161】
吸収体(12)を用いて前述の作成方法に従いモデルおむつとしての吸収性物品(12)を作成し、通液時間、白化時間、液獲得部材中の残存液量、戻り量を求めた。結果を表3に示したが、白化時間も速く、液獲得部材中の残存液量が少なく、戻り量も少ないことから、液獲得部材から吸水性樹脂層が液を良好に吸収しドライ感に優れたおむつが得られることがわかる。
(実施例9)
実施例8と同様にして吸水性樹脂(2)と液獲得部材(1)を組合わせた吸収体(13)を得た。液獲得部材(1)の40cmの高さにおける毛管吸収指数Aに対する吸水性樹脂(2)の40cmの高さにおける毛管吸収指数Bの比B/A=41.0、液獲得部材(1)の40cmの高さにおける毛管吸収倍率は0.18(g/g)であり、吸水性樹脂(2)の40cmの高さにおける毛管吸収倍率Dは19.4(g/g)あった。
【0162】
吸収体(13)を用いて前述の作成方法に従いモデルおむつとしての吸収性物品(13)を作成し、通液時間、白化時間、液獲得部材中の残存液量、戻り量を求めた。結果を表3に示したが、白化時間も速く、液獲得部材中の残存液量が少なく、戻り量も少ないことから、液獲得部材から吸水性樹脂層が液を良好に吸収しドライ感に優れたおむつが得られることがわかる。
(実施例10)
実施例8と同様にして吸水性樹脂(1)と液獲得部材(1)を組合わせた吸収体(14)を得た。液獲得部材(1)の40cmの高さにおける毛管吸収指数Aに対する吸水性樹脂(1)の40cmの高さにおける毛管吸収指数Bの比B/A=43.0、液獲得部材(1)の40cmの高さにおける毛管吸収倍率は0.18(g/g)であり、吸水性樹脂(1)の40cmの高さにおける毛管吸収倍率Dは27.4(g/g)あった。
【0163】
吸収体(14)を用いて前述の作成方法に従いモデルおむつとしての吸収性物品(14)を作成し、通液時間、白化時間、液獲得部材中の残存液量、戻り量を求めた。結果を表3に示したが、白化時間も速く、液獲得部材中の残存液量が少なく、戻り量も少ないことから、液獲得部材から吸水性樹脂層が液を良好に吸収しドライ感に優れたおむつが得られることがわかる。
(実施例11)
実施例8と同様にして吸水性樹脂(4)と液獲得部材(2)を組合わせた吸収体(15)を得た。液獲得部材(2)の40cmの高さにおける毛管吸収指数Aに対する吸水性樹脂(4)の40cmの高さにおける毛管吸収指数Bの比B/A=7.6、液獲得部材(2)の40cmの高さにおける毛管吸収倍率は0.53(g/g)であり、吸水性樹脂(4)の40cmの高さにおける毛管吸収倍率Dは11.4(g/g)あった。
【0164】
吸収体(15)を用いて前述の作成方法に従いモデルおむつとしての吸収性物品(15)を作成し、通液時間、白化時間、液獲得部材中の残存液量、戻り量を求めた。結果を表3に示したが、白化時間も速く、液獲得部材中の残存液量が少なく、戻り量も少ないことから、液獲得部材から吸水性樹脂層が液を良好に吸収しドライ感に優れたおむつが得られることがわかる。
(比較例5)
実施例8と同様にして吸水性樹脂(5)と液獲得部材(1)を組合わせた吸収体(16)を得た。液獲得部材(1)の40cmの高さにおける毛管吸収指数Aに対する吸水性樹脂(5)の40cmの高さにおける毛管吸収指数Bの比B/A=5.4、液獲得部材(1)の40cmの高さにおける毛管吸収倍率は0.18(g/g)であり、吸水性樹脂(5)の40cmの高さにおける毛管吸収倍率Dは2.8(g/g)あった。
【0165】
吸収体(16)を用いて前述の作成方法に従いモデルおむつとしての吸収性物品(16)を作成し、通液時間、白化時間、液獲得部材中の残存液量、戻り量を求めた。結果を表4に示したが、白化時間が遅く、液獲得部材中の残存液量、戻り量も多くことから液獲得部材から吸水性樹脂層への液の吸収がスムーズに行えていないことがわかる。
(比較例6)
実施例8と同様にして吸水性樹脂(3)と液獲得部材(1)を組合わせた吸収体(17)を得た。液獲得部材(1)の40cmの高さにおける毛管吸収指数Aに対する吸水性樹脂(3)の40cmの高さにおける毛管吸収指数Bの比B/A=8.1、液獲得部材(1)の40cmの高さにおける毛管吸収倍率は0.18(g/g)であり、吸水性樹脂(3)の40cmの高さにおける毛管吸収倍率Dは4.3(g/g)あった。
【0166】
吸収体(17)を用いて前述の作成方法に従いモデルおむつとしての吸収性物品(17)を作成し、通液時間、白化時間、液獲得部材中の残存液量、戻り量を求めた。結果を表4に示したが、白化時間が遅く、戻り量も多いことから液獲得部材から吸水性樹脂層への液の吸収がスムーズに行えていないことがわかる。
(比較例7)
吸水性樹脂(4)8.2gと子供用おむつに使用する綿状パルプ8.2gを混合し、12×38cmのブレンドコアを作成した。このものの毛管吸収能力を表4に示した。液獲得部材(1)と上記ブレンドコアを表4に記載の使用量で組み合わせ、吸収体(18)を得た。液獲得部材(1)の40cmの高さにおける毛管吸収指数Aに対する上記ブレンドコアの40cmの高さにおける毛管吸収指数Bの比B/A=5.6、液獲得部材(1)の40cmの高さにおける毛管吸収倍率は0.18(g/g)であり、上記ブレンドコアの40cmの高さにおける毛管吸収倍率は2.3(g/g)あった。
【0167】
吸収体(18)を用いて前述の作成方法に従いモデルおむつとしての吸収性物品(18)を作成し、吸液速度、液拡散材のドライ速度、1時間後の液獲得部材中の残存液量、戻り量を求めた。結果を表4に示したが、白化時間が遅く、液獲得部材中の残存液量、戻り量も多くことから液獲得部材から吸水性樹脂層への液の吸収がスムーズに行えていないことがわかる。
(比較例8)
実施例8において液拡散部材を用いない他は同様の操作を行いモデルおむつとしての吸収性物品(19)を作成し、吸液速度、液拡散材のドライ速度、1時間後の液獲得部材中の残存液量、戻り量を求めた。結果を表4に示したが、通液時間が非常に遅く、液がスムーズに吸収されないことがわかる。
【0168】
【表3】
Figure 2004001355
【0169】
【表4】
Figure 2004001355
【0170】
(参考例12)吸水性樹脂(6)の製造方法
アクリル酸ナトリウム(中和率75モル%)の33重量%水溶液5500部に、ポリエチレングリコールジアクリレート(n=8)4.9部を溶解させて反応液とした。次に、この反応液を窒素ガス雰囲気下で30分間脱気した。次いで、開閉可能な蓋付きのシグマ型羽根を2本有するジャケット付きステンレス製双腕型ニーダーに、上記反応液を供給し、反応液を30℃に保ちながら系を窒素ガス置換した。続いて、反応液を撹拌しながら、過硫酸アンモニウム2.4部およびL−アスコルビン酸0.12部を添加したところ、凡そ1分後に重合が開始した。そして、30〜90℃で重合を行い、重合を開始して60分後に含水ゲル状重合体を取り出した。
【0171】
得られた含水ゲル状重合体は、その径が約5mmに細分化されていた。この細分化された含水ゲル状重合体を50メッシュの金網上に広げ、150℃で90分間熱風乾燥した。次いで、乾燥物を振動ミルを用いて粉砕し、さらに30メッシュの金網で分級することにより、重量平均粒子径が280μmで、しかも、粒径が106μm未満の粒子の割合が5重量%の不定形破砕状の吸水性樹脂前駆体を得た。
得られた吸水性樹脂前駆体100重量部に、エチレングリコールジグリシジルエーテル0.05重量部と、プロピレングリコール0.9重量部と、水3重量部、イソプロピルアルコール1重量部とからなる表面架橋剤組成液を混合した。上記の混合物を195℃で40分間加熱処理することにより、吸水性樹脂(6)を得た。吸水性樹脂(6)の重量平均粒子径は265μmであった。また吸水性樹脂(6)の40cmの高さにおける毛管吸収倍率Dは11.4(g/g)であった。吸水性樹脂(6)の粒度分布は、150〜850μmの粒子が90重量%、150μm未満の粒子が10重量%であった。
【0172】
(参考例13)水分散性微粒子の分散液
水分散性微粒子として、アエロジル200(超微粒子の酸化硅素、日本アエロジル株式会社製)5重量部をイオン交換水70重量部を高速攪拌混合機(2000rpm)で2時間混合させた。混合後、24時間で室温放置し、水分散性微粒子の分散液を得た。水分散性微粒子の粘度は1000cpsであった。
(実施例12)
吸水性樹脂(6)100重量部に対して、参考例13で得た水分散性粒子の分散液を7重量部添加混合し、60℃で30分放置後、混合物を解砕し、全ての粒子を850μmの開孔を有する金網を通過せしめ本発明の吸水性樹脂粒子(1)を得た。この物の粒度分布は、150〜850μmの粒子が97重量%、150μm以下の粒子が3重量%であった。また重量平均粒子径は500μmであった。結果を表5に示した。
【0173】
得られた吸収性樹脂粒子(1)と液獲得部材(2)を用い、前述の方法に従い、モデルおむつとしての吸収性物品(20)を作成し、通液時間、拡散面積、戻り量を上記評価方法に従って評価し表5に示した。
(実施例13)
参考例13で得た水分散性粒子の分散液を7重量部とイオン水13重量部を混合し分散液を得た。吸水性樹脂(2)100重量部に対して、分散液を20重量部添加混合し、60℃で30分放置後、混合物を解砕し、全ての粒子を850μmの開孔を有する金網を通過せしめ本発明の吸水性樹脂粒子(2)を得た。この物の粒度分布は、150〜850μmの粒子が85重量%、150μm以下の粒子が15重量%であった。また重量平均粒子径は308μmであった。
【0174】
得られた吸収性樹脂粒子(2)と液獲得部材(2)を用い、前述の方法に従い、モデルおむつとしての吸収性物品(21)を作成し、通液時間、拡散面積、戻り量を上記評価方法に従って評価し表5に示した。
(比較例9)
吸水性樹脂(2)100重量部に対して、アエロジル200(二酸化珪素微粉末、日本アエロジル株式会社製)を0.5重量部を加えて吸収性樹脂を混合し、更にイオン交換水20重量部を添加混合した。60℃で30分放置後、混合物を解砕し、全ての粒子を850μmの開孔を有する金網を通過せしめ吸水性樹脂粒子(3)を得た。この物の粒度分布は、150〜850μmの粒子が59重量%、150μm以下の粒子が41重量%であった。また重量平均粒子径は174μmであった。
【0175】
得られた吸収性樹脂粒子(3)と液獲得部材(2)を用い、前述の方法に従い、モデルおむつとしての吸収性物品(22)を作成し、通液時間、拡散面積、戻り量を上記評価方法に従って評価し表5に示した。
(比較例10)
吸水性樹脂(2)100重量部に対して、イオン交換水20重量部を添加混合し、60℃で30分放置後、混合物を解砕し、全ての粒子を850μmの開孔を有する金網を通過せしめ吸水性樹脂粒子(4)を得た。この物の粒度分布は、150〜850μmの粒子が61重量%、150μm以下の粒子が39重量%であった。また重量平均粒子径は180μmであったが、脆く崩壊し易いものであった。
【0176】
得られた吸収性樹脂粒子(4)と液獲得部材(2)を用い、前述の方法に従い、モデルおむつとしての吸収性物品(23)を作成し、通液時間、拡散面積、戻り量を上記評価方法に従って評価し表5に示した。
(比較例11)
得られた吸収性樹脂(2)と液獲得部材(2)を用い、前述の方法に従い、モデルおむつとしての吸収性物品(24)を作成し、通液時間、拡散面積、戻り量を上記評価方法に従って評価し表5に示した。吸収体を作成の際、粉塵が飛散し取扱い性が困難であった。
【0177】
(比較例12)
得られた吸収性樹脂(3)と液獲得部材(2)を用い、前述の方法に従い、モデルおむつとしての吸収性物品(25)を作成し、通液時間、拡散面積、戻り量を上記評価方法に従って評価し表5に示した。
【0178】
【表5】
Figure 2004001355
【0179】
【発明の効果】
本発明によれば、液拡散部材および吸水性樹脂を用いる吸収体や吸収性物品において、表面積の大きい材料等の補助材料を用いずとも液拡散部材から吸水性樹脂に液が十分に受け渡され吸収される、すなわち液の拡散能力および貯蔵能力の両者に優れた吸収体、吸収性物品、および該吸収体、吸収性物品に好適に使用できる吸水性樹脂を提供することができ、また、液獲得部材および吸水性樹脂を用いる吸収体や吸収性物品において、吸水性樹脂濃度をより高めた場合であっても、液獲得部材から吸水性樹脂に液が良好に移行し、繰り返し液を吸収してもその液獲得機能が大きく低下せず、ドライ感、液の戻り量に優れ、かつより薄型、軽量化を実現する吸収体、吸収性物品、および該吸収体、吸収性物品に好適に使用できる吸水性樹脂を提供することができる。
【図面の簡単な説明】
【図1】本発明における毛管吸収倍率、毛管吸収指数を求めるための測定に用いる測定装置の概略の断面図である。この装置では40cmの高さの毛管吸収倍率が測定される。
【図2】本発明における毛管吸収倍率、毛管吸収指数を求めるための測定に用いる測定装置の概略の断面図である。この装置では0cmの高さの毛管吸収倍率、および吸水性樹脂の加圧下の吸収倍率が測定される。
【図3】本発明における吸収性物品の概略の斜視図。
【図4】本発明における吸収性物品の概略の断面図。
【符号の説明】
1  多孔質ガラス板
2  グラスフィルター
3  導管
4  液溜容器
5  支持リング
6  生理食塩水
7  天秤
8  スタンド
9  測定試料(吸水性樹脂または液拡散部材)
10 荷重(0.41kPa(0.06psi))
11 外気吸入パイプ
12 導管
13 ガラスフィルター
14 生理食塩水
15 液溜容器
16 天秤
17 ろ紙
18 金網
19 プラスチック円筒
10 荷重(0.41kPa(0.06psi))
20 荷重(2.07kPa(0.3psi))
21 荷重(4.83kPa(0.7psi))
31 液透過性ポリエステル不織布
32 吸水性樹脂
33 液拡散部材
34 液非透過性ポリエチレンフィルム
35 ヒートロンペーパー
36 接着テープ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to sanitary materials such as disposable diapers and sanitary napkins, so-called incontinence pads, dew condensation and water absorption sheets, agricultural and horticultural water-retaining materials, water-blocking materials for civil engineering, medical sheets and other medical materials, food freshness retaining materials, food drip absorbing materials, and the like. TECHNICAL FIELD The present invention relates to an absorbent body, an absorbent article, a water-absorbent resin, and a production method and an evaluation method thereof, which are suitably used for the above-mentioned applications.
[0002]
[Prior art]
At present, hygienic materials such as disposable diapers and sanitary napkins, so-called incontinence pads, are used for the purpose of absorbing body fluids. Water-swellable crosslinked polymers mainly composed of hydrophilic fibers such as pulp and acrylic acid (salt). Is widely used as a constituent material thereof. In recent years, sanitary materials such as disposable diapers and sanitary napkins have become highly functional and thinner, and the amount of water-absorbent resin used per sanitary material and the total amount of absorbent made of water-absorbent resin and hydrophilic fibers, etc. The weight ratio of the water absorbent resin tends to increase. In other words, by reducing the number of hydrophilic fibers having a low bulk specific gravity, excellent in water absorption, and by using a large amount of a water-absorbing resin having a large bulk specific gravity, the ratio of the water-absorbing resin in the absorber is increased, thereby increasing the water absorption. The sanitary material is made thinner without lowering it.
[0003]
However, sanitary materials with a reduced ratio of hydrophilic fibers and an increased amount of water-absorbent resin are preferred in terms of simply storing liquids, but the distribution and diffusion of liquids in actual diaper use situations. If you think about it, a problem arises rather. A large amount of water-absorbent resin becomes a soft gel due to water absorption, causing a phenomenon called gel blocking, which greatly hinders the diffusion of the liquid. In order to avoid such a problem and maintain the absorption characteristics of the absorber, the ratio between the hydrophilic fiber and the water-absorbent resin is naturally limited, and there is a limit to the reduction in thickness of the sanitary material.
In the past, various methods for distributing and diffusing liquids and liquid diffusion members have been studied in order to enhance the diffusion of liquid in the absorber and use the absorbing material more efficiently, and various absorbent articles using these members have been studied. Are known. Examples of these are an absorbent pad (US Pat. No. 4,781,710) in which specific regions of hydrophilic fibers of the absorbent are compressed at a high density, and wet molding of two or more fibers having different strengths and specific surface areas. US Patent No. 5,387,207, combined, fluid distribution material with specific wicking properties (WO 97/45087), open-cell foamed absorbent material manufactured using a high internal phase emulsion. U.S. Pat. No. 5,134,007; U.S. Pat. No. 6,107,538), which preferably have a narrow crotch width using a foamed absorbent material having open cells, and the absorption capacity of the crotch region is greater than that of the absorbent core. Absorbent cores that are 40% or less of the total absorption capacity (International Patent Publication No. 98/43573, Japanese Translation of PCT International Publication No. 2000-510365), and the like.
[0004]
In addition, a member for obtaining a liquid has been proposed in order to increase and maintain the liquid absorption efficiency of an absorbent article such as a disposable diaper. As such a liquid acquisition member, crosslinked cellulose (JP-A-63-264971), a discharge treatment layer having a specific liquid permeability index (JP-A-5-261126), and the like are known.
However, when a water-absorbent resin is used as a storage material for storing the liquid distributed and diffused by the liquid diffusion member, depending on the liquid diffusion member used, most of the liquid therein is transferred to and absorbed by the water-absorbent resin. It was found that the water-absorbent resin did not work efficiently as a liquid storage member. In particular, when a material having a very high suction capacity in the vertical direction is used as the liquid diffusion member, for example, a porous polymer having fine open cells inside manufactured by using a high internal phase emulsion as described above is used. Surprisingly, it has been found that, depending on its properties, the water-absorbent resin can hardly absorb the liquid from the porous polymer, and cannot exhibit the original storage function of the water-absorbent resin at all. For this reason, even if the liquid can be diffused sufficiently in the absorber, the function of storing the liquid does not work well, and the phenomenon that the liquid leaks from the absorbent article with a much smaller capacity than the expected absorption amount may occur. Admitted.
[0005]
Techniques to solve this problem include an osmotic absorbing material such as the above-mentioned water-absorbing resin and a material having a large surface area (for example, a particulate porous foam having open cells produced using the above-mentioned high internal phase emulsion). A liquid storage member having a high capillary absorption capacity in combination with an absorbent material and glass microfibers has been disclosed (for example, see Patent Documents 1 and 2).
However, according to this method, since a plurality of materials as described above are used in combination as a liquid storage member, a new apparatus for manufacturing a liquid storage material by combining these materials is required, and not only the process becomes complicated, but also However, even if a material having a large surface area exists around the water absorbing resin, there is a problem that the water absorbing resin still has a low absorption capacity. Further, when a material having a large surface area has a lower absorption capacity than a water-absorbent resin, there is a problem that the liquid absorption and storage capacity of the entire liquid storage member is reduced.
[0006]
In addition, as described above, the presence of the liquid acquisition member ensures that the liquid is quickly taken into the absorber in the initial state, but as the amount of absorption increases, the water-absorbing resin and the hydrophilic Absorbers made of fibers or the like were unable to absorb the liquid present in the liquid acquiring member, and there were cases where the absorption rate was conversely reduced and the amount of return increased.
In addition, even the current thin absorbent products are still heavy and thick, and are not yet satisfactory in the distribution, display space, purchase, use when going out, etc. of products. There is a demand for thinning. For this reason, when the concentration of the water-absorbent resin in the absorber is further increased, for example, the amount of the bulky hydrophilic fiber used is reduced, and the water-absorbent resin layer mainly composed of the water-absorbent resin is used as the liquid storage member. In such a case, the problem of gel blocking of the water-absorbing resin as described above is further highlighted, and the desired absorption capacity may not be realized.
[0007]
Techniques for using a water-absorbent resin layer mainly composed of a water-absorbent resin as a liquid storage member include a first structure made of a first fiber material and a first superabsorbent material, a second fiber material and a first fiber material. An absorbent core having a second structure made of a second superabsorbent material having a higher absorption rate than that of the superabsorbent material (for example, see Patent Document 3), a liquid trapping layer and a gel layer having a permeation value of a specific amount or more. An upper assembly comprising a superabsorbent layer made of a superabsorbent material, and an upper assembly having a void space for storage of liquid and a lower layer containing a superabsorbent layer having a specific range of absorption capacity under pressure. An absorbent body having a lower assembly having a structure (for example, see Patent Document 4), a first absorbent layer in which a water-absorbing polymer is held between fibers of a nonwoven fabric, and a second absorbent layer made of an aggregate of hydrophilic fibers. The first absorbent layer is located on the liquid-permeable topsheet side. Absorbent articles (see, for example, Patent Document 5), an absorbent without gel blocking comprising a wettable fiber and a surface-crosslinked water-absorbent resin, comprising a fiber and a water-absorbent resin in the surface-crosslinked water-absorbent resin. Absorbers having a weight ratio of 75 to 95% by weight and a volume increase rate under load of 15% or more after 600 seconds (for example, see Patent Document 6) are known.
[0008]
Patent Literature 3 and Patent Literature 4 disclose a technology relating to the configuration of the absorber that moves the liquid storage position in the absorber from the lower portion to the upper portion. Patent Literature 5 discloses a technology for eliminating the roughness of the back sheet of the diaper. Patent Literature 6 discloses a technique in which the porosity of the absorbent in the swollen state is specified, but does not disclose the liquid distribution relationship between the liquid acquisition member that has received the liquid and the water absorbent resin layer.
In addition, a body fluid absorbing article in which the ratio of the water-absorbing resin to the total amount of the pulp and the water-absorbing resin is 10 to 90% by weight. The body fluid suction / absorbing performance is specified to transfer the liquid held in the pulp fiber space to the polymer. (See, for example, Patent Document 7).
[0009]
However, the polymer used in this case is a polymer having a relatively low bulk specific gravity and a high degree of irregularity, and the so-called water absorption speed, which is to quickly absorb the liquid held in the gaps of the pulp around the polymer, is important. Similarly, there is no description of the liquid distribution relationship between the liquid acquisition member and the water-absorbent resin layer.
In addition, as an example of measuring the absorption capacity of a water-absorbent resin, there is a disclosure of measurement of the absorption capacity in the absence of negative pressure (for example, see Patent Document 8).
[0010]
[Patent Document 1]
International Publication No. 99/47184 pamphlet
[0011]
[Patent Document 2]
U.S. Pat. No. 6,107,538
[0012]
[Patent Document 3]
Japanese Unexamined Patent Publication No. Hei 8-519773
[0013]
[Patent Document 4]
Japanese Patent Publication No. Hei 8-511974
[0014]
[Patent Document 5]
JP 2000-286505 A
[0015]
[Patent Document 6]
WO 01/30290 pamphlet
[0016]
[Patent Document 7]
JP 2001-276124 A
[0017]
[Patent Document 8]
International Publication No. 88/01282 pamphlet
[0018]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to solve the above-described problems by using a liquid diffusion member and an absorbent or absorbent article using a water-absorbing resin, without using an auxiliary material such as a material having a large surface area. The liquid is sufficiently transferred to and absorbed by the water-absorbent resin, that is, the absorbent, the absorbent article, and the water-absorbent which can be suitably used for the absorbent and the absorbent article, which are excellent in both the diffusion ability and the storage ability of the liquid. Providing the resin, and in the absorbent or absorbent article using the liquid acquisition member and the water-absorbent resin, even when the water-absorbent resin concentration is further increased, the liquid is good from the liquid acquisition member to the water-absorbent resin. The absorbent, the absorbent article, and the absorbent that realizes a dry feeling, excellent liquid return amount, and realizes a thinner and lighter weight even when the liquid is repeatedly absorbed and the liquid acquiring function is not significantly reduced. Body, absorbent And to provide a suitably water-absorbent resin which can be used for.
[0019]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventor has focused on the performance of the water-absorbent resin, which has not been known as a water-absorbent resin, in terms of the capillary absorption capacity of a single water-absorbent resin. By establishing the specific relationship described below between the capillary absorption capacity of the water-absorbent resin and the capillary absorption capacity of the water-absorbent resin, the surface area as described in Patent Document 1 (International Patent Publication No. WO 99/47184) is established. That the water-absorbent resin can well absorb the liquid from the liquid diffusion member without using other auxiliary wicking materials such as a large material, and that the water-absorbent resin can well absorb the liquid from the liquid acquisition member. I found something. The capillary absorption capacity, which will be described in detail later, is measured using an apparatus schematically shown in FIG. 1, and a measurement sample (water-absorbent resin) is measured several tens of meters from the surface of physiological saline in a liquid storage container. It is placed at a height of cm and measures the ability of the capillary to absorb liquid against the negative pressure of the water column at that height. Conventionally, there is an example in which the absorption capacity is measured in a state where there is no negative pressure, that is, when the liquid surface of the liquid reservoir and the sample position are at the same height (Patent Document 8: International Publication No. 88/01282 pamphlet). For the water-absorbent resin alone, there is no example in which the capillary absorption capacity under such a negative pressure was measured, and the correlation between the capillary absorption capacity of the water-absorbent resin measured by the method of the present invention and the performance of the absorber was also observed. Was not known. That is, if an absorbent body and an absorbent article are made using a water-absorbent resin having the performance of maintaining the above-described relationship in accordance with the characteristics of the liquid diffusion member and the liquid acquisition member, storage from the diffusion of the liquid in the absorber, It has been found that the system from acquisition to storage or from acquisition to storage / diffusion works well, and it is possible to provide an absorbent and an absorbent article exhibiting excellent liquid absorption capacity in a very simple manufacturing process. It was completed.
[0020]
Furthermore, the weight average particle diameter (the method for measuring the weight average particle diameter of the water-absorbent resin of the present invention, which is determined by sieving as described later, is the weight average of the sieve diameter) is in a specific range, Using as a raw material powder a water-absorbent resin having a specific range of the inter-particle gap ratio at the time of saturation swelling under no pressure and the average inter-particle radius at the time of saturation swelling under no pressure when liquid is absorbed into the particles, And, when the dispersion of the water-dispersible fine particles is used as a binder, the water-absorbent resin fine powder can be granulated extremely efficiently, and the adhesive of the present invention has strong adhesiveness and redispersibility. The present inventors have found that water-absorbent resin particles suitable for use in absorbent articles can be easily obtained and have excellent absorption properties, and have completed the present invention.
[0021]
That is, the absorber according to the present invention is an absorber containing a liquid diffusion member and a water-absorbing resin, and the capillary absorption index at a height of 40 cm of the liquid diffusion member is A (where A ≧ 0.10). In some cases, the water-absorbent resin has a capillary absorption index B at a height of 40 cm that satisfies the following expression.
B / A ≧ 0.7 (Formula 1)
Another absorbent body according to the present invention is an absorbent body containing a liquid diffusion member and a water-absorbing resin, wherein the liquid absorption member has a capillary absorption capacity at a height of 40 cm of C (where C ≧ 2.0 (g / g)), wherein the water-absorbent resin has a capillary absorption capacity D at a height of 40 cm that satisfies the following expression.
[0022]
D / C ≧ 0.7 (Equation 2)
Another absorbent body according to the present invention is an absorbent body including a liquid diffusion member and a liquid storage member, wherein the liquid diffusion member has a suction height of 30 cm or more, and the liquid storage member has a capillary absorption at a height of 40 cm. It is characterized by using a water-absorbing resin having a magnification D of 15 (g / g) or more.
Another absorber according to the present invention is an absorber including a liquid diffusion member and a liquid storage member, a member having a suction height of 30 cm or more as the liquid diffusion member, and a surface-crosslinked weight averaged as the liquid storage member. It is characterized by using a water-absorbing resin having a particle diameter of 250 μm or less.
[0023]
Another absorber according to the present invention is an absorber containing a liquid diffusion member and a water-absorbing resin containing a polyacrylic acid (salt) -based crosslinked polymer as a main component, wherein the liquid diffusion member contains a high internal phase emulsion. A porous polymer obtained by polymerization, wherein a weight ratio of the water-absorbent resin to the total weight of the liquid diffusion member and the water-absorbent resin is 75% by weight or more and 90% by weight or less.
Another absorber according to the present invention has a spraying amount of the liquid acquisition member and the water-absorbing resin of 250 g / m2.2An absorbent body including the above-described water-absorbent resin layer, wherein the water-absorbent resin has a height of 40 cm when the capillary absorption index at a height of 40 cm of the liquid acquisition member is E (where E <0.1). And a capillary absorption index B satisfying the following expression.
[0024]
B / E ≧ 10 ° (Equation 3)
Another absorber according to the present invention has a spraying amount of the liquid acquisition member and the water-absorbing resin of 250 g / m2.2An absorbent body including the above-described water-absorbent resin layer, wherein a capillary absorption index at a height of 40 cm of the liquid acquisition member is E (where E <0.1). The capillary absorption index F at the height satisfies the following expression.
F / E ≧ 10 ° (Equation 4)
Another absorber according to the present invention has a spraying amount of the liquid acquisition member and the water-absorbing resin of 250 g / m2.2An absorbent body including the above-described water-absorbent resin layer, wherein a capillary absorption capacity G at a height of 40 cm of the liquid acquisition member is 1.0 (g / g) or less, and a height of 40 cm as the water-absorbent resin. Is characterized in that a capillary absorption ratio D of 5 (g / g) or more is used.
[0025]
Another absorber according to the present invention has a spraying amount of the liquid acquisition member and the water-absorbing resin of 250 g / m2.2An absorbent body including the above-described water-absorbent resin layer, wherein a capillary absorption ratio G at a height of 40 cm of the liquid acquisition member is 1.0 (g / g) or less, and a height of 40 cm of the water-absorbent resin layer. In this case, the capillary absorption capacity H is 5 (g / g) or more.
An absorbent article according to the present invention includes the absorbent body of the present invention.
The water-absorbent resin particles according to the present invention have a weight-average particle diameter of 50 to 300 μm, and a void ratio between particles during saturated swelling under no pressure when saturatedly swelled in a physiological saline solution (0.9% by weight NaCl aqueous solution). Are water-absorbent resin particles obtained by granulating a water-absorbent resin having a particle diameter of 30 to 50% and an average gap radius between particles during saturation swelling under no pressure of 80 to 150 μm, wherein the weight average of the water-absorbent resin particles is The particle diameter is increased by 50% or more before granulation.
[0026]
Another water-absorbent resin particle according to the present invention is a water-absorbent resin particle containing a polyacrylic acid (salt) -based crosslinked polymer as a main component, and has a capillary absorption capacity D at a height of 40 cm of 25 (g / g). ) That is all.
The method for producing water-absorbent resin particles according to the present invention is characterized in that particles having a weight-average particle diameter of 50 to 300 μm and saturated swelling in a physiological saline solution (0.9% by weight NaCl aqueous solution) under no pressure are used. The weight-average particle diameter is reduced by adding a dispersion of water-dispersible fine particles to a water-absorbent resin having an inter-gap ratio of 30 to 50% and an average inter-gap radius of 80 to 150 μm during saturation swelling under no pressure. It is characterized by being raised by 50% or more.
[0027]
The absorbent article according to the present invention contains the water-absorbent resin particles of the present invention.
The water-absorbent resin according to the present invention is a water-absorbent resin containing a polyacrylic acid (salt) -based crosslinked polymer as a main component, and has a capillary absorption capacity D at a height of 40 cm of 25 (g / g) or more. .
The absorbent article according to the present invention contains the water absorbent resin of the present invention.
The method for evaluating a water-absorbent resin according to the present invention includes a method for measuring a liquid absorbed by a water-absorbent resin within a predetermined time in a state where the height H1 of the liquid absorption position is higher than the height H2 of the liquid level of the liquid storage container. Measure the absorption capacity.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
[1] Capillary absorption capacity
Capillary absorption capacity used in the present invention is generally an evaluation item conventionally used to evaluate the absorptive power of a material that absorbs and absorbs a liquid by a capillary phenomenon such as paper and pulp, and will be described later. By measuring the amount of liquid absorbed per unit weight of the sample while changing the liquid absorption position to various heights using a device that performs the evaluation, the capillary absorption power of the sample and the liquid absorption capacity are evaluated. . The specific method for measuring the capillary absorption capacity, which is the capillary absorption capacity in the present invention, will be described in detail in Examples below, but a measurement method based on the same principle is described in, for example, {Textile Research} Journal Vol. 57, 356 (1967), "Absorbency" (Chaterjee, Textile Science and Technology, Vol. 7, 1985), JP-A-8-52349, International Patent 99/47184, and the like.
[0029]
In the present invention, a water-absorbent resin for measuring the absorption capacity of a liquid absorbed by a water-absorbent resin within a predetermined time in a state where the height H1 of the liquid absorbing position is higher than the height H2 of the liquid level of the liquid storage container. By performing the above-described method for the first time with a water-absorbent resin, the evaluation method can correctly determine the ability of the water-absorbent resin to absorb liquid from other base materials such as a liquid diffusion member and a liquid acquisition member, based on the value. It was found. In order to increase the measurement accuracy and increase the correlation with the performance of the absorber, the evaluation is performed in a state where the height difference between the height H1 of the liquid absorption position and the height H2 of the liquid surface of the liquid storage container is 20 to 60 cm. It is more preferable to provide an altitude difference of 30 to 50 cm.
[0030]
There are two types of capillary absorption capacity in the present invention: capillary absorption capacity and capillary absorption index. The capillary absorption capacity in the present invention measures the amount (magnification) of the liquid absorbed by the sample in 30 minutes with a difference in height between the liquid absorption position and the liquid level of the liquid storage container. The case where the height difference between the liquid absorption position and the liquid level of the liquid storage container is 40 cm is “capillary absorption capacity at a height of 40 cm”, and the case where the height difference between the liquid absorption position and the liquid level of the liquid storage container is 0 cm is “ Capillary absorbency at 0 cm height ".
In addition, the capillary absorption index in the present invention is a value of the capillary absorption ratio at which the sample absorbs for 30 minutes in a state where a difference in height is provided between the liquid absorption position and the liquid surface of the liquid storage container, and the liquid absorption container liquid level. Is determined by dividing the difference in the capillary absorption capacity at a height of 0 cm at which the sample absorbs in 30 minutes with the difference in height of the sample being 0 cm. The “capillary absorption index at a height of 40 cm” refers to the value of “capillary absorption ratio at a height of 40 cm” when the height difference between the liquid absorption position and the liquid level of the liquid storage container is 40 cm, It is determined by dividing by the value of "capillary absorption capacity at a height of 0 cm" when the height difference from the surface is 0 cm.
[0031]
The water-absorbing resin currently marketed and used in large quantities for sanitary materials is a polyacrylic acid (salt) crosslinked polymer whose main raw material is acrylic acid (salt). The mechanism of absorbing liquid is similar to that of pulp. It is not derived from capillary absorption but basically originates from the osmotic pressure difference between the liquid to be absorbed and the polymer itself, which is a polymer electrolyte. However, the ability of the water-absorbent resin to absorb the liquid held by the liquid diffusion member or the liquid acquisition member, which has an excellent ability to absorb liquid in the vertical direction, is generally known to date as the ability of the water-absorbent resin. It could not be predicted at all only from the absorption characteristics such as absorption capacity, water absorption rate, absorption capacity under pressure, and liquid permeability of the gel layer.
[0032]
The present inventors have focused on the ability of the water-absorbent resin as well as the liquid-diffusing member and the liquid-acquisition member, focusing on the capability of capillary absorption. By using a water-absorbent resin having a specific relationship with the capillary absorption capacity of the liquid acquisition member or the liquid acquisition member in combination with the liquid diffusion member or the liquid acquisition member, the water absorption resin is removed from the liquid diffusion member or the liquid acquisition member. Was found to be able to be absorbed and stored well. Furthermore, absorbents designed to maintain this relationship exhibit extremely excellent liquid absorption efficiency, and absorbent articles such as disposable diapers using such absorbents are highly effective in absorbing water over the entire diaper. Because it can be used for diapers, the absorption capacity of the diaper as a whole can be very large, and by adjusting this high absorption capacity to the desired actual use level absorption capacity, a thinner, more mobile diaper with fewer components can be manufactured. Was found.
[0033]
In the present invention, in order to express the capillary absorption ability of the water-absorbent resin, the capillary suction force derived from the physical shape of the water-absorbent resin and the osmotic pressure of various polymers themselves developed by surface crosslinking treatment. The balance with the water absorption properties is considered to be very important.
[2] Absorber containing liquid diffusion member and water absorbent resin
(2-1) Relationship between liquid diffusion member and capillary absorption capacity of water absorbent resin
The relationship between the liquid diffusion member and the capillary absorption capacity of the water absorbent resin in the present invention will be described.
[0034]
As the water-absorbent resin that can be used in the present invention, when the capillary absorption index at a height of 40 cm of the liquid diffusion member is A (where A ≧ 0.10), the water-absorbent resin has a height of 40 cm. The capillary absorption index B satisfies the following equation.
B / A ≧ 0.7 (Formula 1)
The value of the capillary absorption index B at a height of 40 cm of the water-absorbent resin required for the present invention depends on the characteristics of the liquid diffusion member used, that is, the capillary absorption index A at a height of 40 cm of the liquid diffusion member used. If the relationship of ≧ 0.7 is satisfied, the liquid is satisfactorily distributed from the liquid diffusion member to the water-absorbent resin, and the water-absorbent resin can satisfactorily absorb and store the liquid. When B / A is less than 0.7, it is difficult for the water-absorbing resin to absorb the liquid from the liquid diffusion member, and the liquid distribution rate from the liquid diffusion member becomes low. In some cases, the absorption amount of the water-absorbent resin does not improve, and the water-absorbent resin does not work well as a liquid storage member. Preferably, the water-absorbent resin satisfies B / A ≧ 1.3, and more preferably, the water-absorbent resin satisfies B / A ≧ 1.5. If the value of B / A exceeds 2.0, the liquid diffusivity of the liquid diffusing member may decrease, so caution is required. Hereinafter, the value of B / A may be referred to as liquid diffusion storage coefficient 1.
[0035]
Another water-absorbent resin that can be used in the present invention is a liquid-diffusion member having a capillary absorption capacity at a height of 40 cm of C (where C ≧ 2.0 (g / g)). Capillary absorption capacity D at a height of 40 cm as a water absorbent resin satisfies the following expression.
D / C ≧ 0.7 (Equation 2)
The value of the capillary absorption ratio D at a height of 40 cm of the water-absorbent resin required for the present invention depends on the characteristics of the liquid diffusion member used, that is, the capillary absorption ratio C at a height of 40 cm of the liquid diffusion member used. As long as the relationship of ≧ 0.7 is satisfied, the liquid is distributed well from the liquid diffusion member to the water-absorbing resin, and the water-absorbing resin can satisfactorily absorb and store the liquid. When D / C is less than 0.7, it is difficult for the water-absorbing resin to absorb the liquid from the liquid diffusion member, and does not work well as a liquid storage member. The water-absorbing resin preferably satisfies D / C ≧ 1.3, and more preferably the water-absorbing resin satisfies D / C ≧ 1.5. If the value of D / C exceeds 10, the liquid diffusivity of the liquid diffusing member may decrease, so caution is required. Hereinafter, the value of D / C may be referred to as liquid diffusion storage coefficient 2.
[0036]
In the present invention, it is more preferable that both the liquid diffusion storage coefficient 1 and the liquid diffusion storage coefficient 2 satisfy the range of the present invention. If only one of them is satisfied, care should be taken because the liquid absorbing ability of the water-absorbent resin from the liquid diffusion member may not be sufficiently exhibited depending on the use conditions.
The present invention is an absorber composed of a liquid diffusion member having a specific relationship and an absorbent resin, but also functions as a liquid transfer / absorption system composed of a liquid diffusion member having a specific relationship and an absorbent resin. That is, the present invention relates to an absorbent body containing a liquid diffusion member and a water-absorbing resin, wherein the liquid absorption member has a capillary absorption index at a height of 40 cm where A (where A ≧ 0.10), A liquid transfer / absorption system, characterized in that a resin having a capillary absorption index B at a height of 40 cm that satisfies the following formula is used as the conductive resin:
B / A ≧ 0.7 (Formula 1)
And an absorber containing a liquid diffusion member and a water-absorbent resin, wherein the capillary absorption capacity at a height of 40 cm of the liquid diffusion member is C (where C ≧ 2.0 (g / g)). A liquid transfer / absorption system, wherein a capillary absorption capacity D at a height of 40 cm that satisfies the following expression is used as the water-absorbent resin.
D / C ≧ 0.7 (Equation 2)
Can also be provided.
(2-2) Liquid diffusion member
The liquid diffusion member that can be used in the present invention is that the capillary absorption index A at a height of 40 cm is 0.10 or more, and the capillary absorption ratio C at a height of 40 cm is 2.0 (g / g). The above is defined as a material having essentially no hydrogel-forming ability, and is a material for diffusing a liquid added to an absorber or an absorbent article having an absorber over a larger area of the absorber. In particular, it has a porous structure and excellent liquid suction capability in the vertical direction in order to sufficiently exhibit such a function even in a practical use form. More preferably, the liquid diffusion member itself has a certain level of liquid holding, absorbing, and storing ability.
[0037]
The liquid diffusion member that can be used in the present invention is excellent in the ability to diffuse and suck up liquid, and it is necessary that the capillary absorption index A at a height of 40 cm is 0.10 or more. Capillary absorption index A at a height of 40 cm of a flap pulp or the like used for a conventional disposable diaper is 0.05 or less according to the measurement method of the present invention, and a material having such a capillary absorption index A of less than 0.10. In this case, the ability of the liquid to be sucked up in the vertical direction is small, and it is difficult to diffuse the liquid over the entire surface of the diffusion member and the entire absorber, and the material of the entire absorber is not used efficiently. Preferably, the capillary absorption index A at a height of 40 cm is 0.20 or more, more preferably 0.30 or more, and most preferably 0.40 or more.
[0038]
The liquid diffusion member that can be used in the present invention preferably has a capillary absorption capacity at a height of 0 cm of 10 (g / g) or more. The higher the capillary absorption capacity at a height of 0 cm, the larger the liquid transport capacity as a liquid diffusion member, and it can function from the viewpoint of absorption, retention, and storage of the liquid, so that an excellent absorber can be obtained. More preferably, the capillary absorption capacity at a height of 0 cm is 20 (g / g) or more, and further preferably the capillary absorption capacity at a height of 0 cm is 30 (g / g) or more.
Another liquid diffusion member that can be used in the present invention needs to have a capillary absorption capacity C at a height of 40 cm of 2.0 (g / g) or more. The capillary absorption capacity C at a height of 40 cm of a flap pulp or the like used for a conventional disposable diaper is 1.0 (g / g) or less, and the capillary absorption capacity C at such a height of 40 cm is 2.0 (g / g). With a material less than g / g), the liquid has a small ability to siphon the liquid in the vertical direction, making it difficult to diffuse the liquid over the entire surface of the liquid diffusion member and the entire absorber, and the material of the entire absorber is not used efficiently. The capillary absorption capacity C at a height of 40 cm is preferably 5.0 (g / g) or more, more preferably 10.0 (g / g) or more.
[0039]
Similarly, another liquid diffusion member that can be used in the present invention preferably has a capillary absorption capacity at a height of 0 cm of 10 (g / g) or more. The higher the capillary absorption capacity at a height of 0 cm, the larger the liquid transport capacity as a liquid diffusion member, and it can function from the viewpoint of absorption, retention, and storage of the liquid, so that an excellent absorber can be obtained. More preferably, the capillary absorption capacity at a height of 0 cm is 20 (g / g) or more, and further preferably the capillary absorption capacity at a height of 0 cm is 30 (g / g) or more.
The liquid diffusion member that can be used in the present invention satisfies the above conditions, and is used in combination with a water-absorbing resin for an absorber.
[0040]
As described above, when the capillary absorption index at a height of 40 cm of the liquid diffusion member is A, the capillary absorption index B at a height of 40 cm of the water-absorbing resin is B / A ≧ 0.7. When satisfying, preferably satisfying B / A ≧ 1.3, or when the capillary absorption capacity at a height of 40 cm of the liquid diffusion member is C (where C ≧ 2.0 (g / g)) In addition, it is necessary that the water absorbing resin has a capillary absorption ratio D at a height of 40 cm satisfying D / C ≧ 0.7, preferably satisfying D / C ≧ 1.3. It is more preferable that both satisfy B / A ≧ 0.7 and D / C ≧ 0.7 at the same time. More preferably, both should satisfy B / A ≧ 1.3 and D / C ≧ 1.3 at the same time.
[0041]
The liquid diffusion member that can be used in the present invention preferably has a suction height of 30 cm or more, more preferably 40 cm or more, and still more preferably 50 cm or more. Things. When it is 30 cm or less, the liquid diffusivity of the absorber is low, and the entire absorber cannot be used effectively.
The shape of the liquid diffusion member may be a sheet, a fiber, a particle, a strip, or the like, but a sheet is generally preferred. At this time, the basis weight of the liquid diffusion member is 50 to 500 g / m.2Degree is preferable, and more preferably 100 to 200 g / m.2It is about.
[0042]
When the liquid diffusion member has a density difference or a density gradient, a diffusion capability difference or a diffusion capability gradient within the member, or when a second liquid diffusion member that does not satisfy the relationship of the present invention is further used, the water absorption It is preferable that the capillary absorption capacity of the liquid diffusion member closer to the resin satisfies the above relationship.
Examples of such a liquid diffusion member include a porous polymer obtained by polymerizing a high internal phase emulsion (HIPE), a fiber material having a predetermined density (for example, cellulose pulp or nonwoven fabric), and a foam material such as urethane sponge or cellulose sponge. Is mentioned. Preferably, it has excellent vertical wicking capacity, wicking amount, and wicking speed, and among others, a porous polymer obtained by polymerizing a high internal phase emulsion (HIPE) described below is preferable.
[0043]
a. Liquid diffusion member made of porous polymer obtained by polymerizing high internal phase emulsion (HIPE)
The porous polymer that can be suitably used as the liquid diffusion member in the present invention has a ratio (W / O ratio) of an aqueous phase as an internal phase and an oil phase as an external phase of about 3/1 or more. Obtained by polymerizing a high internal phase emulsion (HIPE). Methods for producing a porous polymer from HIPE include, for example, US Pat. No. 5,189,070, US Pat. No. 5,250,576, US Pat. No. 5,252,619, US Pat. No. 5,290,820. No. 5,358,974, US Pat. No. 5,252,619, US Pat. No. 5,670,101, US Pat. No. 6,204,298, etc. The porous polymer is a low-density foam state of fine pores of open cells, and a polymer having desired absorption properties, for example, excellent liquid diffusion / wicking properties, etc. by selecting conditions. Forms can be manufactured.
[0044]
The raw materials used for HIPE are a polymerizable monomer component, an oil phase containing a surfactant, and an aqueous phase containing water. As the polymerizable monomer component, an intramolecular molecule capable of forming a crosslinked structure by polymerization is used. A polymerizable monomer having one polymerizable unsaturated group and / or a crosslinkable monomer having at least two polymerizable unsaturated groups in a molecule. Further, if necessary, the composition may contain a polymerization initiator, salts, and other additives as optional components constituting the oil phase and / or the aqueous phase.
As the polymerizable monomer, preferably, at least a part thereof contains a (meth) acrylic acid ester, specifically, an arylene monomer such as styrene; styrene, ethyl styrene, alpha methyl styrene, vinyl Monoalkylene arylene monomers such as toluene and vinylethylbenzene; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, isodecyl (meth) acrylate, ( (Meth) acrylates such as 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, and benzyl (meth) acrylate; vinyl chloride, vinylidene chloride, Chlorine-containing monomers such as chloromethylstyrene; acrylonitrile Acrylonitrile compounds such as acrylonitrile and methacrylonitrile; vinyl acetate, vinyl propionate, N- octadecyl acrylamide, ethylene, propylene, butene and the like. These may be used alone or in combination of two or more.
[0045]
The crosslinkable monomer may be a compound having at least two polymerizable unsaturated groups in the molecule or a compound capable of forming a crosslinked structure by polymerization, and may be dispersed similarly to the polymerizable monomer. Alternatively, there is no particular limitation as long as it can be polymerized in a water-in-oil type high dispersion phase emulsion. Specifically, examples of the crosslinkable monomer include divinylbenzene, trivinylbenzene, divinyltoluene, divinylxylene, p-ethyl-vinylbenzene, divinylnaphthalene, divinylalkylbenzenes, divinylphenanthrene, divinylbiphenyl, and divinyldiphenylmethane. , Divinylbenzyl, divinylphenyl ether, aromatic monomers such as divinyldiphenylsulfide; oxygen-containing monomers such as divinylfuran; sulfur-containing monomers such as divinylsulfide and divinylsulfone; butadiene, isoprene, pentadiene and the like. Aliphatic monomers; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate , 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, octanediol di (meth) acrylate, decanediol di (meth) ) Acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol di ( (Meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, N, N'-methylenebis (meth) acrylamide, triallyl isocyanurate , Triallylamine, tetraallyloxyethane, and ester compounds of acrylic acid or methacrylic acid with polyhydric alcohols such as hydroquinone, catechol, resorcinol, and sorbitol. These may be used alone or in combination of two or more.
[0046]
The amount of the crosslinkable monomer used is in the range of 0.1 to 90% by weight based on the total weight of the polymerizable monomer and the polymerizable monomer component composed of the crosslinkable monomer. Is more preferable, more preferably 1 to 70% by weight, particularly preferably 5 to 50% by weight.
The surfactant used in the oil phase is not particularly limited as long as it can emulsify the aqueous phase, and conventionally known nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants Activators and the like can be used. In particular, the combined use of a nonionic surfactant and a cationic surfactant may improve the stability of HIPE in some cases.
[0047]
The amount of the surfactant to be used is preferably 1 to 30 parts by weight, more preferably 1 to 30 parts by weight, based on 100 parts by weight of the entire polymerizable monomer component comprising a polymerizable monomer and a crosslinkable monomer. Is 3 to 15 parts by weight.
As the water, tap water, pure water, ion-exchanged water, or waste water obtained by producing a porous polymer as it is, or water subjected to a predetermined treatment can be used. The amount of water used can be appropriately selected depending on the desired liquid diffusion performance. That is, the amount of water used is adjusted so that the porosity of the porous polymer is determined by changing the water / oil phase (W / O) ratio of the HIPE, so that the porosity matches the purpose. If the user selects the W / O ratio, the determination is made naturally.
[0048]
Any polymerization initiator may be used as long as it can be used in ordinary polymerization, and azo compounds such as 2,2′-azobis (2-amidinopropane) dihydrochloride; ammonium persulfate, potassium persulfate, and sodium persulfate; Persulfate: Any of water-soluble polymerization initiators such as peroxides such as potassium peracetate, sodium peracetate, potassium percarbonate and sodium percarbonate, and oil-soluble polymerization initiators can be used. Further, a redox polymerization initiator system obtained by combining the above polymerization initiator and a reducing agent may be used. In this case, any of water-soluble and oil-soluble polymerization initiators can be used, and a water-soluble redox polymerization initiator system and an oil-soluble redox polymerization initiator system may be used in combination.
[0049]
Salts may be used if necessary to improve the stability of HIPE. Specific examples of the salts include water-soluble salts such as alkali metals such as calcium chloride, sodium sulfate, sodium chloride, and magnesium sulfate, halides of alkaline earth metals, sulfates, and nitrates. These salts may be used alone or in combination of two or more. These salts are preferably added to the aqueous phase. Among them, polyvalent metal salts are preferred from the viewpoint of the stability of HIPE during polymerization.
The amount of such salts to be used is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of water.
[0050]
Furthermore, if it is possible to improve the performance of the porous polymer as a liquid diffusion member by adding the performance / function of other various additives, even if such various additives are appropriately used. For example, a base and / or a buffer may be added for pH adjustment. Examples of such additives include activated carbon, inorganic powder, organic powder, metal powder, deodorant, antibacterial agent, fungicide, fragrance, various polymers, surfactant and the like.
The method of emulsifying HIPE that can be used in the present invention is not particularly limited, but includes, for example, a polymerizable monomer component and a surfactant, a polymerization initiator that can be added as necessary, and other The components constituting the oil phase composed of the additives are stirred at a predetermined temperature to prepare a uniform oil phase, while the polymerization initiator and salts which can be added to water in a desired amount in water as needed. Then, the mixture is stirred while adding the components constituting the aqueous phase composed of other additives, and heated to a predetermined HIPE temperature to prepare a uniform aqueous phase. Next, the oil phase prepared as described above, which is a mixture of a polymerizable monomer component and a surfactant, and an aqueous phase which is a mixture of water, a water-soluble salt, and the like are combined to form a predetermined HIPE. HIPE can be stably prepared by mixing and stirring efficiently at the emulsification temperature, applying an optimal shearing force, and emulsifying.
[0051]
The water phase / oil phase (W / O) ratio (weight ratio) of HIPE can be appropriately selected and is not particularly limited, and may be 3/1 or more as defined above. The ratio is preferably 10/1 to 250/1, particularly 10/1 to 100/1. By changing the W / O ratio, the porosity of the porous polymer is determined, whereby the liquid diffusion ability, liquid suction ability, and liquid holding ability of the liquid diffusion member can be changed. Therefore, when manufacturing the liquid diffusion member intended for the present invention, the W / O ratio is about 10/1 to 100/1, more preferably about 20/1 to 80/1.
[0052]
The HIPE manufacturing apparatus is not particularly limited, and conventionally known manufacturing apparatuses, for example, blade agitators such as propeller type, paddle type, and turbine type, homomixers, pin mixers, and line mixers , Static mixers, etc., and these may be used alone or in various combinations.
The emulsification temperature of HIPE in the emulsification step for forming a water-in-oil type high dispersion phase emulsion is usually in the range of 40 to 110 ° C.
The HIPE mixed with the polymerization initiator is formed into a desired form. In the present invention, in order to use the obtained porous polymer as a liquid diffusion member, the shape of the molding is preferably a sheet shape, but it may be cut into a sheet shape after adding and polymerizing HIPE in a cylindrical container. Alternatively, a porous polymer in various forms (particle, fiber, film, etc.) may be processed into a form having a liquid diffusion function as a final product. In the case of a sheet, the thickness is not limited, but the thickness of the final product is preferably 10 mm or less, more preferably 5 mm or less, still more preferably 3 mm or less, particularly preferably 1 mm or less, and most preferably 0.5 mm or less. It is about. If the thickness is too large, there is a possibility that the wearing feeling may be reduced when the liquid diffusion member is used for an absorbent article.
[0053]
The polymerization method of HIPE is not particularly limited, and a conventionally known HIPE polymerization method can be appropriately used. Usually, polymerization is performed by applying heat by a static polymerization method under a condition that the structure in the HIPE is not destroyed. In this case, batch polymerization in which the HIPE is polymerized batch by batch, or continuous polymerization in which the HIPE is continuously cast and polymerized while being fed into a heating zone, for example, may be used. The polymerization temperature is usually in the range of 40 to 110 ° C, but in consideration of productivity, the polymerization temperature is preferably higher, for example, preferably about 60 ° C to 110 ° C, and more preferably about 80 ° C to 105 ° C. From the viewpoint of productivity, it is preferable to obtain a porous polymer having a uniform property within a polymerization time of several tens of seconds to 30 minutes. The details of these production methods are described in Japanese Patent Application No. 2000-203744.
[0054]
The porous polymer obtained after the polymerization is usually dehydrated by compression, suction under reduced pressure, or a combination thereof, and depending on the type, can be in a form compressed to a fraction of the original thickness. Further, for the purpose of improving the surface state of the porous polymer, for example, the porous polymer may be washed with pure water or an aqueous solution containing any additive, or a solvent, and then, if necessary, hot air, Heating and drying may be performed by infrared rays, microwaves, or the like, or moisture may be adjusted by humidification. Further, it may be cut into a desired shape and size for use in a final product, and processed into products according to various uses.
b. Other liquid diffusion members
Other liquid diffusing members that can be used in the present invention include foams made of synthetic polymers such as polyurethane, polystyrene, polyethylene, polypropylene, polyester, polyvinyl alcohol, butadiene styrene rubber (SBR), and nitrile butadiene rubber; polyethylene, Fiber aggregate obtained by bonding or bonding synthetic fibers such as polypropylene, polyethylene terephthalate, and nylon; rayon fibers; fibers obtained by pressing, bonding, or bonding hydrophilic fibers such as cellulose fibers such as cellulose, cellulose acetate, and nitrocellulose; and polyamide fibers. An aggregate is exemplified, and examples of the shape include a sheet, a fiber, and a particle. Among them, a sheet is preferable. Preferably, it is a fiber aggregate in which hydrophilic fibers such as cellulose fibers and rayon fibers are pressure-bonded, bonded or bonded. These liquid diffusion members may be manufactured in a line at the time of manufacturing an absorber or an absorbent article.
[0055]
These a. b. The required performance of the liquid diffusion member shown in (1) is as described above.
(2-3) Water absorbent resin
The water-absorbing resin of the present invention is a hydrophilic cross-linked polymer, and when the aqueous liquid comes into contact with, for example, the particulate polymer, the polymer particles swell by absorbing the liquid into the particles, A polymer having a property of forming a hydrogel containing a liquid (a water-swellable water-insoluble hydrogel-forming polymer); and an additive added to the water-swellable water-insoluble hydrogel-forming polymer. The amount of the additive is less than 30% by weight based on the total amount of the water-swellable water-insoluble hydrogel-forming polymer and the additive.
[0056]
Until now, water-absorbent resins have been used as liquid storage members such as disposable diapers as those that absorb liquid by the difference in osmotic pressure between the inside and outside of the resin. It was noted that even when the known physical properties are the same, the absorption behavior differs greatly when absorbing liquid from a liquid diffusion member or the like depending on the type of resin. And the present inventor has studied diligently and found that even the water-absorbent resin alone has a large difference in the capillary absorption capacity, and the specific conditions in which the relationship between the capillary absorption capacity of the liquid diffusion member and the capillary absorption capacity of the water-absorbency resin is satisfied. In some cases, it has been found that the water-absorbent resin can receive and store the liquid better than the liquid diffusion member.
[0057]
As described above, the water-absorbent resin that can be used in the present invention is 40 cm as the water-absorbent resin when the capillary absorption index at a height of 40 cm of the liquid diffusion member is A (where A ≧ 0.10). Having a capillary absorption index B at a height of B / A ≧ 0.7, preferably satisfying B / A ≧ 1.3, more preferably satisfying B / A ≧ 1.40. It is.
The value of the capillary absorption index B at a height of 40 cm of the water-absorbent resin required for the present invention depends on the characteristics of the liquid diffusion member used, that is, the capillary absorption index A at a height of 40 cm of the liquid diffusion member used. If the relationship of ≧ 0.7 is satisfied, the liquid is satisfactorily distributed from the liquid diffusion member to the water-absorbing resin, and the water-absorbing resin can satisfactorily absorb and store the liquid. Preferably, the water-absorbing resin has a capillary absorption index B at a height of 40 cm of 0.4 or more, more preferably 0.5 or more, and still more preferably 0.6 or more.
[0058]
Further, the water-absorbent resin used in the present invention preferably has a capillary absorption capacity at a height of 0 cm of 30 (g / g) or more. As the capillary absorption capacity at a height of 0 cm is higher, a larger amount of the liquid sucked up from the liquid diffusion member can be grasped, so that an excellent absorbent can be obtained from the viewpoint of the liquid absorption capacity. More preferably, it is a water-absorbent resin having a capillary absorption capacity at a height of 0 cm of 40 (g / g) or more, and further preferably 50 (g / g) or more at a height of 0 cm.
Another water-absorbent resin that can be used in the present invention is a liquid-diffusion member having a capillary absorption capacity at a height of 40 cm of C (where C ≧ 2.0 (g / g)). A water-absorbent resin having a capillary absorption capacity D at a height of 40 cm satisfying D / C ≧ 0.7, preferably satisfying D / C ≧ 1.3, more preferably D / C ≧ 1.40. Is satisfied.
[0059]
The value of the capillary absorption capacity D at a height of 40 cm of another water-absorbent resin required for the present invention depends on the characteristics of the liquid diffusion member to be used, that is, the capillary absorption capacity C at a height of 40 cm of the used liquid diffusion member. If the relationship of D / C ≧ 0.7 is satisfied, the liquid is well distributed from the liquid diffusion member to the water-absorbing resin, and the water-absorbing resin can absorb and store the liquid well. Preferably, the water absorption resin has a capillary absorption capacity D at a height of 40 cm of 15 (g / g) or more, more preferably 20 (g / g) or more, still more preferably 25 (g / g) or more, and most preferably 30 or more. (G / g) or more.
[0060]
Similarly, the water absorbing resin used in the present invention preferably has a capillary absorption capacity at a height of 0 cm of 30 (g / g) or more. As the capillary absorption capacity at a height of 0 cm is higher, a larger amount of the liquid sucked up from the liquid diffusion member can be grasped, so that an excellent absorbent can be obtained from the viewpoint of the liquid absorption capacity. More preferably, it is a water-absorbent resin having a capillary absorption capacity at a height of 0 cm of 40 (g / g) or more, and further preferably 50 (g / g) or more at a height of 0 cm.
Further, when the water-absorbing resin used in the present invention has a water absorption ratio of 20 to 50 g / g under a pressure of 2.07 kPa (0.3 psi), it is good even when the absorber is in a pressurized state. It is preferable because it is possible to maintain a good absorbency, and more preferably 25 to 40 g / g.
[0061]
The water-absorbing resin which can be used in the present invention satisfies the above conditions, and is used in combination with a liquid diffusion member for an absorber.
The shape of the water-absorbent resin can be in the form of particles, fibers, sheets, strips, and the like, but in general, particles are preferred. Preferably, the basic particles mainly composed of acrylic acid (salt) have a weight average particle diameter of 250 μm or less, and the particle diameter distribution of the particles is narrow. As the production method, aqueous solution polymerization, reversed phase suspension polymerization and the like can be used, but those obtained by reversed phase suspension polymerization are preferred. From the viewpoint of handleability, the water-absorbent resin composed of the above basic particles may be granulated while maintaining the capillary absorption capacity of the present invention, and the weight average particle diameter may be out of the above range.
[0062]
In the present invention, a resin satisfying the above relationship and a water absorbing resin not satisfying the above relationship may be used in combination as the water absorbing resin, but in order to maximize the effect of the present invention, only the resin satisfying the above relationship is used. Is preferred. Further, it is preferable that the resin is arranged so that the capillary absorption capacity of the water absorbing resin in a portion closer to the liquid diffusion member satisfies the above relationship.
Examples of the water-absorbent resin that can be used in the present invention include, for example, a water-swellable crosslinked polymer that can be obtained by polymerizing a hydrophilic monomer, among which acrylic acid or a salt thereof as a main component Polyacrylic acid (salt) -based crosslinked polymers are preferred. Specifically, partially neutralized crosslinked polyacrylic acid polymers (US Pat. Nos. 4,625,001, 4,654,039, 5,250,640, 5,275,773, and EP 456136) are crosslinked and partially neutralized. Starch-acrylic acid graft polymer (US Pat. No. 4,076,663), isobutylene-maleic acid copolymer (US Pat. No. 4,389,513), saponified vinyl acetate-acrylic acid copolymer (US Pat. No. 4,124,748), A hydrolyzate of an acrylamide (co) polymer (US Pat. No. 3,959,569) and a hydrolyzate of an acrylonitrile polymer (US Pat. No. 3,935,099) are exemplified. As the polyacrylic acid (salt) -based crosslinked polymer, it is preferable that 50 to 90 mol% of the acid groups in the polymer is neutralized, and examples of the salt include alkali metal salts, ammonium salts, amine salts and the like. You can do it.
[0063]
The water-absorbing resin used in the present invention and the polyacrylic acid (salt) -based crosslinked polymer preferably used in the present invention may be used in combination with a monomer used as a main component (for example, the above acrylic acid or a salt thereof). Other monomers may be copolymerized. Specific examples of other monomers include methacrylic acid, maleic acid, vinylsulfonic acid, styrenesulfonic acid, 2- (meth) acrylamido-2-methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid, Anionic unsaturated monomers such as 2- (meth) acryloylpropanesulfonic acid and salts thereof; acrylamide, methacrylamide, N-ethyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-isopropyl (meth) ) Acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, polyethylene glycol mono (meth) acrylate, vinylpyridyl , N-vinylpyrrolidone, N-acryloylpiperidine, N-acryloylpyrrolidine, and other nonionic hydrophilic group-containing unsaturated monomers; N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) Examples thereof include cationic unsaturated monomers such as acrylate, N, N-dimethylaminopropyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide and quaternary salts thereof. The amount of the monomer other than these acrylic acids to be used is generally preferably 0 to 30 mol%, more preferably 0 to 10 mol%, based on all monomers.
[0064]
As a method for introducing a crosslinked structure into the water-absorbing resin used in the present invention, there are a self-crosslinking type without using a crosslinking agent, an internal having at least two polymerizable unsaturated groups or at least two reactive groups. Examples thereof include those that copolymerize or react a crosslinking agent. Preferably, an internal crosslinking agent is copolymerized or reacted.
Specific examples of these internal crosslinking agents include, for example, N, N′-methylenebis (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, trimethylolpropanetri (Meth) acrylate, trimethylolpropane di (meth) acrylate, glycerin tri (meth) acrylate, glycerin acrylate methacrylate, ethylene oxide-modified trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol Hexa (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, triallyl phosphate, triallylamine, poly (meth) allyloxyalkane, (poly) ethyl Glycol diglycidyl ether, glycerol diglycidyl ether, ethylene glycol, polyethylene glycol, propylene glycol, glycerol, pentaerythritol, ethylenediamine, polyethyleneimine, and glycidyl (meth) acrylate can be mentioned. Further, two or more of these internal crosslinking agents may be used. Among them, a compound having two or more polymerizable unsaturated groups is preferably used as an internal cross-linking agent in view of the water-absorbing properties of the obtained water-absorbing resin, and the amount thereof is preferably based on the amount of the monomer component. The content is 0.005 to 3 mol%, more preferably 0.01 to 1.5 mol%.
[0065]
In the polymerization, hydrophilic polymers such as starch / cellulose, starch / cellulose derivatives, polyvinyl alcohol, polyacrylic acid (salt), cross-linked polyacrylic acid (salt), hypophosphorous acid A chain transfer agent such as an acid (salt) may be added.
When polymerizing the above-described monomer containing acrylic acid or a salt thereof as a main component in order to obtain the water-absorbent resin used in the present invention, bulk polymerization or precipitation polymerization can be performed. From the viewpoint of easy control of polymerization, it is preferable to perform aqueous solution polymerization and reverse phase suspension polymerization using the monomer as an aqueous solution. Such a polymerization method is conventionally known, for example, U.S. Patent Nos. 4,625,001, 4,769,427, 4,873,299, 4,093,776, 4,369,323, 4,446,261, 4,683,274, 4,690,996, and 4,721,647, Nos. 4738867 and 4748076.
[0066]
In performing the polymerization, a radical polymerization initiator such as potassium persulfate, ammonium persulfate, sodium persulfate, t-butyl hydroperoxide, hydrogen peroxide, 2,2′-azobis (2-amidinopropane) dihydrochloride, Active energy rays such as ultraviolet rays and electron beams can be used. When an oxidizing radical polymerization initiator is used, redox polymerization may be performed by using a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, or L-ascorbic acid in combination. The amount of these polymerization initiators used is usually 0.001 to 2 mol%, preferably 0.01 to 0.5 mol%.
[0067]
The shape of the water-absorbent resin obtained by the above-mentioned polymerization is generally an irregular crushed shape, spherical shape, fibrous shape, rod shape, substantially spherical shape, flat shape, or the like.
In order to obtain a water-absorbent resin having a high capillary absorption index and a high capillary absorption capacity at a height of 40 cm used in the present invention, it is preferable that the particle surface is cross-linked by a surface cross-linking agent.
Examples of the surface cross-linking agent that can be used for the surface cross-linking of the water-absorbent resin include ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, 1,3-propanediol, dipropylene glycol, 2,4-trimethyl-1,3-pentanediol, polypropylene glycol, glycerin, polyglycerin, 2-butene-1,4-diol, 1,3-butanediol, 1,4-butanediol, 1,5-pentane Diol, 1,6-hexanediol, 1,2-cyclohexanedimethanol, 1,2-cyclohexanol, trimethylolpropane, diethanolamine, triethanolamine, polyoxypropylene, oxyethylene-oxypro Polyhydric alcohol compounds such as ren block copolymer, pentaerythritol and sorbitol; ethylene glycol diglycidyl ether, polyethylene diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, propylene glycol diglycidyl ether , Polypropylene glycol diglycidyl ether, epoxy compounds such as glycidol; polyamine compounds such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, polyethyleneimine, and inorganic or organic salts thereof (for example, 2,4-tolylene diisocyanate, hexamethylene diisocyanate A polyvalent isocyanate compound such as 1,2-ethylenebisoxazoline; a polyvalent oxazoline compound such as 1,2-ethylenebisoxazoline; 1,3-dioxolan-2-one; 4-methyl-1,3-dioxolan-2-one; Dimethyl-1,3-dioxolan-2-one, 4,4-dimethyl-1,3-dioxolan-2-one, 4-ethyl-1,3-dioxolan-2-one, 4-hydroxymethyl-1,3 -Dioxolan-2-one, 1,3-dioxan-2-one, 4-methyl-1,3-dioxan-2-one, 4,6-dimethyl-1,3-dioxan-2-one, 1,3 Alkylene carbonate compounds such as dioxopan-2-one; haloepoxy compounds such as epichlorohydrin, epibromohydrin, α-methylepichlorohydrin, and polyamines thereof (Eg, Hercules-made sponge; registered trademark); silane coupling agent such as γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane; hydroxylation of zinc, calcium, magnesium, aluminum, iron, zirconium, etc. And polyvalent metal compounds such as chlorides.
[0068]
Among them, it is preferable to use surface cross-linking agents having different solubility parameters in combination. Preferably, the solubility parameter is 25.6 [(J / cm3)1/2] (12.5 [(cal / cm3)1/2]) The above first surface crosslinking agent, the solubility parameter is 25.6 [(J / cm3)1/2] (12.5 [(cal / cm3)1/2]) Less than the second surface cross-linking agent. The solubility parameter of the surface cross-linking agent is described in U.S. Pat. No. 5,422,405.
The use amount of the surface crosslinking agent is preferably about 0.001 to 5 parts by weight based on 100 parts by weight of the water absorbent resin. If the amount is more than 5 parts by weight or less than 0.001 part by weight, it may be difficult to obtain a surface crosslinked layer within the range of the present invention.
[0069]
Water may be used when mixing the surface cross-linking agent of the present invention with a water-absorbing resin. In general, the amount of water used is more than 0.5 part by weight and preferably 10 parts by weight or less, more preferably 1 part by weight to 5 parts by weight based on 100 parts by weight of the solid content of the water-absorbent resin.
When mixing the surface crosslinking agent or the aqueous solution thereof, a hydrophilic organic solvent or a third substance may be used. When a hydrophilic organic solvent is used, for example, lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, t-butyl alcohol; ketones such as acetone; Ethers such as dioxane, tetrahydrofuran and methoxy (poly) ethylene glycol; amides such as ε-caprolactam and N, N-dimethylformamide; sulfoxides such as dimethyl sulfoxide; ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol and tetra Ethylene glycol, polyethylene glycol, 1,3-propanediol, dipropylene glycol, 2,2,4-trimethyl-1,3-pentanediol, polypropylene Glycol, glycerin, polyglycerin, 2-butene-1,4-diol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,2-cyclohexane Examples include dimethanol, 1,2-cyclohexanol, trimethylolpropane, diethanolamine, triethanolamine, polyoxypropylene, oxyethylene-oxypropylene block copolymer, polyhydric alcohols such as pentaerythritol and sorbitol. The amount of the hydrophilic organic solvent used depends on the type, particle size, water content, etc. of the water-absorbing resin, but is preferably 50 parts by weight or less, and more preferably 0.1 part by weight, based on 100 parts by weight of the solid content of the water-absorbing resin. More preferably, the amount is in the range of 10 parts by weight to 10 parts by weight. Further, inorganic acids, organic acids, polyamino acids and the like described in European Patent No. 0668080 may be present as the third substance.
[0070]
The mixing method for mixing the water-absorbent resin and the surface cross-linking agent is not particularly limited. For example, a surface obtained by immersing the water-absorbent resin in a hydrophilic organic solvent and dissolving in water and / or a hydrophilic organic solvent as necessary. Examples of the method include a method of mixing a crosslinking agent, and a method of directly spraying or dropping a surface crosslinking agent dissolved in water and / or a hydrophilic organic solvent on a water-absorbent resin and mixing. Also, by controlling the mixing temperature, that is, the temperature of the water-absorbent resin powder before mixing, and the temperature of the treating agent including the surface cross-linking agent, both within a specific range, the thickness and weight ratio of the surface cross-linked layer are controlled within the range of the present invention. May be easier to do. In the case of mixing using water, fine powder insoluble in water, a surfactant, or the like may be allowed to coexist.
[0071]
After mixing the water-absorbent resin and the surface cross-linking agent, a heat treatment is usually performed to carry out a cross-linking reaction. The heating temperature depends on the surface cross-linking agent used, but it is preferable that the temperature of the water-absorbent resin powder be 40 ° C. or more and 250 ° C. or less. When the treatment temperature is lower than 40 ° C., it may not be possible to obtain a water absorbing agent having excellent water absorbing properties. If the treatment temperature exceeds 250 ° C., the water-absorbent resin may be deteriorated, and the performance may be reduced. The heat treatment time is about 1 minute to 2 hours, preferably about 5 minutes to 1 hour.
Among the methods described above, preferred methods for obtaining a water-absorbent resin excellent in the capillary absorption index B at a height of 40 cm and the capillary absorption ratio D at a height of 40 cm that can be used in the present invention include:
(1) A water-absorbent resin precursor having a carboxyl group having a weight average particle diameter of 250 µm or less, preferably 40 to 200 µm, more preferably 70 to 150 µm, can react with the carboxyl group and has a solubility parameter of 25. 6 [(J / cm3)1/2] (12.5 [(cal / cm3)1/2]) The above first surface cross-linking agent and a solubility parameter of 25.6 [(J / cm3)1/2] (12.5 [(cal / cm3)1/2A) heat treatment in the presence of less than a second surface cross-linking agent;
(2) A water-absorbent resin precursor having a carboxyl group having a weight average particle diameter of 250 μm or less, preferably 40 to 200 μm, more preferably 70 to 150 μm, obtained by reverse phase suspension polymerization, having a water content of 10 % Or less, the absorption capacity under pressure under 2.07 kPa (0.3 psi) in the presence of a surface crosslinking agent is 20 (g / g) or more, preferably 25 (g / g) or more, and preferably 30 (g / g) or more. / G) a method of treating with a solvent after heat treatment so as to be not less than
(3) A water-absorbing resin precursor having a carboxyl group having a weight-average particle diameter of 100 to 1000 μm is subjected to a surface cross-linking treatment in the presence of a polyhydric alcohol or an alkylene carbonate, and then classified by a sieve having a specific particle size. A method for obtaining particles having a diameter of 300 μm or less, preferably having a weight average particle diameter of 10 to 250 μm, more preferably 70 to 150 μm,
Etc. can be exemplified.
[0072]
By such a method, a water-absorbing resin having a capillary absorption capacity D at a height of 40 cm of, for example, 15 (g / g) or more, preferably 20 (g / g) or more, and most preferably 25 (g / g) or more is obtained. It is obtained and can be suitably used in the present invention. In addition, a water-absorbing resin having a capillary absorption index B at a height of 40 cm of, for example, 0.4 or more, preferably 0.5 or more, and more preferably 0.6 or more is obtained by the above method, and can be suitably used in the present invention.
Above all, a water-absorbing resin whose main component is a polyacrylic acid (salt) -based crosslinked polymer obtained by reverse phase suspension polymerization having a weight average particle diameter of 250 μm or less subjected to the surface crosslinking treatment by the method (2) above is preferable. By selecting the conditions, it is possible to obtain an unprecedented resin having a capillary absorption magnification D at a height of 40 cm of, for example, 25 (g / g) or more. The presence or absence of the surface crosslinking treatment can be determined by the method described in Japanese Patent Application No. 11-309105.
[0073]
The water-absorbent resin of the present invention further comprises a water-swellable water-insoluble hydrogel-forming polymer, silicon dioxide, titanium dioxide, aluminum oxide, magnesium oxide, zinc oxide, talc, calcium phosphate, barium phosphate, silicic acid or a salt thereof, clay, Water-insoluble particulate inorganic powders such as diatomaceous earth, zeolite, bentonite, kaolin, hydrotalcite, active white salts, etc .; deodorants, fragrances, antibacterial agents, cationic polymer compounds such as polyamines, adhesives, adhesives, Addition of additives such as a foaming agent, a pigment, a dye, a fertilizer, an oxidizing agent, a reducing agent, and water to be included in or adhered to the water-swellable water-insoluble hydrogel-forming polymer, so that the water-absorbing resin has a further function. May be added or increased. The proportion of the additive used is preferably less than 30% by weight, more preferably less than 10% by weight, even more preferably less than 5% by weight, based on the total amount of the water-swellable water-insoluble hydrogel-forming polymer and the additive. Particularly preferably, it is less than 1% by weight.
(2-4) Absorber
The absorber of the present invention is obtained by combining the liquid diffusion member and the water-absorbing resin so as to satisfy the liquid diffusion storage coefficient 1 and / or the liquid diffusion storage coefficient 2 of the present invention.
[0074]
The absorbent of the present invention can also be obtained by using a liquid-absorbing resin having a capillary absorption capacity D of 15 (g / g) or more at a height of 40 cm for a liquid diffusion member having a suction height of 30 cm or more and a liquid storage member. Can be
Further, the absorbent body of the present invention can be obtained by using a liquid diffusion member having a suction height of 30 cm or more and a water-absorbing resin having a weight average particle diameter of 250 μm or less subjected to a surface cross-linking treatment for a liquid storage member.
The absorber of the present invention may use other materials besides the liquid diffusion member and the water absorbent resin as long as the liquid diffusion / storage system intended by the present invention is not hindered. Examples of other materials include hydrophilic fiber, non-woven fabric, paper, tissue and the like. Examples of the hydrophilic fibers include cellulose fibers such as mechanical pulp, chemical pulp, semi-chemical pulp, and dissolved pulp obtained from wood, and fibers such as rayon and acetate. Among the fibers exemplified above, cellulose fibers are preferred. Further, the hydrophilic fibers may contain synthetic fibers such as polyamide, polyester, and polyolefin. In addition, the hydrophilic fiber is not limited to the fiber exemplified above. Examples of the nonwoven fabric include nonwoven fabrics such as polyester such as spunbond, chemical bond, and spunlace, polyethylene, polypropylene, nylon, and rayon.
[0075]
The ratio of the water-absorbent resin and the liquid diffusion member in the absorber can be selected in an arbitrary range, but the weight ratio of the water-absorbent resin to the total amount of the water-absorbent resin and the liquid diffusion member is preferably 5% by weight to 99%. % By weight, more preferably from 20% by weight to 90% by weight, still more preferably from 30% by weight to 80% by weight.
In particular, when the weight ratio of the water-absorbent resin to the total amount of the water-absorbent resin and the liquid diffusion member is 75% by weight or more and 90% by weight or less, the use amount of the liquid diffusion member can be relatively reduced. In terms of shape, it is preferable because a lighter and thinner absorber can be manufactured. In order to manufacture an absorbent body in which the weight of the water-absorbent resin is 75% by weight or more and 90% by weight or less based on the total amount of the water-absorbent resin and the liquid diffusion member, the water-absorbent resin is made of a capillary at a height of 40 cm. It is more preferable to use one having an absorption capacity D of 15 (g / g) or more. In the case of using a water-absorbent resin having a capillary absorption capacity D at a height of 40 cm of 15 (g / g) or more, the transfer and distribution of the liquid from the liquid diffusion member to the water-absorbent resin are improved. The storage capacity of the liquid diffusion member is not required so much, and the amount of the liquid diffusion member used can be greatly reduced. The liquid diffusion member at that time is preferably a porous polymer obtained by polymerizing a high internal phase emulsion and having a suction height of 30 cm or more.
[0076]
As the arrangement position of the water-absorbent resin, the back surface of the liquid diffusion member, the front surface of the liquid diffusion member, a part of the back side of the liquid diffusion member, a part of the front side of the liquid diffusion member, between the liquid diffusion members, the liquid diffusion member Medium or the like can be exemplified, and these arrangement methods may be combined. Above all, it is preferable to arrange a water-absorbing resin on the back side of the liquid diffusion member, and it is preferable that the water-absorbing resin is present in a layered form. Further, the basis weight of the water-absorbent resin is 50 to 500 g / m.2It is about.
As the arrangement state of the water-absorbent resin, there are a state where the water-absorbing resin is uniformly present on the entire surface of the liquid-diffusing member, a state where the resin is present in a specific pattern, a state where it is present with a density gradient, and , A state existing only before and after the liquid diffusion member, and the like.
[0077]
In addition, the water-absorbing resin itself is formed into a sheet by a conventionally known method, or sprayed on a substrate to be immobilized, packed in a bag, or provided with tackiness and then combined with a liquid diffusion member. Is also good. Further, the water-absorbing resin and the liquid diffusion member may be bonded using an adhesive binder.
Examples of the adhesive binder include polyethylene, polypropylene, ethylene-propylene copolymer, heat-fusible fibers such as polyolefin fibers such as 1-butene-ethylene copolymer, adhesive emulsions, and hot melt adhesives. Can be illustrated. These adhesive binders may be used alone or as a mixture of two or more.
[0078]
In the absorber of the present invention, further, silicon dioxide, titanium dioxide, aluminum oxide, magnesium oxide, zinc oxide, talc, calcium phosphate, barium phosphate, silicic acid or a salt thereof, clay, diatomaceous earth, zeolite, bentonite, kaolin, hydrogel Water-insoluble particulate inorganic powders such as talcite and active white salts; deodorants, fragrances, antibacterial agents, cationic polymer compounds such as polyamines, foaming agents, pigments, dyes, hydrophilic short fibers, fertilizers, oxidation Additives, reducing agents, water and the like can be added to give the absorber a further function.
[3] Absorber including liquid acquisition member and water absorbent resin layer
(3-1) Relationship between Capillary Absorption Capability of Liquid Acquisition Member and Water Absorbent Resin (Layer)
The relationship between the liquid acquisition member and the capillary absorption capacity of the water absorbent resin (layer) in the present invention will be described.
[0079]
The water-absorbent resin layer combined with the liquid acquisition member has a water-absorbent resin content of 250 g / m2.2It is preferable that the water-absorbing resin is contained in the above-mentioned spray amount, and the water-absorbing resin is formed into a substantially continuous layer when swollen. 250g / m2If it is less than 3, the saturated absorption amount of the absorber becomes small, the liquid acquisition layer cannot be dried sufficiently, the dry feeling is inferior, and the return amount of the liquid tends to increase. More preferably, the spray amount of the water absorbent resin layer is 300 g / m.2Above, more preferably 350 g / m2Above, particularly preferably 400 g / m2That is all.
The water-absorbent resin layer is composed of only the water-absorbent resin or a mixture of the water-absorbent resin and another water-absorbent or hydrophilic material. Examples of the water-absorbing or hydrophilic material other than the water-absorbing resin include natural fibers such as pulp, rayon, polyester, and nylon, fibers such as regenerated fibers and synthetic fibers, and hydrophilically treated products thereof. . The proportion of the water-absorbing resin in the water-absorbing resin layer is preferably 70% by weight or more, more preferably 80% by weight or more, and still more preferably 90% by weight or more, from the viewpoint of making the absorber thinner and increasing the water absorption. It is particularly preferable that the resin is composed of only a water-absorbing resin (that is, 100% by weight).
[0080]
As the water-absorbing resin that can be used in the present invention, when the capillary absorption index at a height of 40 cm of the liquid acquisition member is E (where E <0.1), the water-absorbing resin has a height of 40 cm. Is such that the capillary absorption index B satisfies the following expression.
B / E ≧ 10 ° (Equation 3)
Further, the water-absorbent resin layer that can be used in the present invention, when the capillary absorption index at a height of 40 cm of the liquid acquisition member is E (where E <0.1), The capillary absorption index F at a height of 40 cm satisfies the following equation.
[0081]
F / E ≧ 10 ° (Equation 4)
The value of the capillary absorption index B or F at a height of 40 cm of the water-absorbent resin or the water-absorbent resin layer required for the present invention is the characteristic of the liquid acquisition member used, that is, the capillary absorption index at a height of 40 cm of the liquid acquisition member used. If the relationship of B / E ≧ 10 or F / E ≧ 10 is satisfied, the liquid is satisfactorily absorbed from the liquid acquisition member to the water-absorbent resin, and the water-absorbent resin sufficiently dries the liquid acquisition member. be able to. When B / E or F / E is less than 10, the water-absorbent resin cannot sufficiently absorb the liquid from the liquid acquisition member, the liquid acquisition member remains wet, and the next liquid can be received instantaneously. Can not. The water-absorbent resin preferably satisfies B / E ≧ 20 or F / E ≧ 20, and more preferably the water-absorbent resin satisfies B / E ≧ 30 or F / E ≧ 30. Hereinafter, the value of B / E or F / E may be referred to as liquid acquisition storage coefficient 1. B represents the water-absorbing resin alone, and F represents the capillary absorption index obtained by using the water-absorbing resin layer as it is when it is difficult to isolate the water-absorbing resin from the water-absorbing resin layer.
[0082]
As an absorbent that can be used in the present invention, the capillary absorption ratio G at a height of 40 cm of the liquid acquisition member is 1.0 (g / g) or less, and the capillary absorption at a height of 40 cm of the water absorbent resin. Magnification D is 5 (g / g) or more.
Further, as another absorber that can be used in the present invention, a capillary absorption capacity G at a height of 40 cm of the liquid acquisition member is 1.0 (g / g) or less, and 40 cm of the water-absorbent resin layer. The capillary absorption capacity H at a height of 5 g / g or more.
If the liquid acquisition member and the water-absorbent resin or the water-absorbent resin layer satisfy these relationships, the liquid is well distributed from the liquid acquisition member to the water-absorbent resin, and the water-absorbent resin dries the liquid acquisition member well, And the liquid can be absorbed and stored.
[0083]
When D or H is less than 5 (g / g), it is difficult for the water-absorbing resin to sufficiently absorb the liquid from the liquid acquisition member, and the liquid acquisition member does not dry and has a very large return amount. . Preferably, the value of the capillary absorption ratio D or H at a height of 40 cm of the water-absorbent resin or the water-absorbent resin layer required for the present invention is 10 (g / g) or more, more preferably 15 (g / g) or more. Most preferably, it is 20 (g / g) or more. Further, hereinafter, when the value of D / F or H / F of the liquid acquisition member is set as the liquid acquisition storage coefficient 2, this value is preferably 30 or more, more preferably 50 or more.
In the present invention, it is more preferable that all the values of the liquid acquisition storage coefficients 1, D, and H satisfy the range of the present invention. It should be noted that when only one of them is satisfied, the ability of the water absorbing resin to absorb the liquid from the liquid acquiring member may not be sufficiently exhibited depending on the use conditions. As described above, D means the water-absorbing resin alone, and H means the capillary absorption capacity obtained by using the water-absorbing resin layer as it is when it is difficult to isolate the water-absorbing resin from the water-absorbing resin layer.
(3-2) Liquid acquisition member
The liquid acquisition member that can be used in the present invention is a member that plays a role in capturing the liquid added to the absorber or the absorbent article having the absorber instantaneously and not out of the absorber, It is defined as a material having a capillary absorption index E at a height of 40 cm of less than 0.10 and a capillary absorption capacity G at a height of 40 cm of 1.0 (g / g) or less. It has a structure capable of maintaining a space for capturing the liquid even after applying force or absorbing water.
[0084]
The liquid obtaining member that can be used in the present invention is excellent in liquid obtaining ability and liquid discharging ability, and it is necessary that the capillary absorption index E at a height of 40 cm is less than 0.1. . The capillary absorption index E at a height of 40 cm of a flap pulp or the like used for a conventional disposable diaper is 0.04 according to the measuring method of the present invention, and such a substance can be used as the liquid acquisition member of the present invention. Although it is possible, it is preferable that this value is small because the liquid acquisition property and the liquid release property are excellent. A material having a capillary absorption index E of 0.10 or more retains the liquid relatively strongly inside the material, and when the liquid is repeatedly absorbed, the liquid acquisition performance sharply decreases. It is difficult to improve the return amount. Preferably, the capillary absorption index E at a height of 40 cm is 0.03 or less.
[0085]
Further, the liquid acquisition member that can be used in the present invention preferably has a capillary absorption capacity at a height of 0 cm of 5 (g / g) or more. As the capillary absorption capacity at a height of 0 cm is higher, the amount of liquid obtained as a liquid obtaining member is larger, and an absorber excellent in instantaneous absorption and temporary storage of liquid can be obtained. More preferably, the capillary absorption capacity at a height of 0 cm is 10 (g / g) or more, and further preferably the capillary absorption capacity at a height of 0 cm is 15 (g / g) or more.
Another liquid acquisition member that can be used in the present invention is required to have a capillary absorption capacity G at a height of 40 cm of 1.0 (g / g) or less. The capillary absorption capacity G of a conventional flap pulp or the like used for disposable diapers at a height of 40 cm is about 0.5 (g / g), and such a substance can be used as the liquid acquisition member of the present invention. It is preferable that this value is small, because the liquid obtaining property and the liquid releasing property are excellent. A material having a capillary absorption ratio G of more than 1.0 (g / g) at a height of 40 cm holds the liquid relatively strongly inside the member, and when the liquid is repeatedly absorbed, the liquid acquisition performance sharply increases. As a result, leakage, wet feeling, return amount, and the like are hardly improved. The capillary absorption capacity G at a height of 40 cm is preferably 0.4 (g / g) or less, more preferably 0.2 (g / g) or less.
[0086]
Similarly, another liquid acquisition member that can be used in the present invention preferably has a capillary absorption capacity at a height of 0 cm of 5 (g / g) or more. This is not the case. However, in general, the higher the capillary absorption capacity at a height of 0 cm, the greater the amount of liquid obtained as a liquid obtaining member, and an absorber excellent in instantaneous absorption and temporary storage of liquid can be obtained. More preferably, the capillary absorption capacity at a height of 0 cm is 10 (g / g) or more, and further preferably the capillary absorption capacity at a height of 0 cm is 15 (g / g) or more.
The liquid acquisition member that can be used in the present invention satisfies the above conditions, and is used in combination with a water-absorbing resin (layer) for an absorber.
[0087]
As described above, when the capillary absorption index at a height of 40 cm of the liquid acquisition member is E (where E <0.1) as described above, the capillary absorption index B at a height of 40 cm of the water absorbent resin is It is necessary that B / E ≧ 10 or that the water-absorbent resin layer has a capillary absorption index F at a height of 40 cm that satisfies F / E ≧ 10.
Further, the relationship between the two is that when the capillary absorption ratio at a height of 40 cm of the liquid acquisition member is G (where G ≦ 1.0 (g / g)), the capillary absorption at a height of 40 cm is used as the water-absorbing resin. It is necessary that the magnification D satisfies 5 (g / g) or more, or that the water absorption resin layer has a capillary absorption magnification H at a height of 40 cm of 5 (g / g) or more.
[0088]
It is more preferable that both satisfy B / E ≧ 10 and D ≧ 5.0 at the same time, or that both satisfy F / E ≧ 10 and H ≧ 5.0 at the same time.
The shape of the liquid acquisition member may be a sheet shape, a fiber shape, a fiber aggregate, a particle shape, a strip shape, or the like, but a sheet shape is generally preferable. At that time, the basis weight of the liquid acquisition member is 50 to 500 g / m.2Degree is preferable, and more preferably 100 to 200 g / m.2It is about.
Further, when the liquid acquisition member has a density difference or a density gradient within the member, an acquisition capability difference or an acquisition capability gradient, or when further using a second liquid acquisition member / liquid diffusion member that does not satisfy the relationship of the present invention. It is preferable that the capillary absorption capacity of the liquid acquisition member in a portion closer to the water absorbent resin satisfies the above relationship.
[0089]
Examples of the liquid acquisition member that can be used in the present invention include flap pulp, crosslinked cellulose fibers, synthetic fibers such as nonwoven fabrics having a bulky structure, and porous heavy particles obtained by polymerizing a high internal phase emulsion (HIPE). Foam composed of synthetic polymer such as coalesced, polyurethane, polystyrene, polyethylene, polypropylene, polyester, polyvinyl alcohol, butadiene styrene rubber (SBR), and nitrile butadiene rubber; bonded or bonded with synthetic fibers such as polyethylene, polypropylene, polyethylene terephthalate, and nylon Rayon fibers; cellulose fibers such as cellulose, cellulose acetate and nitrocellulose; and fiber aggregates obtained by pressing, bonding or bonding hydrophilic fibers such as polyamide fibers. Preferably, it is a crosslinked cellulose fiber, a synthetic fiber such as a nonwoven fabric having a bulky structure, or a porous polymer obtained by polymerizing a high internal phase emulsion (HIPE).
(3-3) Water absorbent resin
Until now, water-absorbent resins have been used as liquid storage members such as disposable diapers as those that absorb liquid by the difference in osmotic pressure between the inside and outside of the resin. It was noted that even when the known physical properties are the same, when the liquid is absorbed from the liquid acquisition member or the like, the absorption behavior greatly differs depending on the type of the resin. And the present inventor has studied diligently and found that even the water-absorbent resin alone has a large difference in the capillary absorption capacity, and a specific condition having a relationship between the capillary absorption capacity of the liquid acquisition member and the capillary absorption capacity of the water-absorbency resin is satisfied. In some cases, it has been found that the water-absorbent resin can receive and store the liquid better than the liquid acquisition member.
[0090]
As described above, the water-absorbent resin that can be used in the present invention is 40 cm as the water-absorbent resin when the capillary absorption index at a height of 40 cm of the liquid acquisition member is E (where E <0.10). The capillary absorption index B at the height of satisfies B / E ≧ 10, preferably satisfies B / E ≧ 20, and more preferably satisfies B / E ≧ 30. The water-absorbent resin may be measured as it is with the absorbent resin layer taken out of the absorber. In this case, the water-absorbent resin layer has a capillary absorption index F at a height of 40 cm satisfying F / E ≧ 10. , Preferably satisfying F / E ≧ 20, and more preferably satisfying F / E ≧ 30.
[0091]
The values of the capillary absorption index B at a height of 40 cm of the water-absorbent resin and the capillary absorption index F at a height of 40 cm of the water-absorbent resin layer required for the present invention are the characteristics of the liquid acquisition member used, that is, 40 cm of the liquid acquisition member used. Depends on the capillary absorption index E at the height of the liquid, and if the relationship of B / E ≧ 10 or F / E ≧ 10 is satisfied, the liquid can be favorably transferred from the liquid acquisition member to the water-absorbent resin or the water-absorbent resin layer. As a result, the water-absorbent resin can absorb and store the liquid well, and dry the liquid obtaining member. Preferably, the water-absorbent resin has a capillary absorption index B at a height of 40 cm or a capillary absorption index F at a height of 40 cm of the water-absorbent resin layer of 0.2 or more, more preferably 0.4 or more, still more preferably 0.6 or more. That's all.
[0092]
The water-absorbent resin used in the present invention preferably has a capillary absorption capacity at a height of 0 cm of 20 (g / g) or more. As the capillary absorption capacity at a height of 0 cm is higher, a larger amount of liquid sucked from the liquid acquisition member can be grasped, so that an excellent absorbent is obtained from the viewpoint of liquid absorption capacity. More preferably, it is a water-absorbent resin having a capillary absorption capacity at a height of 0 cm of 30 (g / g) or more, more preferably 40 (g / g) or more at a height of 0 cm, and still more preferably 0 cm. Is a water-absorbent resin having a capillary absorption capacity of 50 (g / g) or more. If the capillary absorption capacity of the height of 0 cm is too high, even if a liquid diffusion member is used, the absorption capacity of the absorbent may be reduced. Care must be taken because the liquid may be difficult to enter inside.
[0093]
As another water-absorbent resin that can be used in the present invention, the water-absorbent resin has a capillary absorption capacity D at a height of 40 cm of preferably 5 (g / g) or more, more preferably 10 (g / g). g) or more, more preferably 15 (g / g) or more, most preferably 20 (g / g) or more. The water-absorbent resin may be measured as it is with the absorbent resin layer taken out from the absorber. In this case, the water-absorbent resin layer has a capillary absorption capacity H at a height of 40 cm, preferably 5 (g / g) or more. , More preferably 10 (g / g) or more, still more preferably 15 (g / g) or more, and most preferably 20 (g / g) or more.
[0094]
The water-absorbing resin which can be used in the present invention satisfies the above conditions, and is used in combination with a liquid obtaining member satisfying the requirements of the present invention for an absorber.
The shape of the water-absorbent resin can be in the form of particles, fibers, sheets, strips, and the like, but in general, particles are preferred. As the production method, aqueous solution polymerization, reverse phase suspension polymerization and the like can be used.
In the present invention, a resin satisfying the above relationship and a water absorbing resin not satisfying the above relationship may be used in combination as the water absorbing resin, but in order to maximize the effect of the present invention, only the resin satisfying the above relationship is used. Is preferred. In addition, it is preferable that the resin is disposed so that the capillary absorption capacity of the water-absorbing resin in a portion closer to the liquid acquisition member satisfies the above relationship.
[0095]
Examples of the water-absorbent resin that can be used in the present invention, examples and amounts of monomers used as raw materials of the water-absorbent resin, a method for introducing a crosslinked structure, a description on internal crosslinking, and examples of additives in polymerization. The amount used, the polymerization method, the shape of the obtained water-absorbent resin, the description of the surface crosslinking, and the description of the additive for imparting a further function to the water-absorbent resin are the same as those described in the above section (2-3). The same is true.
Preferred methods for obtaining a water-absorbent resin having an excellent capillary absorption index B at a height of 40 cm and a capillary absorption magnification D at a height of 40 cm that can be used in the present invention include:
(1) A water-absorbent resin precursor having a carboxyl group having a weight average particle diameter of 100 to 500 μm, more preferably 200 to 400 μm, can be reacted with the carboxyl group and has a solubility parameter of 25.6 [(J / cm3)1/2] (12.5 [(cal / cm3)1/2]) The above first surface cross-linking agent and a solubility parameter of 25.6 [(J / cm3)1/2] (12.5 [(cal / cm3)1/2A) heat treatment in the presence of less than a second surface cross-linking agent;
(2) A water-absorbent resin precursor having a carboxyl group having a weight average particle diameter of 250 μm or less, preferably 40 to 200 μm, more preferably 70 to 150 μm, obtained by reverse phase suspension polymerization, having a water content of 10 % And an absorption capacity under pressure of 0.3 (psi) in the presence of a surface crosslinking agent of 20 (g / g) or more, preferably 25 (g / g) or more, and more preferably 30 (g / g) or more. A method of treating with a solvent after heat treatment so that
(3) A water-absorbent resin precursor having a carboxyl group having a weight average particle diameter of 100 to 600 μm is treated in the presence of a polyhydric alcohol or an alkylene carbonate so as to have a specific surface crosslinked layer, and then a sieve having a specific particle size. A method of obtaining particles having a weight average particle diameter of 400 μm or less, preferably a weight average particle diameter of 100 to 400 μm,
Etc. can be exemplified.
[0096]
By such a method, a water-absorbing resin having a capillary absorption capacity D at a height of 40 cm of, for example, 10 (g / g) or more, preferably 15 (g / g) or more, and most preferably 25 (g / g) or more is obtained. It is obtained and can be suitably used in the present invention. In addition, a water-absorbing resin having a capillary absorption index B at a height of 40 cm of, for example, 0.2 or more, preferably 0.4 or more, and more preferably 0.6 or more at a height of 40 cm is obtained by the above method, and can be suitably used in the present invention.
(3-4) absorber
The absorber of the present invention is obtained by combining a liquid acquisition member and a water-absorbing resin layer satisfying the above characteristics. The water-absorbing resin layer has the same water-absorbing resin amount and constitution as described above.
[0097]
In the absorber of the present invention, the water-absorbing resin layer has a thickness of 250 g / m2.2It is preferable that the spraying amount is as described above, and the water-absorbing resin is configured to form a substantially continuous layer when swollen. 250g / m2If it is less than 3, the saturated absorption amount of the absorber becomes small, the liquid acquisition layer cannot be dried sufficiently, the dry feeling is inferior, and the return amount of the liquid tends to increase. Preferably, the spray amount of the water-absorbent resin layer is 300 g / m.2Or more, more preferably 350 g / m2Or more, more preferably 400 g / m2That is all.
The water-absorbent resin that can be used in the present invention, as long as it does not interfere with the liquid acquisition / storage system intended by the present invention, can be used in combination with a small amount of hydrophilic fiber, another base material such as a synthetic fiber to the water-absorbent resin. However, in order to maximize the transfer of the liquid from the liquid acquisition member, it is preferable to spray the water-absorbing resin itself to form the water-absorbing resin layer having the above-mentioned spray amount.
[0098]
In the absorber of the present invention, in addition to the liquid acquisition member and the water absorbent resin, other materials may be used as long as the liquid acquisition and storage system intended by the present invention is not hindered. Examples of other materials include hydrophilic fiber, non-woven fabric, paper, tissue and the like. Examples of the hydrophilic fibers include cellulose fibers such as mechanical pulp, chemical pulp, semi-chemical pulp, and dissolved pulp obtained from wood, and fibers such as rayon and acetate. Among the fibers exemplified above, cellulose fibers are preferred. Further, the hydrophilic fibers may contain synthetic fibers such as polyamide, polyester, and polyolefin. In addition, the hydrophilic fiber is not limited to the fiber exemplified above. Examples of the nonwoven fabric include nonwoven fabrics such as polyester such as spunbond, chemical bond, and spunlace, polyethylene, polypropylene, nylon, and rayon.
[0099]
In the absorber of the present invention, it is preferable that the liquid acquisition member and the water-absorbing resin layer are each composed of one layer. When there are two or more liquid acquisition members, the liquid is not sufficiently absorbed from all the liquid acquisition members in the absorbent article into the water-absorbent resin layer, and the dryness and the return amount may be poor. .
The ratio between the water absorbing resin layer and the liquid acquisition member in the absorber can be selected in an arbitrary range. Preferably, there is. More preferably, the content is 80% by weight or more and 95% by weight or less.
[0100]
The weight ratio of the liquid absorption of the water-absorbent resin layer to the liquid saturation absorption of the absorber is preferably 80% by weight or more. More preferably, it is 80% by weight or more and 95% by weight or less, further preferably 90% by weight or more and 95% by weight or less.
Although the amount of the liquid acquisition member of the present invention and the amount of the water-absorbent resin layer to be used depends on the size of the intended absorbent article, the liquid acquisition member is preferably 0.5 to It is about 4 g, more preferably about 1 to 2 g, preferably about 10 to 30 g, more preferably about 15 to 20 g for the water-absorbent resin layer.
The water-absorbent resin layer may be disposed on the back side of the liquid acquisition member (the liquid-impermeable back sheet side of the absorbent article), the front side of the liquid acquisition member, a part of the back side of the liquid acquisition member, or the front side of the liquid acquisition member. Part of the side, between the liquid acquisition members, inside the liquid acquisition member, etc. can be exemplified, and these arrangement methods may be combined. In particular, it is preferable to dispose a water-absorbing resin layer on the back side of the liquid acquisition member. The water-absorbent resin layer is arranged uniformly over the entire surface of the liquid acquisition member, in a specific pattern, in a streak, or with a density gradient. State, the state existing only at the center of the liquid acquisition member, the state existing only before and after the liquid acquisition member, and the like. It is preferable that the existing area is larger. Preferably, the area ratio of the water absorbent resin layer to the area 1 of the liquid acquisition member is 1.2 or more, more preferably 2 or more.
[0101]
In addition, the water-absorbing resin or the water-absorbing resin layer itself is formed into a sheet by a conventionally known method, sprayed on a substrate to be immobilized, packed in a bag, or provided with tackiness, and You may combine with an acquisition member. Further, the water absorbing resin layer and the liquid obtaining member may be bonded using an adhesive binder.
Examples of the adhesive binder include polyethylene, polypropylene, ethylene-propylene copolymer, heat-fusible fibers such as polyolefin fibers such as 1-butene-ethylene copolymer, adhesive emulsions, and hot melt adhesives. Can be illustrated. These adhesive binders may be used alone or as a mixture of two or more. In this case, it is more preferable that not only the water-absorbing resin alone but also the capillary-absorbing ability of the water-absorbing resin layer in a fixed state satisfies the range of the present invention.
[0102]
In the absorber of the present invention, further, silicon dioxide, titanium dioxide, aluminum oxide, magnesium oxide, zinc oxide, talc, calcium phosphate, barium phosphate, silicic acid or a salt thereof, clay, diatomaceous earth, zeolite, bentonite, kaolin, hydrotalcite Water-insoluble particulate inorganic powders such as active white salts; deodorants, fragrances, antibacterial agents, cationic polymer compounds such as polyamines, foaming agents, pigments, dyes, hydrophilic short fibers, fertilizers, oxidizing agents, A reducing agent, water or the like may be added to give the absorber an additional function.
The absorber according to the present invention, that is, the absorber including the liquid acquisition member and the water-absorbent resin layer, may further include the liquid diffusion member described above. In this case, both of the above-described features of the absorbent including the liquid diffusion member and the water absorbent resin according to the present invention and the features of the absorbent including the liquid acquisition member and the water absorbent resin layer according to the present invention are combined. The absorber is preferable because the effects of the present invention can be further exhibited.
[4] Absorbent articles
The absorbent article according to the present invention is generally the absorbent according to the present invention having the above structure, that is, the absorbent including the liquid diffusion member and the water absorbent resin, or the liquid acquisition member and the water absorbent resin. An absorber including a layer is sandwiched between a liquid-permeable sheet and a liquid-impermeable sheet. And since the said absorbent article has the absorber of the said structure, it is provided with the above-mentioned excellent water absorption characteristics. Specific examples of the absorbent article include, but are not particularly limited to, sanitary materials such as disposable diapers and sanitary napkins, so-called incontinence pads, medical sheets, and dew-absorbing sheets. Since the absorbent article of the present invention has excellent water absorption properties, for example, when the absorbent article is a disposable diaper, the liquid absorption efficiency becomes extremely high, and it is possible to prevent leakage of urine. That is, a so-called dry feeling can be imparted, and a reduction in thickness and weight can be realized.
[0103]
Examples of the material referred to as the liquid permeable sheet include materials having a property of transmitting an aqueous liquid, such as a nonwoven fabric; a woven fabric; and a porous synthetic resin film made of polyethylene, polypropylene, polyester, polyamide, or the like. The liquid impermeable sheet is made of a material having a property of impervious to an aqueous liquid, for example, a synthetic resin film made of polyethylene, polypropylene, ethylene vinyl acetate, polyvinyl chloride, or the like; Film; a film made of a composite material of the above synthetic resin and woven fabric. The liquid impermeable sheet may have a property of transmitting vapor.
[0104]
As described above, in the present invention, a water-absorbing resin having a capillary absorption capacity having a specific relationship with the capillary diffusion capacity of the liquid diffusion member or the liquid acquisition member is used in combination with the liquid diffusion member or the liquid acquisition member. And the water-absorbent resin can absorb and store the liquid well from the liquid acquisition member, and exhibit extremely excellent liquid absorption efficiency. That is, according to the present invention, an absorber and an absorbent article exhibiting a very excellent liquid diffusion / storage ability in a very simple manufacturing process by a system from liquid diffusion to storage work well.
Absorbent articles such as disposable diapers and sanitary napkins, so-called incontinence pads, etc. manufactured using such an absorber have a high liquid absorption efficiency of the member, so the entire member is effectively used for liquid absorption, and has a high absorption capacity. Is shown. In addition, when the absorption capacity of such an absorbent or absorbent article having a high absorption efficiency is designed to be equal to the absorption level of a conventional commercially available diaper, a liquid diffusion member, a liquid acquisition member, or a water-absorbent resin to be used is used. The amount of used diapers can be reduced more than conventional products, and light, thin diapers can be economically manufactured.
[5] Water-absorbing resin particles
The water-absorbing resin that can be used for the water-absorbing body and the water-absorbing article according to the present invention is as described above, but as a particularly preferable water-absorbing resin, in the present invention, the water-absorbing resin described below is used. A resin particle and a method for producing the same are also provided.
[0105]
The method for producing water-absorbent resin particles according to the present invention is characterized in that particles having a weight-average particle diameter of 50 to 300 μm and saturated swelling in a physiological saline solution (0.9% by weight NaCl aqueous solution) under no pressure are used. The weight-average particle diameter is reduced by adding a dispersion of water-dispersible fine particles to a water-absorbent resin having an inter-gap ratio of 30 to 50% and an average inter-gap radius of 80 to 150 μm during saturation swelling under no pressure. It is characterized by being raised by 50% or more.
The water-absorbent resin that can be used in the method for producing water-absorbent resin particles according to the present invention has a weight-average particle diameter of 50 to 300 μm and has no weight loss when saturated and swollen in physiological saline (0.9% by weight aqueous NaCl solution). It has a particle porosity of 30 to 50% during saturated swelling under pressure and an average particle radius of 80 to 150 μm during saturated swelling under no pressure.
[0106]
These are to optimize the weight-average particle diameter, particle size distribution, surface cross-linking agent, thickness of the surface cross-linking layer, etc. when producing the water-absorbent resin used for the water-absorbent body and the water-absorbent article of the present invention described above. Is obtained. For example, the technique
(1) a water-absorbent resin having a carboxyl group is heat-treated in the presence of a surface crosslinking agent capable of reacting with the carboxyl group such as a polyhydric alcohol, an epoxy compound, an oxazoline compound, or an alkylene carbonate, or an oxazolidone compound; A method of performing a surface cross-linking treatment so that the surface cross-linked layer is within a certain range,
(2) a method of heat-treating a water-absorbent resin having a carboxyl group in the presence of a surface crosslinking agent capable of reacting with the carboxyl group, and adding a cationic polymer having a specific range of molecular weight;
Etc. can be exemplified. The method for determining the thickness of the surface crosslinked layer is described in Japanese Patent Application No. 2000-329501. The cationic polymer is exemplified in JP-A-5-31360, JP-A-6-370 and the like.
[0107]
The water-absorbent resin obtained by such a method having an interparticle gap ratio of 30 to 50% at the time of saturated swelling under no load and an average interparticle gap radius of 80 to 150 μm at the time of saturated swelling under no load is used as a raw material powder. Use as
Further, the water-absorbent resin particles of the present invention have strong granulating properties when dried, but lose their bond when in contact with a large amount of liquid and have redispersibility. When the granulated particles are saturated and swelled in, for example, a physiological saline solution (a 0.9 wt% NaCl aqueous solution), the particles are redispersed to freely absorb and swell, and the particles at the time of saturated swelling under no pressure are applied. It has a gap ratio of 30 to 50% and an average gap radius between particles at the time of saturation swelling under no pressure of 80 to 150 μm.
[0108]
The weight-average particle size of the water-absorbent resin that can be used in the method for producing the water-absorbent resin particles according to the present invention is 50 to 300 μm, but in order to more effectively obtain the water-absorbent resin particles according to the present invention, Preferably it is 100 to 300 μm, more preferably 150 to 250 μm.
The water-absorbent resin which can be used in the method for producing water-absorbent resin particles according to the present invention, is obtained by swelling saturated in physiological saline (0.9% by weight aqueous NaCl solution) under no pressure between particles during saturated swelling. The porosity is 30 to 50%, but is preferably 35 to 45% in order to obtain the water-absorbent resin particles according to the present invention more effectively.
[0109]
The average gap radius between particles of the water-absorbent resin that can be used in the method for producing water-absorbent resin particles according to the present invention at the time of saturation swelling under no pressure is 80 to 150 μm.
The method for producing water-absorbent resin particles according to the present invention is characterized in that the weight-average particle diameter is increased by 50% or more by adding a dispersion of water-dispersible fine particles to a water-absorbent resin having the above-described characteristics. .
Examples of the water-dispersible fine particles usable in the present invention include, for example, powdered inorganic substances such as silicon dioxide, aluminum oxide, zinc oxide, magnesium oxide, titanium dioxide, calcium phosphate, barium phosphate, calcium carbonate, talc, and magnesium phosphate. , Calcium sulfate, silicic acid or a salt thereof, viscosity, diatomaceous earth, bentonite, zeolite, kaolin, hydrotalcite, water-insoluble particulate inorganic powders such as activated white salts, and other metal oxides. Particularly, silicon dioxide, aluminum oxide, and titanium dioxide are preferable.
[0110]
The water-dispersible fine particles generally have a weight-average primary particle size (weight-average particle size of individual particles. When a plurality of particles are aggregated or granulated, they are aggregated or granulated. It is preferable that the weight average particle diameter of the previous individual particles is 3.0 μm or less, more preferably 3.0 μm to 0.005 μm, and very fine particles having an average of 0.1 μm or less. It is preferably an object.
The amount of the water-dispersible fine particles to be contained is generally preferably from 0.1 to 5 parts by weight, and more preferably from 0.3 to 2.0 parts by weight, based on 100 parts by weight of the water absorbent resin. It is. In general, if the amount of the powdered inorganic substance is less than 0.1 part by weight, a granulated product cannot be obtained, or if obtained, the effect is poor. On the other hand, if the amount of the dispersed fine particles is more than 5 parts by weight, agglomerated materials may be obtained as granules, or even if granulated materials may be obtained, they may become coarse particles and adversely affect absorption performance. It is uneconomical because no further effect can be expected. By changing the addition amount in these ranges, particles having an arbitrary particle size with a narrow range of the particle size distribution can be obtained.
[0111]
The water-dispersible fine particles used in the present invention have the property of not impairing the water permeability and the swelling property of the water-absorbing resin, and the components to be bound do not prevent the liquid from penetrating and absorbing, and do not cause blocking during swelling. The water-absorbing resin is fully utilized. The granulated water-absorbent resin particles have strong granulation properties, and there is no dust when dried, and when absorbing liquid, the water-dispersible fine particles introduce and distribute water and dissociate, and the water-absorbent resin becomes loose. It has been found that it has the property of freely absorbing and swelling.
In the present invention, the above water-dispersible fine particles are used as a dispersion obtained by dispersing the particles in water or an aqueous medium.
[0112]
The amount of the dispersion used is preferably in the range of 3 to 100 parts by weight based on 100 parts by weight of the water absorbent resin. If the amount of the dispersion is less than 3 parts by weight, no granulated product can be obtained, or if obtained, the effect is poor. On the other hand, if the amount of the dispersion exceeds 100 parts by weight, agglomerated material is obtained as a granulated product, or even if a granulated product is obtained, it becomes undesirably coarse particles.
The water-dispersible fine particles exhibit a so-called structural viscosity when dispersed in an aqueous medium, and the viscosity of a 6.7% by weight concentration dispersion (Brookfield rotational viscometer, 6 rpm, 25 ° C.) is 0.5 Pa · s. Those described above are preferred.
[0113]
The amount of the water-dispersible fine particles and the amount of water in the dispersion liquid need to be set and selected according to the surface area and the surface state of the water-absorbent resin in order to obtain an optimum granulation state.
The water-absorbent resin particles of the present invention are obtained by mixing a water-absorbent resin and a dispersion of water-dispersible fine particles, and heating and drying the resulting mixture. As a method of mixing the dispersion of the water-absorbent resin and the water-dispersible fine particles, it is general to spray, drop, or mix the treatment solution on the water-absorbent resin powder. As a mixer used for mixing, a mixer having a large mixing power is preferable for uniform mixing, but a usual mixer or kneader can be used. For example, a cylindrical mixer, a double cone mixer, a V mixer, a ribbon mixer, a screw mixer, a fluidizing mixer, a rotating disk mixer, an air mixer, a double arm kneader Examples include a Japanese machine, an internal mixer, a Muller-type kneader, a roll mixer, and a screw-type extruder. In order to heat the mixture obtained by mixing these treatment solutions with the water-absorbent resin powder, a usual dryer or heating furnace can be used. For example, a channel-type stirring dryer, a rotary dryer, a disk dryer, a kneading dryer, a fluidized-bed dryer, a flash dryer, an infrared dryer, a dielectric heating dryer, and the like. The heat treatment temperature is preferably in the range of 40 to 250C, more preferably 80 to 200C.
[0114]
In the method for producing water-absorbent resin particles according to the present invention, the weight-average particle diameter of the obtained water-absorbent resin particles is increased by 50% or more from before the addition by adding the dispersion of the water-dispersible fine particles.
The water-absorbent resin particles of the present invention obtained by the above method have absorption characteristics, such as high capillary attraction, which cannot be obtained by the conventional method. Furthermore, since the dispersion of the water-soluble fine particles acts as an excellent binder, the mechanical strength of the obtained granules is remarkably improved, and in actual use, scattering of the water-absorbent resin fine powder can be significantly suppressed. You can do it.
[0115]
That is, the water-absorbent resin particles according to the present invention have a weight-average particle diameter of 50 to 300 μm, and have a weight-average particle diameter of 50 to 300 μm when saturatedly swelled in physiological saline (0.9% by weight aqueous NaCl solution). A water-absorbent resin particle obtained by granulating a water-absorbent resin having a void ratio of 30 to 50% and an average void radius between particles at the time of saturation swelling under no pressure of 80 to 150 μm. The weight average particle diameter is increased by 50% or more before granulation.
The weight average particle diameter of the water-absorbent resin particles according to the present invention is preferably 150 to 600 μm, more preferably 200 to 500 μm, and further preferably 200 to 400 μm.
[0116]
The water-absorbent resin particles according to the present invention preferably have a capillary absorption capacity at 40 cm of 7 g / g or more, more preferably 15 g / g or more, and still more preferably 25 g / g or more.
The water-absorbent resin particles of the present invention exhibit particularly excellent effects when used, for example, by being mixed with a pulverizing valve because of their improved absorption characteristics. The mixture with the pulverized pulp can be suitably used as a water-absorbent resin layer of an absorber such as a disposable diaper or a sanitary napkin by being formed into a mat shape. The inventor has demonstrated that making the absorption rate as high as possible conversely reduces the absorption rate under that load. Therefore, it is particularly preferable for this application that the absorption rate be controlled in an appropriate range. Controlling the capillary absorption capacity at 40 cm to a range of 7 (g / g) or more has a critical meaning in the present invention. Furthermore, the water-absorbent resin particles of the present invention have the advantage of less scattering of dust because the ratio of particles passing through a 150-μm wire mesh is 50% or less before granulation. It is intended to provide conductive resin particles.
[0117]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In addition, various properties of the liquid diffusion member, the liquid acquisition member, the water absorbent resin, the absorber, and the absorbent article were measured by the following methods.
As the sample such as the water-absorbent resin, a sample stored in a moisture-impermeable container such as a polypropylene sealed container was used, and the following various measurements were performed at 25 ± 1 ° C. and 60 ± 5% RH.
1. Capillary absorption capacity and capillary absorption index
The capillary absorption capacity and the capillary absorption index of the present invention are determined to be 0.419 kPa (0.419 kPa) for the water absorbing resin and the liquid diffusion member or the liquid acquisition member within a predetermined time at a negative pressure gradient of 0 cm (equal water level) and 40 cm. (0.06 psi) measured under load. With reference to FIGS. 1 and 2, an apparatus and method for measuring their capillary absorption capacity will be described.
1-A. Capillary absorption capacity at a height of 40 cm (Fig. 1)
1) Glass filter 2 having a liquid absorption surface of porous glass plate 1 and having a diameter of 60 mm (Glass filter particle number # 3, Buchner type filter manufactured by Mutual Physics Glass Co., Ltd., TOP17G-3 (code No. 1175-03) )), A conduit 3 is connected thereto, and this conduit 3 is connected to a port provided at a lower part of a liquid reservoir 4 having a diameter of 10 cm. The porous glass plate of the glass filter has an average pore diameter of 20 to 30 μm, and even when a difference in liquid level of 60 cm is provided due to its capillary force, the porous glass plate is placed inside the porous glass plate against the negative pressure of the water column. Water can be retained, and a state without introduction of air can be maintained. A support ring 5 for raising and lowering the height is fitted to the glass filter 2, the system is filled with a physiological saline solution (0.9 wt% NaCl aqueous solution) 6, and the liquid container is placed on a balance 7. After confirming that there is no air in the conduit and in the lower part of the porous glass plate of the glass filter, the liquid level of the saline solution 6 in the reservoir 4 and the level of the upper part of the porous glass plate 1 are increased. The glass filter is fixed to the stand 8 by adjusting the difference in height to 40 cm.
2) A measurement sample 9 (a water-absorbing resin, a liquid diffusion member or a liquid acquisition member) is placed on the porous glass plate 1 under the following conditions, and a load 10 (0.06 psi) having a diameter of 59 mm is further placed thereon. , The value of physiological saline absorbed in the measurement sample 9 after 30 minutes (W40) Is measured.
When the measurement sample 9 is a water-absorbent resin: 0.44 g is quickly and uniformly sprayed on the glass filter in the funnel.
In the case where the measurement sample 9 is a liquid diffusion member or a liquid acquisition member: A sample punched into a circle having a diameter of 57 mm is prepared, and the weight (Wi) in a dry state is measured, and then placed on the porous glass plate 1 for measurement.
1-B. Capillary absorption capacity at 0 cm height (Figure 2)
A measuring apparatus shown in FIG. 2 having an outside air suction pipe 11, a conduit 12, a glass filter 13, a liquid reservoir 15 for storing physiological saline 14, and a balance 16 (however, the lower end of the outside air suction pipe 11 is The filter paper 17 was placed on the glass filter 13 of which the glass filter 13 was fixed at a position slightly higher than the lower end of the outside air suction pipe 11). The entire surface of the filter paper 17 is wet with physiological saline.
[0118]
The measurement sample 9 is placed under the above conditions on a metal mesh of a plastic cylinder 19 having a diameter of 60 mm having a wire mesh 18 of 400 mesh (aperture 38 μm) adhered to the bottom, and a load 10 (0.06 psi) having a diameter of 59 mm is further placed thereon. A mounted suction device was prepared. The liquid absorbing device was placed on the filter paper 17 on the glass filter 13 and after 30 minutes, the value of the physiological saline absorbed in the measurement sample 9 (W0) Is measured.
The capillary absorption capacity and the capillary absorption index of the present invention are determined by the following equations.
1) Capillary absorption capacity C (g / g) of liquid diffusion member at a height of 40 cm = absorption amount (W40) (G) / Weight of measurement sample before liquid absorption (Wi) (g)
2) Capillary absorption capacity G (g / g) of the liquid acquisition member at a height of 40 cm = absorption amount (W40) (G) / Weight of measurement sample before liquid absorption (Wi) (g)
3) Capillary absorption capacity D (g / g) of water-absorbent resin at a height of 40 cm = absorption amount (W40) (G) /0.44 (g)
4) Capillary absorption capacity (g / g) at 0 cm height of liquid diffusion member = absorption amount (W0) (G) / Weight of measurement sample before liquid absorption (Wi) (g)
5) Capillary absorption capacity (g / g) at 0 cm height of liquid acquisition member = absorption amount (W0) (G) / Weight of measurement sample before liquid absorption (Wi) (g)
6) Capillary absorption capacity of water-absorbent resin at 0 cm height (g / g) = absorption amount (W0) (G) /0.44 (g)
7) Capillary absorption index A at a height of 40 cm of the liquid diffusion member A = capillary absorption ratio C of the liquid diffusion member at a height of 40 cm (g / g) / capillary absorption ratio at a height of 0 cm of the liquid diffusion member (g / g) g)
8) Capillary absorption index E at 40 cm height of liquid acquisition member E = capillary absorption ratio G (g / g) at 40 cm height of liquid acquisition member / capillary absorption ratio (g / g) at 0 cm height of liquid acquisition member g)
9) {Capillary absorption index B of the water-absorbent resin at a height of 40 cm = Capillary absorption ratio D of the water-absorbent resin at a height of 40 cm D (g / g) / capillary absorption ratio of the water-absorbent resin at a height of 0 cm (g / g)
2. Siphon height
A liquid diffusion member is prepared in a state of 2 cm in width and 90 cm in length. The liquid diffusion member is set upright at 90 degrees so that about 2 cm of the lower end of the liquid diffusion member is immersed in physiological saline. The height at which the liquid has been absorbed is determined after 72 hours without evaporation of the liquid. The absorption capacity at the lower end 0 to 10 cm of the liquid diffusion member is set to 100, and the material is cut using a cutter knife at intervals of 2 cm in the height direction to determine each absorption capacity, and the absorption capacity at 90% of the absorption capacity at the lower end is calculated. The indicated height was defined as the suction height (cm) of the liquid diffusion member.
3. Absorption capacity
About 0.20g (Wp1) Was uniformly placed in a nonwoven fabric bag (60 × 60 mm) and immersed in a 0.9% by weight aqueous sodium chloride solution (physiological saline). After 60 minutes, the bag was pulled out, and after draining at 250 G for 3 minutes using a centrifuge, the weight Wa (g) was measured. The same operation was performed without using a water-absorbing resin, and the weight Wb (g) at that time was measured. Then, from these weights Wa and Wb, the absorption capacity (g / g) of the water absorbent resin was calculated according to the following equation.
[0119]
Absorbency (g / g) = [Wa (g) -Wb (g)] / W of the water-absorbent resinp1(G)
4. Absorption capacity under pressure
Using the same apparatus shown in FIG. 2 as in 1-B, the absorption capacity under pressure was measured. Instead of the load 10, a load 20 and a load 21 were prepared by increasing the weight and adjusting the pressures to 2.07 kPa (0.3 psi) and 4.83 kPa (0.7 psi), respectively. Approximately 0.44 g of water-absorbing resin (Wp2) And apply the above-mentioned load 20 (at 2.07 kPa (0.3 psi)) or load 21 (at 4.83 kPa (0.7 psi)) on the glass filter 13 in FIG. After 30 minutes from placing on the filter paper 17, the value (Wc) of the physiological saline absorbed by the water-absorbent resin is measured. The absorption capacity under pressure of 2.07 kPa (0.3 psi) and 4.83 kPa (0.7 psi) was determined using the following equation.
[0120]
Absorption capacity under pressure (g / g) = Wc / Wp2
5. Particle size distribution and weight average particle size
The water-absorbent resin is classified using sieves having openings of 850 μm, 600 μm, 500 μm, 300 μm, 150 μm, 75 μm, and 45 μm (if necessary, further add a JIS standard sieve), and the weight of the resin remaining on each sieve The ratio was determined. The weight average particle diameter was classified, and the residual percentage R was plotted on log probability paper, and the particle diameter corresponding to R = 50% was defined as the weight average particle diameter.
6. Liquid distribution rate from liquid diffusion member to water absorbent resin
The liquid diffusion member was cut into a circle having a diameter of 57 mm, dried and weighed (Wd) (g) in advance, and then immersed in a sufficient amount of physiological saline (0.9% by weight NaCl aqueous solution). The sample swollen by absorbing the liquid was taken out of the container, suspended for one minute while supporting one end of the sample, drained, and immediately measured the weight (We) (g) of the sample that absorbed the liquid.
[0121]
On the liquid diffusion member after draining, 0.44 g of a water-absorbent resin was evenly dispersed to prepare an absorber. The weight (Wf) (g) of the liquid diffusion member after contacting the water-absorbent resin under a load of 0.41 kPa (0.06 psi) for 30 minutes was measured again, and from the liquid diffusion member of the absorber, the following formula was used. Was measured.
Liquid distribution ratio (%) = (We-Wf) / (We-Wd) × 100
7. Manufacturing example of absorber and absorbent article including liquid diffusion member and performance evaluation of absorbent article (model diaper)
About 14 g of the water-absorbing resin was added to heatron paper (GSP-22, Teikoku Pulp & Paper Co., Ltd., basis weight 22.4 g / m2).2) Was sprayed uniformly over a range of 11 x 38 cm, and then the water-absorbent resin was wetted by spraying with 5 to 10% by weight of ion-exchanged water to form a sheet of the water-absorbent resin. After the sheet is left to dry overnight, various liquid diffusion members having a size of 11 × 38 cm are laminated thereon, and the entire sheet is wrapped with an excess portion of heatron paper, and the present invention comprises the liquid diffusion member and a water-absorbing resin. Was made.
[0122]
A liquid-impermeable rectangular polyethylene film having a size of 12 × 40 cm (basis weight 18 g / m 22), The absorbent is placed so that the liquid diffusion member is on top, and a liquid-permeable polyester non-woven fabric having a size of 12 × 40 cm is laminated from above, and the sides are adhered with tape to form an absorbent article (model A diaper was produced (FIGS. 3 and 4).
A PVC pipe having a diameter of 14.7 cm and a length of 46 cm was cut in half in the vertical direction, and a plate having a size of 20 × 30 cm was attached to both ends of the half cylinder and tangential directions to prepare a U-shaped device. The U-shaped device was placed in a state of being tilted 90 degrees (shape of ⊂), and the model diaper was fixed inside the device. In this state, the child is assumed to be wearing a diaper in which the child is lying face down. The diaper was kept at 37 ° C. together with the above-mentioned apparatus, and purifying was continued until 50 cc of physiological saline leaked from the center of the diaper at intervals of 20 minutes, assuming that the diaper was lying down.
[0123]
When the leak occurs, the diaper is taken out, the diffusion rate of the liquid in the liquid diffusion member (%), the total absorption amount of the diaper at the time of the leak (diaper final weight-diaper weight before liquid absorption) (g), diaper The liquid absorption amount (g) of the water-absorbent resin in the inside and the liquid absorption amount (g) of the water-absorbent resin in the upper half of the diaper (the butt side assuming prone sleeping) were determined.
8. Absorbent including liquid acquisition member, manufacturing example of absorbent article and method of evaluating performance of absorbent article A rectangular polyethylene film of 14 × 40 cm in size (basis weight 18 g / m 2) as a liquid-impermeable back sheet2) Was sprayed with 16.4 g of a water-absorbent resin over an area of 12 × 38 cm (amount of the water-absorbent resin sprayed was 360 g / m 2).2). Considering the urination position, a size of 8 x 24 cm (basis weight 160 g / m2The liquid acquisition member of (1) was laminated to constitute an absorber.
[0124]
A 12 × 40 cm rectangular polyester non-woven fabric (basis weight 20 g / m 2) was formed thereon as a liquid-permeable surface material.2) To obtain a model absorbent article.
The absorbent article is fixed on a desk in a flat shape, and a 12 × 40 cm acrylic plate (having a 70 mm diameter cylinder for liquid injection at the center) and a 1.3 kg load are placed thereon. Was.
75 ml of physiological saline adjusted to 37 ° C. is poured into the cylinder, and the time when the liquid has been completely absorbed into the absorbent article from the topsheet (liquid passing time) and the liquid is obtained from the liquid-permeable surface material Alternatively, a time (whitening time) until air was introduced into the vicinity of the surface of the liquid-permeable surface material after being absorbed by the water-absorbent resin and the surface of the surface material became white was measured.
[0125]
After a lapse of 60 minutes, the liquid acquisition member was taken out of the absorbent article and its weight was measured. The original liquid acquisition member weight was subtracted from the value to determine the remaining liquid amount in the liquid acquisition member. After the measurement, the article was returned to the original absorbent article.
Further, these operations were repeated a total of four times, every 60 minutes. After 60 minutes from the fourth injection, the acrylic plate was removed, the weight of the liquid acquisition member was measured, and after returning to the absorbent article, the absorbent article was removed. Cover 15 sheets of kitchen paper (Oji Paper Co., Ltd., Napier, 46 x 22 cm) with a stack of them, apply a 12 kg load (including acrylic plate 14 x 40 cm) for 1 minute, and return the amount of liquid (return amount) ) Was measured.
[0126]
Also, 60 minutes after the fourth injection, the liquid diffusion area in the absorbent core was measured from above the liquid-permeable surface material (Scm2).
The diffusion area in the absorbent article of the present invention is determined by the following equation.
Diffusion area (%) = liquid diffusion area (Scm2) / Absorber area (12 × 38cm)
9. Gap ratio between particles at the time of saturated swelling of the water-absorbent resin and average gap radius between particles of the water-absorbent resin, porosity at the time of saturated swelling of the water-absorbent resin particles, and average gap radius of the water-absorbent resin particles
The gap ratio and the average gap radius at the time of saturated swelling of the water-absorbent resin and the water-absorbent resin particles were measured using the measuring device shown in FIG.
[0127]
The height h at which the liquid rises through a tube having a radius R due to the capillary force is expressed as h = 2γcos θ / ρgR, where γ is the surface tension of the liquid, θ is the contact angle, g is the gravitational acceleration, and ρ is the density of the liquid. (PK Chatterjee, edited by "ABSORBENCY" (ELSEVIER) p36, Equation (2) p = 2γcosθ / Rc (Laplace equation), and Equation (5) Leq = p / ρg of p37, Leq is represented by h and Rc is represented by R). By raising the head difference between the tank and the measuring cell from 0 to h (cm) in the apparatus of FIG. 1, R (R) of the liquid existing between the gel particles in the swollen gel or the absorber or in the gap between the absorbers is obtained. The gap water held at a diameter larger than the capillary radius (gap) of μm) is released and escapes. Therefore, the gel that is saturated and swelled and completely fills the interstitial space with liquid is raised from a height of 0 cm, and by measuring the remaining interstitial liquid amount of the gel layer at each predetermined height, The distribution of the gap radius (capillary radius) is determined.
[0128]
Hereinafter, in the present invention, the value of the capillary radius R of the sample obtained at each height h is defined as the gap radius of the sample using the equation h = 2γ cos θ / ρgR. A gap having a value of R corresponding to each height by gradually raising the head difference between the tank and the measuring cell from 0 to 60 (cm) as 1 cm, 2 cm, 5 cm, 10 cm, 20 cm, 30 cm, and 60 cm. The liquid held in the liquid is discharged. By measuring the amount of the discharged liquid, the distribution of the gap radius (capillary radius) of the sample can be calculated. The value is plotted on log probability paper, and the value of d50 is defined as the average gap radius. In this embodiment, in the equation of h = 2γ cos θ / ρgR, γ: surface tension (0.0728 N / m) of physiological saline (0.9 wt% NaCl aqueous solution), θ: contact angle (0 °), ρ: physiological salt Water density (1000kg / m3), G: gravitational acceleration 9.8 m / s2Shall be used. Thus, the liquid held at the positions of 1 cm, 2 cm, 5 cm, 10 cm, 20 cm, 30 cm, and 60 cm respectively has a gap radius (capillary radius of 1485, 743, 297, 149, 74.3, 49.5, 24.8 μm). ) Is required.
10. No-load gap ratio and average gap radius
1) A glass having a diameter of 60 mm having a liquid absorbing surface of a porous glass plate 1 (glass filter particle number # 3; an average pore diameter of about 20 to 30 μm and a height difference of 60 cm and no introduction of air) A conduit 3 is connected to a lower part of the filter 2 and connected to a port provided at a lower part of a liquid reservoir 4 having a diameter of 10 cm. A support ring 5 for raising and lowering the height is fitted to the glass filter 2, the system is filled with physiological saline 6, and the liquid reservoir is placed on a balance 7. After confirming that there is no air in the conduit and in the lower part of the porous glass plate of the glass filter, the liquid level of the saline solution 6 in the reservoir 4 and the level of the upper part of the porous glass plate 1 are increased. The glass filter is fixed to the stand 8 by adjusting the difference in height to 60 cm, and the value of the balance is set to 0.
2) The measurement sample 9 (water-absorbent resin, absorber) is placed on the porous glass plate 1 under the following conditions.
When the measurement sample 9 is a water-absorbent resin: about 0.9 g (W) is uniformly and quickly sprayed on the porous glass plate 1 of the glass filter.
When the measurement sample 9 is an absorber: A sample punched into a circle having a diameter of 57 mm is prepared, and the weight (W) in a dry state is measured, and then placed on the porous glass plate 1 for measurement.
3) The difference between the liquid level above the physiological saline 6 in the liquid reservoir 4 and the level above the porous glass plate 1 is set to -3 cm (the position where the porous glass plate 1 is lower) 20 Let the sample swell for a minute. At this time, the sample is completely immersed in a physiological saline solution so that there is no air bubble.
4) The height difference between the liquid level above the physiological saline solution 6 in the liquid reservoir 4 and the level above the porous glass plate 1 is set to 0 cm. (A0). In the case of a sample that does not swell in 40 minutes, the time may be extended.
5) The height difference between the liquid level above the physiological saline 6 in the liquid reservoir 4 and the level above the porous glass plate 1 is set to 1 cm, and the value on the balance is recorded after 7 minutes (A1). In some cases, it is better to extend the equilibrium time until the gap water is discharged depending on the gap diameter of the sample.
6) Similarly, the difference between the liquid level above the physiological saline 6 in the liquid reservoir 4 and the level above the porous glass plate 1 is increased to 2, 5, 10, 20, 30, 60 cm. After 7 minutes each time, the value of the balance is recorded (A2, A5, A10, A20, A30, A60).
7) A sample is taken out and centrifuged in order to completely remove pore water held at a height difference of 60 cm between the liquid level above the physiological saline 6 in the liquid reservoir 4 and the level above the porous glass plate 1. (250 G, 6 minutes) and measure its weight B.
8) (A0-B) is the total amount of interstitial water in the sample, and the value obtained by subtracting the value of B from (A1, A2, A5, A10, A20, A30, A60) is 1, 2, 5, At the heights of 10, 20, 30, and 60 cm, the cumulative crevice water amount is obtained. As described above, the liquid held at the positions of 1 cm, 2 cm, 5 cm, 10 cm, 20 cm, 30 cm, and 60 cm has a gap radius of 1485, 743, 297, 149, 74.3, 49.5, and 24.8 μm, respectively. (Capillary radius), the percentage of the cumulative interstitial water amount at each height with respect to the total interstitial water amount (A0-B) is calculated, and this value and the value of the capillary radius are log-probable. Plot on paper (for example, the value of (A2-B) / (A0-B) × 100 is plotted on 743 μm of the graph). The value (d50) of the gap radius corresponding to 50% of the cumulative gap amount in this graph is obtained and defined as the average gap radius (μm) of the sample.
9) The sample gap ratio is obtained by the following equation.
[0129]
Gap ratio = (A0−B) / {A0 + W / (true specific gravity of sample)} × 100
10) In order to further confirm the measured values, the average gap radius was determined by this method using spherical glass beads of 350 to 500 μm and 1000 to 1180 μm as standard samples, and were found to be 86 μm and 217 μm, respectively.
(Reference Example 1) Method for producing water-absorbent resin (1)
28.6 parts of acrylic acid and 228.6 parts of a 37% by weight aqueous solution of sodium acrylate, 0.0185 part of N, N'-methylenebisacrylamide (0.01 mol% based on monomer), 0.106 parts of hydroxyethylcellulose, ions Using 53 parts of exchanged water, an aqueous monomer solution having a monomer concentration of 35% by weight and a neutralization rate of 75% was obtained, and 0.09 part of potassium persulfate was dissolved in the aqueous monomer solution. Kicked out.
[0130]
800 parts of cyclohexane is placed in a four-necked separable flask equipped with a stirrer, a reflux condenser, a thermometer, a nitrogen gas inlet tube and a dropping funnel, and 4 parts of sucrose fatty acid ester (HLB = 6) is added as a dispersant. And dissolved oxygen, and dissolved oxygen was blown out by blowing nitrogen gas. Next, the monomer aqueous solution was added to the above separable flask with stirring to disperse. Thereafter, the bath temperature was raised to 65 ° C. to start the polymerization reaction, and then the temperature was maintained at this temperature for 2 hours to complete the polymerization. After completion of the polymerization, most of the water was removed by azeotropic dehydration, followed by filtration and further drying under reduced pressure at 100 ° C. to obtain a resin having a water content of 8%. In a stainless steel beaker, 100 parts of the obtained resin were mixed with 0.1 part of ethylene glycol diglycidyl ether, 3 parts of water, and 1 part of isopropanol, and the resulting mixture was subjected to a heat treatment at 120 ° C. for 30 minutes. The particles were transferred to a separable flask similar to the above, and 5 times the amount (weight) of methanol was added to the particles, and the mixture was stirred at 60 ° C for 10 minutes, and then filtered through filter paper to separate the particles. Drying was performed under reduced pressure of 50 to 100 mmHg for a time to obtain a water-absorbent resin (1). The weight average particle diameter of the water absorbent resin (1) was 105 μm. Further, the capillary absorption capacity at a height of 0 cm of the water absorbent resin is 45.5 (g / g), the capillary absorption capacity D at a height of 40 cm is 27.4 (g / g), and the capillary absorption index at a height of 40 cm. B was 0.60.
[0131]
(Reference Example 2) Method for producing water-absorbent resin (2)
5 parts of polyethylene glycol diacrylate (n = 8) was dissolved in 5500 parts of a 33% by weight aqueous solution of sodium acrylate (neutralization ratio: 75 mol%) to prepare a reaction solution. Next, the reaction solution was degassed under a nitrogen gas atmosphere for 30 minutes. Next, the reaction solution was supplied to a jacketed stainless steel double-armed kneader having two sigma-type blades with a lid that can be opened and closed, and the system was purged with nitrogen gas while maintaining the reaction solution at 30 ° C. Subsequently, 2.4 parts of ammonium persulfate and 0.12 part of L-ascorbic acid were added while stirring the reaction solution, and polymerization started about 1 minute later. Then, polymerization was carried out at 30 to 90 ° C., and the hydrogel polymer was taken out 60 minutes after the initiation of the polymerization.
[0132]
The obtained hydrogel polymer was subdivided into a diameter of about 5 mm. The finely divided hydrogel polymer was spread on a 50-mesh wire net and dried with hot air at 150 ° C. for 90 minutes. Next, the dried product is pulverized using a vibration mill, and further classified by a 20-mesh wire net to form an amorphous material having a weight-average particle diameter of 360 μm and a particle size of less than 106 μm in which the proportion of particles is 3% by weight. A crushed resin was obtained.
Surface crosslinking comprising 0.05 parts by weight of ethylene glycol diglycidyl ether, 0.75 parts by weight of glycerin, 3 parts by weight of water, 0.3 part of lactic acid and 1 part by weight of isopropyl alcohol to 100 parts by weight of the obtained resin. The agent composition liquid was mixed. The mixture was heat-treated at 195 ° C. for 40 minutes to obtain a water-absorbent resin (2 ′). The obtained water-absorbent resin (2 ′) was further passed through a wire mesh having an aperture of 250 μm to obtain a water-absorbent resin (2) under a sieve. The weight average particle diameter of the water absorbent resin (2) was 120 μm. The capillary absorption capacity at a height of 0 cm of the water absorbent resin is 33.8 (g / g), the capillary absorption capacity D at a height of 40 cm is 19.4 (g / g), and the capillary absorption index at a height of 40 cm. B was 0.57. The particle size distribution of the water-absorbent resin (2) was 31% for 150 to 850 μm, and 69% for 150 μm or less.
[0133]
(Reference Example 3) Method for producing water-absorbent resin (3)
A reaction solution was prepared by dissolving 8.1 parts of polyethylene glycol diacrylate (n = 8) in 5500 parts of a 38% by weight aqueous solution of sodium acrylate (neutralization ratio: 71 mol%). Next, the reaction solution was degassed under a nitrogen gas atmosphere for 30 minutes. Next, the reaction solution was supplied to a jacketed stainless steel double-armed kneader having two sigma-type blades with a lid that can be opened and closed, and the system was purged with nitrogen gas while maintaining the reaction solution at 30 ° C. Subsequently, 2.4 parts of ammonium persulfate and 0.12 part of L-ascorbic acid were added while stirring the reaction solution, and polymerization started about 1 minute later. Then, polymerization was carried out at 20 to 95 ° C., and the hydrogel polymer was taken out 60 minutes after the polymerization was started.
[0134]
The obtained hydrogel polymer was subdivided into a diameter of about 5 mm. The finely divided hydrogel polymer was spread on a 50-mesh wire net and dried with hot air at 150 ° C. for 90 minutes. Next, the dried product was pulverized using a vibration mill, and further passed through a sieve having openings of 850 μm and remained on a sieve having a size of 106 μm to obtain an irregularly crushed resin having a weight average particle diameter of 400 μm.
To 100 parts by weight of the obtained resin, a surface cross-linking agent composition liquid composed of 0.3 parts by weight of 1,4-butanediol, 0.5 parts by weight of propylene glycol, and 3 parts by weight of water was mixed. The mixture was heat-treated at 210 ° C. for 30 minutes to obtain a water-absorbent resin (3). The weight average particle diameter of the water absorbent resin (3) was 420 μm. The capillary absorption capacity at a height of 0 cm of the water absorbent resin is 37.8 (g / g), the capillary absorption capacity D at a height of 40 cm is 4.30 (g / g), and the capillary absorption index at a height of 40 cm. B was 0.11. The particle size distribution of the water-absorbent resin (3) was 95% for 150 to 850 μm, and 5% for 150 μm or less.
[0135]
(Reference Example 4) Manufacturing method of liquid diffusion member (1)
A liquid diffusion member of a porous cross-linked polymer was manufactured using a high internal phase water-in-oil emulsion (HIPE). As an aqueous phase for forming HIPE, 20.7 parts of anhydrous calcium chloride and 0.415 part of potassium persulfate were dissolved in 394 parts of pure water. Separately, 0.654 parts of diglycerol monooleate was added to a mixture of 0.438 parts of styrene, 5.449 parts of 2-ethylhexyl acrylate, and 3.459 parts of 55% divinylbenzene to form an oil phase. The aqueous phase has a temperature of 80 ° C and a flow rate of 75.2cm3/ S, the oil phase is continuously supplied to a mixing device with a pin-type stirring blade at a temperature of 22 ° C. and a flow rate of 1.88 g / s, respectively, and stirred and mixed at 1600 rpm to obtain a high internal phase water at 79 ° C. A mold emulsion was obtained.
[0136]
The obtained high internal phase water-in-oil emulsion was formed on a drive belt covered with a PET film to a thickness of 5 mm, the top surface was further covered with a PET film, and the curing furnace set at an internal temperature of 95 ° C. was moved at a moving speed. The mixture was passed at 1.5 m / min and polymerized for 10 minutes to obtain a wet porous crosslinked polymer. The wet polymer was dehydrated and dried to a water content of 20% to obtain a liquid diffusion member (1) as a porous polymer having a thickness of 1 mm. The capillary absorption capacity at a height of 0 cm of the liquid diffusion member (1) is 33.6 (g / g), the capillary absorption capacity C at a height of 40 cm is 14.2 (g / g), and the capillary at a height of 40 cm. The absorption index A was 0.42. The siphoning height was 45 cm.
[0137]
(Reference Example 5) Manufacturing method of liquid diffusion member (2)
The oil phase used in the method for producing the liquid diffusion member (1) was mixed with a mixture of 1.649 parts of styrene, 5.449 parts of 2-ethylhexyl acrylate, and 2.248 parts of 55% divinylbenzene to obtain 0.654 of diglycerol monooleate. A liquid diffusing member (2) having a water content of 22% and a thickness of 1 mm was obtained by performing the same operation except that the liquid diffusion member was added. The capillary absorption capacity at a height of 0 cm of the liquid diffusion member (2) is 27.0 (g / g), the capillary absorption capacity C at a height of 40 cm is 7.6 (g / g), and the capillary at a height of 40 cm. The absorption index A was 0.28. The siphoning height was 35 cm.
[0138]
(Reference Example 6) Manufacturing method of liquid diffusion member (3)
The cotton-like pulp used in disposable diapers for children is moistened, compressed by suction, and has a density of 0.3 g / cm.3With a basis weight of 260 g / m2The liquid diffusion member (3) laminated on was obtained. The capillary absorption capacity at a height of 0 cm of the liquid diffusion member (3) is 6.6 (g / g), the capillary absorption capacity C at a height of 40 cm is 2.1 (g / g), and the capillary capacity at a height of 40 cm. The absorption index A was 0.32. The siphoning height was 30 cm.
(Reference Example 7) Manufacturing method of liquid diffusion member (4)
Cottony pulp used for disposable diapers for children (density 0.03 g / cm3With a basis weight of 260 g / m2) Was used as the liquid diffusion member (4). Capillary absorption at a height of 0 cm of the liquid diffusion member (4) is 13.7 (g / g), capillary absorption at a height of 40 cm C is 0.5 (g / g), and capillary at a height of 40 cm. The absorption index A was 0.04. The siphoning height was less than 10 cm.
[0139]
(Example 1)
The absorbent (1) obtained by combining the water-absorbent resin (1) and the liquid diffusion member (1) was obtained by the method described in the section of the production example of the absorbent including the liquid diffusion member and the absorbent article. The capillary absorption index and the capillary absorption ratio of the water-absorbent resin (1) and the liquid diffusion member (1) constituting the absorber are as shown in each of the reference examples, and the liquid absorption member (1) has a height of 40 cm. The ratio of the capillary absorption index B of the water-absorbent resin (1) to the capillary absorption index A at a height of 40 cm, B / A = 1.4, and the water absorption of the liquid diffusion member (1) to the capillary absorption capacity C at a height of 40 cm. The ratio of the capillary absorption capacity D at a height of 40 cm of the resin (1) was D / C = 1.9.
[0140]
The liquid distribution ratio from the liquid diffusion member to the water-absorbent resin is determined using the absorber (1), and an absorbent article (1) as a model diaper is formed using the absorber (1). , The total absorption of the diaper at the time of leakage, the liquid absorption of the water-absorbent resin in the diaper, and the liquid absorption of the upper half of the diaper. The results are shown in Table 1. The liquid distribution ratio from the liquid diffusion member to the water-absorbent resin and the absorption capacity of the water-absorbent resin liquid from the liquid diffusion member in the upper half of the diaper assuming lying down were 47%. 165 g, which was a very excellent value.
(Example 2)
An absorber (2) obtained by combining the water absorbent resin (2) and the liquid diffusion member (1) was obtained. The ratio of the capillary absorption index B at a height of 40 cm of the water-absorbent resin (2) to the capillary absorption index A at a height of 40 cm of the liquid diffusion member (1) is B / A = 1.4. The ratio of the capillary absorption capacity D at a height of 40 cm of the water-absorbent resin (2) to the capillary absorption capacity C at a height of 40 cm, D / C = 1.4.
[0141]
The liquid distribution ratio from the liquid diffusion member to the water-absorbent resin is determined using the absorber (2), and an absorbent article (2) as a model diaper is formed using the absorber (2). , The total absorption of the diaper at the time of leakage, the liquid absorption of the water-absorbent resin in the diaper, and the liquid absorption of the upper half of the diaper. The results are shown in Table 1. The liquid distribution ratio from the liquid diffusion member to the water-absorbent resin, and the absorption capacity of the water-absorbent resin liquid from the liquid diffusion member in the upper half of the diaper assuming lying down were 23%. , 102 g, an excellent value.
(Comparative Example 1)
An absorber (3) obtained by combining the water absorbent resin (3) and the liquid diffusion member (1) was obtained. The ratio of the capillary absorption index B at a height of 40 cm of the water-absorbent resin (3) to the capillary absorption index A at a height of 40 cm of the liquid diffusion member (1) is B / A = 0.3. The ratio of the capillary absorption capacity D at a height of 40 cm of the water-absorbent resin (3) to the capillary absorption capacity C at a height of 40 cm, D / C = 0.3.
[0142]
The liquid distribution ratio from the liquid diffusion member to the water-absorbent resin is determined using the absorber (3), and an absorbent article (3) as a model diaper is formed using the absorber (3). , The total absorption of the diaper at the time of leakage, the liquid absorption of the water-absorbent resin in the diaper, and the liquid absorption of the upper half of the diaper. The results are shown in Table 1. The liquid distribution ratio from the liquid diffusion member to the water-absorbent resin, and the absorption capacity of the water-absorbent resin liquid from the liquid diffusion member in the upper half of the diaper assuming lying down were 13%. , 33 g.
Even when the same liquid diffusing member is used than in Examples 1 and 2 and Comparative Example 1, the relationship between the capillary absorbent capacity of the water-absorbing resin satisfies the relationship of the present invention, and when the same is not satisfied, the liquid is distributed to the water-absorbing resin. The ratios differ, indicating that the absorbency of the water absorbent resin in the diaper is significantly different.
[0143]
(Example 3)
The liquid diffusion member (1) is further sliced so as to have a half thickness to obtain a liquid diffusion member (1 ′) having a thickness of about 0.5 mm, and the absorbent (4) combined with the water absorbent resin (1) is used. Obtained. The ratio of the capillary absorption index B at a height of 40 cm of the water-absorbent resin (1) to the capillary absorption index A at a height of 40 cm of the liquid diffusion member (1 ') B / A = 1.9, and the liquid diffusion member (1') ), The ratio of the capillary absorption capacity D at a height of 40 cm of the water-absorbent resin (1) to the capillary absorption capacity C at a height of 40 cm, D / C = 2.2. The weight ratio of the water absorbent resin to the total amount of the water absorbent resin and the liquid diffusion member was 80% by weight.
[0144]
The liquid distribution ratio from the liquid diffusion member to the water-absorbent resin is determined using the absorber (4), and an absorbent article (4) as a model diaper is formed using the absorber (4). , The total absorption of the diaper at the time of leakage, the liquid absorption of the water-absorbent resin in the diaper, and the liquid absorption of the upper half of the diaper. The results are shown in Table 1. The liquid distribution ratio from the liquid diffusion member to the water-absorbent resin, and the absorption capacity of the water-absorbent resin liquid from the liquid diffusion member in the upper half of the diaper assuming lying down were 52%. , 81 g, which is an excellent value.
The water-absorbent article (3) in which the amount of the liquid diffusion member is further reduced from the absorbent article (1) in Examples 1 and 3 and Comparative Example 4 is a member used as compared with the diaper of Comparative Example 4 which is a current commercial diaper. Despite the volume being reduced by as much as 30%, the total absorption of the liquid is still at a high level. As described above, the use of the absorber of the present invention makes it possible to design a lighter and thinner diaper.
[0145]
(Example 4)
An absorber (5) obtained by combining the water-absorbent resin (1) and the liquid diffusion member (2) was obtained. The ratio of the capillary absorption index B at a height of 40 cm of the water-absorbent resin (1) to the capillary absorption index A at a height of 40 cm of the liquid diffusion member (2) is B / A = 2.1. The ratio of the capillary absorption capacity D at a height of 40 cm of the water-absorbent resin (1) to the capillary absorption capacity C at a height of 40 cm, D / C = 3.6.
The liquid distribution ratio from the liquid diffusion member to the water-absorbent resin is determined using the absorber (5), and an absorbent article (5) as a model diaper is formed using the absorber (5). , The total absorption of the diaper at the time of leakage, the liquid absorption of the water-absorbent resin in the diaper, and the liquid absorption of the upper half of the diaper. The results are shown in Table 1. The liquid distribution rate from the liquid diffusion member to the water-absorbent resin, and the absorption capacity of the liquid-absorbent resin liquid from the liquid diffusion member in the upper half of the diaper assuming the lying down were 51%. , 77 g, which is an excellent value. In this case, the number of members used for the diaper can be reduced, and a diaper that is thinner and has excellent performance can be manufactured.
[0146]
(Comparative Example 2)
An absorber (6) obtained by combining the water absorbent resin (3) and the liquid diffusion member (2) was obtained. The ratio of the capillary absorption index B at a height of 40 cm of the water-absorbent resin (3) to the capillary absorption index A at a height of 40 cm of the liquid diffusion member (2) is B / A = 0.4. The ratio of the capillary absorption capacity D at a height of 40 cm of the water-absorbent resin (3) to the capillary absorption capacity C at a height of 40 cm, D / C = 0.6.
The liquid distribution ratio from the liquid diffusion member to the water-absorbing resin is determined using the absorber (6), and an absorbent article (6) as a model diaper is formed using the absorber (6). , The total absorption of the diaper at the time of leakage, the liquid absorption of the water-absorbent resin in the diaper, and the liquid absorption of the upper half of the diaper. The results are shown in Table 1. The liquid distribution ratio from the liquid diffusion member to the water-absorbent resin, and the absorption capacity of the water-absorbent resin liquid from the liquid diffusion member in the upper half of the diaper assuming lying down were 13%. , Was as low as 17 g.
[0147]
From Example 4 and Comparative Example 2, the same liquid diffusion member was used, but the relationship with the capillary absorption capacity of the water-absorbing resin satisfies the relationship of the present invention. It can be seen that the liquid distribution ratio to the resin and the amount of water-absorbent resin absorbed in the diaper are significantly different.
(Example 5)
An absorber (7) obtained by combining the water absorbent resin (1) and the liquid diffusion member (3) was obtained. The ratio B / A of the water-absorbent resin (1) at a height of 40 cm to the capillary absorption index A of the liquid diffusion member (3) at a height of 40 cm of the liquid diffusion member (3) is B / A = 1.9. The ratio of the capillary absorption capacity D at a height of 40 cm of the water-absorbent resin (1) to the capillary absorption capacity C at a height of 40 cm, D / C = 13.0.
[0148]
The liquid distribution ratio from the liquid diffusion member to the water-absorbent resin is determined using the absorber (7), and an absorbent article (7) as a model diaper is formed using the absorber (7). , The total absorption of the diaper at the time of leakage, the liquid absorption of the water-absorbent resin in the diaper, and the liquid absorption of the upper half of the diaper. The results are shown in Table 2. The liquid distribution ratio from the liquid diffusion member to the water-absorbent resin, and the ability of the water-absorbent resin to absorb the liquid from the liquid diffusion member in the upper half of the diaper assuming lying down were 87%. , 121 g. However, since the liquid diffusion member (3) had a low capillary absorption capacity at a height of 0 cm of 6.6 (g / g), the total absorption amount of the diaper was low.
[0149]
(Example 6)
An absorber (8) obtained by combining the water-absorbent resin (2) and the liquid diffusion member (3) was obtained. The ratio of the capillary absorption index B at a height of 40 cm of the water-absorbent resin (2) to the capillary absorption index A at a height of 40 cm of the liquid diffusion member (3) is B / A = 1.8. The ratio of the capillary absorption capacity D at a height of 40 cm of the water-absorbent resin (2) to the capillary absorption capacity C at a height of 40 cm, D / C = 9.2.
The liquid distribution ratio from the liquid diffusion member to the water-absorbent resin is determined using the absorber (8), and an absorbent article (8) as a model diaper is formed using the absorber (8). , The total absorption of the diaper at the time of leakage, the liquid absorption of the water-absorbent resin in the diaper, and the liquid absorption of the upper half of the diaper. The results are shown in Table 2. The liquid distribution ratio from the liquid diffusion member to the water-absorbent resin, and the absorption capacity of the water-absorbent resin liquid from the liquid diffusion member in the upper half of the diaper assuming lying down were 84%. , 122 g. However, since the liquid diffusion member (3) had a low capillary absorption capacity at a height of 0 cm of 6.6 (g / g), the total absorption amount of the diaper was low.
[0150]
(Example 7)
An absorber (9) obtained by combining the water-absorbent resin (3) and the liquid diffusion member (3) was obtained. The ratio of the capillary absorption index B at a height of 40 cm of the water-absorbent resin (3) to the capillary absorption index A at a height of 40 cm of the liquid diffusion member (3) is B / A = 0.4. The ratio of the capillary absorption capacity D at a height of 40 cm of the water-absorbent resin (3) to the capillary absorption capacity C at a height of 40 cm, D / C = 2.0.
The liquid distribution ratio from the liquid diffusion member to the water-absorbent resin is determined using the absorber (9), and an absorbent article (9) is created as a model diaper using the absorber (9). , The total absorption of the diaper at the time of leakage, the liquid absorption of the water-absorbent resin in the diaper, and the liquid absorption of the upper half of the diaper. The results are shown in Table 2. Although the liquid distribution ratio from the liquid diffusion member to the water-absorbent resin is excellent at 66%, the water-absorbent resin from the liquid diffusion member in the upper half of the diaper is assumed to be lying down. The liquid absorption capacity was 33 g. For this reason, the combination of the water-absorbent resin (3) and the liquid diffusion member (3) is cautious because the liquid-absorbing ability of the water-absorbent resin may hardly be exhibited depending on the usage method.
[0151]
Examples 5 to 7 are examples using a liquid diffusion member having a low capillary absorption capacity at a height of 0 cm or 40 cm. In Examples 5 and 6, the liquid distribution ratio of the water-absorbent resin from the liquid diffusion member is high, and the liquid distribution ratio from the liquid diffusion member to the water-absorbent resin and the amount of the water-absorbent resin absorbed in the diaper are large. Example 7 is an example in which only the liquid diffusion storage coefficient 2 is within the range of the present application. In Examples 5 to 7, the total absorption of the diaper is low because the capillary absorption capacity at the height of 0 cm and 40 cm of the liquid diffusion member is low.
(Comparative Example 3)
An absorber (10) obtained by combining the water-absorbent resin (3) and the liquid diffusion member (4) was obtained. The ratio of the capillary absorption index B at a height of 40 cm of the water-absorbent resin (3) to the capillary absorption index A at a height of 40 cm of the liquid diffusion member (4) is B / A = 2.9. The ratio of the capillary absorption capacity D at a height of 40 cm of the water-absorbent resin (3) to the capillary absorption capacity C at a height of 40 cm is D / C = 8.1, but the height of the liquid diffusion member (4) is 40 cm. Is 0.4 (g / g), the capillary absorption index A at a height of 40 cm of the liquid diffusion member (4) is as low as 0.04 (g / g), and the liquid diffusion ability is low. Things.
[0152]
The liquid distribution ratio from the liquid diffusion member to the water-absorbent resin is determined using the absorber (10), and an absorbent article (10) as a model diaper is formed using the absorber (10). , The total absorption of the diaper at the time of leakage, the liquid absorption of the water-absorbent resin in the diaper, and the liquid absorption of the upper half of the diaper. The results are shown in Table 2. Although the liquid distribution ratio from the liquid diffusion member to the water-absorbent resin is excellent at 84%, the liquid diffusion ratio in the diaper is as low as 64%, and the liquid of the water-absorbent resin in the upper half of the diaper is assumed to be lying down. The amount of absorption was also very low at 16 g.
(Comparative Example 4)
Instead of the absorber of the present invention, a commercially available diaper for children (P & G Pampers Smooth Care, size L, diaper weight 57 g, absorber weight 24.0 g: water absorbent resin 12.4 g, floc pulp 12.2 g) is absorbed It was set as the sexual article (11). The diffusivity of the liquid in the liquid diffusion member of the absorbent article (11) and the total absorption of the diaper at the time of leakage were determined. The results are shown in Table 2, but the liquid diffusion rate in the diaper was as low as 62%.
[0153]
[Table 1]
Figure 2004001355
[0154]
[Table 2]
Figure 2004001355
[0155]
(Reference Example 8) Method for producing water-absorbent resin (4)
4.9 parts of polyethylene glycol diacrylate (n = 8) was dissolved in 5500 parts of a 33% by weight aqueous solution of sodium acrylate (neutralization ratio: 75 mol%) to prepare a reaction solution. Next, the reaction solution was degassed under a nitrogen gas atmosphere for 30 minutes. Next, the reaction solution was supplied to a stainless steel double-armed kneader with a jacket having two sigma-type blades with a lid that can be opened and closed, and the system was purged with nitrogen gas while maintaining the reaction solution at 30 ° C. Subsequently, 2.4 parts of ammonium persulfate and 0.12 part of L-ascorbic acid were added while stirring the reaction solution, and polymerization started about 1 minute later. Then, polymerization was carried out at 30 to 90 ° C., and the hydrogel polymer was taken out 60 minutes after the initiation of the polymerization.
[0156]
The obtained hydrogel polymer was subdivided into a diameter of about 5 mm. The finely divided hydrogel polymer was spread on a 50-mesh wire net and dried with hot air at 150 ° C. for 90 minutes. Next, the dried product is pulverized using a vibrating mill, and further classified by a 20-mesh wire net, so that the weight-average particle size is 340 μm, and the ratio of particles having a particle size of less than 106 μm is 3% by weight. A crushed resin was obtained.
100 parts by weight of the obtained resin was mixed with a surface cross-linking agent composition solution composed of 0.05 parts by weight of ethylene glycol diglycidyl ether, 0.9 parts by weight of propylene glycol, 3 parts by weight of water, and 1 part by weight of isopropyl alcohol. did. The mixture was heated at 195 ° C. for 40 minutes to obtain a water-absorbent resin (4). The weight average particle diameter of the water absorbent resin (4) was 347 μm. The water-absorbent resin (4) has a capillary absorption capacity at a height of 0 cm of 39.9 (g / g), a capillary absorption capacity D at a height of 40 cm of 11.4 (g / g), and a water absorption capacity of 40 cm. The capillary absorption index B was 0.29.
[0157]
(Reference Example 9) Method for producing water-absorbent resin (5)
A reaction solution was prepared by dissolving 8.1 parts of polyethylene glycol diacrylate (n = 8) in 5500 parts of a 38% by weight aqueous solution of sodium acrylate (neutralization ratio: 71 mol%). Next, the reaction solution was degassed under a nitrogen gas atmosphere for 30 minutes. Next, the reaction solution was supplied to a stainless steel double-armed kneader with a jacket having two sigma-type blades with a lid that can be opened and closed, and the system was purged with nitrogen gas while maintaining the reaction solution at 30 ° C. Subsequently, 2.4 parts of ammonium persulfate and 0.12 part of L-ascorbic acid were added while stirring the reaction solution, and polymerization started about 1 minute later. Then, polymerization was carried out at 20 to 95 ° C., and the hydrogel polymer was taken out 60 minutes after the polymerization was started.
[0158]
The obtained hydrogel polymer was subdivided into a diameter of about 5 mm. The finely divided hydrogel polymer was spread on a 50-mesh wire net and dried with hot air at 150 ° C. for 90 minutes. Next, the dried product was pulverized using a vibration mill, and further passed through a sieve having openings of 850 μm and remained on a sieve having a size of 106 μm to obtain an irregularly crushed resin having a weight average particle diameter of 400 μm.
To 100 parts by weight of the obtained resin, a surface cross-linking agent composition liquid composed of 0.3 parts by weight of 1,4-butanediol, 0.5 parts by weight of propylene glycol, and 3 parts by weight of water was mixed. After heat-treating the above mixture at 210 ° C. for 30 minutes, 0.5 parts of hydrophilic silicon dioxide fine powder (manufactured by Nippon Aerosil Co., Ltd., Aerosil 200) was added and the surface was coated to obtain a water-absorbent resin (5). . The weight average particle diameter of the water absorbent resin (5) was 500 μm. The water-absorbent resin (5) has a capillary absorption capacity at a height of 0 cm of 37.4 (g / g), a capillary absorption capacity D at a height of 40 cm of 2.8 (g / g), and a capacity of 40 cm. The capillary absorption index B was 0.08.
[0159]
(Reference Example 10) Liquid acquisition member (1)
As a liquid acquisition member, take out crosslinked cellulose covered with a nonwoven fabric on the top and bottom used in a commercially available children's diaper (P & G Pampers Smooth Care, size L, diaper weight 57 g), and measure the liquid in a size of 8 cm × 30 cm. Used as acquisition member (1). The capillary absorption capacity at a height of 0 cm of the liquid acquisition member (1) is 14.4 (g / g), the capillary absorption capacity C at a height of 40 cm is 0.18 (g / g), and the capacity at a height of 40 cm. The capillary absorption index A was 0.014.
(Reference Example 11) Liquid acquisition member (2)
As a liquid acquisition member, 3 g of cotton-like pulp used for a child's diaper was spread to a size of 8 cm × 30 cm to form a sheet, and used as a liquid acquisition member (2) (density: 0.03 g / cm).3With a basis weight of 260 g / m2). Capillary absorption at a height of 0 cm of the liquid acquisition member (2) is 13.8 (g / g), capillary absorption at a height of 40 cm C is 0.53 (g / g), and capillary at a height of 40 cm. The absorption index A was 0.038.
[0160]
(Example 8)
16.4 g of the water-absorbent resin (4) was sprayed over an area of 12 × 38 cm, and the spray amount was 360 g / m.2Was formed thereon, and an absorber (12) on which the liquid acquisition member (1) (12 × 24 cm, weight 3.8 g) was placed was obtained according to the above-described method. The ratio B / A of the water-absorbent resin (4) at a height of 40 cm to the capillary absorption index A at a height of 40 cm of the liquid acquisition member (1) at a height of 40 cm B / A = 20.7. The capillary absorption capacity C at a height of 40 cm was 0.18 (g / g), and the capillary absorption capacity D of the water absorbent resin (4) at a height of 40 cm was 11.4 (g / g).
[0161]
Using the absorbent body (12), an absorbent article (12) as a model diaper was prepared according to the above-mentioned preparation method, and the liquid passing time, the whitening time, the residual liquid amount in the liquid obtaining member, and the return amount were determined. The results are shown in Table 3. The whitening time was fast, the amount of the remaining liquid in the liquid acquiring member was small, and the amount of return was small. It can be seen that an excellent diaper can be obtained.
(Example 9)
In the same manner as in Example 8, an absorber (13) in which the water-absorbent resin (2) and the liquid acquisition member (1) were combined was obtained. The ratio of the capillary absorption index B at a height of 40 cm of the water-absorbent resin (2) to the capillary absorption index A at a height of 40 cm of the liquid acquisition member (1) is B / A = 41.0. The capillary absorption capacity at a height of 40 cm was 0.18 (g / g), and the water absorption resin (2) had a capillary absorption capacity D at a height of 40 cm of 19.4 (g / g).
[0162]
Using the absorber (13), an absorbent article (13) as a model diaper was prepared in accordance with the above-mentioned preparation method, and the liquid passing time, the whitening time, the residual liquid amount in the liquid obtaining member, and the return amount were determined. The results are shown in Table 3. The whitening time was fast, the amount of the remaining liquid in the liquid acquisition member was small, and the amount of return was small. It can be seen that an excellent diaper can be obtained.
(Example 10)
In the same manner as in Example 8, an absorbent (14) obtained by combining the water absorbent resin (1) and the liquid acquisition member (1) was obtained. The ratio B / A of the water-absorbent resin (1) at a height of 40 cm to the capillary absorption index A at a height of 40 cm of the liquid acquisition member (1) at a height of 40 cm B / A = 43.0. The capillary absorption capacity at a height of 40 cm was 0.18 (g / g), and the water absorption resin (1) had a capillary absorption capacity D at a height of 40 cm of 27.4 (g / g).
[0163]
Using the absorber (14), an absorbent article (14) as a model diaper was prepared in accordance with the above-described preparation method, and the liquid passing time, the whitening time, the remaining liquid amount in the liquid obtaining member, and the return amount were determined. The results are shown in Table 3. The whitening time was fast, the amount of the remaining liquid in the liquid acquisition member was small, and the amount of return was small. It can be seen that an excellent diaper can be obtained.
(Example 11)
In the same manner as in Example 8, an absorbent (15) in which the water absorbing resin (4) and the liquid acquisition member (2) were combined was obtained. The ratio B / A of the water-absorbent resin (4) at a height of 40 cm to the capillary absorption index A at a height of 40 cm of the liquid acquisition member (2) at a height of 40 cm is B / A = 7.6. The capillary absorption capacity at a height of 40 cm was 0.53 (g / g), and the water absorption resin (4) had a capillary absorption capacity D at a height of 40 cm of 11.4 (g / g).
[0164]
Using the absorber (15), an absorbent article (15) as a model diaper was prepared in accordance with the above-mentioned preparation method, and the liquid passing time, the whitening time, the remaining liquid amount in the liquid obtaining member, and the return amount were obtained. The results are shown in Table 3. The whitening time was fast, the amount of the remaining liquid in the liquid acquisition member was small, and the amount of return was small. It can be seen that an excellent diaper can be obtained.
(Comparative Example 5)
In the same manner as in Example 8, an absorbent (16) obtained by combining the water absorbent resin (5) and the liquid acquisition member (1) was obtained. The ratio B / A of the water absorption resin (5) at a height of 40 cm to the capillary absorption index A at a height of 40 cm of the liquid acquisition member (1) at a height of 40 cm, B / A = 5.4, of the liquid acquisition member (1). The capillary absorption capacity at a height of 40 cm was 0.18 (g / g), and the water absorption resin (5) had a capillary absorption capacity D at a height of 40 cm of 2.8 (g / g).
[0165]
Using the absorber (16), an absorbent article (16) as a model diaper was prepared in accordance with the above-mentioned preparation method, and the liquid passing time, the whitening time, the amount of liquid remaining in the liquid acquisition member, and the amount of return were determined. The results are shown in Table 4. As shown in Table 4, the whitening time was slow, and the amount of liquid remaining in the liquid acquisition member and the amount of return were large, so that the liquid was not smoothly absorbed from the liquid acquisition member to the water-absorbent resin layer. Understand.
(Comparative Example 6)
An absorber (17) in which the water absorbing resin (3) and the liquid acquisition member (1) were combined was obtained in the same manner as in Example 8. The ratio B / A of the water-absorbent resin (3) at a height of 40 cm to the capillary absorption index A at a height of 40 cm of the liquid acquisition member (1) at a height of 40 cm, B / A = 8.1, of the liquid acquisition member (1). The capillary absorption capacity at a height of 40 cm was 0.18 (g / g), and the water absorption resin (3) had a capillary absorption capacity D at a height of 40 cm of 4.3 (g / g).
[0166]
Using the absorber (17), an absorbent article (17) as a model diaper was prepared in accordance with the above-described preparation method, and the liquid passing time, the whitening time, the amount of liquid remaining in the liquid acquisition member, and the amount of return were determined. The results are shown in Table 4, which shows that the absorption of the liquid from the liquid acquisition member to the water-absorbent resin layer was not performed smoothly because the whitening time was long and the amount of return was large.
(Comparative Example 7)
8.2 g of the water-absorbent resin (4) and 8.2 g of cotton-like pulp used for a child's diaper were mixed to prepare a 12 x 38 cm blend core. Table 4 shows the capillary absorption capacity of this product. The liquid acquisition member (1) and the above blend core were combined in the amounts shown in Table 4 to obtain an absorber (18). The ratio of the capillary absorption index B at a height of 40 cm of the blend core to the capillary absorption index A at a height of 40 cm of the liquid acquisition member (1) B / A = 5.6, the height of the liquid acquisition member (1) of 40 cm The capillary absorption capacity at a height of 0.18 (g / g) and the capillary absorption capacity at a height of 40 cm of the blend core was 2.3 (g / g).
[0167]
Using the absorber (18), an absorbent article (18) as a model diaper is prepared according to the above-described preparation method, and the liquid absorption rate, the drying rate of the liquid diffusing material, and the amount of liquid remaining in the liquid acquisition member after 1 hour. And the amount of return was determined. The results are shown in Table 4. As shown in Table 4, the whitening time was slow, and the amount of liquid remaining in the liquid acquisition member and the amount of return were large, so that the liquid was not smoothly absorbed from the liquid acquisition member to the water-absorbent resin layer. Understand.
(Comparative Example 8)
An absorbent article (19) as a model diaper was prepared by performing the same operation as in Example 8 except that the liquid diffusion member was not used, and the liquid absorption rate, the drying rate of the liquid diffusion material, and the liquid acquisition member after one hour. And the amount of reversion was determined. The results are shown in Table 4, and it can be seen that the liquid passing time was extremely slow and the liquid was not absorbed smoothly.
[0168]
[Table 3]
Figure 2004001355
[0169]
[Table 4]
Figure 2004001355
[0170]
(Reference Example 12) Method for producing water-absorbent resin (6)
4.9 parts of polyethylene glycol diacrylate (n = 8) was dissolved in 5500 parts of a 33% by weight aqueous solution of sodium acrylate (neutralization ratio: 75 mol%) to prepare a reaction solution. Next, the reaction solution was degassed under a nitrogen gas atmosphere for 30 minutes. Next, the reaction solution was supplied to a stainless steel double-armed kneader with a jacket having two sigma-type blades with a lid that can be opened and closed, and the system was purged with nitrogen gas while maintaining the reaction solution at 30 ° C. Subsequently, 2.4 parts of ammonium persulfate and 0.12 part of L-ascorbic acid were added while stirring the reaction solution, and polymerization started about 1 minute later. Then, polymerization was carried out at 30 to 90 ° C., and the hydrogel polymer was taken out 60 minutes after the initiation of the polymerization.
[0171]
The obtained hydrogel polymer was subdivided into a diameter of about 5 mm. The finely divided hydrogel polymer was spread on a 50-mesh wire net and dried with hot air at 150 ° C. for 90 minutes. Next, the dried product is pulverized using a vibrating mill, and further classified by a 30-mesh wire net to form an amorphous material having a weight average particle size of 280 μm and a particle size of less than 106 μm in which the ratio of particles is 5% by weight. A crushed water absorbent resin precursor was obtained.
A surface crosslinking agent comprising 0.05 parts by weight of ethylene glycol diglycidyl ether, 0.9 parts by weight of propylene glycol, 3 parts by weight of water, and 1 part by weight of isopropyl alcohol based on 100 parts by weight of the obtained water-absorbent resin precursor. The composition liquid was mixed. The mixture was heated at 195 ° C. for 40 minutes to obtain a water-absorbent resin (6). The weight average particle diameter of the water absorbent resin (6) was 265 μm. The capillary absorption capacity D at a height of 40 cm of the water absorbent resin (6) was 11.4 (g / g). The particle size distribution of the water absorbent resin (6) was such that particles having a size of 150 to 850 μm were 90% by weight, and particles having a size of less than 150 μm were 10% by weight.
[0172]
(Reference Example 13) Dispersion of water-dispersible fine particles
As water-dispersible fine particles, 5 parts by weight of Aerosil 200 (ultrafine silicon oxide, manufactured by Nippon Aerosil Co., Ltd.) and 70 parts by weight of ion-exchanged water were mixed for 2 hours with a high-speed stirring mixer (2000 rpm). After mixing, the mixture was allowed to stand at room temperature for 24 hours to obtain a dispersion of water-dispersible fine particles. The viscosity of the water-dispersible fine particles was 1000 cps.
(Example 12)
7 parts by weight of the dispersion of the water-dispersible particles obtained in Reference Example 13 was added to 100 parts by weight of the water-absorbent resin (6), mixed and left at 60 ° C. for 30 minutes, and the mixture was crushed. The particles were passed through a wire mesh having openings of 850 μm to obtain water-absorbent resin particles (1) of the present invention. The particle size distribution of the product was 97% by weight of particles having a size of 150 to 850 μm, and 3% by weight of particles having a size of 150 μm or less. The weight average particle diameter was 500 μm. Table 5 shows the results.
[0173]
Using the obtained absorbent resin particles (1) and the liquid acquisition member (2), an absorbent article (20) as a model diaper is prepared according to the method described above, and the liquid passing time, the diffusion area, and the return amount are set as described above. The results were evaluated according to the evaluation methods and are shown in Table 5.
(Example 13)
7 parts by weight of the dispersion of the water-dispersible particles obtained in Reference Example 13 and 13 parts by weight of ionic water were mixed to obtain a dispersion. 20 parts by weight of the dispersion is added to 100 parts by weight of the water-absorbent resin (2), mixed and left at 60 ° C. for 30 minutes, then the mixture is crushed, and all the particles pass through a wire mesh having an opening of 850 μm. As a result, water-absorbent resin particles (2) of the present invention were obtained. The particle size distribution of this product was 85% by weight of particles of 150 to 850 μm, and 15% by weight of particles of 150 μm or less. The weight average particle size was 308 μm.
[0174]
Using the obtained absorbent resin particles (2) and the liquid acquisition member (2), an absorbent article (21) as a model diaper is prepared according to the method described above, and the liquid passing time, diffusion area, and return amount are set as described above. The results were evaluated according to the evaluation methods and are shown in Table 5.
(Comparative Example 9)
To 100 parts by weight of the water-absorbent resin (2), 0.5 parts by weight of Aerosil 200 (fine powder of silicon dioxide, manufactured by Nippon Aerosil Co., Ltd.) is added, the absorbent resin is mixed, and 20 parts by weight of ion-exchanged water is further added. Was added and mixed. After standing at 60 ° C. for 30 minutes, the mixture was pulverized, and all the particles were passed through a wire mesh having openings of 850 μm to obtain water-absorbent resin particles (3). The particle size distribution of this product was 59% by weight of particles having a size of 150 to 850 μm, and 41% by weight of particles having a size of 150 μm or less. The weight average particle size was 174 μm.
[0175]
Using the obtained absorbent resin particles (3) and the liquid acquisition member (2), an absorbent article (22) as a model diaper is prepared according to the method described above, and the liquid passing time, diffusion area, and return amount are set as described above. The results were evaluated according to the evaluation methods and are shown in Table 5.
(Comparative Example 10)
20 parts by weight of ion-exchanged water is added to and mixed with 100 parts by weight of the water-absorbent resin (2), and the mixture is left at 60 ° C. for 30 minutes. The water-absorbent resin particles (4) were passed through to obtain. The particle size distribution of this product was 61% by weight of particles of 150 to 850 μm, and 39% by weight of particles of 150 μm or less. The weight average particle diameter was 180 μm, but it was brittle and easily collapsed.
[0176]
Using the obtained absorbent resin particles (4) and the liquid acquisition member (2), an absorbent article (23) as a model diaper is prepared according to the method described above, and the liquid passing time, the diffusion area, and the return amount are set as described above. The results were evaluated according to the evaluation methods and are shown in Table 5.
(Comparative Example 11)
Using the obtained absorbent resin (2) and the liquid acquisition member (2), an absorbent article (24) as a model diaper is prepared according to the method described above, and the liquid passing time, the diffusion area, and the return amount are evaluated as described above. The results were evaluated according to the method and are shown in Table 5. When making the absorber, dust was scattered and handling was difficult.
[0177]
(Comparative Example 12)
Using the obtained absorbent resin (3) and the liquid acquisition member (2), an absorbent article (25) as a model diaper is prepared according to the method described above, and the liquid passing time, the diffusion area, and the return amount are evaluated as described above. The results were evaluated according to the method and are shown in Table 5.
[0178]
[Table 5]
Figure 2004001355
[0179]
【The invention's effect】
According to the present invention, in an absorber or an absorbent article using a liquid diffusion member and a water absorbent resin, the liquid is sufficiently transferred from the liquid diffusion member to the water absorbent resin without using an auxiliary material such as a material having a large surface area. It is possible to provide an absorbent, an absorbent article, and a water-absorbent resin that can be suitably used for the absorbent, the absorbent, and the absorbent, which are excellent in both the ability to absorb and diffuse the liquid and the ability to store the liquid. In an absorber or an absorbent article using the acquisition member and the water-absorbent resin, even when the concentration of the water-absorbent resin is further increased, the liquid migrates favorably from the liquid acquisition member to the water-absorbent resin, and absorbs the liquid repeatedly. Even when the liquid acquisition function is not significantly reduced, the dryness and the amount of liquid returned are excellent, and the thinner and lighter material is realized. Providing water-absorbent resin It can be.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a measuring device used for measurement for obtaining a capillary absorption capacity and a capillary absorption index in the present invention. This device measures capillary absorption capacity at a height of 40 cm.
FIG. 2 is a schematic cross-sectional view of a measuring device used for measurement for obtaining a capillary absorption capacity and a capillary absorption index in the present invention. This apparatus measures the absorption capacity of a capillary at a height of 0 cm and the absorption capacity of a water-absorbent resin under pressure.
FIG. 3 is a schematic perspective view of an absorbent article according to the present invention.
FIG. 4 is a schematic sectional view of an absorbent article according to the present invention.
[Explanation of symbols]
1 Porous glass plate
2 Glass filter
3 conduit
4 Reservoir container
5 support ring
6 saline
7 balance
8 stand
9 Measurement sample (water-absorbent resin or liquid diffusion member)
10 ° load (0.41 kPa (0.06 psi))
11 ° outside air suction pipe
12 conduit
13 glass filter
14 saline
15 reservoir
16 balance
17 filter paper
18 wire mesh
19mm plastic cylinder
10 ° load (0.41 kPa (0.06 psi))
20mm load (2.07kPa (0.3psi))
21 ° load (4.83 kPa (0.7 psi))
31% liquid permeable polyester non-woven fabric
32 water absorbent resin
33 ° liquid diffusion member
34 liquid impermeable polyethylene film
35 Heatron Paper
36mm adhesive tape

Claims (26)

液拡散部材と吸水性樹脂を含む吸収体であって、前記液拡散部材の40cmの高さにおける毛管吸収指数をA(ただしA≧0.10)としたときに、前記吸水性樹脂として40cmの高さにおける毛管吸収指数Bが以下の式を満足するものを用いることを特徴とする、吸収体。
B/A≧0.7   …(式1)
An absorbent body including a liquid diffusion member and a water-absorbent resin, wherein a capillary absorption index at a height of 40 cm of the liquid diffusion member is A (where A ≧ 0.10.) An absorbent body characterized in that a capillary absorption index B at a height satisfying the following expression is used.
B / A ≧ 0.7 (Equation 1)
液拡散部材と吸水性樹脂を含む吸収体であって、前記液拡散部材の40cmの高さにおける毛管吸収倍率をC(ただしC≧2.0(g/g))としたときに、前記吸水性樹脂として40cmの高さにおける毛管吸収倍率Dが以下の式を満足するものを用いることを特徴とする、吸収体。
D/C≧0.7   …(式2)
An absorber containing a liquid diffusion member and a water-absorbent resin, wherein the liquid absorption member has a capillary absorption capacity C at a height of 40 cm (where C ≧ 2.0 (g / g)); An absorbent, characterized in that a resin having a capillary absorption magnification D at a height of 40 cm that satisfies the following formula is used as the conductive resin.
D / C ≧ 0.7 (Equation 2)
前記吸水性樹脂の40cmの高さにおける毛管吸収倍率Dが15(g/g)以上である、請求項1または2に記載の吸収体。The absorber according to claim 1 or 2, wherein the water absorbing resin has a capillary absorption capacity D at a height of 40 cm of 15 (g / g) or more. 液拡散部材と液貯蔵部材を含む吸収体であって、前記液拡散部材として吸い上げ高さ30cm以上の部材、前記液貯蔵部材として40cmの高さにおける毛管吸収倍率Dが15(g/g)以上の吸水性樹脂を用いることを特徴とする、吸収体。An absorber including a liquid diffusion member and a liquid storage member, wherein the liquid diffusion member has a suction height of 30 cm or more, and the liquid storage member has a capillary absorption ratio D of 15 (g / g) or more at a height of 40 cm. An absorbent, characterized by using a water-absorbent resin of the above. 液拡散部材と液貯蔵部材を含む吸収体であって、前記液拡散部材として吸い上げ高さ30cm以上の部材、前記液貯蔵部材として表面架橋処理された重量平均粒子径250μm以下の吸水性樹脂を用いることを特徴とする、吸収体。An absorbent body including a liquid diffusion member and a liquid storage member, wherein a member having a suction height of 30 cm or more is used as the liquid diffusion member, and a surface-crosslinked water-absorbent resin having a weight average particle diameter of 250 μm or less is used as the liquid storage member. An absorber, characterized in that: 前記液拡散部材が高内部相エマルションを重合して得られる多孔質重合体である、請求項1から5までのいずれかに記載の吸収体。The absorber according to any one of claims 1 to 5, wherein the liquid diffusion member is a porous polymer obtained by polymerizing a high internal phase emulsion. 液拡散部材とポリアクリル酸(塩)系架橋重合体を主成分とする吸水性樹脂を含む吸収体であって、前記液拡散部材が高内部相エマルションを重合して得られる多孔質重合体であり、前記液拡散部材と前記吸水性樹脂の合計重量に対する吸水性樹脂の重量割合が75重量%以上90重量%以下であることを特徴とする、吸収体。An absorbent comprising a liquid diffusion member and a water-absorbent resin containing a polyacrylic acid (salt) -based crosslinked polymer as a main component, wherein the liquid diffusion member is a porous polymer obtained by polymerizing a high internal phase emulsion. An absorbent, wherein the weight ratio of the water-absorbent resin to the total weight of the liquid diffusion member and the water-absorbent resin is 75% by weight or more and 90% by weight or less. 前記吸水性樹脂の40cmの高さにおける毛管吸収倍率Dが15(g/g)以上である、請求項7に記載の吸収体。The absorbent body according to claim 7, wherein a capillary absorption capacity D at a height of 40 cm of the water absorbent resin is 15 (g / g) or more. 請求項1から8までのいずれかに記載の吸収体を含む吸収性物品。An absorbent article comprising the absorber according to any one of claims 1 to 8. 液獲得部材および吸水性樹脂の散布量が250g/m以上の吸水性樹脂層を含む吸収体であって、前記液獲得部材の40cmの高さにおける毛管吸収指数をE(ただしE<0.1)としたときに、前記吸水性樹脂として40cmの高さにおける毛管吸収指数Bが以下の式を満足するものを用いることを特徴とする、吸収体。
B/E≧10   …(式3)
An absorbent body comprising a liquid acquisition member and a water-absorbent resin layer in which the amount of the water-absorbent resin sprayed is 250 g / m 2 or more, wherein a capillary absorption index of the liquid acquisition member at a height of 40 cm is E (where E <0. The absorbent body according to 1), wherein the water-absorbent resin has a capillary absorption index B at a height of 40 cm that satisfies the following expression.
B / E ≧ 10 (Equation 3)
液獲得部材および吸水性樹脂の散布量が250g/m以上の吸水性樹脂層を含む吸収体であって、前記液獲得部材の40cmの高さにおける毛管吸収指数をE(ただしE<0.1)としたときに、前記吸水性樹脂層の40cmの高さにおける毛管吸収指数Fが以下の式を満足することを特徴とする、吸収体。
F/E≧10   …(式4)
An absorbent body comprising a liquid acquisition member and a water-absorbent resin layer in which the amount of the water-absorbent resin sprayed is 250 g / m 2 or more, wherein a capillary absorption index of the liquid acquisition member at a height of 40 cm is E (where E <0. The absorbent according to 1), wherein the capillary absorption index F at a height of 40 cm of the water-absorbent resin layer satisfies the following expression.
F / E ≧ 10 (Equation 4)
液獲得部材および吸水性樹脂の散布量が250g/m以上の吸水性樹脂層を含む吸収体であって、前記液獲得部材の40cmの高さにおける毛管吸収倍率Gが1.0(g/g)以下であり、前記吸水性樹脂として40cmの高さにおける毛管吸収倍率Dが5(g/g)以上のものを用いることを特徴とする、吸収体。An absorbent body including a liquid acquisition member and a water-absorbent resin layer in which the amount of the water-absorbent resin sprayed is 250 g / m 2 or more, wherein a capillary absorption ratio G at a height of 40 cm of the liquid acquisition member is 1.0 (g / m 2). g) or less, characterized by using a water-absorbent resin having a capillary absorption capacity D at a height of 40 cm of 5 (g / g) or more. 液獲得部材および吸水性樹脂の散布量が250g/m以上の吸水性樹脂層を含む吸収体であって、前記液獲得部材の40cmの高さにおける毛管吸収倍率Gが1.0(g/g)以下であり、前記吸水性樹脂層の40cmの高さにおける毛管吸収倍率Hが5(g/g)以上であることを特徴とする、吸収体。An absorbent body including a liquid acquisition member and a water-absorbent resin layer in which the amount of the water-absorbent resin sprayed is 250 g / m 2 or more, wherein a capillary absorption ratio G at a height of 40 cm of the liquid acquisition member is 1.0 (g / m 2). g) or less, and the capillary absorption capacity H at a height of 40 cm of the water-absorbent resin layer is 5 (g / g) or more. 前記液獲得部材と前記吸水性樹脂層の総重量に対する吸水性樹脂層の重量割合が70重量%以上である、請求項10から13までのいずれかに記載の吸収体。14. The absorber according to claim 10, wherein a weight ratio of the water absorbent resin layer to the total weight of the liquid acquisition member and the water absorbent resin layer is 70% by weight or more. 請求項10から14までのいずれかに記載の吸収体を含む吸収性物品。An absorbent article comprising the absorber according to any one of claims 10 to 14. 重量平均粒子径が50〜300μm、生理食塩水(0.9重量%NaCl水溶液)に飽和膨潤させた時の無加圧下における飽和膨潤時の粒子間隙間率が30〜50%、かつ無加圧下における飽和膨潤時の粒子間平均隙間半径が80〜150μmの吸水性樹脂を造粒してなる吸水性樹脂粒子であって、前記吸水性樹脂粒子の重量平均粒子径が造粒前から50%以上上昇されてなる、吸水性樹脂粒子。The weight average particle diameter is 50 to 300 μm, the gap between particles during saturated swelling under no pressure when saturated and swollen in physiological saline (0.9 wt% NaCl aqueous solution) is 30 to 50%, and under no pressure Water-absorbent resin particles obtained by granulating a water-absorbent resin having an average interparticle radius at saturation swelling of 80 to 150 μm, wherein the weight-average particle size of the water-absorbent resin particles is 50% or more from before the granulation Water-absorbing resin particles that have been raised. 重量平均粒子径が150〜600μm、かつ40cmの高さにおける毛管吸収倍率が7(g/g)以上である、請求項16に記載の吸水性樹脂粒子。The water-absorbent resin particles according to claim 16, wherein the weight average particle diameter is 150 to 600 µm, and the capillary absorption capacity at a height of 40 cm is 7 (g / g) or more. 吸水性樹脂粒子中の粒子径150μm以下の割合が、造粒前に比べて50%以下であり、かつ40cmの高さにおける毛管吸収倍率が7(g/g)以上である、請求項16または17に記載の吸水性樹脂粒子。The ratio of a particle diameter of 150 μm or less in the water-absorbent resin particles is 50% or less as compared with that before granulation, and the capillary absorption capacity at a height of 40 cm is 7 (g / g) or more. 18. The water-absorbent resin particles according to 17. ポリアクリル酸(塩)系架橋重合体を主成分とする吸水性樹脂粒子であって、40cmの高さにおける毛管吸収倍率Dが25(g/g)以上の吸水性樹脂粒子。Water-absorbent resin particles containing a polyacrylic acid (salt) -based crosslinked polymer as a main component and having a capillary absorption capacity D at a height of 40 cm of 25 (g / g) or more. 重量平均粒子径が50〜300μm、生理食塩水(0.9重量%NaCl水溶液)に飽和膨潤させた時の無加圧下における飽和膨潤時の粒子間隙間率が30〜50%、かつ無加圧下における飽和膨潤時の粒子間平均隙間半径が80〜150μmの吸水性樹脂に、水分散性微粒子の分散液を添加することにより重量平均粒子径を50%以上上昇させることを特徴とする、吸水性樹脂粒子の製造方法。The weight average particle diameter is 50 to 300 μm, the gap between particles during saturated swelling under no pressure when saturated and swollen in physiological saline (0.9 wt% NaCl aqueous solution) is 30 to 50%, and under no pressure A water-absorbent resin having a mean inter-particle radius at saturation swelling of 80 to 150 μm, wherein the weight-average particle diameter is increased by 50% or more by adding a dispersion of water-dispersible fine particles. A method for producing resin particles. 水分散性微粒子として、重量平均1次粒子径が3μm以下の粉末を用いる、請求項20に記載の吸水性樹脂粒子の製造方法。The method for producing water-absorbent resin particles according to claim 20, wherein a powder having a weight average primary particle diameter of 3 µm or less is used as the water-dispersible fine particles. 請求項16から19までのいずれかに記載の吸水性樹脂粒子を含んでなる吸水性物品。A water-absorbent article comprising the water-absorbent resin particles according to any one of claims 16 to 19. ポリアクリル酸(塩)系架橋重合体を主成分とする吸水性樹脂であって、40cmの高さにおける毛管吸収倍率Dが25(g/g)以上の吸水性樹脂。A water-absorbent resin containing a polyacrylic acid (salt) -based crosslinked polymer as a main component and having a capillary absorption capacity D at a height of 40 cm of 25 (g / g) or more. 請求項23に記載の吸水性樹脂を含んでなる吸水性物品。A water absorbent article comprising the water absorbent resin according to claim 23. 吸液位置の高さH1が液貯蔵容器の液面の高さH2よりも高い位置にある状態で吸水性樹脂が所定時間内に吸収する液の吸収倍率を測定する吸水性樹脂の評価方法。A method for evaluating a water-absorbent resin, wherein the absorption capacity of a liquid absorbed by the water-absorbent resin within a predetermined time is measured in a state where the height H1 of the liquid absorption position is higher than the height H2 of the liquid level of the liquid storage container. 吸液位置の高さH1と液貯蔵容器の液面の高さH2の高度差が20〜60cmである、請求項25に記載の吸水性樹脂の評価方法。26. The method for evaluating a water-absorbent resin according to claim 25, wherein the height difference between the height H1 of the liquid absorbing position and the height H2 of the liquid level of the liquid storage container is 20 to 60 cm.
JP2002270652A 2001-09-19 2002-09-17 Water absorbent resin, water absorbent resin particles, and production method thereof Expired - Lifetime JP4261853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002270652A JP4261853B2 (en) 2001-09-19 2002-09-17 Water absorbent resin, water absorbent resin particles, and production method thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001285752 2001-09-19
JP2001375375 2001-12-10
JP2002072476 2002-03-15
JP2002106565 2002-04-09
JP2002270652A JP4261853B2 (en) 2001-09-19 2002-09-17 Water absorbent resin, water absorbent resin particles, and production method thereof

Publications (3)

Publication Number Publication Date
JP2004001355A true JP2004001355A (en) 2004-01-08
JP2004001355A5 JP2004001355A5 (en) 2005-10-27
JP4261853B2 JP4261853B2 (en) 2009-04-30

Family

ID=30449638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270652A Expired - Lifetime JP4261853B2 (en) 2001-09-19 2002-09-17 Water absorbent resin, water absorbent resin particles, and production method thereof

Country Status (1)

Country Link
JP (1) JP4261853B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261961A (en) * 1985-09-11 1987-03-18 Agency Of Ind Science & Technol Carbamic acid ester having keto group
JPS62110784A (en) * 1985-08-27 1987-05-21 エンステイテユ シユペリヨ−ル デレクトロニク デユ ノ−ル (イゼン) Method and device for supplying vibration-generating transducer with power
JP2004261796A (en) * 2003-02-10 2004-09-24 Nippon Shokubai Co Ltd Particulate water absorbent
JP2005296339A (en) * 2004-04-12 2005-10-27 Mitsubishi Chemicals Corp Sanitary napkin
JP2005344103A (en) * 2004-05-07 2005-12-15 Nippon Shokubai Co Ltd Water-absorbing agent and production method thereof
JP2006507374A (en) * 2002-07-11 2006-03-02 ストックハウゼン ゲーエムベーハー Water-absorbing foam polymer structure
JP2007211367A (en) * 2006-02-09 2007-08-23 Kao Corp Water absorbing composite and water absorbing article using the same
JP2010502415A (en) * 2006-08-31 2010-01-28 株式会社日本触媒 Water absorbing agent and method for producing the same
US8563127B2 (en) 2005-05-13 2013-10-22 Asahi Kasei Chemicals Corporation Absorbent composite material and bodily fluid-absorbing article comprising water-absorbent resin particles having specific surface strength
JP2014046021A (en) * 2012-08-31 2014-03-17 Livedo Corporation Absorber and absorbent article using the same
JP2014046020A (en) * 2012-08-31 2014-03-17 Livedo Corporation Absorber and absorbent article using the same
US8846823B2 (en) 2004-05-07 2014-09-30 Nippon Shokubai Co., Ltd. Water absorbing agent and production method thereof
US8952116B2 (en) 2009-09-29 2015-02-10 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
US9062140B2 (en) 2005-04-07 2015-06-23 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
US9090718B2 (en) 2006-03-24 2015-07-28 Nippon Shokubai Co., Ltd. Water-absorbing resin and method for manufacturing the same
WO2017170501A1 (en) * 2016-03-28 2017-10-05 株式会社日本触媒 Water-absorbing agent and method for producing same, and absorbent article produced using water-absorbing agent
US9926449B2 (en) 2005-12-22 2018-03-27 Nippon Shokubai Co., Ltd. Water-absorbent resin composition, method of manufacturing the same, and absorbent article
JP2021504530A (en) * 2017-12-14 2021-02-15 エルジー・ケム・リミテッド Manufacturing method of high water absorption resin sheet and high water absorption resin sheet manufactured from this
WO2021066340A1 (en) * 2019-09-30 2021-04-08 주식회사 엘지화학 Method for producing super absorbent polymer
WO2022085755A1 (en) * 2020-10-21 2022-04-28 株式会社日本触媒 Water-absorbable resin composition
WO2022145242A1 (en) * 2020-12-29 2022-07-07 ユニ・チャーム株式会社 Composite absorbent object and sanitary supply
CN115301216A (en) * 2022-08-04 2022-11-08 武汉大学 High internal phase emulsion polymerization grading porous capillary monolithic column and preparation method and application thereof
JP7399707B2 (en) 2019-12-23 2023-12-18 株式会社リブドゥコーポレーション Absorbent sheet manufacturing device and absorbent sheet manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790108A (en) * 1993-09-20 1995-04-04 Mitsubishi Chem Corp Method for granulating highly water-absorbing resin
JPH09117470A (en) * 1995-10-27 1997-05-06 Chisso Corp Absorbing article
JPH11503177A (en) * 1995-01-10 1999-03-23 ザ、プロクター、エンド、ギャンブル、カンパニー Absorbent foams made from high internal phase emulsions useful for acquiring and distributing aqueous fluids
JP2000000463A (en) * 1998-04-15 2000-01-07 Nippon Shokubai Co Ltd Water absorbent, absorber, absorptive article and method for determing their absorption characteristic
JP2000342963A (en) * 1995-09-01 2000-12-12 Nippon Shokubai Co Ltd Absorbent composition, production thereof and absorptive article containing the same
JP2001098170A (en) * 1999-07-26 2001-04-10 Nippon Shokubai Co Ltd Water absorbent composition and its usage
JP2001192464A (en) * 1999-10-29 2001-07-17 Nippon Shokubai Co Ltd Surface-cross-linked water-absorbing resin and method for cross-linking surface of water-absorbing resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790108A (en) * 1993-09-20 1995-04-04 Mitsubishi Chem Corp Method for granulating highly water-absorbing resin
JPH11503177A (en) * 1995-01-10 1999-03-23 ザ、プロクター、エンド、ギャンブル、カンパニー Absorbent foams made from high internal phase emulsions useful for acquiring and distributing aqueous fluids
JP2000342963A (en) * 1995-09-01 2000-12-12 Nippon Shokubai Co Ltd Absorbent composition, production thereof and absorptive article containing the same
JPH09117470A (en) * 1995-10-27 1997-05-06 Chisso Corp Absorbing article
JP2000000463A (en) * 1998-04-15 2000-01-07 Nippon Shokubai Co Ltd Water absorbent, absorber, absorptive article and method for determing their absorption characteristic
JP2001098170A (en) * 1999-07-26 2001-04-10 Nippon Shokubai Co Ltd Water absorbent composition and its usage
JP2001192464A (en) * 1999-10-29 2001-07-17 Nippon Shokubai Co Ltd Surface-cross-linked water-absorbing resin and method for cross-linking surface of water-absorbing resin

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110784A (en) * 1985-08-27 1987-05-21 エンステイテユ シユペリヨ−ル デレクトロニク デユ ノ−ル (イゼン) Method and device for supplying vibration-generating transducer with power
JPS6261961A (en) * 1985-09-11 1987-03-18 Agency Of Ind Science & Technol Carbamic acid ester having keto group
JP2006507374A (en) * 2002-07-11 2006-03-02 ストックハウゼン ゲーエムベーハー Water-absorbing foam polymer structure
JP2004261796A (en) * 2003-02-10 2004-09-24 Nippon Shokubai Co Ltd Particulate water absorbent
JP2005296339A (en) * 2004-04-12 2005-10-27 Mitsubishi Chemicals Corp Sanitary napkin
JP2005344103A (en) * 2004-05-07 2005-12-15 Nippon Shokubai Co Ltd Water-absorbing agent and production method thereof
US8846823B2 (en) 2004-05-07 2014-09-30 Nippon Shokubai Co., Ltd. Water absorbing agent and production method thereof
US9062140B2 (en) 2005-04-07 2015-06-23 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
US8778490B2 (en) 2005-05-13 2014-07-15 Asahi Kasei Chemicals Corporation Absorbent composite material comprising water-absorbent resin particles having specific surface strength, and method for manufacturing the same
US8563127B2 (en) 2005-05-13 2013-10-22 Asahi Kasei Chemicals Corporation Absorbent composite material and bodily fluid-absorbing article comprising water-absorbent resin particles having specific surface strength
US8906176B2 (en) 2005-05-13 2014-12-09 Asahi Kasei Chemicals Corporation Absorbent composite material and method for manufacturing the same
US10358558B2 (en) 2005-12-22 2019-07-23 Nippon Shokubai Co., Ltd. Water-absorbent resin composition, method of manufacturing the same, and absorbent article
US9926449B2 (en) 2005-12-22 2018-03-27 Nippon Shokubai Co., Ltd. Water-absorbent resin composition, method of manufacturing the same, and absorbent article
JP2007211367A (en) * 2006-02-09 2007-08-23 Kao Corp Water absorbing composite and water absorbing article using the same
US9090718B2 (en) 2006-03-24 2015-07-28 Nippon Shokubai Co., Ltd. Water-absorbing resin and method for manufacturing the same
JP2010502415A (en) * 2006-08-31 2010-01-28 株式会社日本触媒 Water absorbing agent and method for producing the same
US9115235B2 (en) 2006-08-31 2015-08-25 Nippon Shokubai Co., Ltd. Water absorbing agent and production method thereof
US9775927B2 (en) 2009-09-29 2017-10-03 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
US8952116B2 (en) 2009-09-29 2015-02-10 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
US9937084B2 (en) 2012-08-31 2018-04-10 Livedo Corporation Absorbent body and absorbent article using the same
TWI594738B (en) * 2012-08-31 2017-08-11 Livedo Corp Absorber and absorbent article using the same
JP2014046020A (en) * 2012-08-31 2014-03-17 Livedo Corporation Absorber and absorbent article using the same
JP2014046021A (en) * 2012-08-31 2014-03-17 Livedo Corporation Absorber and absorbent article using the same
US11602577B2 (en) 2016-03-28 2023-03-14 Nippon Shokubai Co., Ltd. Water-absorbing agent and method for producing same, and absorbent article produced using water-absorbing agent
JPWO2017170501A1 (en) * 2016-03-28 2019-03-07 株式会社日本触媒 Water absorbent, method for producing the same, and absorbent article using the water absorbent
WO2017170501A1 (en) * 2016-03-28 2017-10-05 株式会社日本触媒 Water-absorbing agent and method for producing same, and absorbent article produced using water-absorbing agent
JP2021504530A (en) * 2017-12-14 2021-02-15 エルジー・ケム・リミテッド Manufacturing method of high water absorption resin sheet and high water absorption resin sheet manufactured from this
JP7020723B2 (en) 2017-12-14 2022-02-16 エルジー・ケム・リミテッド Manufacturing method of high water absorption resin sheet and high water absorption resin sheet manufactured from this
US11857946B2 (en) 2017-12-14 2024-01-02 Lg Chem, Ltd. Preparing method of super absorbent polymer sheet and super absorbent polymer sheet prepared therefrom
WO2021066340A1 (en) * 2019-09-30 2021-04-08 주식회사 엘지화학 Method for producing super absorbent polymer
JP7399707B2 (en) 2019-12-23 2023-12-18 株式会社リブドゥコーポレーション Absorbent sheet manufacturing device and absorbent sheet manufacturing method
WO2022085755A1 (en) * 2020-10-21 2022-04-28 株式会社日本触媒 Water-absorbable resin composition
WO2022145242A1 (en) * 2020-12-29 2022-07-07 ユニ・チャーム株式会社 Composite absorbent object and sanitary supply
CN115301216A (en) * 2022-08-04 2022-11-08 武汉大学 High internal phase emulsion polymerization grading porous capillary monolithic column and preparation method and application thereof
CN115301216B (en) * 2022-08-04 2024-04-05 武汉大学 High internal phase emulsion polymerization grading porous capillary monolithic column and preparation method and application thereof

Also Published As

Publication number Publication date
JP4261853B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4261853B2 (en) Water absorbent resin, water absorbent resin particles, and production method thereof
US8426670B2 (en) Absorbent structure, absorbent article, water-absorbent resin, and its production process and evaluation method
JP4087500B2 (en) Method for manufacturing absorbent article
US7981833B2 (en) Aqueous-liquid-absorbing agent and its production process
JP5706351B2 (en) Particulate water-absorbing agent mainly composed of water-absorbing resin
US7816301B2 (en) Aqueous-liquid-absorbing agent and its production process
MXPA06012381A (en) Water absorbing agent and production method thereof.
US20070202772A1 (en) Absorbent article comprising a primary aqueous-liquid-absorbing agent
PL215419B1 (en) Particulate water-absorbing agent
JP2006055833A (en) Particulate water absorbing agent with water-absorbing resin as main component
JPH0857311A (en) Absorbing material and absorbing article containing the same
EP3936533A1 (en) Water absorbing resin particles
JP3335843B2 (en) Absorbent composition and absorber, and absorbent article including absorber
EP1429703A2 (en) Absorbent structure absorbent article water absorbent resin and its production process and evaluation method
JP2000342963A (en) Absorbent composition, production thereof and absorptive article containing the same
EP3936540A1 (en) Water absorbing resin particles and method for producing same, absorbent body, and absorbent article
WO2021187526A1 (en) Production methods for granular water absorbent resin composition, absorbent body, and absorbent article
EP3960792A1 (en) Water-absorbent resin particles
EP3936530A1 (en) Absorbent body, absorbent article and method for adjusting permeation speed
JP4799855B2 (en) Water-absorbing agent and method for producing the same, and absorbent body and absorbent article using the same
JP7448553B2 (en) Method for producing crosslinked polymer particles, method for producing water-absorbing resin particles, and method for improving water absorption under load
WO2021049465A1 (en) Method for improving amount of water absorption under load, method for manufacturing cross-linked polymer particles, and method for manufacturing water-absorbing resin particles
WO2021187525A1 (en) Production methods for water absorbent resin particles, absorbent body, and absorbent article
JP7470494B2 (en) Water-absorbent resin particles
WO2023189672A1 (en) Water absorbent resin particles and absorbent article

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081029

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4261853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

EXPY Cancellation because of completion of term