WO2021187525A1 - Production methods for water absorbent resin particles, absorbent body, and absorbent article - Google Patents

Production methods for water absorbent resin particles, absorbent body, and absorbent article Download PDF

Info

Publication number
WO2021187525A1
WO2021187525A1 PCT/JP2021/010817 JP2021010817W WO2021187525A1 WO 2021187525 A1 WO2021187525 A1 WO 2021187525A1 JP 2021010817 W JP2021010817 W JP 2021010817W WO 2021187525 A1 WO2021187525 A1 WO 2021187525A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
particles
mass
absorbent resin
granulated
Prior art date
Application number
PCT/JP2021/010817
Other languages
French (fr)
Japanese (ja)
Inventor
崇志 居藤
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2022508410A priority Critical patent/JPWO2021187525A1/ja
Publication of WO2021187525A1 publication Critical patent/WO2021187525A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to a method for producing water-absorbent resin particles, an absorber and an absorbent article.
  • Absorbents are used for absorbent articles for absorbing water-based liquids such as urine.
  • the composition of the absorber generally includes water-absorbent resin particles and fibrous material.
  • a step of pulverizing the block-shaped polymer obtained by polymerization into particles is performed.
  • Small particles such as particles having a particle size of less than 180 ⁇ m generated by pulverization are used by increasing the particle size by granulation (for example, Patent Document 1).
  • the water-absorbent resin particles used for the absorber are generally finer than the fibrous material, and the water-absorbent resin particles may move between the fibrous material. If the position of the water-absorbent resin particles changes in the absorber, the absorption performance of the absorber becomes non-uniform, and there is a possibility that sufficient performance cannot be exhibited. In addition, the non-uniform absorption performance of the absorber may affect the decrease in the strength of the absorber after absorbing a liquid such as urine. Therefore, it is desirable that the water-absorbent resin particles are well entangled with the fibrous material used for the absorber and have high retention with respect to the fibrous material.
  • An object of the present invention is to provide water-absorbent resin particles having high retention on fibrous substances.
  • the method for producing water-absorbent resin particles containing the polymer particles of the present invention is to polymerize a monomer containing an ethylenically unsaturated monomer to obtain a hydrogel polymer, and to obtain the hydrogel polymer. Particles are obtained to obtain a particle group containing fine particles having a particle diameter of less than 180 ⁇ m, the particle group is granulated to obtain a granulated particle group containing granulated particles, and the granulated particle group is atomized again.
  • the abundance of the granulated particles that do not pass through the JIS standard sieve having a mesh size of 850 ⁇ m is 70% by mass or more in the granulated particle group before repartitioning, which includes obtaining polymer particles.
  • the abundance rate of the granulated particles that do not pass through the JIS standard sieve having a mesh size of 31.5 mm is 5% by mass or more in the granulated particle group before repartitioning.
  • the above method may further include subjecting the polymer particles to surface cross-linking to obtain water-absorbent resin particles.
  • the present invention also provides a method for producing an absorber, which comprises obtaining water-absorbent resin particles by the above method and obtaining an absorber containing the water-absorbent resin particles and a fibrous substance.
  • the present invention also provides a method for producing an absorbent article, which comprises obtaining an absorber by the above method and arranging the absorber between a liquid permeable sheet and a liquid permeable sheet.
  • Water-soluble means that it exhibits a solubility in water of 5% by mass or more at 25 ° C.
  • the materials exemplified in the present specification may be used alone or in combination of two or more.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • “Saline” refers to a 0.9% by mass sodium chloride aqueous solution.
  • the particles that pass through the sieve of the opening X mean that the particles have a size that allows them to pass through the sieve of the opening X, and a step of actually passing the particles through the sieve of the opening X is required. It is not something to do.
  • the method for producing water-absorbent resin particles containing polymer particles according to the present embodiment is to polymerize a monomer containing an ethylenically unsaturated monomer to obtain a hydrogel polymer, and to obtain the hydrogel polymer.
  • the polymer is granulated to obtain a particle group containing fine particles having a particle diameter of less than 180 ⁇ m, the particle group is granulated to obtain a granulated particle group containing granulated particles, and the granulated particle group is regenerated. Includes, to obtain polymer particles by particle formation.
  • each step will be described in detail.
  • a monomer containing an ethylenically unsaturated monomer is polymerized to obtain a hydrogel polymer.
  • the hydrogel-like polymer may be a crosslinked polymer formed by polymerization of a monomer containing an ethylenically unsaturated monomer, which contains water and becomes a gel.
  • the water-absorbent resin particles obtained by the production method according to the present embodiment can contain a crosslinked polymer formed by polymerizing a monomer containing an ethylenically unsaturated monomer.
  • the crosslinked polymer has a monomeric unit derived from an ethylenically unsaturated monomer. That is, the water-absorbent resin particles according to the present embodiment can have a structural unit derived from an ethylenically unsaturated monomer.
  • Polymerization can be carried out by, for example, an aqueous solution polymerization method.
  • an aqueous solution polymerization method the polymerization of the monomer by the aqueous solution polymerization method will be described.
  • the ethylenically unsaturated monomer is preferably water-soluble.
  • examples of the ethylenically unsaturated monomer include ⁇ , ⁇ -unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid, maleic anhydride and fumaric acid, and carboxylic acid-based monomers such as salts thereof; (meth).
  • Nonionic monomers such as acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate; N, N- Amino group-containing unsaturated monomers such as diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, diethylaminopropyl (meth) acrylamide and quaternized products thereof; vinyl sulfonic acid, styrene sulfonic acid, 2 Examples thereof include sulfonic acid-based monomers such as- (meth) acrylamide-2-methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid and salts thereof.
  • the ethylenically unsaturated monomer one type may be used alone, or two or more types may be used
  • the ethylenically unsaturated monomer preferably contains at least one selected from the group consisting of (meth) acrylic acid and salts thereof, (meth) acrylamide, and N, N-dimethylacrylamide, and is preferably (meth) acrylic acid. It is more preferable to contain at least one selected from and salts thereof. Further, (meth) acrylic acid and a salt thereof may be copolymerized with another ethylenically unsaturated monomer. In this case, 70 to 100 mol% of the above (meth) acrylic acid and a salt thereof are preferably used, more preferably 80 to 100 mol%, and 90 to 90 to 100 mol% of the total amount of the ethylenically unsaturated monomer. It is more preferable to use 100 mol%.
  • the ethylenically unsaturated monomer preferably contains at least one of acrylic acid and a salt thereof.
  • the acid group is an alkaline neutralizer in advance if necessary.
  • an alkaline neutralizer include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium hydroxide and potassium carbonate; ammonia and the like.
  • alkaline neutralizers may be used in the form of an aqueous solution in order to simplify the neutralization operation.
  • One type of alkaline neutralizer may be used alone, or two or more types may be used in combination.
  • the acid group may be neutralized before the polymerization of the ethylenically unsaturated monomer as a raw material, or during or after the polymerization.
  • the degree of neutralization of the ethylenically unsaturated monomer by the alkaline neutralizer enhances the water absorption performance by increasing the osmotic pressure of the obtained water-absorbent resin particles, and is safe due to the presence of the excess alkaline neutralizer. From the viewpoint of preventing problems such as, usually, it is preferably 10 to 100 mol%, more preferably 30 to 90 mol%, further preferably 40 to 85 mol%, and 50. It is even more preferably ⁇ 80 mol%.
  • the degree of neutralization is the degree of neutralization for all the acid groups of the ethylenically unsaturated monomer.
  • the ethylenically unsaturated monomer is usually preferably used in the state of an aqueous solution.
  • concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer may be 20% by mass or more and the saturation concentration or less, and is 25 to 70% by mass. %, More preferably 30 to 50% by mass.
  • the amount of the ethylenically unsaturated monomer used is the total amount of the monomers (the total amount of the monomers for obtaining the water-absorbent resin particles. For example, the total amount of the monomers giving the structural unit of the crosslinked polymer. The same shall apply hereinafter). It may be 70 to 100 mol%, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or 100 mol%. Among them, the ratio of (meth) acrylic acid and its salt may be 70 to 100 mol% with respect to the total amount of the monomer, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or It may be 100 mol%. "Ratio of (meth) acrylic acid and its salt” means the ratio of the total amount of (meth) acrylic acid and its salt.
  • the water-absorbent resin particles are, for example, water-absorbent resin particles containing a crosslinked polymer having a structural unit derived from an ethylenically unsaturated monomer, and the ethylenically unsaturated monomer is composed of (meth) acrylic acid and It contains at least one compound selected from the group consisting of the salts, and the ratio of (meth) acrylic acid and its salts is 70 to 100 mol% with respect to the total amount of monomers for obtaining water-absorbent resin particles. It may be a thing.
  • the monomer aqueous solution may contain a polymerization initiator.
  • the polymerization of the monomer contained in the aqueous monomer solution is started by adding a polymerization initiator to the aqueous monomer solution and, if necessary, heating, irradiating with light or the like.
  • the polymerization initiator include a photopolymerization initiator and a radical polymerization initiator, and among them, a water-soluble radical polymerization initiator is preferably used.
  • the polymerization initiator may be, for example, an azo compound, a peroxide or the like.
  • Examples of the azo compound include 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride and 2,2'-azobis ⁇ 2- [N- (4-chlorophenyl) amidino] propane ⁇ .
  • 2,2'-azobis (2-amidinopropane) dihydrochloride 2,2'-azobis ⁇ 2- [1- (2-hydroxy) Ethyl) -2-imidazolin-2-yl] propane ⁇ dihydrochloride and 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] tetrahydrate are preferred.
  • One of these azo compounds may be used alone, or two or more thereof may be used in combination.
  • peroxide examples include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t. -Organic peroxides such as butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate; peroxides such as hydrogen peroxide can be mentioned.
  • persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate
  • methyl ethyl ketone peroxide methyl isobutyl ketone peroxide
  • di-t-butyl peroxide di-t-butyl peroxide
  • t-butyl cumyl peroxide t.
  • potassium persulfate, ammonium persulfate, sodium persulfate or hydrogen peroxide is preferably used from the viewpoint of obtaining water-absorbent resin particles having good water absorption performance, and potassium persulfate and persulfate are preferable. It is more preferable to use ammonium sulfate or sodium persulfate.
  • One of these peroxides may be used alone, or two or more thereof may be used in combination.
  • a redox polymerization initiator can also be used as a redox polymerization initiator by using a polymerization initiator and a reducing agent in combination.
  • the reducing agent include sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, L-ascorbic acid and the like.
  • the total amount of the polymerization initiator used is preferably 0.001 to 1 mol with respect to 100 mol of the ethylenically unsaturated monomer used for the polymerization from the viewpoint of avoiding a rapid polymerization reaction and shortening the polymerization reaction time. , 0.005 to 0.5 mol, more preferably 0.008 to 0.3 mol, even more preferably 0.01 to 0.2 mol.
  • the monomer aqueous solution preferably contains an internal cross-linking agent.
  • the obtained cross-linked polymer can have cross-linking by the internal cross-linking agent in addition to self-cross-linking by the polymerization reaction as its internal cross-linking structure.
  • the internal cross-linking agent for example, a compound having two or more polymerizable unsaturated groups is used, and preferably, a compound having two polymerizable unsaturated groups is used.
  • di or tri (meth) acrylic acid esters of polyols such as (poly) ethylene glycol, (poly) propylene glycol, trimethylpropane, glycerin polyoxyethylene glycol, polyoxypropylene glycol, and (poly) glycerin; Unsaturated polyesters obtained by reacting the above polyol with unsaturated acids such as maleic acid and fumaric acid; bisacrylamides such as N, N'-methylenebis (meth) acrylamide; polyepoxide and (meth) acrylic acid.
  • Di or tri (meth) acrylic acid esters obtained by reaction carbamil di (meth) acrylic acid obtained by reacting polyisocyanate such as tolylene diisocyanate or hexamethylene diisocyanate with hydroxyethyl (meth) acrylic acid.
  • Esters allylicated starch; allylated cellulose; diallyl phthalate; N, N', N "-triallyl isocyanurate; divinylbenzene and the like.
  • a compound having two or more reactive functional groups can be used as an internal cross-linking agent.
  • glycidyl group-containing compounds such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether; (poly) ethylene glycol, (poly) propylene glycol, (poly). Examples thereof include glycerin, pentaerythritol, ethylenediamine, polyethyleneimine, and glycidyl (meth) acrylate.
  • (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether are preferable from the viewpoint of excellent reactivity at low temperature.
  • These internal cross-linking agents may be used alone or in combination of two or more.
  • the amount used is 0.0001 mol with respect to 100 mol of the ethylenically unsaturated monomer in order to sufficiently enhance the water absorption performance such as the water absorption capacity of the obtained water-absorbent resin particles.
  • the above is preferable, 0.001 mol or more is more preferable, 0.003 mol or more is further preferable, and 0.01 mol or more is further preferable.
  • the addition of the internal cross-linking agent insolubilizes the cross-linked polymer and brings about a suitable water absorption capacity, but an increase in the amount of the internal cross-linking agent added leads to a decrease in the water absorption capacity of the obtained water-absorbent resin particles. Therefore, the amount of the internal cross-linking agent is preferably, for example, 0.50 mol or less, more preferably 0.25 mol or less, and further preferably 0. It is 10 mol or less.
  • the monomer aqueous solution may contain additives such as a chain transfer agent and a thickener, if necessary.
  • a chain transfer agent include thiols, thiol acids, secondary alcohols, hypophosphorous acid, phosphorous acid and the like.
  • the thickener include carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, polyethylene glycol, polyacrylic acid, neutralized polyacrylic acid, polyacrylamide and the like. One of these may be used alone, or two or more thereof may be used in combination.
  • a solvent other than water such as a water-soluble organic solvent, may be appropriately added to the monomer aqueous solution.
  • the polymerization method is, for example, a static polymerization method in which the monomer aqueous solution is polymerized without stirring (for example, a static state), or a stirring polymerization method in which the monomer aqueous solution is polymerized while being stirred in the reaction apparatus. It's okay. It is preferable to obtain a hydrogel-like polymer by aqueous solution static polymerization, which is a static polymerization method. In the static polymerization method, when the polymerization is completed, a single block-shaped hydrogel-like polymer occupying substantially the same volume as the monomer aqueous solution existing in the reaction vessel can be obtained.
  • the form of production may be batch, semi-continuous, continuous, etc.
  • a polymerization reaction can be carried out while continuously supplying a monomer aqueous solution to a belt conveyor-shaped continuous polymerization apparatus to obtain a hydrogel having a continuous shape such as a band shape. ..
  • the polymerization temperature varies depending on the polymerization initiator used, but is preferably 0 to 130 ° C., more preferably 10 to 110 ° C. from the viewpoint of increasing the productivity by rapidly advancing the polymerization and shortening the polymerization time.
  • the polymerization time is appropriately set according to the type and amount of the polymerization initiator used, the reaction temperature, and the like, but is preferably 1 to 200 minutes, more preferably 5 to 100 minutes.
  • the water content of the block-shaped water-containing gel-like polymer obtained by polymerizing the monomers is preferably 30 to 80% by mass, more preferably 40 to 75% by mass, from the viewpoint that the coarse crushing step can be easily carried out. 50 to 70% by mass is more preferable.
  • the water content of the water-containing gel-like polymer is adjusted by operations such as the water content of the monomer aqueous solution, drying after polymerization, and humidification.
  • the water content of the hydrogel polymer is the content of water in the total mass of the hydrogel polymer in% by mass.
  • the hydrogel polymer is atomized to obtain a particle group containing fine particles having a particle size of less than 180 ⁇ m.
  • a group of particles containing fine particles having a particle diameter of less than 180 ⁇ m is finally obtained.
  • a step of obtaining a particle group and a step of further crushing the coarsely crushed product to obtain a particle group may be included.
  • the particle swarming step may include the step of drying the hydrogel polymer, the crude product and / or the particle group.
  • the coarsely crushed product is preferably subjected to crushing after undergoing a drying step.
  • the particle swarming step may further include a step of classifying the particle group obtained by pulverization.
  • the particle group obtained by the particle swarming step may consist only of fine particles having a particle size of less than 180 ⁇ m.
  • the particleization step can include a step of coarsely crushing the hydrogel polymer to obtain a coarsely crushed product.
  • the crude product obtained by coarsely crushing the hydrogel-like polymer may be in the form of a hydrogel.
  • the coarsely crushed product may be in the form of particles, or may have an elongated shape in which particles are connected.
  • the size of the minimum side of the coarsely crushed product may be, for example, about 0.1 to 15 mm, preferably about 1.0 to 10 mm.
  • the size of the maximum side of the coarsely crushed product may be about 0.1 to 200 mm, preferably about 1.0 to 150 mm.
  • a kneader for example, a pressurized kneader, a double-armed kneader, etc.
  • a meat chopper for example, a meat chopper, and a cutter mill are more preferable.
  • the crushing device may be of the same type as the crushing device described later.
  • the hydrogel polymer may be cut into a size of, for example, about 5 cm square using a cutting machine. After cutting the hydrogel polymer with a cutting machine, it may be further coarsely crushed using a crushing device.
  • the polymerization step and the coarse crushing step may be carried out substantially at the same time.
  • the particleization step can include the step of drying the hydrogel polymer, the coarsely crushed product and / or the pulverized product. These dried products can be obtained by removing the solvent containing water in the hydrogel polymer, coarsely crushed product or crushed product by heating and / or blowing air. Drying is preferably carried out after the hydrogel polymer is roughly crushed and before crushing. That is, the particle-forming step preferably includes a step of drying the hydrogel-like coarse crushed product to obtain a dry crushed product.
  • the drying method may be natural drying, heat drying, vacuum drying or the like.
  • the drying may be performed under normal pressure or reduced pressure, for example, and may be performed under an air flow such as nitrogen in order to improve the drying efficiency.
  • a plurality of methods may be used in combination.
  • the drying temperature is preferably 70 to 250 ° C, more preferably 80 to 200 ° C.
  • the drying step is carried out until the water content of the coarsely crushed product is 20% by mass or less, preferably 10% by mass or less, and more preferably 5% by mass or less.
  • the drying temperature may be 120 ° C. or higher, 150 ° C. or higher, or 180 ° C. or higher.
  • the particleization step can include a step of crushing a hydrogel polymer, a coarsely crushed product and / or a dried product thereof. By pulverizing the hydrogel polymer, coarsely crushed product and / or dried product thereof, a particle group containing fine powder can be obtained.
  • the pulverization is preferably carried out after coarse crushing and drying. That is, the particle swarming step preferably includes a step of pulverizing the dried coarse crushed product to obtain a particle group containing fine powder.
  • roller mill roller mill
  • stamp mill stamp mill
  • jet mill high-speed rotary crusher
  • hammer mill pin mill, rotor beater mill, etc.
  • container-driven mill rotary mill, vibration mill, planetary mill, etc.
  • Crusher can be used.
  • a high speed rotary grinder is used.
  • the crusher may have an opening on the outlet side, such as a perforated plate, a screen, or a grid, for controlling the maximum particle size of the crushed particles.
  • the shape of the opening may be polygonal, circular, or the like, and the maximum diameter of the opening may be 0.1 to 5 mm, 0.3 to 3.0 mm, or 0.5 to 1.5 mm.
  • Grinding may be performed so that at least a part of the particle group becomes fine powder having a particle size of less than 180 ⁇ m.
  • the pulverization for example, while pulverizing for the main purpose of obtaining polymer particles having a particle size of less than 850 ⁇ m and having an appropriate particle size that can be used without granulation, some fine particles having a particle size of less than 180 ⁇ m are generated. It can be done in such a way.
  • the abundance of fine particles having a particle size of less than 180 ⁇ m in the total amount of the particle group obtained by the particle swarming step may be, for example, 1 to 100% by mass, preferably 30 to 60% by mass.
  • the particle size of less than 180 ⁇ m means that the particle size can pass through a JIS standard sieve having a mesh size of 180 ⁇ m.
  • the particle group obtained by the particle formation step may include particles having a particle diameter of 180 ⁇ m or more and less than 850 ⁇ m (particles that pass through a JIS standard sieve having a mesh size of 850 ⁇ m and do not pass through a JIS standard sieve having a mesh size of 180 ⁇ m).
  • Particles having a particle diameter of 250 ⁇ m or more and less than 850 ⁇ m may be included.
  • the particle swarming step may further include a step of classifying a group of particles containing fine particles having a particle size of less than 180 ⁇ m obtained by grinding.
  • Classification refers to an operation of dividing a certain particle group into two or more particle groups having different particle size distributions according to the particle size.
  • a particle group consisting of only fine particles having a particle size of less than 180 ⁇ m may be separated, or the abundance of fine particles having a particle size of less than 180 ⁇ m in the particle group may be increased. If necessary, a part of the classified particles may be pulverized again, or the pulverization step and the classification step may be repeated.
  • a known classification method can be used for the classification of the particle group, and for example, screen classification, wind power classification, or the like may be used.
  • Screen classification is a method of classifying particles on a screen into particles that pass through the mesh of the screen and particles that do not pass through the screen by vibrating the screen.
  • Wind power classification is a method of classifying particles using the flow of air.
  • the classification method it is preferable to use screen classification. Examples of the screen classification include a vibrating sieve, a rotary shifter, a cylindrical stirring sieve, a blower shifter, a low-tap type shaker, an electric vibration type shaker, and the like.
  • a group of particles containing fine particles having a particle size of less than 180 ⁇ m is granulated to obtain a group of granulated particles containing the granulated particles.
  • Granulation is performed so that the abundance of granulated particles that do not pass through the JIS standard sieve having a mesh size of 850 ⁇ m is 70% by mass or more in the obtained granulated particle group.
  • granulation means agglomerating particles to obtain particles having a larger particle size than the original particles.
  • the fibers are granulated so that the abundance of the granulated particles that do not pass through the JIS standard sieve having an opening of 850 ⁇ m in the granulated particle group is 70% by mass or more. It is possible to obtain water-absorbent resin particles having high retention on the material. The reason why such an effect is obtained is not clear, but the present inventor speculates as follows. However, the present invention is not limited to the following mechanism. In the production method according to the present embodiment, when granulating fine powder, granulation is performed by sufficiently kneading granulated particles having a large particle size to a certain ratio or more.
  • the fact that more granulated particles with a large particle size can be obtained means that the degree of kneading is higher. It is considered that the particles that have undergone such a granulation step have a more complicated shape, such that the particles obtained by re-granulation after that have more fine voids inside and have a plurality of protrusions. It is considered that the water-absorbent resin particles containing the polymer particles having such a shape are more likely to be entangled with the fibrous material, and the retention property to the fibrous material is enhanced.
  • the abundance of fine powder having a particle diameter of less than 180 ⁇ m is 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, 50% by mass or more, 60% by mass or more. It may be 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more or 98% by mass or more, 100% by mass, 98% by mass or less, 95% by mass or less, 90% by mass or less, 80% by mass. % Or less, 70% by mass or less, 60% by mass or less, 50% by mass or less, 40% by mass or less, or 30% by mass or less.
  • Granulation can be performed, for example, by mixing a group of particles and water.
  • Water may be used as an aqueous solution containing components such as water-soluble polymerizable monomers such as water-soluble salts and ethylenically unsaturated monomers, cross-linking agents and hydrophilic organic solvents.
  • the cross-linking agent for example, the above-mentioned internal cross-linking agent or the later-described surface cross-linking agent can be used.
  • the proportion of water in the aqueous liquid may be, for example, 90 to 100% by mass.
  • a method of mixing the particle group and water for example, water may be dropped little by little, the whole amount may be added at once, sprayed, or mixed in the state of steam.
  • the mixed amount of water is preferably 55 parts by mass or more, and more preferably 60 parts by mass or more with respect to 100 parts by mass of the particle group. When the mixing amount of water is 55 parts by mass or more, the particle group and water can be mixed more uniformly.
  • the mixing amount of water is preferably 115 parts by mass or less, and more preferably 105 parts by mass or less with respect to 100 parts by mass of the particle group. When the mixing amount of water is 115 parts by mass or less, the subsequent drying can be performed more efficiently.
  • the temperature at the time of mixing may be, for example, 40 to 150 ° C, preferably 60 to 100 ° C.
  • the temperature at the time of mixing may be 80 to 95 ° C.
  • Granulation is preferably carried out by mixing water that has been preheated to a mixing temperature with a group of particles. From the viewpoint of more uniform granulation, it is preferable that the granulation is carried out by putting all the preheated water into the pre-stirred particle group in the mixing container at one time.
  • the mixing time of the particle group and water is such that the entire amount of the particle group and water used for mixing is put into the same mixing container. After that, it is preferably 10 to 100 seconds, and more preferably 15 to 90 seconds.
  • Mixing of the particle group and water can be performed using, for example, various stirrers having stirring blades.
  • the stirring blade flat plate blades, lattice blades, paddle blades, propeller blades, anchor blades, turbine blades, Faudler blades, ribbon blades, full zone blades, Maxblend blades and the like can be used.
  • the flat plate blade has a shaft (stirring shaft) and a flat plate portion (stirring portion) arranged around the shaft. Further, the flat plate portion may have a slit or the like.
  • the stirring type mixer include a mortar mixer, a continuous kneader, a ladyge mixer and the like.
  • the mixing conditions of the particle group and water are as follows, for example, the mixing amount of water is 55 to 115 parts by mass with respect to 100 parts by mass of the particle group, and the mixing temperature.
  • the mixing time may be 40 to 150 ° C., and the mixing time may be 10 to 100 seconds after the entire amount of the particle group and water is put into the same container, and the mixing amount of water is 60 to 100 parts by mass with respect to 100 parts by mass of the particle group. It may be a combination of 105 parts by mass, a mixing temperature of 60 to 100 ° C., and a mixing time of 15 to 90 seconds after the entire amount of the particle group and water is put into the same container.
  • the mixing conditions of the particle group and water may be set so that the ratio of the granulated particles having a predetermined particle size in the obtained granulated particle group is a certain value or more.
  • the particles may be confirmed with the naked eye during or after mixing, and if necessary, further mixing may be performed by heating, adding water, adding particle groups, or the like.
  • the particle size distribution of the granulated particle group can be measured after the granulation step.
  • the granulated particle group obtained by granulation it is preferable to use the granulated particle group obtained by granulation as it is without drying.
  • the particle size distribution can be measured using all or part of the granulated particle group obtained by granulation.
  • the amount of the granulated particle group used for measuring the particle size distribution may be, for example, 30 g or more or 100 g or more, and may be 30 to 100 g.
  • the particle size distribution of the granulated particle group is measured by classifying the granulated particle group using a JIS standard sieve with each opening.
  • classification for example, using an electromagnetic vibration type sieve shaker Octagon 200 (manufactured by endcotts) in which the vibration intensity is set to 7, a JIS standard sieve and a saucer having a predetermined opening into which measurement samples are placed are placed in the vertical direction. This can be done by vibrating for 10 minutes to shake the particles.
  • the abundance rate of the granulated particles that do not pass through the JIS standard sieve having an opening of 850 ⁇ m is 70% by mass or more, preferably 75% by mass or more, and 77% by mass or more. It may be 80% by mass or more, 85% by mass or more, or 88% by mass or more.
  • the abundance rate of the granulated particles that do not pass through the JIS standard sieve having an opening of 850 ⁇ m may be, for example, 100% by mass, 98% by mass or less, 95% by mass or less, 90% by mass or less, 88% by mass. % Or less, 85% by mass or less, or 80% by mass or less.
  • the abundance rate of the granulated particles that do not pass through the JIS standard sieve having a mesh size of 9.5 mm may be, for example, 55% by mass or more, preferably 60% by mass or more. .. The abundance rate may be 70% by mass or more, 80% by mass or more, or 85% by mass or more.
  • the abundance rate of the granulated particles that do not pass through the JIS standard sieve having a mesh size of 9.5 mm may be, for example, 100% by mass, 98% by mass or less, 95% by mass or less, 93% by mass or less. It may be 90% by mass or less, 88% by mass or less, 85% by mass or less, 80% by mass or less, 75% by mass or less, or 70% by mass or less.
  • the abundance rate of the granulated particles that do not pass through the JIS standard sieve having a mesh size of 31.5 mm may be, for example, 5% by mass or more, and 10% by mass or more or 15% by mass or more. Is preferable.
  • the abundance rate is 20% by mass or more, 25% by mass or more, 30% by mass or more, 35% by mass or more, 40% by mass or more, 45% by mass or more, 50% by mass or more, 55% by mass or more, 60% by mass or more. It may be 65% by mass or more, 70% by mass or more, 75% by mass or more, 80% by mass or more, 85% by mass or more, or 90% by mass or more.
  • the abundance rate of the granulated particles that do not pass through the JIS standard sieve having a mesh size of 31.5 mm may be, for example, 100% by mass, 98% by mass or less, 95% by mass or less. 93% by mass or less, 90% by mass or less, 85% by mass or less, 80% by mass or less, 75% by mass or less, 70% by mass or less, 65% by mass or less, 60% by mass or less, 55% by mass or less, 50% by mass or less, It may be 45% by mass or less, 40% by mass or less, 35% by mass or less, 30% by mass or less, or 25% by mass or less.
  • the granulated particles used for measuring the particle size distribution may be returned to the manufacturing process of the water-absorbent resin particles and used continuously in the production of the water-absorbent resin particles.
  • the granulated particles used for measuring the particle size distribution need not be used for producing the water-absorbent resin particles.
  • the granulated particle group obtained by granulation is re-granulated to obtain polymer particles.
  • Polymer particles having a desired particle size can be obtained by re-granulating the particles whose particle size has been increased by granulation.
  • the step of further crushing the granulated coarse crushed product to obtain the granulated crushed product (polymer particles) may be included.
  • the re-granulation step may include a step of drying the granulated particles, the granulated coarse crushed product, or the pulverized granulated product.
  • the granulated coarse crushed product is preferably subjected to pulverization after undergoing a drying step.
  • the repartitioning step may further include a step of classifying the granulated pulverized product obtained by pulverization.
  • the re-granulation step can include a step of coarsely crushing the granulated particles to obtain a granulated coarse crushed product.
  • the granulated coarse crushed product may be in the form of a hydrogel.
  • the size of the minimum side of the granulated coarse crushed product may be, for example, about 0.1 to 15 mm, preferably about 1.0 to 10 mm.
  • the coarse crushing may be performed only on granulated particles having a large size, such as those having a minimum side size of more than 5 mm or more than 10 mm.
  • the coarsening apparatus used in the repartitioning may be the same as that used for the coarsening in the above-mentioned particleization step.
  • the re-granulation step can include a step of drying the granulated particles, the granulated coarse crushed product, or the pulverized granulated product. By drying, a granulated dried product can be obtained. Drying in the repartitioning step is preferably performed on the granulated coarse crushed product. That is, the drying step in the repartitioning step is preferably performed after coarse crushing.
  • the drying temperature may be 120 ° C. or higher, 150 ° C. or higher, or 180 ° C. or higher. When the drying is carried out at normal pressure, the drying temperature is preferably 70 to 250 ° C, more preferably 80 to 200 ° C. The drying is preferably carried out until the water content of the finally obtained polymer particles is 10% by mass or less, and more preferably 5% by mass or less.
  • the same method as the drying in the above-mentioned particleization step can be applied.
  • the re-granulation step can include a step of crushing granulated particles, granulated coarse crushed products and / or dried products thereof.
  • pulverization is preferably performed after coarse pulverization and drying.
  • the repartitioning step preferably includes a step of drying the granulated coarse crushed product and then pulverizing it to obtain polymer particles.
  • the pulverizer used for pulverization in the repartitioning step may be the same as that used for pulverization in the above-mentioned particleization step.
  • the particle size distribution of the polymer particles obtained by repartitioning tends to be more suitable. Specifically, in the polymer particles obtained by repartitioning, the yield of particles having a particle size of 180 ⁇ m or more and less than 850 ⁇ m can be improved, and the generation rate of fine particles having a particle size of less than 180 ⁇ m can be suppressed. .. A high yield of polymer particles having a particle size of 180 ⁇ m or more and less than 850 ⁇ m indicates that the granulation strength is higher.
  • the repartitioning step may include a step of further classifying the polymer particles after crushing.
  • the method for classifying the particles after re-particle formation may be the same as the classification method shown in the above-mentioned particle-forming step, and it is preferable to use screen classification.
  • the particle size may be increased to a desired particle size by performing granulation again.
  • the granulation performed after the re-granulation it is not necessary to obtain granulated particles having a large particle size as in the first granulation described above, and the final required particle size (for example, the particle size is 180 ⁇ m or more and less than 850 ⁇ m).
  • Granulation may be performed until the range) is reached. The steps of reparticle formation and granulation may be repeated a plurality of times.
  • the method for producing water-absorbent resin particles according to the present embodiment may include a step of surface cross-linking of polymer particles.
  • the surface cross-linking can be performed, for example, by adding a cross-linking agent (surface cross-linking agent) for performing the surface cross-linking to the polymer particles and reacting them.
  • the surface cross-linking agent may be added at any timing after pulverization in the repartitioning step, and may be performed before or after drying in the reparticlening step, or before or after classification. good.
  • the addition of the surface cross-linking agent is preferably performed after the drying and classification in the reparticle step.
  • the surface cross-linking agent can be added, for example, by adding a surface cross-linking agent solution or by spraying the surface cross-linking agent solution.
  • the surface cross-linking agent is preferably added as a surface cross-linking agent solution by dissolving the surface cross-linking agent in a solvent such as water and / or alcohol.
  • the surface cross-linking step may be carried out once or divided into a plurality of times of two or more times.
  • the surface cross-linking agent may contain, for example, two or more functional groups (reactive functional groups) having reactivity with a functional group derived from an ethylenically unsaturated monomer.
  • functional groups reactive functional groups
  • examples of the surface cross-linking agent include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol di.
  • Polyglycidyl compounds such as glycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydrin, epibromhydrin, ⁇ - Haloepoxy compounds such as methyl epichlorohydrin; compounds having two or more reactive functional groups such as isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl-3-oxetanemethanol, 3-ethyl-3- Oxetane compounds such as oxetane methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, 3-butyl-3-ox
  • the amount of the surface cross-linking agent added is usually based on 100 mol of the total amount of the ethylenically unsaturated monomer used for the polymerization from the viewpoint of appropriately increasing the cross-linking density near the surface of the water-absorbent resin particles (polymer particles). , Preferably 0.0001 to 4.0 mol, more preferably 0.001 to 2.0 mol.
  • the surface cross-linking step is preferably carried out in the presence of water in the range of 1 to 200 parts by mass with respect to 100 parts by mass of the ethylenically unsaturated monomer.
  • the amount of water can be adjusted by appropriately using a water-soluble organic solvent such as water and / or alcohol.
  • the water-absorbent resin particles can be more preferably cross-linked in the vicinity of the particle surface.
  • the treatment temperature of the surface cross-linking agent is appropriately set according to the surface cross-linking agent used, and may be 20 to 250 ° C.
  • the treatment time with the surface cross-linking agent may be 1 to 200 minutes or 5 to 100 minutes.
  • Surface cross-linking may be performed only once or at multiple timings.
  • the surface cross-linking may be carried out after the pulverization step and before the pulverization in addition to the execution after the pulverization step or after the pulverization step.
  • the water-absorbent resin particles obtained by the production method according to the present embodiment include the above-mentioned polymer particles.
  • the water-absorbent resin particles may be composed of only polymer particles, for example, a gel stabilizer, a metal chelating agent (ethylenediamine tetraacetic acid and a salt thereof, diethylenetriamine-5 acetic acid and a salt thereof, for example, diethylenetriamine-5 sodium acetate and the like, etc. ), An additional component such as a fluidity improver (lubricant) may be further contained. Additional components may be placed inside, on the surface, or both of the polymer particles.
  • the water-absorbent resin particles may contain a plurality of inorganic particles arranged on the surface of the polymer particles.
  • the inorganic particles may be silica particles such as amorphous silica.
  • Inorganic particles usually have a small size as compared with the size of polymer particles.
  • the average particle size of the inorganic particles may be 0.1 to 50 ⁇ m, 0.5 to 30 ⁇ m, or 1 to 20 ⁇ m.
  • the average particle size can be measured by the pore electric resistance method or the laser diffraction / scattering method depending on the characteristics of the particles.
  • the content of the inorganic particles is 0.05 parts by mass or more and 0.1 parts by mass or more based on 100 parts by mass of the total mass of the polymer particles. , 0.15 parts by mass or more or 0.2 parts by mass or more, 5.0 parts by mass or less, 3.0 parts by mass or less, 1.0 parts by mass or less, 0.5 parts by mass or less or 0.3 It may be less than or equal to a mass part.
  • the shape of the water-absorbent resin particles obtained by the production method according to the present embodiment may be, for example, a crushed shape, an amorphous shape, an amorphous crushed shape, or a shape formed by aggregating these particles.
  • the medium particle size of the water-absorbent resin particles may be 130 to 800 ⁇ m, 200 to 850 ⁇ m, 250 to 700 ⁇ m, 300 to 600 ⁇ m, or 300 to 450 ⁇ m.
  • the CRC (centrifuge retention capacity, Centrifuge Retention Capacity) of the water-absorbent resin particles obtained by the production method according to the present embodiment is, for example, 25 g / g or more, 28 g / g or more, 30 g / g or more, or 32 g / g or more. It may be 40 g / g or less, 38 g / g or less, 36 g / g or less, 34 g / g or less, or 33 g / g or less.
  • CRC is measured by the method described in Examples described later with reference to the EDANA method (NWSP 241.0.R2 (15), page.769-778).
  • the absorption ratio (AAP, Absorption against Pressure) of the water-absorbent resin particles obtained by the production method according to the present embodiment under 2.07 kPa (0.3 psi) pressurization is, for example, 18 g / g or more, 20 g / g or more, or It may be 22 g / g or more, 30 g / g or less, 28 g / g or less, 26 g / g or less, or 24 g / g or less.
  • the absorption ratio of the water-absorbent resin particles under 2.07 kPa pressurization is measured by the method described in Examples described later.
  • the water absorption rate of the water-absorbent resin particles obtained by the production method according to the present embodiment by Vortex is, for example, 30 seconds or more, 32 seconds or more, 34 seconds or more, 36 seconds or more, 38 seconds, 40 seconds or more, 42 seconds or more. , 44 seconds or more, 46 seconds or more, or 48 seconds or more, and may be 90 seconds or less, 80 seconds or less, 70 seconds or less, 60 seconds or less, 55 seconds or less, 50 seconds or less, or 40 seconds or less.
  • the water absorption rate by the Vortex method is measured in accordance with (Japanese Industrial Standard JIS K 7224 (1996)).
  • the water-absorbent resin particles obtained by the production method according to the present embodiment are excellent in absorption of body fluids such as urine and blood.
  • body fluids such as urine and blood.
  • sanitary products such as disposable diapers, sanitary napkins and tampons, pet sheets, dogs or cats. It can be applied to fields such as animal excrement treatment materials such as toilet formulations.
  • the water-absorbent resin particles can be suitably used for the absorber.
  • the water-absorbent resin particles obtained by the production method according to the present embodiment are excellent in entanglement with the fibrous material and have high retention with respect to the fibrous material, and are therefore suitable for an absorber containing the fibrous material.
  • the absorber containing the water-absorbent resin particles and the fibrous material obtained by the production method according to the present embodiment has excellent shape retention and is more likely to exhibit water absorption performance.
  • the method for producing an absorber according to the present embodiment includes, for example, obtaining water-absorbent resin particles by the above-mentioned method and obtaining an absorber containing water-absorbent resin particles and a fibrous substance.
  • the method for producing the absorber may include, for example, mixing the water-absorbent resin particles and the fibrous material, forming a mixture of the water-absorbent resin particles and the fibrous material in a sheet shape, and the like. good.
  • the water-absorbent resin particles and the fibrous material can be mixed, for example, by air papermaking.
  • the content of the water-absorbent resin particles in the absorber is 100 to 1000 g (that is, 100 to 1000 g / m) per square meter of the absorber from the viewpoint of obtaining sufficient liquid absorption performance when the absorber is used for an absorbent article. 2 ) is preferable, more preferably 150 to 800 g / m 2 , and even more preferably 200 to 700 g / m 2 . From the viewpoint of exhibiting sufficient liquid absorption performance as an absorbent article, the content is preferably 100 g / m 2 or more. From the viewpoint of suppressing the occurrence of the gel blocking phenomenon, the content is preferably 1000 g / m 2 or less.
  • the mass ratio of the water-absorbent resin particles in the absorber may be 2% to 100%, preferably 10% to 80%, and 20% to 70% with respect to the total of the water-absorbent resin particles and the fibrous material. More preferably.
  • the structure of the absorber may be, for example, a form in which the water-absorbent resin particles and the fibrous material are uniformly mixed, and the water-absorbent resin particles are sandwiched between the fibrous material formed in a sheet or layer. It may be in a form or in any other form.
  • the absorber may have a structure that does not contain fibrous substances, or may be composed of, for example, only water-absorbent resin particles.
  • the fibrous material examples include finely pulverized wood pulp, cotton, cotton linter, rayon, cellulosic fibers such as cellulose acetate, and synthetic fibers such as polyamide, polyester, and polyolefin. Further, the fibrous material may be a mixture of the above-mentioned fibers.
  • a non-woven fabric such as air-through or air-laid is preferable from the viewpoint of being excellent in retention with water-absorbent resin particles obtained by the production method according to the present embodiment.
  • the fibers may be adhered to each other by adding an adhesive binder to the fibrous material.
  • the adhesive binder include heat-sealing synthetic fibers, hot melt adhesives, adhesive emulsions, and the like.
  • the heat-bondable synthetic fiber examples include a total fusion type binder such as polyethylene, polypropylene, and an ethylene-propylene copolymer, and a non-total fusion type binder having a side-by-side or core-sheath structure of polypropylene and polyethylene.
  • a total fusion type binder such as polyethylene, polypropylene, and an ethylene-propylene copolymer
  • non-total fusion type binder having a side-by-side or core-sheath structure of polypropylene and polyethylene.
  • hot melt adhesives examples include ethylene-vinyl acetate copolymer, styrene-isoprene-styrene block copolymer, styrene-butadiene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, and styrene-ethylene-propylene-styrene block copolymer.
  • a compounding of a base polymer such as amorphous polypropylene and a tackifier, a plasticizer, an antioxidant and the like.
  • Adhesive emulsions include, for example, polymers of at least one monomer selected from the group consisting of methyl methacrylate, styrene, acrylonitrile, 2-ethylhexyl acrylate, butyl acrylate, butadiene, ethylene, and vinyl acetate. Be done. These adhesive binders may be used alone or in combination of two or more.
  • the absorber may further contain additives such as inorganic particles (for example, amorphous silica), deodorants, pigments, dyes, antibacterial agents, fragrances, and adhesives. These additives can impart various functions to the absorber.
  • the absorber may contain inorganic particles in addition to the inorganic particles in the water-absorbent resin particles. Examples of the inorganic particles include silicon dioxide, zeolite, kaolin, clay and the like.
  • the shape of the absorber is not particularly limited, and may be, for example, a sheet shape.
  • the thickness of the absorber (for example, the thickness of the sheet-shaped absorber) may be, for example, 0.1 to 20 mm and 0.3 to 15 mm.
  • the above absorber can be suitably used for an absorbent article.
  • the method for producing an absorbent article according to the present embodiment includes, for example, arranging an absorber between a liquid permeable sheet and a liquid permeable sheet.
  • the absorber used in the absorbent article may be one having water-absorbent resin particles, may be composed of only water-absorbent resin particles, or may contain fibrous substances in addition to the water-absorbent resin particles. It may be.
  • the absorbent article is fibrous at a position where it comes into contact with the water-absorbent resin particles as a constitution of, for example, a liquid permeable sheet.
  • the water-absorbent resin particles are likely to be entangled with the fibrous substance. Therefore, the absorbent article is more likely to maintain its shape and more easily exhibit water absorption performance.
  • the absorbent article may include an absorber, a liquid permeable sheet and a liquid permeable sheet.
  • the liquid permeable sheet (liquid permeable top sheet) is arranged on the outermost side on the side where the liquid to be absorbed enters.
  • the liquid impermeable sheet (liquid impermeable back sheet) is arranged on the outermost side opposite to the side on which the liquid to be absorbed enters.
  • the absorbent article may further include a core wrap. The core wrap retains the shape of the absorber.
  • absorbent articles examples include diapers (for example, paper diapers), toilet training pants, incontinence pads, sanitary products (sanitary napkins, tampons, etc.), sweat pads, pet sheets, toilet materials, animal excrement treatment materials, and the like. ..
  • FIG. 1 is a cross-sectional view showing an example of an absorbent article.
  • the absorbent article 100 shown in FIG. 1 includes an absorbent body 10, core wraps 20a and 20b, a liquid permeable top sheet 30, and a liquid permeable back sheet 40.
  • the liquid permeable back sheet 40, the core wrap 20b, the absorbent body 10, the core wrap 20a, and the liquid permeable top sheet 30 are laminated in this order.
  • FIG. 1 there is a portion shown so that there is a gap between the members, but the members may be in close contact with each other without the gap.
  • the absorber 10 has a water-absorbent resin particle 10a and a fiber layer 10b containing a fibrous material.
  • the water-absorbent resin particles 10a are dispersed in the fiber layer 10b.
  • the core wrap 20a is arranged on one side of the absorber 10 (upper side of the absorber 10 in FIG. 1) in contact with the absorber 10.
  • the core wrap 20b is arranged on the other side of the absorber 10 (lower side of the absorber 10 in FIG. 1) in contact with the absorber 10.
  • the absorber 10 is arranged between the core wrap 20a and the core wrap 20b.
  • the core wrap 20a and the core wrap 20b have, for example, a main surface having the same size as the absorber 10.
  • the core wrap By using the core wrap, it is possible to maintain the shape retention of the absorber and prevent the water-absorbent resin particles and the like constituting the absorber from falling off and flowing.
  • the core wrap include non-woven fabrics, woven fabrics, tissues, synthetic resin films having liquid permeation holes, net-like sheets having a mesh, and the like, and from the viewpoint of economy, a tissue made by wet-molding crushed pulp is preferable. Used.
  • the liquid permeable top sheet 30 is arranged on the outermost side on the side where the liquid to be absorbed enters.
  • the liquid permeable top sheet 30 is arranged on the core wrap 20a in contact with the core wrap 20a.
  • the liquid permeable back sheet 40 is arranged on the outermost side of the absorbent article 100 on the opposite side of the liquid permeable top sheet 30.
  • the liquid impermeable back sheet 40 is arranged under the core wrap 20b in contact with the core wrap 20b.
  • the liquid permeable top sheet 30 and the liquid permeable back sheet 40 have, for example, a main surface wider than the main surface of the absorber 10, and the liquid permeable top sheet 30 and the liquid permeable back sheet 40 have.
  • the outer edge extends around the absorber 10 and the core wraps 20a, 20b.
  • liquid permeable top sheet 30 examples include non-woven fabrics and porous sheets.
  • non-woven fabric examples include thermal-bonded non-woven fabric, air-through non-woven fabric, resin-bonded non-woven fabric, spunbond non-woven fabric, melt-blow non-woven fabric, spunbond / melt-blow / spunbond non-woven fabric, air-laid non-woven fabric, spunlace non-woven fabric, point-bond non-woven fabric and the like.
  • thermal bond non-woven fabrics, air-through non-woven fabrics, spunbond non-woven fabrics, and spunbond / melt blow / spunbond non-woven fabrics are preferably used.
  • a resin or fiber known in the art can be used, and polyethylene (from the viewpoint of liquid permeability, flexibility and strength when used in an absorbent article, polyethylene ( Polyester such as PE), polypropylene (PP), polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polyester such as polyethylene naphthalate (PEN), polyamide such as nylon, rayon, and other synthetic resins or fibers. Examples include cotton, silk, linen and pulp (cellulose) fibers.
  • synthetic fibers are preferably used from the viewpoint of increasing the strength of the liquid permeable top sheet 30, and among them, polyolefin and polyester are preferable. These materials may be used alone or in combination of two or more kinds of materials.
  • the non-woven fabric used for the liquid permeable top sheet 30 has appropriate hydrophilicity from the viewpoint of improving the liquid absorption performance of the absorbent article. From this point of view, it is preferable that the hydrophilicity when measured according to the "hydrophilicity of the non-woven fabric" described in International Publication No. 2011/086843 (based on the pulp and paper test method No. 68 (2000)) is 5 to 200. Those of 10 to 150 are more preferable.
  • the non-woven fabric having such hydrophilicity among the above-mentioned non-woven fabrics, those in which the material itself exhibits appropriate hydrophilicity such as rayon fiber may be used, and hydrophobic chemistry such as polyolefin fiber and polyester fiber may be used.
  • a fiber may be used which has been hydrophilized by a known method to impart an appropriate degree of hydrophilicity.
  • Examples of the method for hydrophilizing chemical fibers include a method of obtaining a non-woven fabric by a spunbond method obtained by mixing a hydrophobic chemical fiber with a hydrophilic agent in a spunbonded non-woven fabric, and a spunbonded non-woven fabric using hydrophobic chemical fibers. Examples thereof include a method of accommodating a hydrophilic agent when producing the above, a method of impregnating the spunbonded non-woven fabric with a hydrophobic chemical fiber, and then impregnating the hydrophilic agent.
  • Hydrophilic agents include anionic surfactants such as aliphatic sulfonates and higher alcohol sulfates, cationic surfactants such as quaternary ammonium salts, polyethylene glycol fatty acid esters, polyglycerin fatty acid esters, and sorbitan fatty acids.
  • Nonionic surfactants such as esters, silicone-based surfactants such as polyoxyalkylene-modified silicones, and stain-releasing agents made of polyester-based, polyamide-based, acrylic-based, and urethane-based resins are used.
  • the non-woven fabric used for the liquid permeable top sheet 30 is appropriately bulky from the viewpoint of imparting good liquid permeability, flexibility, strength and cushioning property to the absorbent article and increasing the liquid penetration rate of the absorbent article. It is preferably high and has a large amount of grain.
  • the basis weight of the non-woven fabric is preferably 5 to 200 g / m 2 , more preferably 8 to 150 g / m 2 , and even more preferably 10 to 100 g / m 2 .
  • the thickness of the non-woven fabric is preferably 20 to 1400 ⁇ m, more preferably 50 to 1200 ⁇ m, and even more preferably 80 to 1000 ⁇ m.
  • the liquid impermeable back sheet 40 prevents the liquid absorbed by the absorber 10 from leaking from the back sheet 40 side to the outside.
  • the liquid impermeable back sheet 40 is made of a liquid impermeable film mainly composed of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), a breathable resin film, and a non-woven fabric such as spunbond or spunlace.
  • PE polyethylene
  • PP polypropylene
  • a non-woven fabric such as spunbond or spunlace.
  • a composite film to which the above resin films are bonded, a spunbond / melt blow / spunbond (SMS) non-woven fabric in which a water-resistant melt-blown non-woven fabric is sandwiched between high-strength spun-bonded non-woven fabrics can be used.
  • the back sheet 40 should use a resin film having a basis weight of 10 to 50 g / m 2 mainly made of low density polyethylene (LDPE) resin. Can be done. In addition, when a breathable material is used, the stuffiness at the time of wearing is reduced, and the discomfort given to the wearer can be reduced.
  • LDPE low density polyethylene
  • the magnitude relationship between the absorbent body 10, the core wraps 20a and 20b, the liquid permeable top sheet 30, and the liquid permeable back sheet 40 is not particularly limited, and is appropriately adjusted according to the use of the absorbent article and the like. Further, the method of retaining the shape of the absorber 10 by using the core wraps 20a and 20b is not particularly limited, and as shown in FIG. 1, the absorber may be sandwiched by a plurality of core wraps, and the absorber may be sandwiched by one core wrap. May be coated.
  • the absorber 10 may be adhered to the liquid permeable top sheet 30.
  • the liquid is guided to the absorbent body more smoothly, so that it is easy to obtain an excellent absorbent article by preventing liquid leakage.
  • the absorber 10 is sandwiched or covered by the core wrap, it is preferable that at least the core wrap and the liquid permeable top sheet 30 are adhered to each other, and it is more preferable that the core wrap and the absorber 10 are adhered to each other.
  • Examples of the bonding method include a method of applying a hot melt adhesive to the liquid permeable top sheet 30 at predetermined intervals in the width direction in a vertical stripe shape, a spiral shape, or the like, and bonding starch or carboxymethyl cellulose. , Polyvinyl alcohol, polyvinylpyrrolidone, and other methods of bonding using a water-soluble binder selected from water-soluble polymers.
  • a method of adhering by heat-sealing may be adopted.
  • the above reaction solution was supplied to the kneader, and the system was replaced with nitrogen gas while keeping the reaction solution at 30 ° C. Subsequently, while stirring the reaction solution, 92.63 g (7.780 mmol) of a 2.0 mass% sodium persulfate aqueous solution and 15.85 g of a 0.5 mass% L-ascorbic acid aqueous solution were added. After 1 minute, the temperature began to rise and polymerization started. After 6 minutes, the maximum temperature during the polymerization was 93 ° C., and then stirring was continued while maintaining the jacket temperature at 60 ° C., and 60 minutes after the start of the polymerization, the produced hydrogel-like polymer was taken out.
  • the obtained hydrogel-like polymer was sequentially charged into a meat chopper 12VR-750SDX manufactured by Kiren Royal Co., Ltd. and subdivided (coarse) to obtain a hydrogel-like coarsely crushed product.
  • the diameter of the hole in the plate located at the outlet of the meat chopper was 6.4 mm.
  • the hydrogel-like coarsely crushed product was spread on a wire mesh having a mesh size of 0.8 cm ⁇ 0.8 cm and dried with hot air at 160 ° C. for 60 minutes to obtain a coarsely crushed and dried product.
  • the particle group (A) was classified using a JIS standard sieve having a mesh size of 850 ⁇ m, a JIS standard sieve having a mesh size of 250 ⁇ m, and a JIS standard sieve having a mesh size of 180 ⁇ m.
  • the fraction passed through a JIS standard sieve with a mesh size of 850 ⁇ m and did not pass through a JIS standard sieve with a mesh size of 250 ⁇ m, and passed through a water-absorbent resin particle (A1) and a JIS standard sieve with a mesh size of 180 ⁇ m.
  • a fraction (a1) was obtained.
  • a surface cross-linking agent solution consisting of 0.0783 g of ethylene carbonate, 0.125 g of propylene glycol, and 0.5 g of ion-exchanged water is mixed with 25 g of water-absorbent resin particles (A1) after classification at 25 ° C. for 35 minutes to form a mixture. Got Then, the mixture was heat-treated at 200 ° C. for 35 minutes to obtain surface-crosslinked water-absorbent resin particles (A2).
  • the surface-crosslinked water-absorbent resin particles (A2) were classified with a JIS standard sieve having an opening of 850 ⁇ m and a JIS standard sieve having an opening of 250 ⁇ m.
  • water-absorbent resin particles (A3) were obtained, which were fractions that passed through a JIS standard sieve having a mesh size of 850 ⁇ m and did not pass through a JIS standard sieve having a mesh size of 250 ⁇ m.
  • water-absorbent resin particles (A4) were obtained as Comparative Example 1.
  • 25 g of water-absorbent resin particles are placed in a mayonnaise bottle having a capacity of 225 ml together with silicon dioxide, and shaken for 3 minutes under the condition of 750 (cycle / min (CPM)) using a paint shaker (manufactured by Toyo Seiki Seisakusho). It was carried out by stirring sufficiently.
  • the CRC of the water-absorbent resin particles (A4) was 34 g / g, and the medium particle size was 467 ⁇ m.
  • Example 1 [Granulation] 40 g of the fine powder (a1) was placed in a round-bottomed cylindrical separable flask having an inner diameter of 11 cm and an internal volume of 2 L (the 2 L container was kept warm in a bath at 80 ° C.) equipped with a stirrer.
  • the stirrer was equipped with a stirrer 200 as a stirrer, which is generally shown in FIG.
  • the stirring blade 200 includes a shaft 200a and a flat plate portion 200b.
  • the flat plate portion 200b is welded to the shaft 200a and has a curved tip.
  • the flat plate portion 200b is formed with four slits S extending along the axial direction of the shaft 200a.
  • the four slits S are arranged in the width direction of the flat plate portion 200b, the width of the two inner slits S is 1 cm, and the width of the two outer slits S is 0.5 cm.
  • the length of the flat plate portion 200b is about 10 cm, and the width of the flat plate portion 200b is about 6 cm.
  • the water-absorbent resin particles (B1) were classified with a JIS standard sieve having an opening of 850 ⁇ m and a JIS standard sieve having an opening of 180 ⁇ m.
  • water-absorbent resin particles (B2) were obtained, which were fractions that passed through a JIS standard sieve having a mesh size of 850 ⁇ m and did not pass through a JIS standard sieve having a mesh size of 180 ⁇ m.
  • the particle yield after granulation and crushing described later was measured.
  • a surface cross-linking agent solution consisting of 0.0783 g of ethylene carbonate, 0.125 g of propylene glycol, and 0.5 g of ion-exchanged water was mixed with 25 g of water-absorbent resin particles (B2) at 25 ° C. for 35 minutes to obtain a mixture. .. Then, the mixture was heat-treated at 200 ° C. for 35 minutes to obtain surface-crosslinked water-absorbent resin particles (B3).
  • the surface-crosslinked water-absorbent resin particles (B3) were classified with a JIS standard sieve having an opening of 850 ⁇ m and a JIS standard sieve having an opening of 250 ⁇ m.
  • water-absorbent resin particles (B4) were obtained, which were fractions that passed through a JIS standard sieve having a mesh size of 850 ⁇ m and did not pass through a JIS standard sieve having a mesh size of 250 ⁇ m.
  • Water-absorbent resin particles (B5) were obtained as Example 1 by mixing 0.075 g of silicon dioxide (product name Aerosil 200, manufactured by Nippon Aerosil) with 25 g of water-absorbent resin particles (B4). For mixing, 25 g of water-absorbent resin particles are placed in a mayonnaise bottle having a capacity of 225 ml together with silicon dioxide, and shaken for 3 minutes under the condition of 750 (cycle / min (CPM)) using a paint shaker (manufactured by Toyo Seiki Seisakusho). It was carried out by stirring sufficiently. The CRC of the water-absorbent resin particles (B5) was 31 g / g, and the medium particle size was 419 ⁇ m.
  • Example 2 In the granulation step, the same procedure as in Example 1 was carried out except that the stirring time in the round-bottomed cylindrical separable flask having an internal volume of 2 L was changed to 15 seconds. ) was obtained.
  • the CRC of the water-absorbent resin particles (B6) was 30 g / g, and the medium particle size was 467 ⁇ m.
  • Example 3 In the granulation step, the same procedure as in Example 1 was carried out except that the amount of ion-exchanged water heated to 90 ° C. was changed to 25 g, and water-absorbent resin particles (B7) were obtained as Example 3.
  • the CRC of the water-absorbent resin particles (B7) was 32 g / g, and the medium particle size was 446 ⁇ m.
  • ⁇ Measurement of particle size distribution of granulated particles A sample of the entire amount of the granulated particle group obtained by granulation or an arbitrary amount (about 30 g to 100 g) was used as a sample for measuring the particle size distribution of the granulated particle group.
  • Sieves with JIS standard meshes of 106 mm, 53 mm, 31.5 mm, 9.5 mm, 2.8 mm, 850 ⁇ m, and 180 ⁇ m, and a saucer are placed in this order from the top, and the measurement sample is placed on a sieve with a mesh size of 106 mm. I put it in.
  • Formula (2): "% of granulated particles abundance of 850 ⁇ m or more” (total of granulated particles remaining on each sieve having a mesh size of 106 mm, 53 mm, 31.5 mm, 9.5 mm, 2.8 mm, and 850 ⁇ m) Amount) / (Amount of sample used for measurement)
  • Formula (3): "% of granulated particles abundance of 9.5 mm or more” (total amount of granulated particles remaining on each sieve having a mesh size of 106 mm, 53 mm, 31.5 mm, and 9.5 mm) / ( Sample amount used for measurement)
  • the medium particle size of the water-absorbent resin particles was measured by the following procedure. From the top of the JIS standard sieve, a sieve with a mesh size of 600 ⁇ m, a sieve with a mesh size of 500 ⁇ m, a sieve with a mesh size of 425 ⁇ m, a sieve with a mesh size of 300 ⁇ m, a sieve with a mesh size of 250 ⁇ m, a sieve with a mesh size of 180 ⁇ m, a sieve with a mesh size of 150 ⁇ m and a saucer. Combined in the order of.
  • the CRC was measured by the following procedure with reference to the EDANA method (NWSP 241.0.R2 (15), page.769-778). The measurement was carried out in an environment where the temperature was 25 ° C. ⁇ 2 ° C. and the humidity was 50% ⁇ 10%.
  • a non-woven fabric with a size of 60 mm x 170 mm (product name: Heat Pack MWA-18, manufactured by Nippon Paper Papylia Co., Ltd.) was folded in half in the longitudinal direction to adjust the size to 60 mm x 85 mm.
  • a 60 mm ⁇ 85 mm non-woven fabric bag was produced by crimping the non-woven fabrics to each other on both sides extending in the longitudinal direction with a heat seal (a crimped portion having a width of 5 mm was formed on both sides along the longitudinal direction). 0.2 g of the particles to be measured were precisely weighed and contained inside the non-woven fabric bag. Then, the non-woven fabric bag was closed by crimping the remaining one side extending in the lateral direction with a heat seal.
  • the entire non-woven fabric bag was completely moistened by floating the non-woven fabric bag on 1000 g of physiological saline contained in a stainless steel vat (240 mm ⁇ 320 mm ⁇ 45 mm) without folding the non-woven fabric bag.
  • a stainless steel vat 240 mm ⁇ 320 mm ⁇ 45 mm
  • the absorption ratio (AAP) under pressure of 2.07 kPa (0.3 psi) was measured using the measuring device 110 shown in FIG. The measurement was carried out in an environment where the temperature was 25 ° C. ⁇ 2 ° C. and the humidity was 50% ⁇ 10%. First, a weight 112 (cross section: circular) adjusted to a pressure of 2.07 kPa, a plastic cylinder 114 with an inner diameter of 60 mm, and a 400 mesh (opening 38 ⁇ m) arranged at one end (bottom surface) of the cylinder 114. The measuring device 110 provided with the wire mesh 116 of the above was prepared.
  • the weight 112 includes a disc portion 112a, a rod-shaped portion 112b extending from the center of the disc portion 112a in a direction perpendicular to the disc portion 112a, and a cylindrical portion 112c having a through hole inserted into the rod-shaped portion 112b in the center. have.
  • the disk portion 112a of the weight 112 has a diameter substantially equal to the inner diameter of the cylinder 114 so that it can be moved in the longitudinal direction of the cylinder 114 inside the cylinder 114.
  • the diameter of the cylindrical portion 112c is smaller than the diameter of the disc portion 112a.
  • One end of the cylinder 114 is open but shielded by a wire mesh 116, and the other end of the cylinder 114 is open so that the weight 112 can be inserted.
  • 0.90 g of particles 120 to be measured were uniformly sprayed on the wire mesh 116.
  • the total mass of the measuring device 110 (the total mass of the measuring device 110 and the measurement target particle 120 before liquid absorption). Wa [g] was measured.
  • a glass filter 140 (ISO4793 P-250) with a diameter of 90 mm and a thickness of 7 mm in the center of the bottom surface of the recess of the stainless petri dish 130 with a diameter of 150 mm, 0 so that the water surface is at the same height as the upper surface of the glass filter 140.
  • a 90% by mass aqueous sodium chloride solution (25 ° C ⁇ 2 ° C) was added.
  • a sheet of filter paper 150 (ADVANTEC Toyo Co., Ltd., product name: (No. 3), thickness 0.23 mm, reserved particle diameter 5 ⁇ m) with a diameter of 90 mm is placed on the glass filter 140 so that the entire surface is wet and the surface is completely wet. , Excess liquid was removed.
  • the above-mentioned measuring device 110 was placed on the filter paper 150, and the liquid was absorbed by the particles 120 to be measured under a load. After 1 hour, the measuring device 110 was lifted, and the total mass of the measuring device 110 (total mass of the measuring device 110 and the particles 120 to be measured after absorbing the liquid) Wb [g] was measured.
  • ⁇ Vortex water absorption rate The water absorption rate of the physiological saline of the water-absorbent resin particles was measured by the following procedure based on the Vortex method. The measurement was carried out in an environment where the temperature was 25 ° C. ⁇ 2 ° C. and the humidity was 50% ⁇ 10%. First, 50 ⁇ 0.1 g of a 0.9 mass% sodium chloride aqueous solution (physiological saline) adjusted to a temperature of 25 ⁇ 0.2 ° C. in a constant temperature water tank was weighed in a beaker having an internal volume of 100 mL.
  • a vortex was generated by stirring at a rotation speed of 600 rpm using a magnetic stirrer bar (8 mm ⁇ ⁇ 30 mm, without ring).
  • 2.0 ⁇ 0.002 g of water-absorbent resin particles were added to the aqueous sodium chloride solution at one time.
  • the time [seconds] from the addition of the water-absorbent resin particles to the time when the vortex on the liquid surface converged was measured, and the time was obtained as the water absorption rate of the water-absorbent resin particles.
  • Table 2 The results are shown in Table 2.
  • the water-absorbent resin particle retention rate was measured by the following method. The measurement was carried out in an environment where the temperature was 25 ° C. ⁇ 2 ° C. and the humidity was 50% ⁇ 10%. Roughly speaking, after the acrylic plate is tilted and fixed using a commercially available pedestal for experimental equipment, the water-absorbent resin particles are charged vertically above the non-woven fabric placed on the plate, and the total amount of the charged resin particles is increased. The amount of water-absorbent resin particles held on the non-woven fabric without falling from the non-woven fabric, that is, the retention rate was evaluated. A more detailed measurement method is shown below.
  • the retention rate was measured by the method outlined in FIG.
  • An acrylic inclined plate S 0 having a length of 55 cm in the inclined surface direction was fixed so as to form an angle of 35 ⁇ 2 ° with respect to the horizontal.
  • As the non-woven fabric 77 an air-through non-woven fabric porous liquid permeable sheet made of polyethylene-polypropylene having a basis weight of 22 g / m 2 cut into 12 ⁇ 40 cm was used.
  • the non-woven fabric 77 was attached on the inclined plate S 0 so that the longitudinal direction of the non-woven fabric 77 was parallel to the inclined direction of the inclined plate S 0 with the surface (back surface) that normally contacts the absorber in the absorbent article as the upper side.
  • a stainless steel bat 79 having a size of 28.5 mm ⁇ 22.0 mm was placed below the lower end of the non-woven fabric 77 to receive the water-absorbent resin particles dropped from the non-woven fabric 77.
  • the water-absorbent resin particle charging device shown in FIG. 4 includes a funnel 71, a damper 73, and a cylinder 75.
  • the funnel 71 has a supply port for supplying water-absorbent resin particles (upper end opening; diameter (inner diameter): 91 mm) and a discharge port for discharging water-absorbent resin particles (lower end opening. Diameter (inner diameter): 8 mm). It has a tapered shape that narrows from the supply port to the discharge port.
  • the inclination angle of the side wall of the funnel 71 is 20 ° with respect to the axial direction of the funnel 71.
  • the length from the supply port to the discharge port in the funnel 71 is 114 mm.
  • the axially perpendicular cross section of the funnel 71 including the supply port and the discharge port is circular.
  • the constituent material of the funnel 71 is stainless steel.
  • the funnel 71 is fixed by gripping the outer peripheral portion on the supply port side with a support ring
  • the damper 73 is a member having a length of 47 mm and a width of 15 mm.
  • the damper 73 is arranged at the discharge port of the funnel 71, and opens and closes the discharge port of the funnel 71.
  • the cylinder 75 is a member having a length of 35 mm and an inner diameter of 20 mm. The cylinder 75 is arranged on the discharge port side of the funnel 71 so that the portion on the discharge port side of the funnel 71 is located inside.
  • the water-absorbent resin particles obtained in the examples had a high retention rate with respect to the non-woven fabric.
  • the water-absorbent resin particles of Comparative Example 1 which had not undergone the steps of particle formation, granulation, and reparticle formation had a low retention rate with respect to the non-woven fabric.
  • the water-absorbent resin particles of Comparative Examples 2 and 3 in which the degree of granulation was low and the proportion of granulated particles having a large particle size was low, although they had undergone the steps of granulation, granulation and re-granulation, were also retained in the non-woven fabric. The rate was low.

Abstract

Disclosed is a production method for water absorbent resin particles including polymer particles, said production method involving: polymerizing monomers including ethylenically unsaturated monomers to obtain a water-containing polymer gel; grinding the water-containing polymer gel to obtain a particle group containing a fine powder having a particle size of less than 180 μm; granulating the particle group to obtain a granulated particle group that includes granulated particles; and further grinding the granulated particle group to obtain polymer particles. The granulated particle group prior to further grinding includes at least 70 mass% granulated particles that would not traverse a JIS-standard sieve that has an aperture of 850 µm.

Description

吸水性樹脂粒子、吸収体及び吸収性物品の製造方法Method for manufacturing water-absorbent resin particles, absorbers and absorbent articles
 本発明は、吸水性樹脂粒子、吸収体及び吸収性物品の製造方法に関する。 The present invention relates to a method for producing water-absorbent resin particles, an absorber and an absorbent article.
 尿等の水を主成分とする液体を吸収するための吸収性物品には、吸収体が用いられている。吸収体の構成は一般に、吸水性樹脂粒子と繊維状物とを含む。 Absorbents are used for absorbent articles for absorbing water-based liquids such as urine. The composition of the absorber generally includes water-absorbent resin particles and fibrous material.
 吸水性樹脂粒子の製造においては、重合により得られたブロック状の重合体を粉砕等の処理により粒子化する工程が行われている。粉砕により発生する、粒子径180μm未満の粒子等の小さい粒子は、造粒により粒子径を増大させて使用されている(例えば特許文献1)。 In the production of water-absorbent resin particles, a step of pulverizing the block-shaped polymer obtained by polymerization into particles is performed. Small particles such as particles having a particle size of less than 180 μm generated by pulverization are used by increasing the particle size by granulation (for example, Patent Document 1).
特開2005-54151号公報Japanese Unexamined Patent Publication No. 2005-54151
 吸収体に用いられる吸水性樹脂粒子は一般に、繊維状物に対して微小であり、吸水性樹脂粒子が繊維状物の間で移動することがある。吸収体の中で吸水性樹脂粒子の位置が変わると、吸収体の吸収性能が不均一になり、十分な性能を発揮できないおそれがある。また、吸収体の吸収性能が不均一になることは、尿等の液体を吸収した後の吸収体強度の低下にも影響を与えるおそれがある。そのため、吸水性樹脂粒子は、吸収体に用いられる繊維状物によく絡み、繊維状物に対する保持性が高いことが望ましい。 The water-absorbent resin particles used for the absorber are generally finer than the fibrous material, and the water-absorbent resin particles may move between the fibrous material. If the position of the water-absorbent resin particles changes in the absorber, the absorption performance of the absorber becomes non-uniform, and there is a possibility that sufficient performance cannot be exhibited. In addition, the non-uniform absorption performance of the absorber may affect the decrease in the strength of the absorber after absorbing a liquid such as urine. Therefore, it is desirable that the water-absorbent resin particles are well entangled with the fibrous material used for the absorber and have high retention with respect to the fibrous material.
 本発明は、繊維状物に対する高い保持性を有する吸水性樹脂粒子を提供することを目的とする。 An object of the present invention is to provide water-absorbent resin particles having high retention on fibrous substances.
 本発明の重合体粒子を含む吸水性樹脂粒子の製造方法は、エチレン性不飽和単量体を含む単量体を重合して含水ゲル状重合体を得ることと、該含水ゲル状重合体を粒子化して粒子径180μm未満の微粉を含む粒子群を得ることと、該粒子群を造粒して造粒粒子を含む造粒粒子群を得ることと、該造粒粒子群を再度粒子化して重合体粒子を得ることと、を含み、再粒子化前の造粒粒子群のうち、目開き850μmのJIS標準篩を通過しない造粒粒子の存在率が70質量%以上である。 The method for producing water-absorbent resin particles containing the polymer particles of the present invention is to polymerize a monomer containing an ethylenically unsaturated monomer to obtain a hydrogel polymer, and to obtain the hydrogel polymer. Particles are obtained to obtain a particle group containing fine particles having a particle diameter of less than 180 μm, the particle group is granulated to obtain a granulated particle group containing granulated particles, and the granulated particle group is atomized again. The abundance of the granulated particles that do not pass through the JIS standard sieve having a mesh size of 850 μm is 70% by mass or more in the granulated particle group before repartitioning, which includes obtaining polymer particles.
 上記方法において、再粒子化前の造粒粒子群のうち、目開き31.5mmのJIS標準篩を通過しない造粒粒子の存在率が5質量%以上であることが好ましい。 In the above method, it is preferable that the abundance rate of the granulated particles that do not pass through the JIS standard sieve having a mesh size of 31.5 mm is 5% by mass or more in the granulated particle group before repartitioning.
 上記方法は、重合体粒子に表面架橋を行って吸水性樹脂粒子を得ることを更に含んでよい。 The above method may further include subjecting the polymer particles to surface cross-linking to obtain water-absorbent resin particles.
 本発明はまた、上記方法により吸水性樹脂粒子を得ることと、該吸水性樹脂粒子及び繊維状物を含む吸収体を得ることと、を含む、吸収体の製造方法を提供する。 The present invention also provides a method for producing an absorber, which comprises obtaining water-absorbent resin particles by the above method and obtaining an absorber containing the water-absorbent resin particles and a fibrous substance.
 本発明はまた、上記方法により吸収体を得ることと、該吸収体を液体不透過性シート及び液体透過性シートの間に配置することと、を含む、吸収性物品の製造方法を提供する。 The present invention also provides a method for producing an absorbent article, which comprises obtaining an absorber by the above method and arranging the absorber between a liquid permeable sheet and a liquid permeable sheet.
 本発明により、繊維状物に対する高い保持性を有する吸水性樹脂粒子を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide water-absorbent resin particles having high retention to fibrous substances.
吸収性物品の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of an absorbent article. 実施例で使用した撹拌翼の概形を示す平面図である。It is a top view which shows the outline shape of the stirring blade used in an Example. 吸水性樹脂粒子の加圧下吸収倍率の測定装置を示す概略図である。It is a schematic diagram which shows the measuring apparatus of the absorption magnification under pressure of a water-absorbing resin particle. 吸水性樹脂粒子保持率の測定方法を示す概略図である。It is the schematic which shows the measuring method of the water absorption resin particle retention rate.
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
 本明細書において、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。「(ポリ)」とは、「ポリ」の接頭語がある場合及びない場合の双方を意味するものとする。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「水溶性」とは、25℃において水に5質量%以上の溶解性を示すことをいう。本明細書に例示する材料は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「生理食塩水」とは、0.9質量%塩化ナトリウム水溶液をいう。目開きXの篩を通過する粒子とは、粒子が目開きXの篩を通過可能な大きさを有していることを意味し、実際に粒子が目開きXの篩を通過する工程を必要とするものではない。 In this specification, "acrylic" and "methacryl" are collectively referred to as "(meth) acrylic". Similarly, "acrylate" and "methacrylate" are also referred to as "(meth) acrylate". "(Poly)" shall mean both with and without the "poly" prefix. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. "Water-soluble" means that it exhibits a solubility in water of 5% by mass or more at 25 ° C. The materials exemplified in the present specification may be used alone or in combination of two or more. The content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. "Saline" refers to a 0.9% by mass sodium chloride aqueous solution. The particles that pass through the sieve of the opening X mean that the particles have a size that allows them to pass through the sieve of the opening X, and a step of actually passing the particles through the sieve of the opening X is required. It is not something to do.
 本実施形態に係る、重合体粒子を含む吸水性樹脂粒子の製造方法は、エチレン性不飽和単量体を含む単量体を重合して含水ゲル状重合体を得ることと、該含水ゲル状重合体を粒子化して粒子径180μm未満の微粉を含む粒子群を得ることと、該粒子群を造粒して造粒粒子を含む造粒粒子群を得ることと、該造粒粒子群を再度粒子化して重合体粒子を得ることと、を含む。以下、各工程について詳述する。 The method for producing water-absorbent resin particles containing polymer particles according to the present embodiment is to polymerize a monomer containing an ethylenically unsaturated monomer to obtain a hydrogel polymer, and to obtain the hydrogel polymer. The polymer is granulated to obtain a particle group containing fine particles having a particle diameter of less than 180 μm, the particle group is granulated to obtain a granulated particle group containing granulated particles, and the granulated particle group is regenerated. Includes, to obtain polymer particles by particle formation. Hereinafter, each step will be described in detail.
[重合]
 まず、エチレン性不飽和単量体を含む単量体を重合させて含水ゲル状重合体を得る。含水ゲル状重合体は、エチレン性不飽和単量体を含む単量体の重合により形成された架橋重合体が水を含みゲル状となったものであってよい。本実施形態に係る製造方法によって得られる吸水性樹脂粒子は、エチレン性不飽和単量体を含む単量体の重合により形成された架橋重合体を含むことができる。架橋重合体は、エチレン性不飽和単量体に由来する単量体単位を有する。すなわち、本実施形態に係る吸水性樹脂粒子は、エチレン性不飽和単量体に由来する構造単位を有することができる。
[polymerization]
First, a monomer containing an ethylenically unsaturated monomer is polymerized to obtain a hydrogel polymer. The hydrogel-like polymer may be a crosslinked polymer formed by polymerization of a monomer containing an ethylenically unsaturated monomer, which contains water and becomes a gel. The water-absorbent resin particles obtained by the production method according to the present embodiment can contain a crosslinked polymer formed by polymerizing a monomer containing an ethylenically unsaturated monomer. The crosslinked polymer has a monomeric unit derived from an ethylenically unsaturated monomer. That is, the water-absorbent resin particles according to the present embodiment can have a structural unit derived from an ethylenically unsaturated monomer.
 重合は、例えば水溶液重合法により行うことができる。以下、水溶液重合法による単量体の重合について説明する。 Polymerization can be carried out by, for example, an aqueous solution polymerization method. Hereinafter, the polymerization of the monomer by the aqueous solution polymerization method will be described.
 エチレン性不飽和単量体は水溶性であることが好ましい。エチレン性不飽和単量体としては例えば、(メタ)アクリル酸、マレイン酸、無水マレイン酸、フマル酸等のα,β-不飽和カルボン酸及びその塩等のカルボン酸系単量体;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート等の非イオン性単量体;N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体及びその4級化物等;ビニルスルホン酸、スチレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸及びそれらの塩等のスルホン酸系単量体等が挙げられる。エチレン性不飽和単量体は、1種を単独で使用してもよく、2種以上を併用してもよい。 The ethylenically unsaturated monomer is preferably water-soluble. Examples of the ethylenically unsaturated monomer include α, β-unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid, maleic anhydride and fumaric acid, and carboxylic acid-based monomers such as salts thereof; (meth). ) Nonionic monomers such as acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate; N, N- Amino group-containing unsaturated monomers such as diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, diethylaminopropyl (meth) acrylamide and quaternized products thereof; vinyl sulfonic acid, styrene sulfonic acid, 2 Examples thereof include sulfonic acid-based monomers such as- (meth) acrylamide-2-methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid and salts thereof. As the ethylenically unsaturated monomer, one type may be used alone, or two or more types may be used in combination.
 エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩、(メタ)アクリルアミド、並びにN,N-ジメチルアクリルアミドからなる群から選ばれる少なくとも1種を含むことが好ましく、(メタ)アクリル酸及びその塩から選択される少なくとも1種を含むことがより好ましい。また、(メタ)アクリル酸及びその塩と、他のエチレン性不飽和単量体を共重合させてもよい。この場合、エチレン性不飽和単量体の総量のうち、上記(メタ)アクリル酸及びその塩が70~100モル%用いられることが好ましく、80~100モル%用いられることがより好ましく、90~100モル%用いられることが更に好ましい。エチレン性不飽和単量体は、アクリル酸及びその塩の少なくとも一方を含むことが好ましい。 The ethylenically unsaturated monomer preferably contains at least one selected from the group consisting of (meth) acrylic acid and salts thereof, (meth) acrylamide, and N, N-dimethylacrylamide, and is preferably (meth) acrylic acid. It is more preferable to contain at least one selected from and salts thereof. Further, (meth) acrylic acid and a salt thereof may be copolymerized with another ethylenically unsaturated monomer. In this case, 70 to 100 mol% of the above (meth) acrylic acid and a salt thereof are preferably used, more preferably 80 to 100 mol%, and 90 to 90 to 100 mol% of the total amount of the ethylenically unsaturated monomer. It is more preferable to use 100 mol%. The ethylenically unsaturated monomer preferably contains at least one of acrylic acid and a salt thereof.
 エチレン性不飽和単量体が(メタ)アクリル酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸等のように酸基を有する場合、必要に応じてその酸基があらかじめアルカリ性中和剤により中和されたものを用いることができる。このようなアルカリ性中和剤としては、例えば水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニア等が挙げられる。これらのアルカリ性中和剤は、中和操作を簡便にするために水溶液の状態にして用いてもよい。アルカリ性中和剤は1種を単独で使用してもよく、2種以上を併用してもよい。なお、酸基の中和は、原料であるエチレン性不飽和単量体の重合前に行ってもよく、重合中又は重合後に行ってもよい。 When the ethylenically unsaturated monomer has an acid group such as (meth) acrylic acid and 2- (meth) acrylamide-2-methylpropanesulfonic acid, the acid group is an alkaline neutralizer in advance if necessary. Can be used as neutralized by. Examples of such an alkaline neutralizer include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium hydroxide and potassium carbonate; ammonia and the like. These alkaline neutralizers may be used in the form of an aqueous solution in order to simplify the neutralization operation. One type of alkaline neutralizer may be used alone, or two or more types may be used in combination. The acid group may be neutralized before the polymerization of the ethylenically unsaturated monomer as a raw material, or during or after the polymerization.
 アルカリ性中和剤によるエチレン性不飽和単量体の中和度は、得られる吸水性樹脂粒子の浸透圧を高めることで吸水性能を高め、かつ余剰のアルカリ性中和剤の存在に起因する安全性等に問題が生じないようにする観点から、通常、10~100モル%であることが好ましく、30~90モル%であることがより好ましく、40~85モル%であることが更に好ましく、50~80モル%であることがより更に好ましい。ここで、中和度は、エチレン性不飽和単量体が有する全ての酸基に対する中和度とする。 The degree of neutralization of the ethylenically unsaturated monomer by the alkaline neutralizer enhances the water absorption performance by increasing the osmotic pressure of the obtained water-absorbent resin particles, and is safe due to the presence of the excess alkaline neutralizer. From the viewpoint of preventing problems such as, usually, it is preferably 10 to 100 mol%, more preferably 30 to 90 mol%, further preferably 40 to 85 mol%, and 50. It is even more preferably ~ 80 mol%. Here, the degree of neutralization is the degree of neutralization for all the acid groups of the ethylenically unsaturated monomer.
 エチレン性不飽和単量体は、通常、水溶液の状態で用いることが好適である。エチレン性不飽和単量体を含む水溶液(以下、単に「単量体水溶液」という)におけるエチレン性不飽和単量体の濃度は、20質量%以上飽和濃度以下とすればよく、25~70質量%が好ましく、30~50質量%がより好ましい。 The ethylenically unsaturated monomer is usually preferably used in the state of an aqueous solution. The concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer (hereinafter, simply referred to as "monomeric aqueous solution") may be 20% by mass or more and the saturation concentration or less, and is 25 to 70% by mass. %, More preferably 30 to 50% by mass.
 エチレン性不飽和単量体の使用量は、単量体全量(吸水性樹脂粒子を得るための単量体全量。例えば、架橋重合体の構造単位を与える単量体の全量。以下同様。)に対して70~100モル%であってよく、80~100モル%、90~100モル%、95~100モル%、又は100モル%であってよい。なかでも、(メタ)アクリル酸及びその塩の割合が単量体全量に対して70~100モル%であってよく、80~100モル%、90~100モル%、95~100モル%、又は100モル%であってよい。「(メタ)アクリル酸及びその塩の割合」は、(メタ)アクリル酸及びその塩の合計量の割合を意味する。 The amount of the ethylenically unsaturated monomer used is the total amount of the monomers (the total amount of the monomers for obtaining the water-absorbent resin particles. For example, the total amount of the monomers giving the structural unit of the crosslinked polymer. The same shall apply hereinafter). It may be 70 to 100 mol%, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or 100 mol%. Among them, the ratio of (meth) acrylic acid and its salt may be 70 to 100 mol% with respect to the total amount of the monomer, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or It may be 100 mol%. "Ratio of (meth) acrylic acid and its salt" means the ratio of the total amount of (meth) acrylic acid and its salt.
 吸水性樹脂粒子は、例えば、エチレン性不飽和単量体に由来する構造単位を有する架橋重合体を含む吸水性樹脂粒子であって、エチレン性不飽和単量体が、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも1種の化合物を含み、(メタ)アクリル酸及びその塩の割合が、吸水性樹脂粒子を得るための単量体全量に対して70~100モル%であるものであってよい。 The water-absorbent resin particles are, for example, water-absorbent resin particles containing a crosslinked polymer having a structural unit derived from an ethylenically unsaturated monomer, and the ethylenically unsaturated monomer is composed of (meth) acrylic acid and It contains at least one compound selected from the group consisting of the salts, and the ratio of (meth) acrylic acid and its salts is 70 to 100 mol% with respect to the total amount of monomers for obtaining water-absorbent resin particles. It may be a thing.
 単量体水溶液は、重合開始剤を含んでいてよい。単量体水溶液に含まれる単量体の重合は、単量体水溶液に重合開始剤を添加し、必要により加熱、光照射等を行うことで開始される。重合開始剤としては、光重合開始剤又はラジカル重合開始剤が挙げられ、なかでも水溶性ラジカル重合開始剤が好ましく用いられる。重合開始剤は、例えばアゾ系化合物、過酸化物等であってよい。 The monomer aqueous solution may contain a polymerization initiator. The polymerization of the monomer contained in the aqueous monomer solution is started by adding a polymerization initiator to the aqueous monomer solution and, if necessary, heating, irradiating with light or the like. Examples of the polymerization initiator include a photopolymerization initiator and a radical polymerization initiator, and among them, a water-soluble radical polymerization initiator is preferably used. The polymerization initiator may be, for example, an azo compound, a peroxide or the like.
 アゾ系化合物としては、例えば、2,2’-アゾビス[2-(N-フェニルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス{2-[N-(4-クロロフェニル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス{2-[N-(4-ヒドロキシフェニル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス[2-(N-ベンジルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス[2-(N-アリルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス{2-[N-(2-ヒドロキシエチル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩、2,2’-アゾビス(2-メチルプロピオンアミド)二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二硫酸塩二水和物、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]等のアゾ系化合物等を挙げることができる。良好な吸水性能を有する吸水性樹脂粒子が得られやすいという観点から、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩及び2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物が好ましい。これらのアゾ系化合物は、1種を単独で使用してもよく、2種以上を併用してもよい。 Examples of the azo compound include 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride and 2,2'-azobis {2- [N- (4-chlorophenyl) amidino] propane}. Dihydrochloride, 2,2'-azobis {2- [N- (4-hydroxyphenyl) amidino] propane} dihydrochloride, 2,2'-azobis [2- (N-benzylamidino) propane] dihydrochloride , 2,2'-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis {2- [N- (2-Hydroxyethyl) amidino] propane} dihydrochloride, 2,2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2 -(2-Imidazoline-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (4,5,6,7-tetrahydro-1H-1,3-diazepine-2-yl) propane] Dihydrochloride, 2,2'-azobis [2- (5-hydroxy-3,4,5,6-tetrahydropyrimidine-2-yl) propane] dihydrochloride, 2,2'-azobis {2- [1 -(2-Hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride, 2,2'-azobis (2-methylpropionamide) dihydrochloride, 2,2'-azobis [2- (2) -Imidazoline-2-yl) propane] disulfate dihydrate, 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] tetrahydrate, 2,2'-azobis Examples thereof include azo compounds such as [2-methyl-N- (2-hydroxyethyl) propionamide]. From the viewpoint that water-absorbent resin particles having good water-absorbing performance can be easily obtained, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis {2- [1- (2-hydroxy) Ethyl) -2-imidazolin-2-yl] propane} dihydrochloride and 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] tetrahydrate are preferred. One of these azo compounds may be used alone, or two or more thereof may be used in combination.
 過酸化物としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩類;メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート等の有機過酸化物類;過酸化水素等の過酸化物が挙げられる。これらの過酸化物のなかでも、良好な吸水性能を有する吸水性樹脂粒子が得られる観点から、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム又は過酸化水素を用いることが好ましく、過硫酸カリウム、過硫酸アンモニウム又は過硫酸ナトリウムを用いることがより好ましい。これらの過酸化物は、1種を単独で使用してもよく、2種以上を併用してもよい。 Examples of the peroxide include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t. -Organic peroxides such as butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate; peroxides such as hydrogen peroxide can be mentioned. Among these peroxides, potassium persulfate, ammonium persulfate, sodium persulfate or hydrogen peroxide is preferably used from the viewpoint of obtaining water-absorbent resin particles having good water absorption performance, and potassium persulfate and persulfate are preferable. It is more preferable to use ammonium sulfate or sodium persulfate. One of these peroxides may be used alone, or two or more thereof may be used in combination.
 重合開始剤と還元剤とを組み合わせて用いて、レドックス重合開始剤として用いることもできる。還元剤としては、例えば、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、及びL-アスコルビン酸等が挙げられる。 It can also be used as a redox polymerization initiator by using a polymerization initiator and a reducing agent in combination. Examples of the reducing agent include sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, L-ascorbic acid and the like.
 重合開始剤の総使用量は、急激な重合反応を回避し、重合反応時間を短縮する観点から、重合に用いられるエチレン性不飽和単量体100モルに対して0.001~1モルが好ましく、0.005~0.5モルがより好ましく、0.008~0.3モルが更に好ましく、0.01~0.2モルがより更に好ましい。 The total amount of the polymerization initiator used is preferably 0.001 to 1 mol with respect to 100 mol of the ethylenically unsaturated monomer used for the polymerization from the viewpoint of avoiding a rapid polymerization reaction and shortening the polymerization reaction time. , 0.005 to 0.5 mol, more preferably 0.008 to 0.3 mol, even more preferably 0.01 to 0.2 mol.
 単量体水溶液は、内部架橋剤を含むことが好ましい。内部架橋剤を含むことにより、得られる架橋重合体が、その内部架橋構造として、重合反応による自己架橋に加え、内部架橋剤による架橋を有することができる。内部架橋剤としては、例えば重合性不飽和基を2個以上有する化合物が用いられ、好ましくは、重合性不飽和基を2個有する化合物が使用される。例えば、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、トリメチロールプロパン、グリセリンポリオキシエチレングリコール、ポリオキシプロピレングリコール、及び(ポリ)グリセリン等のポリオール類のジ又はトリ(メタ)アクリル酸エステル類;上記ポリオールとマレイン酸及びフマル酸等の不飽和酸類とを反応させて得られる不飽和ポリエステル類;N,N’-メチレンビス(メタ)アクリルアミド等のビスアクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ又はトリ(メタ)アクリル酸エステル類;トリレンジイソシアネート又はヘキサメチレンジイソシアネート等のポリイソシアネートと(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉;アリル化セルロース;ジアリルフタレート;N,N’,N”-トリアリルイソシアヌレート;ジビニルベンゼン等が挙げられる。 The monomer aqueous solution preferably contains an internal cross-linking agent. By including the internal cross-linking agent, the obtained cross-linked polymer can have cross-linking by the internal cross-linking agent in addition to self-cross-linking by the polymerization reaction as its internal cross-linking structure. As the internal cross-linking agent, for example, a compound having two or more polymerizable unsaturated groups is used, and preferably, a compound having two polymerizable unsaturated groups is used. For example, di or tri (meth) acrylic acid esters of polyols such as (poly) ethylene glycol, (poly) propylene glycol, trimethylpropane, glycerin polyoxyethylene glycol, polyoxypropylene glycol, and (poly) glycerin; Unsaturated polyesters obtained by reacting the above polyol with unsaturated acids such as maleic acid and fumaric acid; bisacrylamides such as N, N'-methylenebis (meth) acrylamide; polyepoxide and (meth) acrylic acid. Di or tri (meth) acrylic acid esters obtained by reaction; carbamil di (meth) acrylic acid obtained by reacting polyisocyanate such as tolylene diisocyanate or hexamethylene diisocyanate with hydroxyethyl (meth) acrylic acid. Esters; allylicated starch; allylated cellulose; diallyl phthalate; N, N', N "-triallyl isocyanurate; divinylbenzene and the like.
 また、上記重合性不飽和基を2個以上有する化合物の他に、反応性官能基を2個以上有する化合物を内部架橋剤として用いることができる。例えば、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び(ポリ)グリセリンジグリシジルエーテル等のグリシジル基含有化合物;(ポリ)エチレングリコール、(ポリ)プロピレングリコール、(ポリ)グリセリン、ペンタエリスリトール、エチレンジアミン、ポリエチレンイミン、グリシジル(メタ)アクリレート等が挙げられる。これらのなかでは、低温での反応性に優れている観点から、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び(ポリ)グリセリンジグリシジルエーテルが好ましい。これら内部架橋剤は、1種を単独で使用してもよく、2種以上を併用してもよい。 Further, in addition to the compound having two or more polymerizable unsaturated groups, a compound having two or more reactive functional groups can be used as an internal cross-linking agent. For example, glycidyl group-containing compounds such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether; (poly) ethylene glycol, (poly) propylene glycol, (poly). Examples thereof include glycerin, pentaerythritol, ethylenediamine, polyethyleneimine, and glycidyl (meth) acrylate. Among these, (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether are preferable from the viewpoint of excellent reactivity at low temperature. These internal cross-linking agents may be used alone or in combination of two or more.
 内部架橋剤を使用する場合、その使用量は、得られる吸水性樹脂粒子の吸水能等の吸水性能を十分に高めるために、エチレン性不飽和単量体100モルに対して、0.0001モル以上が好ましく、0.001モル以上がより好ましく、0.003モル以上が更に好ましく、0.01モル以上がより更に好ましい。 When an internal cross-linking agent is used, the amount used is 0.0001 mol with respect to 100 mol of the ethylenically unsaturated monomer in order to sufficiently enhance the water absorption performance such as the water absorption capacity of the obtained water-absorbent resin particles. The above is preferable, 0.001 mol or more is more preferable, 0.003 mol or more is further preferable, and 0.01 mol or more is further preferable.
 内部架橋剤の添加は、架橋重合体を不溶化させ、好適な吸水能をもたらすものの、内部架橋剤の添加量の増大は、得られる吸水性樹脂粒子の吸水能の低下につながる。したがって、内部架橋剤の量は、エチレン性不飽和単量体100モルに対して、例えば0.50モル以下であることが好ましく、より好ましくは0.25モル以下であり、更に好ましくは0.10モル以下である。 The addition of the internal cross-linking agent insolubilizes the cross-linked polymer and brings about a suitable water absorption capacity, but an increase in the amount of the internal cross-linking agent added leads to a decrease in the water absorption capacity of the obtained water-absorbent resin particles. Therefore, the amount of the internal cross-linking agent is preferably, for example, 0.50 mol or less, more preferably 0.25 mol or less, and further preferably 0. It is 10 mol or less.
 単量体水溶液には、必要に応じて、連鎖移動剤、増粘剤等の添加剤が含まれていてもよい。連鎖移動剤としては、例えば、チオール類、チオール酸類、第2級アルコール類、次亜リン酸、亜リン酸等が挙げられる。増粘剤としては、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ポリエチレングリコール、ポリアクリル酸、ポリアクリル酸中和物、ポリアクリルアミド等が挙げられる。これらは1種を単独で使用してもよく、2種以上を併用してもよい。単量体水溶液には、水溶性有機溶媒等の、水以外の溶媒が適宜配合されてもよい。 The monomer aqueous solution may contain additives such as a chain transfer agent and a thickener, if necessary. Examples of the chain transfer agent include thiols, thiol acids, secondary alcohols, hypophosphorous acid, phosphorous acid and the like. Examples of the thickener include carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, polyethylene glycol, polyacrylic acid, neutralized polyacrylic acid, polyacrylamide and the like. One of these may be used alone, or two or more thereof may be used in combination. A solvent other than water, such as a water-soluble organic solvent, may be appropriately added to the monomer aqueous solution.
 重合方式としては、例えば、単量体水溶液を撹拌しない状態(例えば、静置状態)で重合する静置重合方式、又は反応装置内で単量体水溶液を撹拌しながら重合する撹拌重合方式であってよい。静置重合方式である水溶液静置重合により含水ゲル状重合体を得ることが好ましい。静置重合方式では、重合完了時、反応容器中に存在した単量体水溶液と略同じ体積を占める単一のブロック状の含水ゲル状重合体を得ることができる。 The polymerization method is, for example, a static polymerization method in which the monomer aqueous solution is polymerized without stirring (for example, a static state), or a stirring polymerization method in which the monomer aqueous solution is polymerized while being stirred in the reaction apparatus. It's okay. It is preferable to obtain a hydrogel-like polymer by aqueous solution static polymerization, which is a static polymerization method. In the static polymerization method, when the polymerization is completed, a single block-shaped hydrogel-like polymer occupying substantially the same volume as the monomer aqueous solution existing in the reaction vessel can be obtained.
 製造の形態は、回分、半連続、連続等であってよい。例えば、水溶液静置連続重合においては、ベルトコンベア状の連続重合装置に単量体水溶液を連続的に供給しながら重合反応を行い、例えば帯状等の連続的な形状の含水ゲルを得ることができる。 The form of production may be batch, semi-continuous, continuous, etc. For example, in the aqueous solution static continuous polymerization, a polymerization reaction can be carried out while continuously supplying a monomer aqueous solution to a belt conveyor-shaped continuous polymerization apparatus to obtain a hydrogel having a continuous shape such as a band shape. ..
 重合温度は、使用する重合開始剤によって異なるが、重合を迅速に進行させ、重合時間を短くすることにより生産性を高める観点から、0~130℃が好ましく、10~110℃がより好ましい。重合時間は、使用する重合開始剤の種類及び量、反応温度等に応じて適宜設定されるが、1~200分が好ましく、5~100分がより好ましい。 The polymerization temperature varies depending on the polymerization initiator used, but is preferably 0 to 130 ° C., more preferably 10 to 110 ° C. from the viewpoint of increasing the productivity by rapidly advancing the polymerization and shortening the polymerization time. The polymerization time is appropriately set according to the type and amount of the polymerization initiator used, the reaction temperature, and the like, but is preferably 1 to 200 minutes, more preferably 5 to 100 minutes.
 単量体を重合して得られるブロック状の含水ゲル状重合体の含水率は、粗砕工程が実施しやすいという観点から、30~80質量%が好ましく、40~75質量%がより好ましく、50~70質量%が更に好ましい。含水ゲル状重合体の含水率は、単量体水溶液の水分量、重合後の乾燥、加湿等の操作により調整される。なお、含水ゲル状重合体の含水率とは、含水ゲル状重合体の総質量に占める水の含量を質量%で表したものである。 The water content of the block-shaped water-containing gel-like polymer obtained by polymerizing the monomers is preferably 30 to 80% by mass, more preferably 40 to 75% by mass, from the viewpoint that the coarse crushing step can be easily carried out. 50 to 70% by mass is more preferable. The water content of the water-containing gel-like polymer is adjusted by operations such as the water content of the monomer aqueous solution, drying after polymerization, and humidification. The water content of the hydrogel polymer is the content of water in the total mass of the hydrogel polymer in% by mass.
[粒子化]
 次に、含水ゲル状重合体を粒子化して、粒子径180μm未満の微粉を含む粒子群を得る。粒子化工程は、最終的に粒子径180μm未満の微粉を含む粒子群が得られればよく、粒子化工程中に、例えば、重合して得られた含水ゲル状重合体を粗砕して粗砕物を得る工程、及び、粗砕物を更に粉砕して粒子群を得る工程を含んでいてよい。粒子化工程は、含水ゲル状重合体、粗砕物及び/又は粒子群を乾燥する工程を含んでいてよい。粗砕物は、乾燥工程を経た後で粉砕に供されることが好ましい。粒子化工程はさらに、粉砕して得られた粒子群を分級する工程を含んでいてもよい。粒子化工程により得られる粒子群は、粒子径180μm未満である微粉のみからなっていてもよい。以下、粒子化工程中の各工程について詳述する。
[Particle]
Next, the hydrogel polymer is atomized to obtain a particle group containing fine particles having a particle size of less than 180 μm. In the particle formation step, it is sufficient that a group of particles containing fine particles having a particle diameter of less than 180 μm is finally obtained. A step of obtaining a particle group and a step of further crushing the coarsely crushed product to obtain a particle group may be included. The particle swarming step may include the step of drying the hydrogel polymer, the crude product and / or the particle group. The coarsely crushed product is preferably subjected to crushing after undergoing a drying step. The particle swarming step may further include a step of classifying the particle group obtained by pulverization. The particle group obtained by the particle swarming step may consist only of fine particles having a particle size of less than 180 μm. Hereinafter, each step in the particle formation step will be described in detail.
(粗砕)
 粒子化工程は、含水ゲル状重合体を粗砕して粗砕物を得る工程を含むことができる。含水ゲル状重合体を粗砕して得られる粗砕物は、含水ゲル状であってよい。粗砕物は、粒子状であってよく、粒子が連なったような細長い形状であってもよい。粗砕物の最小辺のサイズは、例えば、0.1~15mm程度であってよく、1.0~10mm程度であることが好ましい。粗砕物の最大辺のサイズは、0.1~200mm程度であってよく、1.0~150mm程度であることが好ましい。
(Rough crushing)
The particleization step can include a step of coarsely crushing the hydrogel polymer to obtain a coarsely crushed product. The crude product obtained by coarsely crushing the hydrogel-like polymer may be in the form of a hydrogel. The coarsely crushed product may be in the form of particles, or may have an elongated shape in which particles are connected. The size of the minimum side of the coarsely crushed product may be, for example, about 0.1 to 15 mm, preferably about 1.0 to 10 mm. The size of the maximum side of the coarsely crushed product may be about 0.1 to 200 mm, preferably about 1.0 to 150 mm.
 粗砕装置としては、例えば、ニーダー(例えば、加圧式ニーダー、双腕型ニーダー等)、ミートチョッパー、カッターミル、ファーマミル等を用いることができる。なかでも、双腕型ニーダー、ミートチョッパー、カッターミルがより好ましい。粗砕装置は後述の粉砕装置と同一種類であってもよい。粗砕工程においては、裁断機を用いて含水ゲル状重合体を例えば5cm角程度の大きさに裁断してもよい。裁断機によって含水ゲル状重合体を裁断した後に、粗砕装置を用いて更に粗砕してもよい。上述の重合工程が、ニーダー等の装置によって撹拌重合により行われる場合は、重合工程及び粗砕工程が実質的に同時に行われてもよい。 As the coarse crushing device, for example, a kneader (for example, a pressurized kneader, a double-armed kneader, etc.), a meat chopper, a cutter mill, a pharma mill, or the like can be used. Of these, a double-armed kneader, a meat chopper, and a cutter mill are more preferable. The crushing device may be of the same type as the crushing device described later. In the rough crushing step, the hydrogel polymer may be cut into a size of, for example, about 5 cm square using a cutting machine. After cutting the hydrogel polymer with a cutting machine, it may be further coarsely crushed using a crushing device. When the above-mentioned polymerization step is carried out by stirring polymerization with an apparatus such as a kneader, the polymerization step and the coarse crushing step may be carried out substantially at the same time.
(乾燥)
 粒子化工程は、含水ゲル状重合体、粗砕物及び/又は粉砕物を乾燥する工程を含むことができる。含水ゲル重合体、粗砕物又は粉砕物中の、水を含む溶媒を加熱及び/又は送風により除去することで、これらの乾燥物を得ることができる。乾燥は、含水ゲル状重合体を粗砕した後、かつ粉砕前に行うことが好ましい。すなわち粒子化工程は、含水ゲル状の粗砕物を乾燥して乾燥粗砕物を得る工程を含むことが好ましい。
(Dry)
The particleization step can include the step of drying the hydrogel polymer, the coarsely crushed product and / or the pulverized product. These dried products can be obtained by removing the solvent containing water in the hydrogel polymer, coarsely crushed product or crushed product by heating and / or blowing air. Drying is preferably carried out after the hydrogel polymer is roughly crushed and before crushing. That is, the particle-forming step preferably includes a step of drying the hydrogel-like coarse crushed product to obtain a dry crushed product.
 乾燥の方法は、自然乾燥、加熱乾燥、減圧乾燥等の方法であってよい。乾燥は、例えば常圧下又は減圧下であってよく、乾燥効率を高めるために窒素等の気流下等で行ってもよい。乾燥は、複数の方法を組み合わせて用いてもよい。乾燥が常圧で行われる場合の乾燥温度は、好ましくは70~250℃であり、より好ましくは80~200℃である。乾燥工程は粗砕物の含水率が20質量%以下、好ましくは10質量%以下、より好ましくは5質量%以下になるまで行う。乾燥温度は、120℃以上、150℃以上又は180℃以上であってよい。 The drying method may be natural drying, heat drying, vacuum drying or the like. The drying may be performed under normal pressure or reduced pressure, for example, and may be performed under an air flow such as nitrogen in order to improve the drying efficiency. For drying, a plurality of methods may be used in combination. When the drying is carried out at normal pressure, the drying temperature is preferably 70 to 250 ° C, more preferably 80 to 200 ° C. The drying step is carried out until the water content of the coarsely crushed product is 20% by mass or less, preferably 10% by mass or less, and more preferably 5% by mass or less. The drying temperature may be 120 ° C. or higher, 150 ° C. or higher, or 180 ° C. or higher.
(粉砕)
 粒子化工程は、含水ゲル状重合体、粗砕物及び/又はこれらの乾燥物を粉砕する工程を含むことができる。含水ゲル状重合体、粗砕物及び/又はこれらの乾燥物を粉砕することにより、微粉を含む粒子群が得られる。粉砕は、粗砕及び乾燥の後に行われることが好ましい。すなわち粒子化工程は、乾燥粗砕物を粉砕して微粉を含む粒子群を得る工程を含むことが好ましい。
(Crushing)
The particleization step can include a step of crushing a hydrogel polymer, a coarsely crushed product and / or a dried product thereof. By pulverizing the hydrogel polymer, coarsely crushed product and / or dried product thereof, a particle group containing fine powder can be obtained. The pulverization is preferably carried out after coarse crushing and drying. That is, the particle swarming step preferably includes a step of pulverizing the dried coarse crushed product to obtain a particle group containing fine powder.
 粉砕には、例えば、ローラーミル(ロールミル)、スタンプミル、ジェットミル、高速回転粉砕機(ハンマーミル、ピンミル、ロータビータミル等)、容器駆動型ミル(回転ミル、振動ミル、遊星ミル等)等の粉砕機を使用することができる。好ましくは、高速回転粉砕機が使用される。粉砕機は、出口側に多孔板やスクリーン、グリッド等の、粉砕粒子の最大粒子径を制御する開口部を有していてもよい。開口部の形状は多角形、円形等であってよく、開口部の最大径は0.1~5mm、0.3~3.0mm、又は0.5~1.5mmであってよい。 For crushing, for example, roller mill (roll mill), stamp mill, jet mill, high-speed rotary crusher (hammer mill, pin mill, rotor beater mill, etc.), container-driven mill (rotary mill, vibration mill, planetary mill, etc.), etc. Crusher can be used. Preferably, a high speed rotary grinder is used. The crusher may have an opening on the outlet side, such as a perforated plate, a screen, or a grid, for controlling the maximum particle size of the crushed particles. The shape of the opening may be polygonal, circular, or the like, and the maximum diameter of the opening may be 0.1 to 5 mm, 0.3 to 3.0 mm, or 0.5 to 1.5 mm.
 粉砕は、粒子群の少なくとも一部が粒子径180μm未満の微粉となるように行えばよい。粉砕は、例えば、粒子径850μm未満程度の、造粒せずに使用可能な適切な粒子径を有する重合体粒子を得ることを主目的として粉砕しつつ、粒子径180μm未満の微粉が一部発生するような方法で行うことができる。 Grinding may be performed so that at least a part of the particle group becomes fine powder having a particle size of less than 180 μm. In the pulverization, for example, while pulverizing for the main purpose of obtaining polymer particles having a particle size of less than 850 μm and having an appropriate particle size that can be used without granulation, some fine particles having a particle size of less than 180 μm are generated. It can be done in such a way.
 粒子化工程により得られる粒子群全量のうち、粒子径180μm未満である微粉の存在率は、例えば1~100質量%であってよく、30~60質量%であることが好ましい。なお、粒子径180μm未満とは、目開き180μmのJIS標準篩を通過できることをいう。 The abundance of fine particles having a particle size of less than 180 μm in the total amount of the particle group obtained by the particle swarming step may be, for example, 1 to 100% by mass, preferably 30 to 60% by mass. The particle size of less than 180 μm means that the particle size can pass through a JIS standard sieve having a mesh size of 180 μm.
 粒子化工程により得られる粒子群には、粒子径180μm以上850μm未満の粒子(目開き850μmのJIS標準篩を通過し、かつ目開き180μmのJIS標準篩を通過しない粒子)が含まれていてよく、粒子径250μm以上850μm未満の粒子(目開き850μmのJIS標準篩を通過し、かつ目開き250μmのJIS標準篩を通過しない粒子)が含まれていてよい。 The particle group obtained by the particle formation step may include particles having a particle diameter of 180 μm or more and less than 850 μm (particles that pass through a JIS standard sieve having a mesh size of 850 μm and do not pass through a JIS standard sieve having a mesh size of 180 μm). , Particles having a particle diameter of 250 μm or more and less than 850 μm (particles that pass through a JIS standard sieve having a mesh size of 850 μm and do not pass through a JIS standard sieve having a mesh size of 250 μm) may be included.
(分級)
 粒子化工程はさらに、粉砕により得られた、粒子径180μm未満の微粉を含む粒子群を分級する工程を含んでいてよい。分級とは、ある粒子群を粒子径に応じて粒度分布の異なる2つ以上の粒子群に分ける操作のことをいう。分級により、粒子径180μm未満である微粉のみからなる粒子群を分取してもよく、粒子群における粒子径180μm未満である微粉の存在率を高めてもよい。必要に応じて分級後の粒子の一部を再度粉砕してもよく、粉砕工程と分級工程とを繰り返してもよい。
(Classification)
The particle swarming step may further include a step of classifying a group of particles containing fine particles having a particle size of less than 180 μm obtained by grinding. Classification refers to an operation of dividing a certain particle group into two or more particle groups having different particle size distributions according to the particle size. By classification, a particle group consisting of only fine particles having a particle size of less than 180 μm may be separated, or the abundance of fine particles having a particle size of less than 180 μm in the particle group may be increased. If necessary, a part of the classified particles may be pulverized again, or the pulverization step and the classification step may be repeated.
 粒子群の分級には、公知の分級方法を使用することができ、例えば、スクリーン分級、風力分級等であってよい。スクリーン分級とはスクリーンを振動させることによって、スクリーン上の粒子を、スクリーンの網目を通過する粒子と通過しない粒子とに分級する方法をいう。風力分級とは、空気の流れを利用して粒子を分級する方法をいう。分級方法としては、スクリーン分級を用いることが好ましい。スクリーン分級としては、振動篩、ロータリシフタ、円筒撹拌篩、ブロワシフタ、ロータップ式振とう器、電動振動式振とう機等が挙げられる。 A known classification method can be used for the classification of the particle group, and for example, screen classification, wind power classification, or the like may be used. Screen classification is a method of classifying particles on a screen into particles that pass through the mesh of the screen and particles that do not pass through the screen by vibrating the screen. Wind power classification is a method of classifying particles using the flow of air. As the classification method, it is preferable to use screen classification. Examples of the screen classification include a vibrating sieve, a rotary shifter, a cylindrical stirring sieve, a blower shifter, a low-tap type shaker, an electric vibration type shaker, and the like.
[造粒]
 次いで、粒子径180μm未満の微粉を含む粒子群を造粒して、造粒粒子を含む造粒粒子群を得る。造粒は、得られる造粒粒子群のうち、目開き850μmのJIS標準篩を通過しない造粒粒子の存在率が70質量%以上となるように行う。本明細書において造粒とは、粒子同士を凝集させて、元の粒子よりも粒子径が大きい粒子を得ることをいう。
[Granulation]
Next, a group of particles containing fine particles having a particle size of less than 180 μm is granulated to obtain a group of granulated particles containing the granulated particles. Granulation is performed so that the abundance of granulated particles that do not pass through the JIS standard sieve having a mesh size of 850 μm is 70% by mass or more in the obtained granulated particle group. In the present specification, granulation means agglomerating particles to obtain particles having a larger particle size than the original particles.
 本実施形態に係る製造方法によれば、造粒粒子群のうち目開き850μmのJIS標準篩を通過しない造粒粒子の存在率が70質量%以上となるように造粒を行うことにより、繊維状物に対する高い保持性を有する吸水性樹脂粒子を得ることができる。このような効果が得られる理由は明らかではないが、本発明者は次のように推察している。ただし、本発明は以下の機構に限定されない。本実施形態に係る製造方法では、微粉を造粒する際に、粒子径の大きい造粒粒子が一定以上の割合で得られる程度に十分に混練して造粒を行う。粒子径の大きい造粒粒子がより多く得られるということは、それだけ混練の程度が高いといえる。一旦そのような造粒工程を経た粒子は、その後再度粒子化して得られる粒子が、内部により多くの細かい空隙を有し、複数の突起を有するなど、より複雑な形状を有すると考えられる。このような形状を有する重合体粒子を含む吸水性樹脂粒子は、繊維状物により絡みやすく、繊維状物に対する保持性が高まると考えられる。 According to the production method according to the present embodiment, the fibers are granulated so that the abundance of the granulated particles that do not pass through the JIS standard sieve having an opening of 850 μm in the granulated particle group is 70% by mass or more. It is possible to obtain water-absorbent resin particles having high retention on the material. The reason why such an effect is obtained is not clear, but the present inventor speculates as follows. However, the present invention is not limited to the following mechanism. In the production method according to the present embodiment, when granulating fine powder, granulation is performed by sufficiently kneading granulated particles having a large particle size to a certain ratio or more. The fact that more granulated particles with a large particle size can be obtained means that the degree of kneading is higher. It is considered that the particles that have undergone such a granulation step have a more complicated shape, such that the particles obtained by re-granulation after that have more fine voids inside and have a plurality of protrusions. It is considered that the water-absorbent resin particles containing the polymer particles having such a shape are more likely to be entangled with the fibrous material, and the retention property to the fibrous material is enhanced.
 造粒に供する粒子群において、粒子径180μm未満である微粉の存在率は、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量%以上又は98質量%以上であってよく、100質量%、98質量%以下、95質量%以下、90質量%以下、80質量%以下、70質量%以下、60質量%以下、50質量%以下、40質量%以下又は30質量%以下であってよい。 In the particle group to be subjected to granulation, the abundance of fine powder having a particle diameter of less than 180 μm is 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, 50% by mass or more, 60% by mass or more. It may be 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more or 98% by mass or more, 100% by mass, 98% by mass or less, 95% by mass or less, 90% by mass or less, 80% by mass. % Or less, 70% by mass or less, 60% by mass or less, 50% by mass or less, 40% by mass or less, or 30% by mass or less.
 造粒は、例えば、粒子群と水とを混合することにより行うことができる。水は、水溶性塩類、エチレン性不飽和単量体等の水溶性の重合性単量体、架橋剤又は親水性有機溶媒等の成分を含む水性液として用いられてもよい。架橋剤としては、例えば上述の内部架橋剤又は後述の表面架橋剤を用いることができる。水性液中の水の割合は、例えば90~100質量%であってよい。粒子群と水とを混合する方法としては、例えば水を少量ずつ滴下してもよく、全量を一度に添加してもよく、噴霧してもよく、水蒸気の状態で混合してもよい。 Granulation can be performed, for example, by mixing a group of particles and water. Water may be used as an aqueous solution containing components such as water-soluble polymerizable monomers such as water-soluble salts and ethylenically unsaturated monomers, cross-linking agents and hydrophilic organic solvents. As the cross-linking agent, for example, the above-mentioned internal cross-linking agent or the later-described surface cross-linking agent can be used. The proportion of water in the aqueous liquid may be, for example, 90 to 100% by mass. As a method of mixing the particle group and water, for example, water may be dropped little by little, the whole amount may be added at once, sprayed, or mixed in the state of steam.
 水の混合量は、粒子群100質量部に対して55質量部以上であることが好ましく、60質量部以上であることがより好ましい。水の混合量が55質量部以上であることによって、より均一に粒子群と水とを混合することができる。水の混合量は、粒子群100質量部に対して115質量部以下であることが好ましく、105質量部以下であることがより好ましい。水の混合量が115質量部以下であることにより、その後行われる乾燥をより効率的に行うことができる。 The mixed amount of water is preferably 55 parts by mass or more, and more preferably 60 parts by mass or more with respect to 100 parts by mass of the particle group. When the mixing amount of water is 55 parts by mass or more, the particle group and water can be mixed more uniformly. The mixing amount of water is preferably 115 parts by mass or less, and more preferably 105 parts by mass or less with respect to 100 parts by mass of the particle group. When the mixing amount of water is 115 parts by mass or less, the subsequent drying can be performed more efficiently.
 混合時の温度は、例えば40~150℃であってよく、60~100℃が好ましい。混合時の温度は、80~95℃であってもよい。造粒は、あらかじめ混合温度まで加温された水と、粒子群とを混合することにより行うことが好ましい。より均一に造粒を行う観点から、造粒は、混合容器内であらかじめ撹拌されている粒子群中に、あらかじめ加温された水を一度に全量投入することにより行うことが好ましい。 The temperature at the time of mixing may be, for example, 40 to 150 ° C, preferably 60 to 100 ° C. The temperature at the time of mixing may be 80 to 95 ° C. Granulation is preferably carried out by mixing water that has been preheated to a mixing temperature with a group of particles. From the viewpoint of more uniform granulation, it is preferable that the granulation is carried out by putting all the preheated water into the pre-stirred particle group in the mixing container at one time.
 得られる造粒粒子の粒子径をより増大させ、混合をより均一に行う観点から、粒子群と水との混合時間は、混合に用いる粒子群及び水の全量を同一の混合容器内に投入してから、10~100秒であることが好ましく、15~90秒であることがより好ましい。 From the viewpoint of further increasing the particle size of the obtained granulated particles and making the mixing more uniform, the mixing time of the particle group and water is such that the entire amount of the particle group and water used for mixing is put into the same mixing container. After that, it is preferably 10 to 100 seconds, and more preferably 15 to 90 seconds.
 粒子群と水との混合は、例えば、撹拌翼を有する各種撹拌機を用いて行うことができる。撹拌翼としては、平板翼、格子翼、パドル翼、プロペラ翼、アンカー翼、タービン翼、ファウドラー翼、リボン翼、フルゾーン翼、マックスブレンド翼等を用いることができる。平板翼は、軸(撹拌軸)と、軸の周囲に配置された平板部(撹拌部)とを有している。さらに、平板部は、スリット等を有していてもよい。撹拌翼として平板翼を用いると、より均一に造粒を行うことができ、比較的大きいサイズの造粒粒子群が得られやすい傾向がある。撹拌型混合機としては、例えば、モルタルミキサー、連続ニーダー、レディゲミキサー等が挙げられる。 Mixing of the particle group and water can be performed using, for example, various stirrers having stirring blades. As the stirring blade, flat plate blades, lattice blades, paddle blades, propeller blades, anchor blades, turbine blades, Faudler blades, ribbon blades, full zone blades, Maxblend blades and the like can be used. The flat plate blade has a shaft (stirring shaft) and a flat plate portion (stirring portion) arranged around the shaft. Further, the flat plate portion may have a slit or the like. When a flat plate blade is used as the stirring blade, granulation can be performed more uniformly, and a group of granulated particles having a relatively large size tends to be easily obtained. Examples of the stirring type mixer include a mortar mixer, a continuous kneader, a ladyge mixer and the like.
 得られる造粒粒子の粒度分布をより好ましい範囲とする観点から、粒子群と水との混合条件は、例えば、水の混合量が粒子群100質量部に対して55~115質量部、混合温度が40~150℃、混合時間が粒子群及び水の全量を同一容器内に投入してから10~100秒の組合せであってよく、水の混合量が粒子群100質量部に対して60~105質量部、混合温度が60~100℃、混合時間が粒子群及び水の全量を同一容器内に投入してから15~90秒の組合せであってもよい。粒子群と水との混合条件は、得られる造粒粒子群において所定の粒子径を有する造粒粒子の割合が一定以上となるように設定すればよい。混合中又は混合後に肉眼等で粒子を確認し、必要であれば、加温、加水、粒子群の追加等を行って更に混合してもよい。 From the viewpoint of setting the particle size distribution of the obtained granulated particles in a more preferable range, the mixing conditions of the particle group and water are as follows, for example, the mixing amount of water is 55 to 115 parts by mass with respect to 100 parts by mass of the particle group, and the mixing temperature. The mixing time may be 40 to 150 ° C., and the mixing time may be 10 to 100 seconds after the entire amount of the particle group and water is put into the same container, and the mixing amount of water is 60 to 100 parts by mass with respect to 100 parts by mass of the particle group. It may be a combination of 105 parts by mass, a mixing temperature of 60 to 100 ° C., and a mixing time of 15 to 90 seconds after the entire amount of the particle group and water is put into the same container. The mixing conditions of the particle group and water may be set so that the ratio of the granulated particles having a predetermined particle size in the obtained granulated particle group is a certain value or more. The particles may be confirmed with the naked eye during or after mixing, and if necessary, further mixing may be performed by heating, adding water, adding particle groups, or the like.
[造粒粒子群の粒度分布の測定]
 造粒粒子群の粒度分布の測定は、造粒工程後に行うことができる。造粒粒子群の粒度分布の測定には、造粒により得られた造粒粒子群を乾燥せずにそのまま用いることが好ましい。粒度分布の測定は、造粒によって得られた造粒粒子群の全部又は一部を用いて行うことができる。粒度分布の測定に用いる造粒粒子群の量は、例えば30g以上又は100g以上であってよく、30~100gであってもよい。
[Measurement of particle size distribution of granulated particles]
The particle size distribution of the granulated particle group can be measured after the granulation step. For the measurement of the particle size distribution of the granulated particle group, it is preferable to use the granulated particle group obtained by granulation as it is without drying. The particle size distribution can be measured using all or part of the granulated particle group obtained by granulation. The amount of the granulated particle group used for measuring the particle size distribution may be, for example, 30 g or more or 100 g or more, and may be 30 to 100 g.
 造粒粒子群の粒度分布は、各目開きのJIS標準篩を用いて造粒粒子群を分級することにより測定する。分級は、例えば振動強度を7に設定した電磁振動式ふるい振とう機オクタゴン200(endecotts社製)を用いて、測定サンプルが投入された所定の目開きを有するJIS標準篩及び受け皿を上下方向に10分間振動させて粒子を振とうさせることにより行うことができる。 The particle size distribution of the granulated particle group is measured by classifying the granulated particle group using a JIS standard sieve with each opening. For classification, for example, using an electromagnetic vibration type sieve shaker Octagon 200 (manufactured by endcotts) in which the vibration intensity is set to 7, a JIS standard sieve and a saucer having a predetermined opening into which measurement samples are placed are placed in the vertical direction. This can be done by vibrating for 10 minutes to shake the particles.
 造粒により得られる造粒粒子群において、目開き850μmのJIS標準篩を通過しない造粒粒子の存在率は70質量%以上であり、75質量%以上であることが好ましく、77質量%以上、80質量%以上、85質量%以上又は88質量%以上であってもよい。造粒粒子群において、目開き850μmのJIS標準篩を通過しない造粒粒子の存在率は、例えば100質量%であってよく、98質量%以下、95質量%以下、90質量%以下、88質量%以下、85質量%以下又は80質量%以下であってもよい。 In the granulated particle group obtained by granulation, the abundance rate of the granulated particles that do not pass through the JIS standard sieve having an opening of 850 μm is 70% by mass or more, preferably 75% by mass or more, and 77% by mass or more. It may be 80% by mass or more, 85% by mass or more, or 88% by mass or more. In the granulated particle group, the abundance rate of the granulated particles that do not pass through the JIS standard sieve having an opening of 850 μm may be, for example, 100% by mass, 98% by mass or less, 95% by mass or less, 90% by mass or less, 88% by mass. % Or less, 85% by mass or less, or 80% by mass or less.
 造粒により得られる造粒粒子群において、目開き9.5mmのJIS標準篩を通過しない造粒粒子の存在率は、例えば55質量%以上であってよく、60質量%以上であることが好ましい。該存在率は70質量%以上、80質量%以上又は85質量%以上であってもよい。造粒粒子群において、目開き9.5mmのJIS標準篩を通過しない造粒粒子の存在率は、例えば100質量%であってよく、98質量%以下、95質量%以下、93質量%以下、90質量%以下、88質量%以下、85質量%以下、80質量%以下、75質量%以下又は70質量%以下であってもよい。 In the granulated particle group obtained by granulation, the abundance rate of the granulated particles that do not pass through the JIS standard sieve having a mesh size of 9.5 mm may be, for example, 55% by mass or more, preferably 60% by mass or more. .. The abundance rate may be 70% by mass or more, 80% by mass or more, or 85% by mass or more. In the granulated particle group, the abundance rate of the granulated particles that do not pass through the JIS standard sieve having a mesh size of 9.5 mm may be, for example, 100% by mass, 98% by mass or less, 95% by mass or less, 93% by mass or less. It may be 90% by mass or less, 88% by mass or less, 85% by mass or less, 80% by mass or less, 75% by mass or less, or 70% by mass or less.
 造粒により得られる造粒粒子群において、目開き31.5mmのJIS標準篩を通過しない造粒粒子の存在率は、例えば5質量%以上であってよく、10質量%以上又は15質量%以上であることが好ましい。該存在率は、20質量%以上、25質量%以上、30質量%以上、35質量%以上、40質量%以上、45質量%以上、50質量%以上、55質量%以上、60質量%以上、65質量%以上、70質量%以上、75質量%以上、80質量%以上、85質量%以上又は90質量%以上であってもよい。 In the granulated particle group obtained by granulation, the abundance rate of the granulated particles that do not pass through the JIS standard sieve having a mesh size of 31.5 mm may be, for example, 5% by mass or more, and 10% by mass or more or 15% by mass or more. Is preferable. The abundance rate is 20% by mass or more, 25% by mass or more, 30% by mass or more, 35% by mass or more, 40% by mass or more, 45% by mass or more, 50% by mass or more, 55% by mass or more, 60% by mass or more. It may be 65% by mass or more, 70% by mass or more, 75% by mass or more, 80% by mass or more, 85% by mass or more, or 90% by mass or more.
 造粒により得られる造粒粒子群において、目開き31.5mmのJIS標準篩を通過しない造粒粒子の存在率は、例えば100質量%であってよく、98質量%以下、95質量%以下、93質量%以下、90質量%以下、85質量%以下、80質量%以下、75質量%以下、70質量%以下、65質量%以下、60質量%以下、55質量%以下、50質量%以下、45質量%以下、40質量%以下、35質量%以下、30質量%以下又は25質量%以下であってもよい。 In the granulated particle group obtained by granulation, the abundance rate of the granulated particles that do not pass through the JIS standard sieve having a mesh size of 31.5 mm may be, for example, 100% by mass, 98% by mass or less, 95% by mass or less. 93% by mass or less, 90% by mass or less, 85% by mass or less, 80% by mass or less, 75% by mass or less, 70% by mass or less, 65% by mass or less, 60% by mass or less, 55% by mass or less, 50% by mass or less, It may be 45% by mass or less, 40% by mass or less, 35% by mass or less, 30% by mass or less, or 25% by mass or less.
 粒度分布の測定に用いた造粒粒子は、吸水性樹脂粒子の製造工程に戻し、吸水性樹脂粒子の製造に続けて用いてもよい。造粒によって得られた造粒粒子群のうち一部のみを粒度分布の測定に用いた場合は、粒度分布の測定に用いた造粒粒子を吸水性樹脂粒子の製造に用いなくてもよい。 The granulated particles used for measuring the particle size distribution may be returned to the manufacturing process of the water-absorbent resin particles and used continuously in the production of the water-absorbent resin particles. When only a part of the granulated particle group obtained by granulation is used for measuring the particle size distribution, the granulated particles used for measuring the particle size distribution need not be used for producing the water-absorbent resin particles.
[再粒子化]
 次いで、造粒により得られた造粒粒子群を再度粒子化して重合体粒子を得る。造粒によって粒子径が増大した粒子を再度粒子化することにより、所望の粒子径を有する重合体粒子を得ることができる。
[Reparticle]
Next, the granulated particle group obtained by granulation is re-granulated to obtain polymer particles. Polymer particles having a desired particle size can be obtained by re-granulating the particles whose particle size has been increased by granulation.
 再粒子化工程は、最終的に所望の粒子径を有する重合体粒子が得られればよく、再粒子化工程中に、例えば、造粒粒子を粗砕して造粒粗砕物を得る工程、及び、造粒粗砕物を更に粉砕して造粒粉砕物(重合体粒子)を得る工程を含んでいてよい。再粒子化工程は、造粒粒子、造粒粗砕物又は造粒粉砕物を乾燥する工程を含んでいてもよい。造粒粗砕物は、乾燥工程を経てから粉砕に供されることが好ましい。再粒子化工程はさらに、粉砕して得られた造粒粉砕物を分級する工程を含んでいてもよい。 In the repartitioning step, it is sufficient that polymer particles having a desired particle size are finally obtained. , The step of further crushing the granulated coarse crushed product to obtain the granulated crushed product (polymer particles) may be included. The re-granulation step may include a step of drying the granulated particles, the granulated coarse crushed product, or the pulverized granulated product. The granulated coarse crushed product is preferably subjected to pulverization after undergoing a drying step. The repartitioning step may further include a step of classifying the granulated pulverized product obtained by pulverization.
 再粒子化工程は、造粒粒子を粗砕して造粒粗砕物を得る工程を含むことができる。造粒粗砕物は含水ゲル状であってよい。造粒粗砕物の最小辺のサイズは、例えば0.1~15mm程度であってよく、1.0~10mm程度であることが好ましい。粗砕は、例えば、造粒粒子のうち最小辺のサイズが5mmを超えるもの又は10mmを超えるもの等の、サイズが大きいもののみに対して行ってもよい。再粒子化において用いる粗砕装置は、上述の粒子化工程における粗砕に用いられるものと同様であってよい。 The re-granulation step can include a step of coarsely crushing the granulated particles to obtain a granulated coarse crushed product. The granulated coarse crushed product may be in the form of a hydrogel. The size of the minimum side of the granulated coarse crushed product may be, for example, about 0.1 to 15 mm, preferably about 1.0 to 10 mm. The coarse crushing may be performed only on granulated particles having a large size, such as those having a minimum side size of more than 5 mm or more than 10 mm. The coarsening apparatus used in the repartitioning may be the same as that used for the coarsening in the above-mentioned particleization step.
 再粒子化工程は、造粒粒子、造粒粗砕物又は造粒粉砕物を乾燥する工程を含むことができる。乾燥により、造粒乾燥物を得ることができる。再粒子化工程における乾燥は、造粒粗砕物に対して行うことが好ましい。すなわち再粒子化工程における乾燥工程は、粗砕後に行うことが好ましい。乾燥温度は、120℃以上、150℃以上、又は180℃以上であってよい。乾燥が常圧で行われる場合の乾燥温度は、好ましくは70~250℃であり、より好ましくは80~200℃である。乾燥は、最終的に得られる重合体粒子の含水率が、10質量%以下になるまで行うことが好ましく、5質量%以下になるまで行うことがより好ましい。乾燥方法としては、上述の粒子化工程における乾燥と同様の方法を適用できる。 The re-granulation step can include a step of drying the granulated particles, the granulated coarse crushed product, or the pulverized granulated product. By drying, a granulated dried product can be obtained. Drying in the repartitioning step is preferably performed on the granulated coarse crushed product. That is, the drying step in the repartitioning step is preferably performed after coarse crushing. The drying temperature may be 120 ° C. or higher, 150 ° C. or higher, or 180 ° C. or higher. When the drying is carried out at normal pressure, the drying temperature is preferably 70 to 250 ° C, more preferably 80 to 200 ° C. The drying is preferably carried out until the water content of the finally obtained polymer particles is 10% by mass or less, and more preferably 5% by mass or less. As the drying method, the same method as the drying in the above-mentioned particleization step can be applied.
 再粒子化工程は、造粒粒子、造粒粗砕物及び/又はこれらの乾燥物を粉砕する工程を含むことができる。再粒子化工程において、粉砕は、粗砕及び乾燥の後に行われることが好ましい。再粒子化工程は、造粒粗砕物を乾燥後、粉砕して重合体粒子を得る工程を含むことが好ましい。再粒子化工程における粉砕に用いられる粉砕機は、上述の粒子化工程における粉砕に用いられるものと同様であってよい。 The re-granulation step can include a step of crushing granulated particles, granulated coarse crushed products and / or dried products thereof. In the repartitioning step, pulverization is preferably performed after coarse pulverization and drying. The repartitioning step preferably includes a step of drying the granulated coarse crushed product and then pulverizing it to obtain polymer particles. The pulverizer used for pulverization in the repartitioning step may be the same as that used for pulverization in the above-mentioned particleization step.
 本実施形態に係る吸水性樹脂粒子の製造方法によれば、再粒子化によって得られる重合体粒子の粒度分布がより好適なものとなりやすい。具体的には、再粒子化によって得られる重合体粒子において、粒子径180μm以上850μm未満である粒子の収率を向上させることができ、粒子径180μm未満の微粉の発生率を抑制することができる。粒子径180μm以上850μm未満である重合体粒子の収率が高いことは、造粒強度がより高いことを示す。 According to the method for producing water-absorbent resin particles according to the present embodiment, the particle size distribution of the polymer particles obtained by repartitioning tends to be more suitable. Specifically, in the polymer particles obtained by repartitioning, the yield of particles having a particle size of 180 μm or more and less than 850 μm can be improved, and the generation rate of fine particles having a particle size of less than 180 μm can be suppressed. .. A high yield of polymer particles having a particle size of 180 μm or more and less than 850 μm indicates that the granulation strength is higher.
 再粒子化工程は、粉砕後の重合体粒子を更に分級する工程を含んでもよい。再粒子化後の粒子の分級方法は、上述の粒子化工程において示した分級方法と同様であってよく、スクリーン分級を用いることが好ましい。 The repartitioning step may include a step of further classifying the polymer particles after crushing. The method for classifying the particles after re-particle formation may be the same as the classification method shown in the above-mentioned particle-forming step, and it is preferable to use screen classification.
 再粒子化によって粒子径180μm未満である微粉が再度得られた場合、造粒を再度行うことにより、所望の粒子径まで粒子径を増大させてもよい。再粒子化後に行われる造粒では、上述の一度目の造粒のように粒子径の大きい造粒粒子を得る必要はなく、最終的に必要とする粒子径(例えば粒子径180μm以上850μm未満の範囲)になるまで造粒を行えばよい。再粒子化及び造粒の工程は複数回繰り返してもよい。 When fine powder having a particle size of less than 180 μm is obtained again by re-granulation, the particle size may be increased to a desired particle size by performing granulation again. In the granulation performed after the re-granulation, it is not necessary to obtain granulated particles having a large particle size as in the first granulation described above, and the final required particle size (for example, the particle size is 180 μm or more and less than 850 μm). Granulation may be performed until the range) is reached. The steps of reparticle formation and granulation may be repeated a plurality of times.
[表面架橋]
 本実施形態に係る吸水性樹脂粒子の製造方法は、重合体粒子の表面架橋を行う工程を含んでもよい。表面架橋は、例えば、表面架橋を行うための架橋剤(表面架橋剤)を重合体粒子に対して添加して反応させることにより行うことができる。表面架橋剤の添加は、再粒子化工程における粉砕後のいずれかのタイミングで行えばよく、再粒子化工程の中で、乾燥の前又は後に行ってもよく、分級の前又は後に行ってもよい。再粒子化工程において粉砕後に分級を行う場合は、表面架橋剤の添加は、再粒子化工程における乾燥及び分級の後に行うことが好ましい。表面架橋剤を添加し表面架橋処理を行うことにより、重合体粒子の表面近傍の架橋密度が高まるため、得られる吸水性樹脂粒子の吸水性能を高めることができる。
[Surface cross-linking]
The method for producing water-absorbent resin particles according to the present embodiment may include a step of surface cross-linking of polymer particles. The surface cross-linking can be performed, for example, by adding a cross-linking agent (surface cross-linking agent) for performing the surface cross-linking to the polymer particles and reacting them. The surface cross-linking agent may be added at any timing after pulverization in the repartitioning step, and may be performed before or after drying in the reparticlening step, or before or after classification. good. When the classification is performed after pulverization in the reparticle step, the addition of the surface cross-linking agent is preferably performed after the drying and classification in the reparticle step. By adding a surface cross-linking agent and performing the surface cross-linking treatment, the cross-linking density in the vicinity of the surface of the polymer particles is increased, so that the water absorption performance of the obtained water-absorbent resin particles can be improved.
 表面架橋剤の添加は、例えば、表面架橋剤溶液の添加、又は表面架橋剤溶液の噴霧添加により行うことができる。表面架橋剤の添加形態は、表面架橋剤を均一に分散する観点から、表面架橋剤を水及び/又はアルコール等の溶媒に溶解し、表面架橋剤溶液として添加することが好ましい。また、表面架橋工程は、1回又は2回以上の複数回に分割して実施してもよい。 The surface cross-linking agent can be added, for example, by adding a surface cross-linking agent solution or by spraying the surface cross-linking agent solution. From the viewpoint of uniformly dispersing the surface cross-linking agent, the surface cross-linking agent is preferably added as a surface cross-linking agent solution by dissolving the surface cross-linking agent in a solvent such as water and / or alcohol. Further, the surface cross-linking step may be carried out once or divided into a plurality of times of two or more times.
 表面架橋剤は、例えば、エチレン性不飽和単量体由来の官能基との反応性を有する官能基(反応性官能基)を2個以上含有するものであってよい。表面架橋剤としては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物等の反応性官能基を2個以上有する化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物等が挙げられる。これらのなかでも、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)エチレングリコールトリグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物及び/又はエチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール等のポリオール類が好ましく、ポリグリシジル化合物がより好ましい。これらの表面架橋剤は、1種を単独で使用してもよく、2種以上を併用してもよい。例えばポリグリシジル化合物とポリオール類とを組み合わせて使用してよい。 The surface cross-linking agent may contain, for example, two or more functional groups (reactive functional groups) having reactivity with a functional group derived from an ethylenically unsaturated monomer. Examples of the surface cross-linking agent include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol di. Polyglycidyl compounds such as glycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydrin, epibromhydrin, α- Haloepoxy compounds such as methyl epichlorohydrin; compounds having two or more reactive functional groups such as isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl-3-oxetanemethanol, 3-ethyl-3- Oxetane compounds such as oxetane methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, 3-butyl-3-oxetane ethanol; 1,2-ethylenebisoxazoline Oxazoline compounds such as; carbonate compounds such as ethylene carbonate; hydroxyalkylamide compounds such as bis [N, N-di (β-hydroxyethyl)] adipamide and the like. Among these, (poly) ethylene glycol diglycidyl ether, (poly) ethylene glycol triglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, (poly) ) Polyglycidyl compounds such as glycerol polyglycidyl ether and / or polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, polyoxyethylene glycol and polyoxypropylene glycol are preferable, and polyglycidyl compounds are preferable. More preferred. These surface cross-linking agents may be used alone or in combination of two or more. For example, a polyglycidyl compound and polyols may be used in combination.
 表面架橋剤の添加量は、吸水性樹脂粒子(重合体粒子)の表面近傍の架橋密度を適度に高める観点から、通常、重合に使用したエチレン性不飽和単量体の総量100モルに対して、好ましくは0.0001~4.0モル、より好ましくは0.001~2.0モルである。 The amount of the surface cross-linking agent added is usually based on 100 mol of the total amount of the ethylenically unsaturated monomer used for the polymerization from the viewpoint of appropriately increasing the cross-linking density near the surface of the water-absorbent resin particles (polymer particles). , Preferably 0.0001 to 4.0 mol, more preferably 0.001 to 2.0 mol.
 表面架橋工程は、エチレン性不飽和単量体100質量部に対して1~200質量部の範囲の水の存在下で行うことが好ましい。適宜、水及び/又はアルコール等の水溶性有機溶媒を用いることで水分量を調整することができる。表面架橋工程時の水分量を調整することによって、より好適に吸水性樹脂粒子(重合体粒子)の粒子表面近傍における架橋を施すことができる。 The surface cross-linking step is preferably carried out in the presence of water in the range of 1 to 200 parts by mass with respect to 100 parts by mass of the ethylenically unsaturated monomer. The amount of water can be adjusted by appropriately using a water-soluble organic solvent such as water and / or alcohol. By adjusting the amount of water in the surface cross-linking step, the water-absorbent resin particles (polymer particles) can be more preferably cross-linked in the vicinity of the particle surface.
 表面架橋剤の処理温度は、使用する表面架橋剤に応じて適宜設定され、20~250℃であってよい。表面架橋剤による処理時間は、1~200分、又は5~100分であってよい。 The treatment temperature of the surface cross-linking agent is appropriately set according to the surface cross-linking agent used, and may be 20 to 250 ° C. The treatment time with the surface cross-linking agent may be 1 to 200 minutes or 5 to 100 minutes.
 表面架橋は、一度のみ行ってもよく、複数のタイミングで行ってもよい。表面架橋は、粉砕工程後の実施に代えて、又は粉砕工程後の実施に加えて、粗砕後粉砕前に実施してもよい。 Surface cross-linking may be performed only once or at multiple timings. The surface cross-linking may be carried out after the pulverization step and before the pulverization in addition to the execution after the pulverization step or after the pulverization step.
[吸水性樹脂粒子]
 本実施形態に係る製造方法により得られる吸水性樹脂粒子は、上述の重合体粒子を含む。吸水性樹脂粒子は、重合体粒子のみからなるものであってもよく、例えば、ゲル安定剤、金属キレート剤(エチレンジアミン4酢酸及びその塩、ジエチレントリアミン5酢酸及びその塩、例えばジエチレントリアミン5酢酸5ナトリウム等)、流動性向上剤(滑剤)等の追加成分を更に含んでもよい。追加成分は、重合体粒子の内部、表面上又はこれらの両方に配置され得る。
[Water-absorbent resin particles]
The water-absorbent resin particles obtained by the production method according to the present embodiment include the above-mentioned polymer particles. The water-absorbent resin particles may be composed of only polymer particles, for example, a gel stabilizer, a metal chelating agent (ethylenediamine tetraacetic acid and a salt thereof, diethylenetriamine-5 acetic acid and a salt thereof, for example, diethylenetriamine-5 sodium acetate and the like, etc. ), An additional component such as a fluidity improver (lubricant) may be further contained. Additional components may be placed inside, on the surface, or both of the polymer particles.
 吸水性樹脂粒子は、重合体粒子の表面上に配置された複数の無機粒子を含んでいてもよい。例えば、重合体粒子と無機粒子とを混合することにより、重合体粒子の表面上に無機粒子を配置することができる。無機粒子は、非晶質シリカ等のシリカ粒子であってよい。無機粒子は、通常、重合体粒子の大きさと比較して微小な大きさを有する。例えば、無機粒子の平均粒子径は、0.1~50μm、0.5~30μm、又は、1~20μmであってよい。平均粒子径は、粒子の特性に応じて、細孔電気抵抗法又はレーザー回折・散乱法によって測定できる。 The water-absorbent resin particles may contain a plurality of inorganic particles arranged on the surface of the polymer particles. For example, by mixing the polymer particles and the inorganic particles, the inorganic particles can be arranged on the surface of the polymer particles. The inorganic particles may be silica particles such as amorphous silica. Inorganic particles usually have a small size as compared with the size of polymer particles. For example, the average particle size of the inorganic particles may be 0.1 to 50 μm, 0.5 to 30 μm, or 1 to 20 μm. The average particle size can be measured by the pore electric resistance method or the laser diffraction / scattering method depending on the characteristics of the particles.
 吸水性樹脂粒子が、表面上に配置された無機粒子を含む場合、無機粒子の含有量は、重合体粒子の全質量100部を基準として、0.05質量部以上、0.1質量部以上、0.15質量部以上又は0.2質量部以上であってよく、5.0質量部以下、3.0質量部以下、1.0質量部以下、0.5質量部以下又は0.3質量部以下であってよい。 When the water-absorbent resin particles include inorganic particles arranged on the surface, the content of the inorganic particles is 0.05 parts by mass or more and 0.1 parts by mass or more based on 100 parts by mass of the total mass of the polymer particles. , 0.15 parts by mass or more or 0.2 parts by mass or more, 5.0 parts by mass or less, 3.0 parts by mass or less, 1.0 parts by mass or less, 0.5 parts by mass or less or 0.3 It may be less than or equal to a mass part.
 本実施形態に係る製造方法により得られる吸水性樹脂粒子の形状は、例えば、破砕状、不定形状、不定形破砕状、又はこれらの粒子が凝集して形成された形状であってよい。吸水性樹脂粒子の中位粒子径は、130~800μm、200~850μm、250~700μm、300~600μm又は300~450μmであってよい。 The shape of the water-absorbent resin particles obtained by the production method according to the present embodiment may be, for example, a crushed shape, an amorphous shape, an amorphous crushed shape, or a shape formed by aggregating these particles. The medium particle size of the water-absorbent resin particles may be 130 to 800 μm, 200 to 850 μm, 250 to 700 μm, 300 to 600 μm, or 300 to 450 μm.
 本実施形態に係る製造方法により得られる吸水性樹脂粒子のCRC(遠心分離機保持容量、Centrifuge Retention Capacity)は、例えば、25g/g以上、28g/g以上、30g/g以上又は32g/g以上であってよく、40g/g以下、38g/g以下、36g/g以下、34g/g以下又は33g/g以下であってよい。CRCは、EDANA法(NWSP 241.0.R2(15)、page.769~778)を参考に、後述の実施例に記載の方法によって測定される。 The CRC (centrifuge retention capacity, Centrifuge Retention Capacity) of the water-absorbent resin particles obtained by the production method according to the present embodiment is, for example, 25 g / g or more, 28 g / g or more, 30 g / g or more, or 32 g / g or more. It may be 40 g / g or less, 38 g / g or less, 36 g / g or less, 34 g / g or less, or 33 g / g or less. CRC is measured by the method described in Examples described later with reference to the EDANA method (NWSP 241.0.R2 (15), page.769-778).
 本実施形態に係る製造方法により得られる吸水性樹脂粒子の、2.07kPa(0.3psi)加圧下の吸収倍率(AAP、Absorption Against Pressure)は、例えば、18g/g以上、20g/g以上又は22g/g以上であってよく、30g/g以下、28g/g以下、26g/g以下又は24g/g以下であってよい。吸水性樹脂粒子の2.07kPa加圧下の吸収倍率は、後述の実施例に記載の方法によって測定される。 The absorption ratio (AAP, Absorption Against Pressure) of the water-absorbent resin particles obtained by the production method according to the present embodiment under 2.07 kPa (0.3 psi) pressurization is, for example, 18 g / g or more, 20 g / g or more, or It may be 22 g / g or more, 30 g / g or less, 28 g / g or less, 26 g / g or less, or 24 g / g or less. The absorption ratio of the water-absorbent resin particles under 2.07 kPa pressurization is measured by the method described in Examples described later.
 本実施形態に係る製造方法により得られる吸水性樹脂粒子の、Vortexによる吸水速度は、例えば、30秒以上、32秒以上、34秒以上、36秒以上、38秒、40秒以上、42秒以上、44秒以上、46秒以上又は48秒以上であってよく、90秒以下、80秒以下、70秒以下、60秒以下、55秒以下、50秒以下又は40秒以下であってよい。Vortex法による吸水速度は、(日本工業規格JIS K 7224(1996))に準拠して測定する。具体的には、底面が平らな100mLビーカーにおいて、600rpm(rpm=min-1)で撹拌された生理食塩水50±0.1g中に吸水性樹脂粒子2.0±0.002gを添加し、吸水性樹脂粒子の添加後から、渦が消失し液面が平坦になるまでの時間[秒]として吸水速度を得ることができる。 The water absorption rate of the water-absorbent resin particles obtained by the production method according to the present embodiment by Vortex is, for example, 30 seconds or more, 32 seconds or more, 34 seconds or more, 36 seconds or more, 38 seconds, 40 seconds or more, 42 seconds or more. , 44 seconds or more, 46 seconds or more, or 48 seconds or more, and may be 90 seconds or less, 80 seconds or less, 70 seconds or less, 60 seconds or less, 55 seconds or less, 50 seconds or less, or 40 seconds or less. The water absorption rate by the Vortex method is measured in accordance with (Japanese Industrial Standard JIS K 7224 (1996)). Specifically, in a 100 mL beaker with a flat bottom surface, 2.0 ± 0.002 g of water-absorbent resin particles were added to 50 ± 0.1 g of physiological saline stirred at 600 rpm (rpm = min -1). The water absorption rate can be obtained as the time [seconds] from the addition of the water-absorbent resin particles to the disappearance of the vortex and the flattening of the liquid surface.
 本実施形態に係る製造方法により得られる吸水性樹脂粒子は、尿、血液等の体液の吸収性に優れており、例えば、紙おむつ、生理用ナプキン、タンポン等の衛生用品、ペットシート、犬又は猫のトイレ配合物等の動物排泄物処理材などの分野に応用することができる。 The water-absorbent resin particles obtained by the production method according to the present embodiment are excellent in absorption of body fluids such as urine and blood. For example, sanitary products such as disposable diapers, sanitary napkins and tampons, pet sheets, dogs or cats. It can be applied to fields such as animal excrement treatment materials such as toilet formulations.
 吸水性樹脂粒子は、吸収体に好適に用いることができる。本実施形態に係る製造方法により得られる吸水性樹脂粒子は、繊維状物との絡みつきに優れ、繊維状物に対して高い保持性を有するため、繊維状物を含む吸収体に好適である。本実施形態に係る製造方法により得られる吸水性樹脂粒子及び繊維状物を含む吸収体は、保形性に優れ、吸水性能をより発揮しやすい。本実施形態に係る吸収体の製造方法は、例えば、上述の方法により吸水性樹脂粒子を得ることと、吸水性樹脂粒子及び繊維状物を含む吸収体を得ることとを含む。 The water-absorbent resin particles can be suitably used for the absorber. The water-absorbent resin particles obtained by the production method according to the present embodiment are excellent in entanglement with the fibrous material and have high retention with respect to the fibrous material, and are therefore suitable for an absorber containing the fibrous material. The absorber containing the water-absorbent resin particles and the fibrous material obtained by the production method according to the present embodiment has excellent shape retention and is more likely to exhibit water absorption performance. The method for producing an absorber according to the present embodiment includes, for example, obtaining water-absorbent resin particles by the above-mentioned method and obtaining an absorber containing water-absorbent resin particles and a fibrous substance.
 吸収体の製造方法は、例えば、吸水性樹脂粒子と繊維状物とを混合すること、吸水性樹脂粒子と繊維状物との混合体をシート状に形成すること等の工程を含んでいてもよい。吸水性樹脂粒子と繊維状物との混合は、例えば空気抄造により行うことができる。 The method for producing the absorber may include, for example, mixing the water-absorbent resin particles and the fibrous material, forming a mixture of the water-absorbent resin particles and the fibrous material in a sheet shape, and the like. good. The water-absorbent resin particles and the fibrous material can be mixed, for example, by air papermaking.
 吸収体における吸水性樹脂粒子の含有量は、吸収体が吸収性物品に使用された際に十分な液体吸収性能を得る観点から、吸収体の1平米あたり100~1000g(すなわち100~1000g/m)であることが好ましく、より好ましくは150~800g/m、更に好ましくは200~700g/mである。吸収性物品としての十分な液体吸収性能を発揮させる観点から、上記含有量は100g/m以上であることが好ましい。ゲルブロッキング現象の発生を抑制する観点から、上記含有量は1000g/m以下であることが好ましい。 The content of the water-absorbent resin particles in the absorber is 100 to 1000 g (that is, 100 to 1000 g / m) per square meter of the absorber from the viewpoint of obtaining sufficient liquid absorption performance when the absorber is used for an absorbent article. 2 ) is preferable, more preferably 150 to 800 g / m 2 , and even more preferably 200 to 700 g / m 2 . From the viewpoint of exhibiting sufficient liquid absorption performance as an absorbent article, the content is preferably 100 g / m 2 or more. From the viewpoint of suppressing the occurrence of the gel blocking phenomenon, the content is preferably 1000 g / m 2 or less.
 吸収体における吸水性樹脂粒子の質量割合は、吸水性樹脂粒子及び繊維状物の合計に対し、2%~100%であってよく、10%~80%であることが好ましく、20%~70%であることがより好ましい。吸収体の構成としては、例えば、吸水性樹脂粒子及び繊維状物が均一混合された形態であってよく、シート状又は層状に形成された繊維状物の間に吸水性樹脂粒子が挟まれた形態であってもよく、その他の形態であってもよい。吸収体は、繊維状物を含まない構成であってもよく、例えば吸水性樹脂粒子のみからなるものであってもよい。 The mass ratio of the water-absorbent resin particles in the absorber may be 2% to 100%, preferably 10% to 80%, and 20% to 70% with respect to the total of the water-absorbent resin particles and the fibrous material. More preferably. The structure of the absorber may be, for example, a form in which the water-absorbent resin particles and the fibrous material are uniformly mixed, and the water-absorbent resin particles are sandwiched between the fibrous material formed in a sheet or layer. It may be in a form or in any other form. The absorber may have a structure that does not contain fibrous substances, or may be composed of, for example, only water-absorbent resin particles.
 繊維状物としては、例えば、微粉砕された木材パルプ、コットン、コットンリンター、レーヨン、セルロースアセテート等のセルロース系繊維、ポリアミド、ポリエステル、ポリオレフィン等の合成繊維が挙げられる。また、繊維状物は、上述の繊維の混合物でもよい。繊維状物は、本実施形態に係る製造方法により得られる吸水性樹脂粒子との保持性により優れる観点から、エアスルー、エアレイド等の不織布が好ましい。 Examples of the fibrous material include finely pulverized wood pulp, cotton, cotton linter, rayon, cellulosic fibers such as cellulose acetate, and synthetic fibers such as polyamide, polyester, and polyolefin. Further, the fibrous material may be a mixture of the above-mentioned fibers. As the fibrous material, a non-woven fabric such as air-through or air-laid is preferable from the viewpoint of being excellent in retention with water-absorbent resin particles obtained by the production method according to the present embodiment.
 吸収体の使用前及び使用中における形態保持性をより高めるために、繊維状物に接着性バインダーを添加することによって繊維同士を接着させてもよい。接着性バインダーとしては、例えば、熱融着性合成繊維、ホットメルト接着剤、接着性エマルジョン等が挙げられる。 In order to further enhance the morphological retention before and during use of the absorber, the fibers may be adhered to each other by adding an adhesive binder to the fibrous material. Examples of the adhesive binder include heat-sealing synthetic fibers, hot melt adhesives, adhesive emulsions, and the like.
 熱融着性合成繊維としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等の全融型バインダー、ポリプロピレンとポリエチレンとのサイドバイサイドや芯鞘構造からなる非全融型バインダーが挙げられる。上述の非全融型バインダーにおいては、ポリエチレン部分のみ熱融着する。ホットメルト接着剤としては、例えば、エチレン-酢酸ビニルコポリマー、スチレン-イソプレン-スチレンブロックコポリマー、スチレン-ブタジエン-スチレンブロックコポリマー、スチレン-エチレン-ブチレン-スチレンブロックコポリマー、スチレン-エチレン-プロピレン-スチレンブロックコポリマー、アモルファスポリプロピレン等のベースポリマーと粘着付与剤、可塑剤、酸化防止剤等との配合物が挙げられる。 Examples of the heat-bondable synthetic fiber include a total fusion type binder such as polyethylene, polypropylene, and an ethylene-propylene copolymer, and a non-total fusion type binder having a side-by-side or core-sheath structure of polypropylene and polyethylene. In the above-mentioned non-total fusion type binder, only the polyethylene portion is heat-sealed. Examples of hot melt adhesives include ethylene-vinyl acetate copolymer, styrene-isoprene-styrene block copolymer, styrene-butadiene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, and styrene-ethylene-propylene-styrene block copolymer. , A compounding of a base polymer such as amorphous polypropylene and a tackifier, a plasticizer, an antioxidant and the like.
 接着性エマルジョンとしては、例えば、メチルメタクリレート、スチレン、アクリロニトリル、2-エチルヘキシルアクリレート、ブチルアクリレート、ブタジエン、エチレン、及び酢酸ビニルからなる群より選択される少なくとも1つ以上の単量体の重合物が挙げられる。これら接着性バインダーは、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。 Adhesive emulsions include, for example, polymers of at least one monomer selected from the group consisting of methyl methacrylate, styrene, acrylonitrile, 2-ethylhexyl acrylate, butyl acrylate, butadiene, ethylene, and vinyl acetate. Be done. These adhesive binders may be used alone or in combination of two or more.
 吸収体は、無機粒子(例えば非晶質シリカ)、消臭剤、顔料、染料、抗菌剤、香料、粘着剤等の添加剤を更に含んでいてもよい。これらの添加剤により、吸収体に種々の機能を付与することができる。吸水性樹脂粒子が無機粒子を含む場合、吸収体は吸水性樹脂粒子中の無機粒子とは別に無機粒子を含んでいてもよい。無機粒子としては、例えば、二酸化ケイ素、ゼオライト、カオリン、クレイ等が挙げられる。 The absorber may further contain additives such as inorganic particles (for example, amorphous silica), deodorants, pigments, dyes, antibacterial agents, fragrances, and adhesives. These additives can impart various functions to the absorber. When the water-absorbent resin particles contain inorganic particles, the absorber may contain inorganic particles in addition to the inorganic particles in the water-absorbent resin particles. Examples of the inorganic particles include silicon dioxide, zeolite, kaolin, clay and the like.
 吸収体の形状は、特に限定されず、例えばシート状であってよい。吸収体の厚さ(例えば、シート状の吸収体の厚さ)は、例えば0.1~20mm、0.3~15mmであってよい。 The shape of the absorber is not particularly limited, and may be, for example, a sheet shape. The thickness of the absorber (for example, the thickness of the sheet-shaped absorber) may be, for example, 0.1 to 20 mm and 0.3 to 15 mm.
 上記吸収体は、吸収性物品に好適に用いることができる。本実施形態に係る吸収性物品の製造方法は、例えば、吸収体を液体不透過性シート及び液体透過性シートの間に配置することを含む。吸収性物品に用いられる吸収体は、吸水性樹脂粒子を有するものであればよく、吸水性樹脂粒子のみからなるものであってもよく、あるいは吸水性樹脂粒子に加えて繊維状物を含むものであってもよい。 The above absorber can be suitably used for an absorbent article. The method for producing an absorbent article according to the present embodiment includes, for example, arranging an absorber between a liquid permeable sheet and a liquid permeable sheet. The absorber used in the absorbent article may be one having water-absorbent resin particles, may be composed of only water-absorbent resin particles, or may contain fibrous substances in addition to the water-absorbent resin particles. It may be.
 本実施形態に係る製造方法により得られる吸水性樹脂粒子は、繊維状物に対する保持性に優れるため、吸収性物品が、例えば液体透過性シート等の構成として吸水性樹脂粒子と接する箇所に繊維状物を含む場合に、該繊維状物に対して吸水性樹脂粒子が絡みやすい。そのため、該吸収性物品は、形態をより保ちやすく、吸水性能をより発揮しやすい。 Since the water-absorbent resin particles obtained by the production method according to the present embodiment have excellent retention to fibrous substances, the absorbent article is fibrous at a position where it comes into contact with the water-absorbent resin particles as a constitution of, for example, a liquid permeable sheet. When a substance is contained, the water-absorbent resin particles are likely to be entangled with the fibrous substance. Therefore, the absorbent article is more likely to maintain its shape and more easily exhibit water absorption performance.
 吸収性物品は、吸収体、液体不透過性シート及び液体透過性シートを備えていてよい。液体透過性シート(液体透過性トップシート)は、吸液対象の液体が浸入する側の最外部に配置されるものである。液体不透過性シート(液体不透過性バックシート)は、吸液対象の液体が浸入する側とは反対側の最外部に配置されるものである。吸収性物品は更にコアラップを備えていてよい。コアラップは、吸収体を保形するものである。 The absorbent article may include an absorber, a liquid permeable sheet and a liquid permeable sheet. The liquid permeable sheet (liquid permeable top sheet) is arranged on the outermost side on the side where the liquid to be absorbed enters. The liquid impermeable sheet (liquid impermeable back sheet) is arranged on the outermost side opposite to the side on which the liquid to be absorbed enters. The absorbent article may further include a core wrap. The core wrap retains the shape of the absorber.
 吸収性物品としては、おむつ(例えば紙おむつ)、トイレトレーニングパンツ、失禁パッド、衛生用品(生理用ナプキン、タンポン等)、汗取りパッド、ペットシート、簡易トイレ用部材、動物排泄物処理材などが挙げられる。 Examples of absorbent articles include diapers (for example, paper diapers), toilet training pants, incontinence pads, sanitary products (sanitary napkins, tampons, etc.), sweat pads, pet sheets, toilet materials, animal excrement treatment materials, and the like. ..
 図1は、吸収性物品の一例を示す断面図である。図1に示す吸収性物品100は、吸収体10と、コアラップ20a,20bと、液体透過性トップシート30と、液体不透過性バックシート40と、を備える。吸収性物品100において、液体不透過性バックシート40、コアラップ20b、吸収体10、コアラップ20a、及び液体透過性トップシート30がこの順に積層している。図1において、部材間に間隙があるように図示されている部分があるが、当該間隙が存在することなく部材間が密着していてよい。 FIG. 1 is a cross-sectional view showing an example of an absorbent article. The absorbent article 100 shown in FIG. 1 includes an absorbent body 10, core wraps 20a and 20b, a liquid permeable top sheet 30, and a liquid permeable back sheet 40. In the absorbent article 100, the liquid permeable back sheet 40, the core wrap 20b, the absorbent body 10, the core wrap 20a, and the liquid permeable top sheet 30 are laminated in this order. In FIG. 1, there is a portion shown so that there is a gap between the members, but the members may be in close contact with each other without the gap.
 吸収体10は、吸水性樹脂粒子10aと、繊維状物を含む繊維層10bと、を有する。吸水性樹脂粒子10aは、繊維層10b内に分散している。 The absorber 10 has a water-absorbent resin particle 10a and a fiber layer 10b containing a fibrous material. The water-absorbent resin particles 10a are dispersed in the fiber layer 10b.
 コアラップ20aは、吸収体10に接した状態で吸収体10の一方面側(図1中、吸収体10の上側)に配置されている。コアラップ20bは、吸収体10に接した状態で吸収体10の他方面側(図1中、吸収体10の下側)に配置されている。吸収体10は、コアラップ20aとコアラップ20bとの間に配置されている。 The core wrap 20a is arranged on one side of the absorber 10 (upper side of the absorber 10 in FIG. 1) in contact with the absorber 10. The core wrap 20b is arranged on the other side of the absorber 10 (lower side of the absorber 10 in FIG. 1) in contact with the absorber 10. The absorber 10 is arranged between the core wrap 20a and the core wrap 20b.
 コアラップ20a及びコアラップ20bは、例えば、吸収体10と同等の大きさの主面を有している。コアラップを用いることにより、吸収体の保形性を維持し、吸収体を構成する吸水性樹脂粒子等の脱落や流動を防止することができる。コアラップとしては、例えば、不織布、織布、ティッシュ、液体透過孔を有する合成樹脂フィルム、網目を有するネット状シート等が挙げられ、経済性の観点から、粉砕パルプを湿式成形してなるティッシュが好ましく用いられる。 The core wrap 20a and the core wrap 20b have, for example, a main surface having the same size as the absorber 10. By using the core wrap, it is possible to maintain the shape retention of the absorber and prevent the water-absorbent resin particles and the like constituting the absorber from falling off and flowing. Examples of the core wrap include non-woven fabrics, woven fabrics, tissues, synthetic resin films having liquid permeation holes, net-like sheets having a mesh, and the like, and from the viewpoint of economy, a tissue made by wet-molding crushed pulp is preferable. Used.
 液体透過性トップシート30は、吸収対象の液体が浸入する側の最外部に配置されている。液体透過性トップシート30は、コアラップ20aに接した状態でコアラップ20a上に配置されている。液体不透過性バックシート40は、吸収性物品100において液体透過性トップシート30とは反対側の最外部に配置されている。液体不透過性バックシート40は、コアラップ20bに接した状態でコアラップ20bの下側に配置されている。液体透過性トップシート30及び液体不透過性バックシート40は、例えば、吸収体10の主面よりも広い主面を有しており、液体透過性トップシート30及び液体不透過性バックシート40の外縁部は、吸収体10及びコアラップ20a,20bの周囲に延在している。 The liquid permeable top sheet 30 is arranged on the outermost side on the side where the liquid to be absorbed enters. The liquid permeable top sheet 30 is arranged on the core wrap 20a in contact with the core wrap 20a. The liquid permeable back sheet 40 is arranged on the outermost side of the absorbent article 100 on the opposite side of the liquid permeable top sheet 30. The liquid impermeable back sheet 40 is arranged under the core wrap 20b in contact with the core wrap 20b. The liquid permeable top sheet 30 and the liquid permeable back sheet 40 have, for example, a main surface wider than the main surface of the absorber 10, and the liquid permeable top sheet 30 and the liquid permeable back sheet 40 have. The outer edge extends around the absorber 10 and the core wraps 20a, 20b.
 液体透過性トップシート30としては、不織布、多孔質シートなどが挙げられる。不織布としては、例えば、サーマルボンド不織布、エアスルー不織布、レジンボンド不織布、スパンボンド不織布、メルトブロー不織布、スパンボンド/メルトブロー/スパンボンド不織布、エアレイド不織布、スパンレース不織布、ポイントボンド不織布等が挙げられる。なかでも、サーマルボンド不織布、エアスルー不織布、スパンボンド不織布、スパンボンド/メルトブロー/スパンボンド不織布が好ましく用いられる。 Examples of the liquid permeable top sheet 30 include non-woven fabrics and porous sheets. Examples of the non-woven fabric include thermal-bonded non-woven fabric, air-through non-woven fabric, resin-bonded non-woven fabric, spunbond non-woven fabric, melt-blow non-woven fabric, spunbond / melt-blow / spunbond non-woven fabric, air-laid non-woven fabric, spunlace non-woven fabric, point-bond non-woven fabric and the like. Of these, thermal bond non-woven fabrics, air-through non-woven fabrics, spunbond non-woven fabrics, and spunbond / melt blow / spunbond non-woven fabrics are preferably used.
 液体透過性トップシート30の構成素材としては、当該技術分野で公知の樹脂又は繊維を用いることができ、吸収性物品に用いられた際の液体浸透性、柔軟性及び強度の観点から、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)等のポリエステル、ナイロン等のポリアミド、レーヨン、その他の合成樹脂又は合成繊維、綿、絹、麻、パルプ(セルロース)繊維などが挙げられる。構成素材としては、液体透過性トップシート30の強度を高める等の観点から、合成繊維が好ましく用いられ、なかでもポリオレフィン、ポリエステルであることが好ましい。これらの素材は、単独で用いられてもよく、2種以上の素材を組み合わせて用いられてもよい。 As a constituent material of the liquid permeable top sheet 30, a resin or fiber known in the art can be used, and polyethylene (from the viewpoint of liquid permeability, flexibility and strength when used in an absorbent article, polyethylene ( Polyester such as PE), polypropylene (PP), polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polyester such as polyethylene naphthalate (PEN), polyamide such as nylon, rayon, and other synthetic resins or fibers. Examples include cotton, silk, linen and pulp (cellulose) fibers. As the constituent material, synthetic fibers are preferably used from the viewpoint of increasing the strength of the liquid permeable top sheet 30, and among them, polyolefin and polyester are preferable. These materials may be used alone or in combination of two or more kinds of materials.
 液体透過性トップシート30に用いられる不織布は、吸収性物品の液体吸収性能を向上させる観点から、適度な親水性を有していることが望ましい。当該観点から、国際公開第2011/086843号に記載の「不織布の親水度」(紙パルプ試験方法No.68(2000)に準拠)に従って測定したときの親水度が、5~200のものが好ましく、10~150のものがより好ましい。このような親水性を有する不織布は、上述の不織布のうち、レーヨン繊維のように素材自身が適度な親水度を示すものを用いたものでもよく、ポリオレフィン繊維、ポリエステル繊維のような疎水性の化学繊維に、公知の方法で親水化処理し、適度な親水度を付与したものを用いたものであってもよい。 It is desirable that the non-woven fabric used for the liquid permeable top sheet 30 has appropriate hydrophilicity from the viewpoint of improving the liquid absorption performance of the absorbent article. From this point of view, it is preferable that the hydrophilicity when measured according to the "hydrophilicity of the non-woven fabric" described in International Publication No. 2011/086843 (based on the pulp and paper test method No. 68 (2000)) is 5 to 200. Those of 10 to 150 are more preferable. As the non-woven fabric having such hydrophilicity, among the above-mentioned non-woven fabrics, those in which the material itself exhibits appropriate hydrophilicity such as rayon fiber may be used, and hydrophobic chemistry such as polyolefin fiber and polyester fiber may be used. A fiber may be used which has been hydrophilized by a known method to impart an appropriate degree of hydrophilicity.
 化学繊維の親水化処理の方法としては、例えば、スパンボンド不織布において、疎水性の化学繊維に親水化剤を混合したものをスパンボンド法にて不織布を得る方法、疎水性化学繊維でスパンボンド不織布を作製する際に親水化剤を同伴させる方法、又は疎水性化学繊維でスパンボンド不織布を得た後に親水化剤を含浸させる方法等が挙げられる。親水化剤としては、脂肪族スルホン酸塩、高級アルコール硫酸エステル塩等のアニオン系界面活性剤、第4級アンモニウム塩等のカチオン系界面活性剤、ポリエチレングリコール脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル等のノニオン系界面活性剤、ポリオキシアルキレン変性シリコーン等のシリコーン系界面活性剤、及びポリエステル系、ポリアミド系、アクリル系、ウレタン系の樹脂からなるステイン・リリース剤等が用いられる。 Examples of the method for hydrophilizing chemical fibers include a method of obtaining a non-woven fabric by a spunbond method obtained by mixing a hydrophobic chemical fiber with a hydrophilic agent in a spunbonded non-woven fabric, and a spunbonded non-woven fabric using hydrophobic chemical fibers. Examples thereof include a method of accommodating a hydrophilic agent when producing the above, a method of impregnating the spunbonded non-woven fabric with a hydrophobic chemical fiber, and then impregnating the hydrophilic agent. Hydrophilic agents include anionic surfactants such as aliphatic sulfonates and higher alcohol sulfates, cationic surfactants such as quaternary ammonium salts, polyethylene glycol fatty acid esters, polyglycerin fatty acid esters, and sorbitan fatty acids. Nonionic surfactants such as esters, silicone-based surfactants such as polyoxyalkylene-modified silicones, and stain-releasing agents made of polyester-based, polyamide-based, acrylic-based, and urethane-based resins are used.
 液体透過性トップシート30に用いられる不織布は、吸収性物品に良好な液体浸透性、柔軟性、強度及びクッション性を付与すること、並びに吸収性物品の液体浸透速度を速める観点から、適度に嵩高く、目付量が大きいことが好ましい。不織布の目付量は、好ましくは5~200g/mであり、より好ましくは8~150g/mであり、更に好ましくは10~100g/mである。また、不織布の厚さは、20~1400μmであることが好ましく、50~1200μmであることがより好ましく、80~1000μmであることが更に好ましい。 The non-woven fabric used for the liquid permeable top sheet 30 is appropriately bulky from the viewpoint of imparting good liquid permeability, flexibility, strength and cushioning property to the absorbent article and increasing the liquid penetration rate of the absorbent article. It is preferably high and has a large amount of grain. The basis weight of the non-woven fabric is preferably 5 to 200 g / m 2 , more preferably 8 to 150 g / m 2 , and even more preferably 10 to 100 g / m 2 . The thickness of the non-woven fabric is preferably 20 to 1400 μm, more preferably 50 to 1200 μm, and even more preferably 80 to 1000 μm.
 液体不透過性バックシート40は、吸収体10に吸収された液体がバックシート40側から外部へ漏れ出すのを防止する。液体不透過性バックシート40には、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン樹脂を主体とした液不透過性フィルム、通気性の樹脂フィルム、スパンボンド又はスパンレース等の不織布に通気性の樹脂フィルムが接合された複合フィルム、耐水性のメルトブローン不織布を高強度のスパンボンド不織布で挟んだスパンボンド/メルトブロー/スパンボンド(SMS)不織布などを用いることができる。吸収性物品の着用感を損なわないよう、柔軟性を確保する観点から、バックシート40は、低密度ポリエチレン(LDPE)樹脂を主体とした目付量10~50g/mの樹脂フィルムを使用することができる。また、通気性素材を用いた場合、装着時のムレが低減されて、着用者に与える不快感を軽減することもできる。 The liquid impermeable back sheet 40 prevents the liquid absorbed by the absorber 10 from leaking from the back sheet 40 side to the outside. The liquid impermeable back sheet 40 is made of a liquid impermeable film mainly composed of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), a breathable resin film, and a non-woven fabric such as spunbond or spunlace. A composite film to which the above resin films are bonded, a spunbond / melt blow / spunbond (SMS) non-woven fabric in which a water-resistant melt-blown non-woven fabric is sandwiched between high-strength spun-bonded non-woven fabrics can be used. From the viewpoint of ensuring flexibility so as not to impair the wearing feeling of the absorbent article, the back sheet 40 should use a resin film having a basis weight of 10 to 50 g / m 2 mainly made of low density polyethylene (LDPE) resin. Can be done. In addition, when a breathable material is used, the stuffiness at the time of wearing is reduced, and the discomfort given to the wearer can be reduced.
 吸収体10、コアラップ20a,20b、液体透過性トップシート30、及び、液体不透過性バックシート40の大小関係は、特に限定されず、吸収性物品の用途等に応じて適宜調整される。また、コアラップ20a,20bを用いて吸収体10を保形する方法は、特に限定されず、図1に示すように複数のコアラップにより吸収体が挟持されていてよく、1枚のコアラップにより吸収体が被覆されていてもよい。 The magnitude relationship between the absorbent body 10, the core wraps 20a and 20b, the liquid permeable top sheet 30, and the liquid permeable back sheet 40 is not particularly limited, and is appropriately adjusted according to the use of the absorbent article and the like. Further, the method of retaining the shape of the absorber 10 by using the core wraps 20a and 20b is not particularly limited, and as shown in FIG. 1, the absorber may be sandwiched by a plurality of core wraps, and the absorber may be sandwiched by one core wrap. May be coated.
 吸収体10は、液体透過性トップシート30に接着されていてもよい。吸収体10と液体透過性トップシート30とを接着することで、液体がより円滑に吸収体に導かれるため、液体漏れ防止により優れた吸収性物品が得られやすい。吸収体10がコアラップにより挟持又は被覆されている場合、少なくともコアラップと液体透過性トップシート30とが接着されていることが好ましく、更にコアラップと吸収体10とが接着されていることがより好ましい。接着方法としては、例えば、ホットメルト接着剤を液体透過性トップシート30に対してその幅方向へ所定間隔で縦方向ストライプ状、スパイラル状等の形状に塗布して接着する方法、デンプン、カルボキシメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン及びその他の水溶性高分子から選ばれる水溶性バインダーを用いて接着する方法等が挙げられる。また、吸収体10が熱融着性合成繊維を含む場合は、その熱融着によって接着する方法を採用してもよい。 The absorber 10 may be adhered to the liquid permeable top sheet 30. By adhering the absorbent body 10 and the liquid permeable top sheet 30, the liquid is guided to the absorbent body more smoothly, so that it is easy to obtain an excellent absorbent article by preventing liquid leakage. When the absorber 10 is sandwiched or covered by the core wrap, it is preferable that at least the core wrap and the liquid permeable top sheet 30 are adhered to each other, and it is more preferable that the core wrap and the absorber 10 are adhered to each other. Examples of the bonding method include a method of applying a hot melt adhesive to the liquid permeable top sheet 30 at predetermined intervals in the width direction in a vertical stripe shape, a spiral shape, or the like, and bonding starch or carboxymethyl cellulose. , Polyvinyl alcohol, polyvinylpyrrolidone, and other methods of bonding using a water-soluble binder selected from water-soluble polymers. When the absorber 10 contains a heat-sealing synthetic fiber, a method of adhering by heat-sealing may be adopted.
 以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples.
製造例1
[重合]
 撹拌機を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコに、509.71g(7.07モル)の100%アクリル酸を入れた。このアクリル酸を撹拌しながら上記フラスコ内にイオン交換水436.47gを加えた後、氷浴下で444.68gの48質量%水酸化ナトリウムを滴下することにより、単量体濃度45.1質量%のアクリル酸部分中和液(中和率75.4モル%)1390.86gを調製した。このアクリル酸部分中和液の調製を繰り返し行い、必要量を得た。
Manufacturing example 1
[polymerization]
509.71 g (7.07 mol) of 100% acrylic acid was placed in a round bottom cylindrical separable flask having an inner diameter of 11 cm and an internal volume of 2 L equipped with a stirrer. After adding 436.47 g of ion-exchanged water into the flask while stirring this acrylic acid, 444.68 g of 48% by mass sodium hydroxide was added dropwise under an ice bath to give a monomer concentration of 45.1 mass. Acrylic acid partial neutralization solution (neutralization rate 75.4 mol%) 1390.86 g was prepared. The preparation of this acrylic acid partial neutralizing solution was repeated to obtain a required amount.
 上記で調製したアクリル酸部分中和液2781.72gに、イオン交換水406.89g及びポリエチレングリコールジアクリレート(n=9)2.90g(日油株式会社、ブレンマーADE-400A)を加えて反応液(単量体水溶液)を得た。次に、この反応液を窒素ガス雰囲気下で30分間窒素ガス置換した。次いで、温度計及び窒素吹込み管を備えた、開閉可能な蓋付きのシグマ型羽根を2本有するジャケット付きステンレス製双腕型ニーダーを用意した。該ニーダーに上記反応液を供給し、反応液を30℃に保ちながら系を窒素ガス置換した。続いて、反応液を撹拌しながら、2.0質量%の過硫酸ナトリウム水溶液92.63g(7.780ミリモル)及び0.5質量%のL-アスコルビン酸水溶液15.85gを加えたところ、およそ1分後に温度が上昇し始め、重合が開始した。6分後に重合中の最高温度は93℃を示し、その後、ジャケット温度を60℃に保ちながら撹拌し続け、重合を開始してから60分後に、生成した含水ゲル状重合体を取り出した。得られた含水ゲル状重合体を喜連ローヤル社製ミートチョッパー12VR-750SDXに順次投入して細分化(粗砕)し、含水ゲル状粗砕物を得た。ミートチョッパーの出口に位置するプレートの穴の径は6.4mmとした。 To 2781.72 g of the acrylic acid partial neutralizing solution prepared above, 406.89 g of ion-exchanged water and 2.90 g of polyethylene glycol diacrylate (n = 9) (Nippon Oil Co., Ltd., Blemmer ADE-400A) are added to the reaction solution. (Aqueous monomer solution) was obtained. Next, this reaction solution was replaced with nitrogen gas for 30 minutes in a nitrogen gas atmosphere. Next, a stainless steel double-armed kneader with a jacket having two sigma-shaped blades with an openable and closable lid equipped with a thermometer and a nitrogen blowing tube was prepared. The above reaction solution was supplied to the kneader, and the system was replaced with nitrogen gas while keeping the reaction solution at 30 ° C. Subsequently, while stirring the reaction solution, 92.63 g (7.780 mmol) of a 2.0 mass% sodium persulfate aqueous solution and 15.85 g of a 0.5 mass% L-ascorbic acid aqueous solution were added. After 1 minute, the temperature began to rise and polymerization started. After 6 minutes, the maximum temperature during the polymerization was 93 ° C., and then stirring was continued while maintaining the jacket temperature at 60 ° C., and 60 minutes after the start of the polymerization, the produced hydrogel-like polymer was taken out. The obtained hydrogel-like polymer was sequentially charged into a meat chopper 12VR-750SDX manufactured by Kiren Royal Co., Ltd. and subdivided (coarse) to obtain a hydrogel-like coarsely crushed product. The diameter of the hole in the plate located at the outlet of the meat chopper was 6.4 mm.
[乾燥]
 含水ゲル状粗砕物を目開き0.8cm×0.8cmの金網上に広げ、160℃で60分間熱風乾燥して、粗砕乾燥物を得た。
[Dry]
The hydrogel-like coarsely crushed product was spread on a wire mesh having a mesh size of 0.8 cm × 0.8 cm and dried with hot air at 160 ° C. for 60 minutes to obtain a coarsely crushed and dried product.
[粉砕]
 次いで、遠心粉砕機(Retsch社製ZM200、スクリーン口径1mm、12000rpm)を用いて上記粗砕乾燥物を粉砕することにより、不定形破砕状の微粉を含む粒子群(A)を得た。
[Crushing]
Next, the coarsely crushed dried product was crushed using a centrifugal crusher (ZM200 manufactured by Retsch, screen diameter 1 mm, 12000 rpm) to obtain a particle group (A) containing amorphous crushed fine powder.
[分級]
 目開き850μmのJIS標準篩、目開き250μmのJIS標準篩、及び目開き180μmのJIS標準篩を用いて粒子群(A)を分級した。分級により、目開き850μmのJIS標準篩を通過し、かつ目開き250μmのJIS標準篩を通過しなかった画分である吸水性樹脂粒子(A1)、及び目開き180μmのJIS標準篩を通過した画分である微粉(a1)を得た。
[Classification]
The particle group (A) was classified using a JIS standard sieve having a mesh size of 850 μm, a JIS standard sieve having a mesh size of 250 μm, and a JIS standard sieve having a mesh size of 180 μm. By classification, the fraction passed through a JIS standard sieve with a mesh size of 850 μm and did not pass through a JIS standard sieve with a mesh size of 250 μm, and passed through a water-absorbent resin particle (A1) and a JIS standard sieve with a mesh size of 180 μm. A fraction (a1) was obtained.
<比較例1>
 分級後の吸水性樹脂粒子(A1)25gに、エチレンカーボネート0.0783gと、プロピレングリコール0.125gと、イオン交換水0.5gとからなる表面架橋剤溶液を25℃で35分間混合して混合物を得た。その後、該混合物を200℃で35分間加熱処理することにより、表面架橋された吸水性樹脂粒子(A2)を得た。
<Comparative example 1>
A surface cross-linking agent solution consisting of 0.0783 g of ethylene carbonate, 0.125 g of propylene glycol, and 0.5 g of ion-exchanged water is mixed with 25 g of water-absorbent resin particles (A1) after classification at 25 ° C. for 35 minutes to form a mixture. Got Then, the mixture was heat-treated at 200 ° C. for 35 minutes to obtain surface-crosslinked water-absorbent resin particles (A2).
 表面架橋された吸水性樹脂粒子(A2)を、目開き850μmのJIS標準篩及び目開き250μmのJIS標準篩で分級した。分級により、目開き850μmのJIS標準篩を通過し、かつ目開き250μmのJIS標準篩を通過しなかった画分である吸水性樹脂粒子(A3)を得た。 The surface-crosslinked water-absorbent resin particles (A2) were classified with a JIS standard sieve having an opening of 850 μm and a JIS standard sieve having an opening of 250 μm. By classification, water-absorbent resin particles (A3) were obtained, which were fractions that passed through a JIS standard sieve having a mesh size of 850 μm and did not pass through a JIS standard sieve having a mesh size of 250 μm.
 吸水性樹脂粒子(A3)25gに対して、二酸化ケイ素(製品名アエロジル200、日本アエロジル製)0.075gを混合することにより、比較例1として吸水性樹脂粒子(A4)を得た。混合は、吸水性樹脂粒子25gを容量225mlのマヨネーズ瓶に二酸化ケイ素とともに入れ、ペイントシェーカー(東洋製機製作所製)を用いて750(cycle/min(CPM))の条件下で3分間振とうして十分撹拌することにより行った。吸水性樹脂粒子(A4)のCRCは34g/gであり、中位粒子径は467μmであった。 By mixing 0.075 g of silicon dioxide (product name Aerosil 200, manufactured by Nippon Aerosil) with 25 g of water-absorbent resin particles (A3), water-absorbent resin particles (A4) were obtained as Comparative Example 1. For mixing, 25 g of water-absorbent resin particles are placed in a mayonnaise bottle having a capacity of 225 ml together with silicon dioxide, and shaken for 3 minutes under the condition of 750 (cycle / min (CPM)) using a paint shaker (manufactured by Toyo Seiki Seisakusho). It was carried out by stirring sufficiently. The CRC of the water-absorbent resin particles (A4) was 34 g / g, and the medium particle size was 467 μm.
<実施例1>
[造粒]
 微粉(a1)のうち40gを、撹拌機を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコ(2L容器は80℃のバスで保温されている)に入れた。撹拌機には、撹拌翼として図2に概形を示す撹拌翼200を取り付けた。撹拌翼200は、軸200a及び平板部200bを備えている。平板部200bは、軸200aに溶接されるとともに、湾曲した先端を有している。平板部200bには、軸200aの軸方向に沿って延びる4つのスリットSが形成されている。4つのスリットSは平板部200bの幅方向に配列されており、内側の二つのスリットSの幅は1cmであり、外側二つのスリットSの幅は0.5cmである。平板部200bの長さは約10cmであり、平板部200bの幅は約6cmである。
<Example 1>
[Granulation]
40 g of the fine powder (a1) was placed in a round-bottomed cylindrical separable flask having an inner diameter of 11 cm and an internal volume of 2 L (the 2 L container was kept warm in a bath at 80 ° C.) equipped with a stirrer. The stirrer was equipped with a stirrer 200 as a stirrer, which is generally shown in FIG. The stirring blade 200 includes a shaft 200a and a flat plate portion 200b. The flat plate portion 200b is welded to the shaft 200a and has a curved tip. The flat plate portion 200b is formed with four slits S extending along the axial direction of the shaft 200a. The four slits S are arranged in the width direction of the flat plate portion 200b, the width of the two inner slits S is 1 cm, and the width of the two outer slits S is 0.5 cm. The length of the flat plate portion 200b is about 10 cm, and the width of the flat plate portion 200b is about 6 cm.
 上記撹拌機の撹拌翼を284rpmで回転させながら、上記フラスコ内に90℃に加熱したイオン交換水40gを一度に投入した。90秒間上記フラスコ中で微粉と水とを撹拌することにより、造粒粒子を得た。上記フラスコから、得られた内容物(造粒粒子群)の全量を取り出し、その全量を用いて後述の造粒粒子群の粒度分布を測定した。 While rotating the stirring blade of the stirrer at 284 rpm, 40 g of ion-exchanged water heated to 90 ° C. was put into the flask at one time. Granulated particles were obtained by stirring the fine powder and water in the flask for 90 seconds. The total amount of the obtained contents (granulated particle group) was taken out from the flask, and the particle size distribution of the granulated particle group described later was measured using the total amount.
[再粒子化]
 粒度分布測定後、造粒粒子のうち10mmを超えるものを3~10mmの大きさになるよう裁断(粗砕)した。裁断したものを含む造粒粒子の全量を150℃で60分間熱風乾燥して、造粒粒子の粗砕乾燥物を得た。次いで、遠心粉砕機(Retsch社製ZM200、スクリーン口径1mm、6000rpm)を用いて当該粗砕乾燥物を粉砕し、造粒及び再粉砕を経た吸水性樹脂粒子(B1)を得た。吸水性樹脂粒子(B1)を目開き850μmのJIS標準篩及び目開き180μmのJIS標準篩で分級した。分級により、目開き850μmのJIS標準篩を通過し、かつ目開き180μmのJIS標準篩を通過しなかった画分である吸水性樹脂粒子(B2)を得た。この段階で、後述の造粒粉砕後の粒子収率を測定した。
[Reparticle]
After measuring the particle size distribution, the granulated particles exceeding 10 mm were cut (coarsely crushed) to a size of 3 to 10 mm. The entire amount of the granulated particles including the cut particles was dried with hot air at 150 ° C. for 60 minutes to obtain a coarsely crushed dried product of the granulated particles. Next, the coarsely crushed and dried product was pulverized using a centrifugal pulverizer (ZM200 manufactured by Retsch, screen diameter 1 mm, 6000 rpm) to obtain water-absorbent resin particles (B1) that had undergone granulation and re-pulverization. The water-absorbent resin particles (B1) were classified with a JIS standard sieve having an opening of 850 μm and a JIS standard sieve having an opening of 180 μm. By classification, water-absorbent resin particles (B2) were obtained, which were fractions that passed through a JIS standard sieve having a mesh size of 850 μm and did not pass through a JIS standard sieve having a mesh size of 180 μm. At this stage, the particle yield after granulation and crushing described later was measured.
[表面架橋]
 吸水性樹脂粒子(B2)25gに、エチレンカーボネート0.0783gと、プロピレングリコール0.125gと、イオン交換水0.5gとからなる表面架橋剤溶液を25℃で35分間混合して混合物を得た。その後、該混合物を200℃で35分間加熱処理することにより、表面架橋された吸水性樹脂粒子(B3)を得た。
[Surface cross-linking]
A surface cross-linking agent solution consisting of 0.0783 g of ethylene carbonate, 0.125 g of propylene glycol, and 0.5 g of ion-exchanged water was mixed with 25 g of water-absorbent resin particles (B2) at 25 ° C. for 35 minutes to obtain a mixture. .. Then, the mixture was heat-treated at 200 ° C. for 35 minutes to obtain surface-crosslinked water-absorbent resin particles (B3).
 表面架橋された吸水性樹脂粒子(B3)を、目開き850μmのJIS標準篩及び目開き250μmのJIS標準篩で分級した。分級により、目開き850μmのJIS標準篩を通過し、かつ目開き250μmのJIS標準篩を通過しなかった画分である吸水性樹脂粒子(B4)を得た。 The surface-crosslinked water-absorbent resin particles (B3) were classified with a JIS standard sieve having an opening of 850 μm and a JIS standard sieve having an opening of 250 μm. By classification, water-absorbent resin particles (B4) were obtained, which were fractions that passed through a JIS standard sieve having a mesh size of 850 μm and did not pass through a JIS standard sieve having a mesh size of 250 μm.
 吸水性樹脂粒子(B4)25gに対して、二酸化ケイ素(製品名アエロジル200、日本アエロジル製)0.075gを混合することにより、実施例1として吸水性樹脂粒子(B5)を得た。混合は、吸水性樹脂粒子25gを容量225mlのマヨネーズ瓶に二酸化ケイ素とともに入れ、ペイントシェーカー(東洋製機製作所製)を用いて750(cycle/min(CPM))の条件下で3分間振とうして十分撹拌することにより行った。吸水性樹脂粒子(B5)のCRCは31g/gであり、中位粒子径は419μmであった。 Water-absorbent resin particles (B5) were obtained as Example 1 by mixing 0.075 g of silicon dioxide (product name Aerosil 200, manufactured by Nippon Aerosil) with 25 g of water-absorbent resin particles (B4). For mixing, 25 g of water-absorbent resin particles are placed in a mayonnaise bottle having a capacity of 225 ml together with silicon dioxide, and shaken for 3 minutes under the condition of 750 (cycle / min (CPM)) using a paint shaker (manufactured by Toyo Seiki Seisakusho). It was carried out by stirring sufficiently. The CRC of the water-absorbent resin particles (B5) was 31 g / g, and the medium particle size was 419 μm.
<実施例2>
 造粒工程において、内容積2Lの丸底円筒型セパラブルフラスコ中での撹拌時間を15秒間に変更したこと以外は、実施例1と同様に実施し、実施例2として吸水性樹脂粒子(B6)を得た。吸水性樹脂粒子(B6)のCRCは30g/gであり、中位粒子径は467μmであった。
<Example 2>
In the granulation step, the same procedure as in Example 1 was carried out except that the stirring time in the round-bottomed cylindrical separable flask having an internal volume of 2 L was changed to 15 seconds. ) Was obtained. The CRC of the water-absorbent resin particles (B6) was 30 g / g, and the medium particle size was 467 μm.
<実施例3>
 造粒工程において、90℃に加熱したイオン交換水の添加量を25gに変更したこと以外は実施例1と同様に実施し、実施例3として吸水性樹脂粒子(B7)を得た。吸水性樹脂粒子(B7)のCRCは32g/gであり、中位粒子径は446μmであった。
<Example 3>
In the granulation step, the same procedure as in Example 1 was carried out except that the amount of ion-exchanged water heated to 90 ° C. was changed to 25 g, and water-absorbent resin particles (B7) were obtained as Example 3. The CRC of the water-absorbent resin particles (B7) was 32 g / g, and the medium particle size was 446 μm.
<比較例2>
 造粒工程において、90℃に加熱したイオン交換水の投入量を20gに変更したこと以外は実施例1と同様に実施し、比較例2として吸水性樹脂粒子(B8)を得た。吸水性樹脂粒子(B8)のCRCは32g/gであり、中位粒子径は428μmであった。
<Comparative example 2>
In the granulation step, the same procedure as in Example 1 was carried out except that the amount of ion-exchanged water heated to 90 ° C. was changed to 20 g, and water-absorbent resin particles (B8) were obtained as Comparative Example 2. The CRC of the water-absorbent resin particles (B8) was 32 g / g, and the medium particle size was 428 μm.
<比較例3>
 造粒工程において、90℃に加熱したイオン交換水の投入量を10gに変更したこと以外は実施例1と同様に実施し、比較例3として吸水性樹脂粒子(B9)を得た。吸水性樹脂粒子(B9)のCRCは31g/gであり、中位粒子径は444μmであった。
<Comparative example 3>
In the granulation step, the same procedure as in Example 1 was carried out except that the amount of ion-exchanged water heated to 90 ° C. was changed to 10 g, and water-absorbent resin particles (B9) were obtained as Comparative Example 3. The CRC of the water-absorbent resin particles (B9) was 31 g / g, and the medium particle size was 444 μm.
<造粒粒子群の粒度分布の測定>
 造粒により得られた造粒粒子群の全量、又は任意の量(30g~100g程度)をサンプリングしたものを、造粒粒子群の粒度分布測定用のサンプルとした。JIS規格の目開きがそれぞれ106mm、53mm、31.5mm、9.5mm、2.8mm、850μm、及び180μmの篩、並びに受け皿を上からこの順に設置し、目開き106mmの篩上に測定サンプルを投入した。振動強度を7に設定した電磁振動式ふるい振とう機オクタゴン200(endecotts社製)を用いて、上記篩及び受け皿を上下方向に10分間振動させて測定サンプルを10分間振とうすることにより測定サンプルを分級した。
<Measurement of particle size distribution of granulated particles>
A sample of the entire amount of the granulated particle group obtained by granulation or an arbitrary amount (about 30 g to 100 g) was used as a sample for measuring the particle size distribution of the granulated particle group. Sieves with JIS standard meshes of 106 mm, 53 mm, 31.5 mm, 9.5 mm, 2.8 mm, 850 μm, and 180 μm, and a saucer are placed in this order from the top, and the measurement sample is placed on a sieve with a mesh size of 106 mm. I put it in. Using an electromagnetic vibration type sieve shaker Octagon 200 (manufactured by endcotts) with a vibration intensity set to 7, the sieve and saucer are vibrated in the vertical direction for 10 minutes, and the measurement sample is shaken for 10 minutes. Was classified.
 各篩上に残存した造粒粒子の合計量及び測定に供したサンプル量に基づき、式(1)、(2)、(3)より31.5mm以上の造粒粒子存在率、850μm以上の造粒粒子存在率及び9.5mm以上の造粒粒子存在率をそれぞれ算出した。結果を表1に示す。なお、測定サンプルは測定後に元の製造工程に戻して、吸水性樹脂粒子の製造に引き続き用いた。
 式(1):「31.5mm以上の造粒粒子存在率%」=(目開き106mm、53mm、及び31.5mmの各篩上に残存した造粒粒子の合計量)/(測定に供したサンプル量)
 式(2):「850μm以上の造粒粒子存在率%」=(目開き106mm、53mm、31.5mm、9.5mm、2.8mm、及び850μmの各篩上に残存した造粒粒子の合計量)/(測定に供したサンプル量)
 式(3):「9.5mm以上の造粒粒子存在率%」=(目開き106mm、53mm、31.5mm、及び9.5mmの各篩上に残存した造粒粒子の合計量)/(測定に供したサンプル量)
Based on the total amount of granulated particles remaining on each sieve and the amount of sample used for measurement, the abundance of granulated particles of 31.5 mm or more and 850 μm or more from the formulas (1), (2) and (3) The abundance of granulated particles and the abundance of granulated particles of 9.5 mm or more were calculated, respectively. The results are shown in Table 1. The measurement sample was returned to the original production process after the measurement and continued to be used in the production of the water-absorbent resin particles.
Formula (1): "% of granulated particles abundance of 31.5 mm or more" = (total amount of granulated particles remaining on each sieve having a mesh size of 106 mm, 53 mm, and 31.5 mm) / (subject to measurement) Sample amount)
Formula (2): "% of granulated particles abundance of 850 μm or more" = (total of granulated particles remaining on each sieve having a mesh size of 106 mm, 53 mm, 31.5 mm, 9.5 mm, 2.8 mm, and 850 μm) Amount) / (Amount of sample used for measurement)
Formula (3): "% of granulated particles abundance of 9.5 mm or more" = (total amount of granulated particles remaining on each sieve having a mesh size of 106 mm, 53 mm, 31.5 mm, and 9.5 mm) / ( Sample amount used for measurement)
<造粒粉砕後の粒子収率>
 造粒、乾燥及び再粉砕を経た後であって、表面架橋前である粒子を回収し、目開き180μm及び850μmのJIS標準篩を用いて分級した。回収した全粒子のうち、目開き850μmの篩を通過し、かつ目開き180μmの篩を通過しない粒子の質量割合を算出し、粒子径180μm以上850μm未満の粒子の収率とした。結果を表1に示す。造粒及び再粉砕後における、粒子径180μm以上850μm未満の粒子の収率が高いほど、造粒強度が高いといえ好ましい。
<Particle yield after granulation and crushing>
After granulation, drying and re-grinding, and before surface cross-linking, the particles were recovered and classified using JIS standard sieves with openings of 180 μm and 850 μm. Among all the collected particles, the mass ratio of the particles that passed through the sieve with a mesh size of 850 μm and did not pass through the sieve with a mesh size of 180 μm was calculated, and the yield of the particles having a particle diameter of 180 μm or more and less than 850 μm was obtained. The results are shown in Table 1. It is preferable that the higher the yield of particles having a particle size of 180 μm or more and less than 850 μm after granulation and re-grinding, the higher the granulation strength.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<中位粒子径>
 吸水性樹脂粒子の中位粒子径は下記手順により測定した。JIS標準篩を上から、目開き600μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩及び受け皿の順に組み合わせた。組み合わせた最上の篩に、粒子50gを入れ、ロータップ式振とう器(株式会社飯田製作所製)を用いてJIS Z 8815(1994)に準じて分級した。分級後、各篩上に残った粒子の質量を全量に対する質量百分率として算出し粒度分布を求めた。この粒度分布に関して粒子径の大きい方から順に篩上を積算することにより、篩の目開きと篩上に残った粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径として得た。
<Medium particle size>
The medium particle size of the water-absorbent resin particles was measured by the following procedure. From the top of the JIS standard sieve, a sieve with a mesh size of 600 μm, a sieve with a mesh size of 500 μm, a sieve with a mesh size of 425 μm, a sieve with a mesh size of 300 μm, a sieve with a mesh size of 250 μm, a sieve with a mesh size of 180 μm, a sieve with a mesh size of 150 μm and a saucer. Combined in the order of. 50 g of particles were placed in the best combined sieve and classified according to JIS Z 8815 (1994) using a low-tap shaker (manufactured by Iida Seisakusho Co., Ltd.). After the classification, the mass of the particles remaining on each sieve was calculated as a mass percentage with respect to the total amount, and the particle size distribution was obtained. The relationship between the mesh size of the sieve and the integrated value of the mass percentage of the particles remaining on the sieve was plotted on a logarithmic probability paper by integrating on the sieve in order from the one having the largest particle size with respect to this particle size distribution. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass was obtained as the medium particle size.
<CRC>
 EDANA法(NWSP 241.0.R2(15)、page.769~778)を参考にCRCを下記の手順で測定した。測定は、温度25℃±2℃、湿度50%±10%の環境下で行った。
<CRC>
The CRC was measured by the following procedure with reference to the EDANA method (NWSP 241.0.R2 (15), page.769-778). The measurement was carried out in an environment where the temperature was 25 ° C. ± 2 ° C. and the humidity was 50% ± 10%.
 60mm×170mmの大きさの不織布(製品名:ヒートパックMWA-18、日本製紙パピリア株式会社製)を長手方向に半分に折ることで60mm×85mmの大きさに調整した。長手方向に延びる両辺のそれぞれにおいて不織布同士をヒートシールで圧着することにより60mm×85mmの不織布バッグを作製した(幅5mmの圧着部を長手方向に沿って両辺に形成した)。不織布バッグの内部に測定対象粒子を0.2g精秤し収容した。その後、短手方向に延びる残りの一辺をヒートシールで圧着することにより不織布バッグを閉じた。 A non-woven fabric with a size of 60 mm x 170 mm (product name: Heat Pack MWA-18, manufactured by Nippon Paper Papylia Co., Ltd.) was folded in half in the longitudinal direction to adjust the size to 60 mm x 85 mm. A 60 mm × 85 mm non-woven fabric bag was produced by crimping the non-woven fabrics to each other on both sides extending in the longitudinal direction with a heat seal (a crimped portion having a width of 5 mm was formed on both sides along the longitudinal direction). 0.2 g of the particles to be measured were precisely weighed and contained inside the non-woven fabric bag. Then, the non-woven fabric bag was closed by crimping the remaining one side extending in the lateral direction with a heat seal.
 不織布バッグが折り重ならない状態で、ステンレス製バット(240mm×320mm×45mm)に収容された生理食塩水1000g上に不織布バッグを浮かべることにより、不織布バッグの全体を完全に湿らせた。不織布バッグを生理食塩水に投入してから1分後にスパチュラにて不織布バッグを生理食塩水に浸漬することにより、ゲルが収容された不織布バッグを得た。 The entire non-woven fabric bag was completely moistened by floating the non-woven fabric bag on 1000 g of physiological saline contained in a stainless steel vat (240 mm × 320 mm × 45 mm) without folding the non-woven fabric bag. One minute after the non-woven fabric bag was put into the physiological saline solution, the non-woven fabric bag was immersed in the physiological saline solution with a spatula to obtain a non-woven fabric bag containing the gel.
 不織布バッグを生理食塩水に投入してから30分(浮かべた時間1分、及び、浸漬時間29分の合計)後に生理食塩水の中から不織布バッグを取り出した。そして、遠心分離機(株式会社コクサン製、型番:H-122)に不織布バッグを入れた。遠心分離機における遠心力が250Gに到達した後、3分間不織布バッグの脱水を行った。脱水後、ゲルの質量を含む不織布バッグの質量Maを秤量した。測定対象粒子を収容することなく不織布バッグに対して上述の操作と同様の操作を施し、不織布バッグの質量Mbを測定した。下記式に基づきCRCを算出した。Mcは、測定に用いた粒子の質量0.2gの精秤値である。
  CRC[g/g]={(Ma-Mb)-Mc}/Mc
Thirty minutes after the non-woven fabric bag was put into the physiological saline solution (a total of 1 minute of floating time and 29 minutes of immersion time), the non-woven fabric bag was taken out from the physiological saline solution. Then, the non-woven fabric bag was put in a centrifuge (manufactured by Kokusan Co., Ltd., model number: H-122). After the centrifugal force in the centrifuge reached 250 G, the non-woven fabric bag was dehydrated for 3 minutes. After dehydration, the mass Ma of the non-woven fabric bag containing the mass of the gel was weighed. The non-woven fabric bag was subjected to the same operation as described above without accommodating the particles to be measured, and the mass Mb of the non-woven fabric bag was measured. The CRC was calculated based on the following formula. Mc is a scaled value of 0.2 g of the mass of the particles used in the measurement.
CRC [g / g] = {(Ma-Mb) -Mc} / Mc
(加圧下吸収倍率(AAP))
 図3に示す測定装置110を用いて2.07kPa(0.3psi)加圧下の吸収倍率(AAP)を測定した。測定は、温度25℃±2℃、湿度50%±10%の環境下で行った。まず、2.07kPaの圧力になるように調整した重り112(断面:円形)、内径60mmのプラスチック製の円筒114、及び、円筒114の一端(底面)に配置された400メッシュ(目開き38μm)の金網116を備える測定装置110を準備した。重り112は、円板部112aと、円板部112aに垂直な方向に円板部112aの中央から延びる棒状部112bと、棒状部112bに挿入される貫通孔を中央に有する円柱部112cと、を有している。重り112の円板部112aは、円筒114の内部において円筒114の長手方向に移動可能であるように円筒114の内径と略同等の径を有している。円柱部112cの径は円板部112aの径よりも小さい。円筒114の一端は、開放されているものの金網116によって遮蔽されており、円筒114の他端は、重り112が挿入できるように開放されている。円筒114の内部において金網116上に0.90gの測定対象粒子120を均一に散布した。そして、円筒114の内部に重り112を挿入して測定対象粒子120上に重り112を載せた後、測定装置110の全体の質量(測定装置110及び吸液前の測定対象粒子120の総質量)Wa[g]を測定した。
(Absorption ratio under pressure (AAP))
The absorption ratio (AAP) under pressure of 2.07 kPa (0.3 psi) was measured using the measuring device 110 shown in FIG. The measurement was carried out in an environment where the temperature was 25 ° C. ± 2 ° C. and the humidity was 50% ± 10%. First, a weight 112 (cross section: circular) adjusted to a pressure of 2.07 kPa, a plastic cylinder 114 with an inner diameter of 60 mm, and a 400 mesh (opening 38 μm) arranged at one end (bottom surface) of the cylinder 114. The measuring device 110 provided with the wire mesh 116 of the above was prepared. The weight 112 includes a disc portion 112a, a rod-shaped portion 112b extending from the center of the disc portion 112a in a direction perpendicular to the disc portion 112a, and a cylindrical portion 112c having a through hole inserted into the rod-shaped portion 112b in the center. have. The disk portion 112a of the weight 112 has a diameter substantially equal to the inner diameter of the cylinder 114 so that it can be moved in the longitudinal direction of the cylinder 114 inside the cylinder 114. The diameter of the cylindrical portion 112c is smaller than the diameter of the disc portion 112a. One end of the cylinder 114 is open but shielded by a wire mesh 116, and the other end of the cylinder 114 is open so that the weight 112 can be inserted. Inside the cylinder 114, 0.90 g of particles 120 to be measured were uniformly sprayed on the wire mesh 116. Then, after the weight 112 is inserted into the cylinder 114 and the weight 112 is placed on the measurement target particle 120, the total mass of the measuring device 110 (the total mass of the measuring device 110 and the measurement target particle 120 before liquid absorption). Wa [g] was measured.
 直径150mmのステンレスシャーレ130の凹部における底面の中央に直径90mm、厚さ7mmのガラスフィルター140(ISO4793 P-250)を置いた後、水面がガラスフィルター140の上面と同じ高さになるように0.90質量%の塩化ナトリウム水溶液(25℃±2℃)を加えた。ガラスフィルター140上に直径90mmの1枚のろ紙150(ADVANTEC東洋株式会社、製品名:(No.3)、厚さ0.23mm、保留粒子径5μm)を載せ、表面が全て濡れるようにし、かつ、過剰の液を除いた。そして、ろ紙150上に上述の測定装置110を載せ、測定対象粒子120に液を荷重下で吸収させた。1時間後、測定装置110を持ち上げ、測定装置110の全体の質量(測定装置110及び吸液後の測定対象粒子120の総質量)Wb[g]を測定した。 After placing a glass filter 140 (ISO4793 P-250) with a diameter of 90 mm and a thickness of 7 mm in the center of the bottom surface of the recess of the stainless petri dish 130 with a diameter of 150 mm, 0 so that the water surface is at the same height as the upper surface of the glass filter 140. A 90% by mass aqueous sodium chloride solution (25 ° C ± 2 ° C) was added. A sheet of filter paper 150 (ADVANTEC Toyo Co., Ltd., product name: (No. 3), thickness 0.23 mm, reserved particle diameter 5 μm) with a diameter of 90 mm is placed on the glass filter 140 so that the entire surface is wet and the surface is completely wet. , Excess liquid was removed. Then, the above-mentioned measuring device 110 was placed on the filter paper 150, and the liquid was absorbed by the particles 120 to be measured under a load. After 1 hour, the measuring device 110 was lifted, and the total mass of the measuring device 110 (total mass of the measuring device 110 and the particles 120 to be measured after absorbing the liquid) Wb [g] was measured.
 Wa及びWbから、下記式に基づき2.07kPa加圧下の吸収倍率(AAP)[g/g]を算出した。結果を表2に示す。
  AAP[g/g]=(Wb[g]-Wa[g])/0.90[g]
From Wa and Wb, the absorption ratio (AAP) [g / g] under 2.07 kPa pressurization was calculated based on the following formula. The results are shown in Table 2.
AAP [g / g] = (Wb [g] -Wa [g]) /0.90 [g]
<Vortex吸水速度>
 吸水性樹脂粒子の生理食塩水の吸水速度をVortex法に基づき下記手順で測定した。測定は、温度25℃±2℃、湿度50%±10%の環境下で行った。
まず、恒温水槽にて25±0.2℃の温度に調整した0.9質量%塩化ナトリウム水溶液(生理食塩水)50±0.1gを内容積100mLのビーカーに量りとった。次に、マグネチックスターラーバー(8mmφ×30mm、リング無し)を用いて回転数600rpmで撹拌することにより渦を発生させた。吸水性樹脂粒子2.0±0.002gを塩化ナトリウム水溶液中に一度に添加した。吸水性樹脂粒子の添加後から、液面の渦が収束する時点までの時間[秒]を測定し、当該時間を吸水性樹脂粒子の吸水速度として得た。結果を表2に示す。
<Vortex water absorption rate>
The water absorption rate of the physiological saline of the water-absorbent resin particles was measured by the following procedure based on the Vortex method. The measurement was carried out in an environment where the temperature was 25 ° C. ± 2 ° C. and the humidity was 50% ± 10%.
First, 50 ± 0.1 g of a 0.9 mass% sodium chloride aqueous solution (physiological saline) adjusted to a temperature of 25 ± 0.2 ° C. in a constant temperature water tank was weighed in a beaker having an internal volume of 100 mL. Next, a vortex was generated by stirring at a rotation speed of 600 rpm using a magnetic stirrer bar (8 mmφ × 30 mm, without ring). 2.0 ± 0.002 g of water-absorbent resin particles were added to the aqueous sodium chloride solution at one time. The time [seconds] from the addition of the water-absorbent resin particles to the time when the vortex on the liquid surface converged was measured, and the time was obtained as the water absorption rate of the water-absorbent resin particles. The results are shown in Table 2.
<吸水性樹脂粒子保持率>
 吸水性樹脂粒子保持率は以下の方法で測定した。測定は、温度25℃±2℃、湿度50%±10%の環境下で行った。概略としては、市販の実験設備用の架台を用いて、アクリル板を傾斜させて固定した後、板上に載置した不織布に鉛直上方から吸水性樹脂粒子を投入し、投入した全量に対して不織布上から落下せず不織布上に保持された吸水性樹脂粒子の量、すなわち保持率を評価した。以下に更に詳細な測定方法を示す。
<Water-absorbent resin particle retention rate>
The water-absorbent resin particle retention rate was measured by the following method. The measurement was carried out in an environment where the temperature was 25 ° C. ± 2 ° C. and the humidity was 50% ± 10%. Roughly speaking, after the acrylic plate is tilted and fixed using a commercially available pedestal for experimental equipment, the water-absorbent resin particles are charged vertically above the non-woven fabric placed on the plate, and the total amount of the charged resin particles is increased. The amount of water-absorbent resin particles held on the non-woven fabric without falling from the non-woven fabric, that is, the retention rate was evaluated. A more detailed measurement method is shown below.
 保持率は、図4に概略を示す方法で測定した。傾斜面方向の長さが55cmのアクリル製の傾斜板Sを、水平に対して成す角35±2°になるよう固定した。不織布77としては、12×40cmにカットした坪量22g/mのポリエチレン-ポリプロピレン製のエアスルー型不織布多孔質液体透過性シートを用いた。不織布77は、吸収性物品において吸収体と通常接する面(裏面)を上側として、不織布77の長手方向が傾斜板Sの傾斜方向と平行となるよう、傾斜板S上に貼り付けた。不織布77の下端の下になる位置にステンレス製で28.5mm×22.0mmの大きさのバット79を設置し、不織布77から落下した吸水性樹脂粒子を受けた。 The retention rate was measured by the method outlined in FIG. An acrylic inclined plate S 0 having a length of 55 cm in the inclined surface direction was fixed so as to form an angle of 35 ± 2 ° with respect to the horizontal. As the non-woven fabric 77, an air-through non-woven fabric porous liquid permeable sheet made of polyethylene-polypropylene having a basis weight of 22 g / m 2 cut into 12 × 40 cm was used. The non-woven fabric 77 was attached on the inclined plate S 0 so that the longitudinal direction of the non-woven fabric 77 was parallel to the inclined direction of the inclined plate S 0 with the surface (back surface) that normally contacts the absorber in the absorbent article as the upper side. A stainless steel bat 79 having a size of 28.5 mm × 22.0 mm was placed below the lower end of the non-woven fabric 77 to receive the water-absorbent resin particles dropped from the non-woven fabric 77.
 図4に示す吸水性樹脂粒子投入装置は、ロート71と、ダンパー73と、円筒75とを備える。ロート71は、開口として、吸水性樹脂粒子を供給する供給口(上端開口。直径(内径):91mm)、及び、吸水性樹脂粒子を排出する排出口(下端開口。直径(内径):8mm)を有しており、供給口から排出口に至るに伴い狭まるテーパー形状を有している。ロート71の側壁の傾斜角度は、ロート71の軸方向に対して20°である。ロート71における供給口から排出口までの長さは、114mmである。供給口及び排出口を含むロート71の軸方向に垂直な断面は、円形である。ロート71の構成材料は、ステンレスである。ロート71は、供給口側の外周部を支持リングにより把持されて固定される。 The water-absorbent resin particle charging device shown in FIG. 4 includes a funnel 71, a damper 73, and a cylinder 75. The funnel 71 has a supply port for supplying water-absorbent resin particles (upper end opening; diameter (inner diameter): 91 mm) and a discharge port for discharging water-absorbent resin particles (lower end opening. Diameter (inner diameter): 8 mm). It has a tapered shape that narrows from the supply port to the discharge port. The inclination angle of the side wall of the funnel 71 is 20 ° with respect to the axial direction of the funnel 71. The length from the supply port to the discharge port in the funnel 71 is 114 mm. The axially perpendicular cross section of the funnel 71 including the supply port and the discharge port is circular. The constituent material of the funnel 71 is stainless steel. The funnel 71 is fixed by gripping the outer peripheral portion on the supply port side with a support ring.
 ダンパー73は、長さ47mm、幅15mmの部材である。ダンパー73は、ロート71の排出口に配置されており、ロート71の排出口を開閉させる。円筒75は、長さ35mm、内径20mmの部材である。円筒75は、ロート71の排出口側の部分が内部に位置するようにロート71の排出口側に配置されている。 The damper 73 is a member having a length of 47 mm and a width of 15 mm. The damper 73 is arranged at the discharge port of the funnel 71, and opens and closes the discharge port of the funnel 71. The cylinder 75 is a member having a length of 35 mm and an inner diameter of 20 mm. The cylinder 75 is arranged on the discharge port side of the funnel 71 so that the portion on the discharge port side of the funnel 71 is located inside.
 まず、水平器を用いて、ロート71の上端面が水平に設置されていることを確認した。次に、ダンパー73で排出口を閉止した状態で、ロート71に測定する吸水性樹脂粒子5.00gを収容した。不織布77の下端から傾斜板Sの傾斜方向と平行な方向に300mmの位置を投入点とし、該投入点の鉛直上方30mmにダンパー73(排出口)を設置した。ダンパー73を速やかに引き抜くことで排出口を開放し、吸水性樹脂粒子を不織布77上に落下させた。不織布77上に留まることなく下のバット79に落下した吸水性樹脂粒子の重量を測定した。下記式(4)より、35°傾斜時の吸水性樹脂粒子の保持率を算出した。結果を表2に示す。
 式(4):吸水性樹脂粒子保持率[%]=(5.00[g]-落下した吸水性樹脂粒子の量[g])/5.00[g]
First, using a spirit level, it was confirmed that the upper end surface of the funnel 71 was installed horizontally. Next, with the discharge port closed by the damper 73, 5.00 g of the water-absorbent resin particles to be measured were housed in the funnel 71. The position of 300mm in the inclination direction parallel to the direction of the inclined plate S 0 from the lower end of the nonwoven fabric 77 and a closing point, was placed a damper 73 (outlet) vertically above 30mm of the charged points. The discharge port was opened by quickly pulling out the damper 73, and the water-absorbent resin particles were dropped onto the non-woven fabric 77. The weight of the water-absorbent resin particles that fell on the lower vat 79 without staying on the non-woven fabric 77 was measured. From the following formula (4), the retention rate of the water-absorbent resin particles when tilted at 35 ° was calculated. The results are shown in Table 2.
Formula (4): Water-absorbent resin particle retention rate [%] = (5.00 [g] -amount of dropped water-absorbent resin particles [g]) / 5.00 [g]
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例で得られた吸水性樹脂粒子は、不織布に対する保持率が高かった。一方、粒子化、造粒及び再粒子化工程を経ていない比較例1の吸水性樹脂粒子は、不織布に対する保持率が低かった。また、粒子化、造粒及び再粒子化工程を経たものの、造粒の程度が低く、粒子径の大きい造粒粒子の割合が低かった比較例2及び3の吸水性樹脂粒子も、不織布に対する保持率が低かった。 The water-absorbent resin particles obtained in the examples had a high retention rate with respect to the non-woven fabric. On the other hand, the water-absorbent resin particles of Comparative Example 1 which had not undergone the steps of particle formation, granulation, and reparticle formation had a low retention rate with respect to the non-woven fabric. Further, the water-absorbent resin particles of Comparative Examples 2 and 3 in which the degree of granulation was low and the proportion of granulated particles having a large particle size was low, although they had undergone the steps of granulation, granulation and re-granulation, were also retained in the non-woven fabric. The rate was low.
 10…吸収体、10a…吸水性樹脂粒子、10b…繊維層、20a,20b…コアラップ、30…液体透過性トップシート、40…液体不透過性バックシート、71…ロート、73…ダンパー、75,114…円筒、77…不織布、79…バット、100…吸収性物品、110…測定装置、112…重り、112a…円板部、112b…棒状部、112c…円柱部、116…金網、120…測定対象粒子、130…ステンレスシャーレ、140…ガラスフィルター、150…ろ紙、200…撹拌翼、200a…軸、200b…平板部、S…スリット、S…傾斜板。 10 ... Absorbent, 10a ... Water-absorbent resin particles, 10b ... Fiber layer, 20a, 20b ... Core wrap, 30 ... Liquid permeable top sheet, 40 ... Liquid permeable back sheet, 71 ... Rohto, 73 ... Damper, 75, 114 ... Cylinder, 77 ... Non-woven fabric, 79 ... Vat, 100 ... Absorbent article, 110 ... Measuring device, 112 ... Weight, 112a ... Disc, 112b ... Rod, 112c ... Column, 116 ... Wire mesh, 120 ... Measurement Target particles, 130 ... Stainless petri dish, 140 ... Glass filter, 150 ... Filter paper, 200 ... Stirring blade, 200a ... Shaft, 200b ... Flat plate, S ... Slit, S 0 ... Inclined plate.

Claims (5)

  1.  エチレン性不飽和単量体を含む単量体を重合して含水ゲル状重合体を得ることと、
     前記含水ゲル状重合体を粒子化して粒子径180μm未満の微粉を含む粒子群を得ることと、
     前記粒子群を造粒して造粒粒子を含む造粒粒子群を得ることと、
     前記造粒粒子群を再度粒子化して重合体粒子を得ることと、を含み、
     再粒子化前の前記造粒粒子群のうち、目開き850μmのJIS標準篩を通過しない造粒粒子の存在率が70質量%以上である、重合体粒子を含む吸水性樹脂粒子の製造方法。
    Polymerizing a monomer containing an ethylenically unsaturated monomer to obtain a hydrogel polymer,
    To obtain a particle group containing fine particles having a particle size of less than 180 μm by granulating the hydrogel polymer.
    To obtain a granulated particle group containing granulated particles by granulating the particle group,
    Including that the granulated particle group is reparticleted to obtain polymer particles.
    A method for producing water-absorbent resin particles containing polymer particles, wherein the abundance of the granulated particles that do not pass through a JIS standard sieve having an opening of 850 μm is 70% by mass or more in the granulated particle group before reparticle formation.
  2.  再粒子化前の前記造粒粒子群のうち、目開き31.5mmのJIS標準篩を通過しない造粒粒子の存在率が5質量%以上である、請求項1に記載の方法。 The method according to claim 1, wherein the abundance rate of the granulated particles that do not pass through the JIS standard sieve having a mesh size of 31.5 mm is 5% by mass or more in the granulated particle group before re-particle formation.
  3.  前記重合体粒子に表面架橋を行って吸水性樹脂粒子を得ることを更に含む、請求項1又は2に記載の方法。 The method according to claim 1 or 2, further comprising subjecting the polymer particles to surface cross-linking to obtain water-absorbent resin particles.
  4.  請求項1~3のいずれか一項に記載の方法により吸水性樹脂粒子を得ることと、
     前記吸水性樹脂粒子及び繊維状物を含む吸収体を得ることと、を含む、吸収体の製造方法。
    Obtaining water-absorbent resin particles by the method according to any one of claims 1 to 3,
    A method for producing an absorber, which comprises obtaining an absorber containing the water-absorbent resin particles and a fibrous substance.
  5.  請求項4に記載の方法により、吸収体を得ることと、
     前記吸収体を液体不透過性シート及び液体透過性シートの間に配置することと、を含む、吸収性物品の製造方法。
    Obtaining an absorber by the method according to claim 4
    A method for producing an absorbent article, comprising arranging the absorber between a liquid permeable sheet and a liquid permeable sheet.
PCT/JP2021/010817 2020-03-18 2021-03-17 Production methods for water absorbent resin particles, absorbent body, and absorbent article WO2021187525A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022508410A JPWO2021187525A1 (en) 2020-03-18 2021-03-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-047374 2020-03-18
JP2020047374 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021187525A1 true WO2021187525A1 (en) 2021-09-23

Family

ID=77772094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010817 WO2021187525A1 (en) 2020-03-18 2021-03-17 Production methods for water absorbent resin particles, absorbent body, and absorbent article

Country Status (2)

Country Link
JP (1) JPWO2021187525A1 (en)
WO (1) WO2021187525A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013542A1 (en) * 1994-10-26 1996-05-09 Nippon Shokubai Co., Ltd. Water absorptive resin composition and method of manufacturing the same
JPH11106514A (en) * 1997-06-18 1999-04-20 Nippon Shokubai Co Ltd Production of granulated water-absorbing resin
JPH11140194A (en) * 1997-06-23 1999-05-25 Nippon Shokubai Co Ltd Water-absorbing resin composition and its production
JP2005015787A (en) * 2003-06-03 2005-01-20 Nippon Shokubai Co Ltd Manufacturing method of water-absorbing material
JP2013034942A (en) * 2011-08-08 2013-02-21 Nippon Shokubai Co Ltd Method for producing granular water absorbent
JP2016529368A (en) * 2013-08-27 2016-09-23 エルジー・ケム・リミテッド Method for producing superabsorbent resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013542A1 (en) * 1994-10-26 1996-05-09 Nippon Shokubai Co., Ltd. Water absorptive resin composition and method of manufacturing the same
JPH11106514A (en) * 1997-06-18 1999-04-20 Nippon Shokubai Co Ltd Production of granulated water-absorbing resin
JPH11140194A (en) * 1997-06-23 1999-05-25 Nippon Shokubai Co Ltd Water-absorbing resin composition and its production
JP2005015787A (en) * 2003-06-03 2005-01-20 Nippon Shokubai Co Ltd Manufacturing method of water-absorbing material
JP2013034942A (en) * 2011-08-08 2013-02-21 Nippon Shokubai Co Ltd Method for producing granular water absorbent
JP2016529368A (en) * 2013-08-27 2016-09-23 エルジー・ケム・リミテッド Method for producing superabsorbent resin

Also Published As

Publication number Publication date
JPWO2021187525A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
JP4261853B2 (en) Water absorbent resin, water absorbent resin particles, and production method thereof
US20220314194A1 (en) Particulate water-absorbent resin composition
JP6828222B1 (en) A method for producing water-absorbent resin particles, an absorbent article, a method for producing water-absorbent resin particles, and a method for increasing the amount of absorption of the absorber under pressure.
EP3936533A1 (en) Water absorbing resin particles
WO2020184394A1 (en) Water absorbent resin particle, absorber, absorbent article, method for measuring permeation retention rate of water absorbent resin particle, and method for producing water absorbent resin particle
EP3936540A1 (en) Water absorbing resin particles and method for producing same, absorbent body, and absorbent article
EP3936549A1 (en) Water absorbing resin particles, absorbent article, method for manufacturing water absorbing resin particles, method for facilitating permeation of physiological saline solution into absorbent body
WO2021187526A1 (en) Production methods for granular water absorbent resin composition, absorbent body, and absorbent article
EP3936538A1 (en) Water absorbing resin particles and method for producing same, absorbent body. absorbent article, and method for adjusting permeation speed
EP3896095A1 (en) Water-absorbent resin particles, absorbent body, and absorbent article
WO2021187525A1 (en) Production methods for water absorbent resin particles, absorbent body, and absorbent article
US20220219140A1 (en) Water-absorbent resin particles
WO2021006149A1 (en) Cross-linked polymer particle production method and cross-linked polymer gel
EP3936530A1 (en) Absorbent body, absorbent article and method for adjusting permeation speed
EP3936537A1 (en) Water-absorbing resin particles and method for producing same
WO2020218158A1 (en) Water absorbent resin particles
JP7470496B2 (en) Particulate water-absorbent resin composition
EP3896098A1 (en) Absorption body and absorptive article
EP3896120A1 (en) Water-absorbing resin particles, absorbent, and absorbent article
WO2021006148A1 (en) Crosslinked polymer gel, method for producing same, monomer composition, and method for producing crosslinked polymer particle
WO2021049465A1 (en) Method for improving amount of water absorption under load, method for manufacturing cross-linked polymer particles, and method for manufacturing water-absorbing resin particles
WO2021049466A1 (en) Production method for cross-linked polymer particles, production method for water-absorbent resin particles, and method for improving water absorption under load
JP6775050B2 (en) Absorbent article
WO2021131898A1 (en) Method for manufacturing water absorbing resin particles, and method for manufacturing polymer particles
JP7470494B2 (en) Water-absorbent resin particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21772063

Country of ref document: EP

Kind code of ref document: A1