WO2021049466A1 - Production method for cross-linked polymer particles, production method for water-absorbent resin particles, and method for improving water absorption under load - Google Patents

Production method for cross-linked polymer particles, production method for water-absorbent resin particles, and method for improving water absorption under load Download PDF

Info

Publication number
WO2021049466A1
WO2021049466A1 PCT/JP2020/033832 JP2020033832W WO2021049466A1 WO 2021049466 A1 WO2021049466 A1 WO 2021049466A1 JP 2020033832 W JP2020033832 W JP 2020033832W WO 2021049466 A1 WO2021049466 A1 WO 2021049466A1
Authority
WO
WIPO (PCT)
Prior art keywords
crosslinked polymer
water absorption
water
less
mass
Prior art date
Application number
PCT/JP2020/033832
Other languages
French (fr)
Japanese (ja)
Inventor
萌 西田
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2021545531A priority Critical patent/JP7448553B2/en
Publication of WO2021049466A1 publication Critical patent/WO2021049466A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules

Definitions

  • the present invention relates to a method for producing crosslinked polymer particles, a method for producing water-absorbent resin particles, and a method for improving the amount of water absorption under load.
  • an absorber containing water-absorbent resin particles has been used as an absorbent article for absorbing a liquid containing water as a main component (for example, urine) (see, for example, Patent Document 1 below).
  • the water-absorbent resin particles are obtained, for example, by crushing a crosslinked polymer having a structural unit derived from an ethylenically unsaturated monomer to obtain crosslinked polymer particles, and then subjecting the crosslinked polymer particles to crosslinking. Obtainable.
  • the water-absorbent resin particles constituting the absorber are required to have an excellent water absorption amount.
  • a load is applied to the water-absorbent resin particles, and the water absorption amount of the water-absorbent resin particles in such a loaded state is improved. It is required to make it.
  • the present inventor has found that a sufficient amount of water absorption under load may not be obtained even with water-absorbent resin particles having an excellent centrifuge holding capacity (CRC) as a water absorption characteristic different from the amount of water absorption under load. , Excellent static water absorption retention ability (30 g / g or more), which is the amount of water absorbed per 1 g of the crosslinked polymer when the crosslinked polymer is centrifuged after the crosslinked polymer is made to absorb water.
  • CRC centrifuge holding capacity
  • One aspect of the present invention includes a pulverization step of pulverizing a crosslinked polymer having a structural unit derived from an ethylenically unsaturated monomer, allowing physiological saline to be absorbed by the crosslinked polymer and then centrifugation into the crosslinked polymer.
  • the static water absorption retention ability which is the amount of water absorption per 1 g of the crosslinked polymer when the above is applied
  • the static water absorption retention ability after crushing of the crosslinked polymer as opposed to the static water absorption retention ability before crushing of the crosslinked polymer in the crushing step.
  • a method for producing crosslinked polymer particles wherein the ratio of the crosslinked polymer is 1.5 or more, and the static water absorption retention ability of the crosslinked polymer after pulverization is 30 g / g or more.
  • Another aspect of the present invention provides a method for producing water-absorbent resin particles, which comprises a step of performing additional cross-linking on the cross-linked polymer particles obtained by the above-mentioned method for producing cross-linked polymer particles.
  • Another aspect of the present invention is a method for improving the amount of water absorption under load of the water-absorbent resin particles obtained by performing cross-linking on the cross-linked polymer particles, and is a structural unit derived from an ethylenically unsaturated monomer. It is provided with a crushing step of crushing the crosslinked polymer having the above, and static water absorption retention which is the amount of water absorption per 1 g of the crosslinked polymer when the crosslinked polymer is centrifuged after the crosslinked polymer is made to absorb water.
  • the ratio of the static water absorption retention capacity after crushing of the crosslinked polymer to the static water absorption retention capacity before crushing of the crosslinked polymer in the crushing step is 1.5 or more, and the static after crushing of the crosslinked polymer.
  • a method for improving the amount of water absorption under load which has a water absorption retention capacity of 30 g / g or more.
  • the method for producing crosslinked polymer particles the method for producing water-absorbent resin particles, and the method for improving the amount of water absorption under load, it is possible to improve the amount of water absorption under load of the water-absorbent resin particles. It is possible to obtain water-absorbent resin particles having an excellent amount of lower water absorption.
  • Water-soluble means that it exhibits a solubility in water of 5% by mass or more at 25 ° C.
  • the materials exemplified in the present specification may be used alone or in combination of two or more.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • “Saline” refers to a 0.9% by mass sodium chloride aqueous solution.
  • At least one (meth) acrylic acid compound selected from the group consisting of (meth) acrylic acid and salts thereof what are "content of (meth) acrylic acid compound” and “total mass of (meth) acrylic acid compound”? , Acrylic acid, acrylate, methacrylic acid and methacrylic acid total amount.
  • Room temperature means 25 ° C ⁇ 2 ° C.
  • the method for producing crosslinked polymer particles according to the present embodiment is a method for producing crosslinked polymer particles capable of obtaining water-absorbent resin particles by subjecting crosslinking.
  • the method for improving the amount of water absorption under load according to the present embodiment is a method for improving the amount of water absorption under load of the water-absorbent resin particles obtained by subjecting the crosslinked polymer particles to cross-linking.
  • the method for producing crosslinked polymer particles according to the present embodiment and the method for improving the amount of water absorption under load according to the present embodiment are to pulverize a crosslinked polymer having a structural unit derived from an ethylenically unsaturated monomer. A pulverization step for obtaining crosslinked polymer particles (crushed product) is provided.
  • the crosslinked polymer particles according to the present embodiment are crosslinked polymer particles from which water-absorbent resin particles can be obtained by performing additional cross-linking, and have a structural unit derived from an ethylenically unsaturated monomer.
  • the crosslinked polymer particles according to the present embodiment the method for producing the same, and the method for improving the amount of water absorption under load according to the present embodiment, the crosslinked polymer is centrifuged after allowing the crosslinked polymer to absorb water.
  • the static water absorption retention capacity which is the amount of water absorption per 1 g of the crosslinked polymer
  • the ratio of the static water absorption retention capacity after crushing of the crosslinked polymer to the static water absorption retention capacity before crushing of the crosslinked polymer in the crushing step. Is 1.5 or more, and the static water absorption retention capacity after pulverization of the crosslinked polymer is 30 g / g or more.
  • the crosslinked polymer particles according to the present embodiment or the crosslinked polymer particles obtained by the method for producing the crosslinked polymer particles according to the present embodiment are crosslinked. It is provided with a cross-linking step to be applied.
  • the water-absorbent resin particles It is possible to improve the amount of water absorption under load, and it is possible to obtain water-absorbent resin particles having an excellent amount of water absorption under load.
  • the reason why the amount of water absorption under load can be improved is not clear, but when the ratio of static water absorption retention capacity is equal to or more than the above-mentioned predetermined value, the crosslinked structure of the crosslinked polymer particles is in a uniform state. It is presumed that the amount of water absorption under load is likely to improve when cross-linking is performed. However, the cause is not limited to the content.
  • the crosslinked polymer particles for obtaining the water-absorbent resin particles is crushed to obtain the crosslinked polymer particles, and then the particle size of the particles contained in the crosslinked polymer particles is classified. It may be adjusted by particle size adjustment processing such as.
  • the present inventor obtains water-absorbent resin particles having an excellent amount of water absorption under load, paying attention to the fact that the manufacturing process of the water-absorbent resin particles becomes complicated due to the addition of the particle size adjusting treatment. Based on the idea of obtaining crosslinked polymer particles capable of this by a simple method, it has been found that the crosslinked polymer particles that give excellent water absorption under load as described above can be obtained in the pulverization step.
  • the particles are particles after the pulverization step. It is possible to improve the water absorption amount of the water-absorbent resin particles under load without performing the diameter adjustment treatment, and the water-absorbent resin particles having excellent water absorption amount under load can be obtained by a simple method.
  • the ratio of the static water absorption retention ability after pulverization of the crosslinked polymer to the static water absorption retention ability before pulverization of the crosslinked polymer is 1.5 or more, and after pulverization of the crosslinked polymer.
  • the static water absorption retention capacity of the polymer is 30 g / g or more.
  • the ratio of the static water absorption retention capacity before and after crushing and the static water absorption retention capacity after crushing can be adjusted by adjusting the type of the crusher, the crushing conditions, and the like.
  • the ratio of static water absorption retention capacity before and after pulverization of the crosslinked polymer is 1.5 or more from the viewpoint of improving the amount of water absorption under load of the water-absorbent resin particles.
  • the ratio of static water absorption retention capacity is 1.6 or more, 1.8 or more, 1.9 or more, 2 or more, 2.2 or more, from the viewpoint of easily improving the amount of water absorption under load of the water-absorbent resin particles. It may be 3 or more, 2.4 or more, 2.5 or more, or 2.6 or more.
  • the ratio of static water absorption retention capacity is 4 or less, 3.75 or less, 3.5 or less, 3.25 or less, 3 or less, 2.9 or less, 2.8 or less, 2.7 or less, or 2.6.
  • the ratio of static water absorption retention ability may be 1.5 to 4.
  • the ratio of static water absorption retention capacity is less than 2.6, 2.5 or less, 2.4 or less, 2.3 or less, 2.2 or less, 2.1 or less, 2 or less, 1.9 or less, or 1 It may be 0.8 or less.
  • the static water absorption retention capacity of the crosslinked polymer particles after pulverization is 30 g / g or more, and may be in the following range.
  • the static water absorption retention capacity of the crosslinked polymer after pulverization is 35 g / g or more, 40 g / g or more, 45 g / g or more, 48 g / g or more, 50 g / g or more, 55 g / g or more, 56 g / g or more, 58 g. It may be / g or more, 60 g / g or more, 62 g / g or more, or 63 g / g or more.
  • the static water absorption retention capacity of the crosslinked polymer after pulverization may be 80 g / g or less, 75 g / g or less, 70 g / g or less, 65 g / g or less, or 64 g / g or less. From these viewpoints, the static water absorption retention capacity of the crosslinked polymer after pulverization may be 30 to 80 g / g.
  • the static water absorption retention ability after pulverization can be easily adjusted by adjusting the amount of polymerization initiator, cross-linking agent, etc. used; by pulverization treatment using a screen described later.
  • the static water absorption retention capacity of the crosslinked polymer before pulverization may be 20 g / g or more, 21 g / g or more, 22 g / g or more, 23 g / g or more, or 24 g / g or more.
  • the static water absorption retention capacity of the crosslinked polymer before pulverization is 53 g / g or less, 52 g / g or less, 50 g / g or less, 45 g / g or less, 40 g / g or less, 35 g / g or less, 30 g / g or less, 28 g.
  • the static water absorption retention capacity of the crosslinked polymer before pulverization may be 20 to 53 g / g.
  • the static water absorption retention capacity before pulverization can be easily adjusted by adjusting the amount of polymerization initiator, cross-linking agent, etc. used.
  • the static water absorption retention ability can be obtained by measuring the amount of water absorption per 1 g of the crosslinked polymer when the crosslinked polymer is centrifuged after the physiological saline is absorbed by the crosslinked polymer.
  • the static water absorption retention ability can be measured by immersing 0.2 g of the crosslinked polymer in 500 g of physiological saline.
  • the static water absorption retention ability can be measured by contacting the crosslinked polymer with physiological saline for 30 minutes. For example, a non-woven fabric bag containing the crosslinked polymer is floated in physiological saline for 1 minute, and then the non-woven fabric bag is physiologically prepared. It can be measured by immersing it in a saline solution for 29 minutes.
  • the centrifugal force of centrifugation on the crosslinked polymer may be 250 G, and the treatment time of centrifugation may be 3 minutes.
  • the static water absorption retention capacity before crushing classifies the crosslinked polymer into a particle size of 1.4 to 1.7 mm (removes polymers with a particle size of less than 1.4 mm and polymers with a particle size of more than 1.7 mm). After that, it may be measured.
  • the crosslinked polymer can be crushed using a screen (net member, punching plate, etc.) having openings (through holes; mesh).
  • the present embodiment may be, for example, an embodiment in which the crosslinked polymer is pulverized while passing the crosslinked polymer through the screen in the pulverization step.
  • the particles constituting the crosslinked polymer particles can be obtained on the other side of the screen.
  • the particle size can be adjusted while crushing the crosslinked polymer, and particles having a diameter corresponding to the opening diameter of the opening of the screen can be obtained on the other side of the screen.
  • the opening of the screen has an opening diameter larger than the diameter of at least a part of the crosslinked polymer to be pulverized.
  • the opening diameter (hole diameter) of the screen opening may be, for example, 0.08 to 10 mm, 0.50 to 2.0 mm, or 0.75 to 1.5 mm.
  • the screen may be annular (for example, annular), plate-shaped, or the like.
  • the present embodiment may be, for example, an embodiment in which the crosslinked polymer is pulverized while passing the crosslinked polymer through the screen by applying a centrifugal force to the crosslinked polymer in the pulverization step.
  • the crosslinked polymer can be impact pulverized by colliding the crosslinked polymer with a screen or another member (for example, a rotating member described later) by centrifugal force.
  • the screen is cyclic, and in the pulverization step, the crosslinked polymer is subjected to centrifugal force (centrifugal force from the inner peripheral side to the outer peripheral side) on the inner peripheral side of the screen.
  • the crosslinked polymer is pulverized while passing the crosslinked polymer through a screen.
  • the particles constituting the crosslinked polymer particles can be obtained on the outer peripheral side of the screen.
  • the particle size can be adjusted while crushing the crosslinked polymer by impact pulverization, and particles having a diameter corresponding to the opening diameter of the opening of the screen can be obtained on the outer peripheral side of the screen.
  • the crusher used in the crushing step may have, for example, a sample table to which the crosslinked polymer is supplied and an annular screen surrounding the sample table.
  • the sample table may be rotatable, and centrifugal force may be applied to the crosslinked polymer by rotating the sample table.
  • centrifugal force can be applied to the crosslinked polymer by rotating the sample table around the central axis (axis orthogonal to the circumferential direction) of the annular screen.
  • the crusher may include a rotating member (for example, a blade member) that can rotate along the inner wall of the annular screen.
  • a rotating member for example, a blade member
  • the crosslinked polymer is easily impact-milled by colliding the crosslinked polymer with the rotating member by centrifugal force while rotating the rotating member.
  • the rotating member may be located near the inner wall of the screen. In this case, it is possible to apply a shearing force to the crosslinked polymer existing between the rotating member and the inner wall of the screen, and the crosslinked polymer can be easily crushed.
  • the rotating member may be a member that extends along the central axis of the annular screen.
  • the rotating member may be integrated with the sample table or may be separate from the sample table.
  • the rotating member may be rotatable with the sample table.
  • a plurality (for example, 6) of rotating members may be arranged at intervals on the outer peripheral portion of the sample table.
  • the rotation speed of each of the sample table and the rotating member may be, for example, 6000 to 18000 rpm.
  • a product name manufactured by Verder Scientific Co., Ltd .: ZM200; a product name manufactured by Fritsch Japan Co., Ltd .: P-14 rotor speed mill (Pulveristte 14) or the like can be used.
  • a crusher in which the particles that have passed through the screen are not further adjusted in particle size can be used.
  • the crosslinked polymer having the following particle size distribution and / or medium particle size is obtained by pulverizing the crosslinked polymer as the crosslinked polymer particles that can easily improve the amount of water absorption under load of the water-absorbent resin particles. Particles can be obtained.
  • the proportion of particles having a particle diameter of less than 150 ⁇ m (more than 0 ⁇ m and less than 150 ⁇ m) in the crosslinked polymer particles (crosslinked polymer after pulverization) according to the present embodiment is in the following range based on the total mass of the crosslinked polymer particles. It's okay.
  • the proportion of particles having a particle diameter of less than 150 ⁇ m may be 20% by mass or less, less than 20% by mass, 18% by mass or less, 17% by mass or less, 16% by mass or less, or 15.5% by mass or less.
  • the proportion of particles with a particle size of less than 150 ⁇ m is 0% by mass or more, more than 0% by mass, 1% by mass or more, 3% by mass or more, 5% by mass or more, 8% by mass or more, 10% by mass or more, 12% by mass or more. , 13% by mass or more, 14% by mass or more, or 15% by mass or more. From these viewpoints, the proportion of particles having a particle diameter of less than 150 ⁇ m may be 0 to 20% by mass.
  • the proportion of particles having a particle diameter of 150 ⁇ m or more and less than 300 ⁇ m in the crosslinked polymer particles (crosslinked polymer after pulverization) according to the present embodiment may be in the following range based on the total mass of the crosslinked polymer particles.
  • the proportion of particles with a particle size of 150 ⁇ m or more and less than 300 ⁇ m is 40% by mass or less, less than 40% by mass, 35% by mass or less, less than 35% by mass, 30% by mass or less, less than 30% by mass, 28% by mass or less, 25% by mass. Below, or less than 25% by mass.
  • the proportion of particles with a particle size of 150 ⁇ m or more and less than 300 ⁇ m is 0% by mass or more, more than 0% by mass, 1% by mass or more, 5% by mass or more, 10% by mass or more, 15% by mass or more, 20% by mass or more, and 23% by mass. % Or more, or 24% by mass or more. From these viewpoints, the proportion of particles having a particle diameter of 150 ⁇ m or more and less than 300 ⁇ m may be 0 to 40% by mass.
  • the proportion of particles having a particle diameter of 300 ⁇ m or more and less than 600 ⁇ m in the crosslinked polymer particles (crosslinked polymer after pulverization) according to the present embodiment may be in the following range based on the total mass of the crosslinked polymer particles.
  • the proportion of particles having a particle diameter of 300 ⁇ m or more and less than 600 ⁇ m may be 50% by mass or less, less than 50% by mass, 45% by mass or less, 43% by mass or less, 42% by mass or less, or 41% by mass or less.
  • the proportion of particles with a particle size of 300 ⁇ m or more and less than 600 ⁇ m is 0% by mass or more, more than 0% by mass, 1% by mass or more, 5% by mass or more, 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass. % Or more, 30% by mass or more, 35% by mass or more, 38% by mass or more, or 40% by mass or more. From these viewpoints, the proportion of particles having a particle diameter of 300 ⁇ m or more and less than 600 ⁇ m may be 0 to 50% by mass.
  • the proportion of particles having a particle diameter of 600 ⁇ m or more and less than 850 ⁇ m in the crosslinked polymer particles (crosslinked polymer after pulverization) according to the present embodiment may be in the following range based on the total mass of the crosslinked polymer particles.
  • the proportion of particles having a particle diameter of 600 ⁇ m or more and less than 850 ⁇ m may be 30% by mass or less, less than 30% by mass, 25% by mass or less, 20% by mass or less, less than 20% by mass, or 18% by mass or less.
  • the proportion of particles with a particle size of 600 ⁇ m or more and less than 850 ⁇ m is 0% by mass or more, more than 0% by mass, 1% by mass or more, 5% by mass or more, 10% by mass or more, 12% by mass or more, 14% by mass or more, and 15% by mass. % Or more, or 17% by mass or more. From these viewpoints, the proportion of particles having a particle diameter of 600 ⁇ m or more and less than 850 ⁇ m may be 0 to 30% by mass.
  • the proportion of particles having a particle diameter of 850 ⁇ m or more in the crosslinked polymer particles (crosslinked polymer after pulverization) according to the present embodiment may be in the following range based on the total mass of the crosslinked polymer particles.
  • the proportion of particles having a particle diameter of 850 ⁇ m or more may be 10% by mass or less, less than 10% by mass, 8% by mass or less, 6% by mass or less, 5% by mass or less, 4% by mass or less, or 3% by mass or less. ..
  • the proportion of particles having a particle diameter of 850 ⁇ m or more may be 0% by mass or more, more than 0% by mass, 1% by mass or more, or 2% by mass or more. From these viewpoints, the proportion of particles having a particle diameter of 850 ⁇ m or more may be 0 to 10% by mass.
  • the medium particle size of the crosslinked polymer particles according to this embodiment is preferably in the following range.
  • the medium particle size may be 200 ⁇ m or more, 230 ⁇ m or more, 250 ⁇ m or more, 280 ⁇ m or more, 300 ⁇ m or more, 330 ⁇ m or more, 340 ⁇ m or more, 350 ⁇ m or more, or 355 ⁇ m or more.
  • the medium particle size may be 600 ⁇ m or less, 550 ⁇ m or less, 500 ⁇ m or less, 450 ⁇ m or less, 400 ⁇ m or less, 380 ⁇ m or less, 370 ⁇ m or less, 365 ⁇ m or less, or 360 ⁇ m or less. From these viewpoints, the medium particle size may be 200 to 600 ⁇ m.
  • the medium particle size can be measured by the method described in Examples described later. For the medium particle size, the measured value at room temperature can be used.
  • the method for producing a crosslinked polymer includes a polymerization step of polymerizing a monomer composition containing an ethylenically unsaturated monomer.
  • a crosslinked polymer gel may be obtained by polymerizing a monomer composition containing an ethylenically unsaturated monomer.
  • the monomer composition may contain water, an organic solvent, and the like.
  • the monomer composition may be a monomer aqueous solution.
  • Examples of the polymerization method of the monomer composition include an aqueous solution polymerization method and a bulk polymerization method. Among these, the aqueous solution polymerization method is preferable from the viewpoint that good water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.) can be easily obtained and the polymerization reaction can be easily controlled.
  • CRC water absorption performance
  • the aqueous solution polymerization method is used as an example of the polymerization method will be described.
  • ethylenically unsaturated monomer a water-soluble ethylenically unsaturated monomer can be used.
  • the ethylenically unsaturated monomer include ⁇ , ⁇ -unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid, maleic anhydride and fumaric acid, and carboxylic acid-based monomers such as salts thereof;
  • Nonionic monomers such as meta) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate;
  • N, N -Amino group-containing unsaturated monomers such as diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, diethylaminopropyl (meth) acrylamide, and quaternary products
  • Examples thereof include acids, 2- (meth) acrylamide-2-methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid, and sulfonic acid-based monomers such as salts thereof.
  • the ethylenically unsaturated monomer can contain at least one (meth) acrylic acid compound selected from the group consisting of (meth) acrylic acid and salts thereof.
  • the ethylenically unsaturated monomer may contain both (meth) acrylic acid and a salt of (meth) acrylic acid.
  • salts of ⁇ , ⁇ -unsaturated carboxylic acid include alkali metal salts (sodium salt, potassium salt, etc.), alkaline earth metal salts (calcium salt, etc.) and the like.
  • the ethylenically unsaturated monomer having an acid group may have an acid group neutralized in advance with an alkaline neutralizer.
  • alkaline neutralizing agent include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide and potassium carbonate; ammonia and the like.
  • the alkaline neutralizer may be used in the form of an aqueous solution in order to simplify the neutralization operation.
  • the acid group may be neutralized before the polymerization of the ethylenically unsaturated monomer as a raw material, or during or after the polymerization.
  • the degree of neutralization of the ethylenically unsaturated monomer by the alkaline neutralizer is from the viewpoint that good water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.) can be easily obtained by increasing the osmotic pressure. From the viewpoint of suppressing defects caused by the presence of excess alkaline neutralizer, 10 to 100 mol%, 30 to 90 mol%, 40 to 85 mol%, or 50 to 80 mol% is preferable.
  • the "neutralization degree” is the neutralization degree for all the acid groups of the ethylenically unsaturated monomer.
  • the content of the (meth) acrylic acid compound is preferably in the following range based on the total mass of the monomer composition.
  • the content of the (meth) acrylic acid compound is 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more, or 35% by mass or more from the viewpoint of easily increasing productivity. Is preferable.
  • the content of the (meth) acrylic acid compound is 60% by mass or less, 55% by mass or less, 50% by mass or less, 50% by mass from the viewpoint of easily improving the water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.). %, 45% by mass or less, or 40% by mass or less is preferable. From these viewpoints, the content of the (meth) acrylic acid compound is preferably 10 to 60% by mass.
  • the content of the (meth) acrylic acid compound is the total amount of the monomers contained in the monomer composition and / or the total amount of the ethylenically unsaturated monomer contained in the monomer composition. The following range is preferable with reference to.
  • the content of the (meth) acrylic acid compound is preferably 50 mol% or more, 70 mol% or more, 90 mol% or more, 95 mol% or more, 97 mol% or more, or 99 mol% or more.
  • the monomer contained in the monomer composition and / or the ethylenically unsaturated monomer contained in the monomer composition is substantially composed of a (meth) acrylic acid compound (substantially).
  • 100 mol% of the monomer contained in the monomer composition and / or the ethylenically unsaturated monomer contained in the monomer composition is a (meth) acrylic acid compound). It may be.
  • the monomer composition may contain a polymerization initiator.
  • the polymerization of the monomer contained in the monomer composition may be started by adding a polymerization initiator to the monomer composition and, if necessary, heating, irradiating with light or the like.
  • the polymerization initiator include a photopolymerization initiator and a radical polymerization initiator, and a water-soluble radical polymerization initiator is preferable.
  • the polymerization initiator preferably contains at least one selected from the group consisting of azo compounds and peroxides from the viewpoint of easily enhancing water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.).
  • Examples of the azo compound include 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride and 2,2'-azobis ⁇ 2- [N- (4-chlorophenyl) amidino] propane ⁇ dihydrochloride.
  • the azo compound is 2,2'-azobis (2-methylpropionamide) dihydrochloride, 2,2 from the viewpoint that good water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.) can be easily obtained.
  • Peroxides include persulfates such as potassium persulfate, ammonium persulfate, sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t-butyl. Examples thereof include organic peroxides such as peroxyacetate, t-butylperoxyisobutyrate, and t-butylperoxypivalate.
  • Peroxide is at least one selected from the group consisting of potassium persulfate, ammonium persulfate, and sodium persulfate from the viewpoint that good water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.) can be easily obtained. Is preferably included.
  • the content of the polymerization initiator is preferably in the following range with respect to 1 mol of the ethylenically unsaturated monomer (for example, (meth) acrylic acid compound).
  • the content of the polymerization initiator is 0.001 mmol or more and 0.005 mmol from the viewpoint of easily improving the water absorption performance (CRC in the water-absorbent resin particles, the amount of water absorption under load, etc.) and shortening the polymerization reaction time.
  • 0.01 mmol or more, 0.05 mmol or more, 0.1 mmol or more, or 0.13 mmol or more is preferable.
  • the content of the polymerization initiator is 5 mmol or less, 4 mmol or less, from the viewpoint of easily improving the water absorption performance (CRC in the water-absorbent resin particles, the amount of water absorption under load, etc.) and from the viewpoint of easily avoiding a rapid polymerization reaction. It is preferably 2 mmol or less, 1 mmol or less, 0.5 mmol or less, 0.3 mmol or less, 0.25 mmol or less, 0.2 mmol or less, or 0.15 mmol or less. From these viewpoints, the content of the polymerization initiator is preferably 0.001 to 5 mmol.
  • the monomer composition may contain a reducing agent.
  • the reducing agent include sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, L-ascorbic acid and the like.
  • a polymerization initiator and a reducing agent may be used in combination.
  • the monomer composition may contain an oxidizing agent.
  • the oxidizing agent include hydrogen peroxide, sodium perborate, perphosphoric acid and salts thereof, potassium permanganate and the like.
  • the monomer composition may contain an internal cross-linking agent.
  • the obtained cross-linked polymer can have a cross-linked structure by the internal cross-linking agent in addition to the self-cross-linking structure by the polymerization reaction as the internal cross-linking structure.
  • Examples of the internal cross-linking agent include compounds having two or more reactive functional groups (for example, polymerizable unsaturated groups).
  • Examples of the internal cross-linking agent include di or tri (meth) acrylic acid esters of polyols such as (poly) ethylene glycol, (poly) propylene glycol, trimethylolpropane, glycerin polyoxyethylene glycol, polyoxypropylene glycol, and (poly) glycerin.
  • Unsaturated polyesters obtained by reacting the above polyol with an unsaturated acid maleic acid, fumaric acid, etc.
  • an unsaturated acid maleic acid, fumaric acid, etc.
  • Di (meth) acrylic acid carbamil esters ; allylated starch; allylated cellulose; diallyl phthalate; N, N', N "-triallyl isocyanurate; divinylbenzene; pentaerythritol; ethylenediamine; polyethyleneimine and the like.
  • the internal cross-linking agent is (poly) ethylene glycol diglycidyl ether, (poly) from the viewpoint of easily enhancing water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.) and excellent reactivity at low temperature.
  • the content of the internal cross-linking agent is preferably in the following range with respect to 1 mol of the ethylenically unsaturated monomer (for example, (meth) acrylic acid compound).
  • the content of the internal cross-linking agent is 0.0005 mmol or more, 0.001 mmol or more, 0.002 mmol or more from the viewpoint that good water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.) can be easily obtained.
  • 0.005 mmol or more, 0.01 mmol or more, 0.015 mmol or more, 0.02 mmol or more, or 0.025 mmol or more is preferable.
  • the content of the internal cross-linking agent is 0.3 mmol or less, 0.25 mmol or less, 0.2 mmol or less from the viewpoint that good water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.) can be easily obtained.
  • 0.18 mmol or less less than 0.18 mmol, 0.17 mmol or less, 0.16 mmol or less, 0.15 mmol or less, 0.1 mmol or less, 0.06 mmol or less, less than 0.06 mmol, 0
  • It is preferably 0.05 mmol or less, less than 0.05 mmol, 0.04 mmol or less, or 0.03 mmol or less. From these viewpoints, the content of the internal cross-linking agent is preferably 0.0005 to 0.3 mmol.
  • the monomer composition may contain additives such as a chain transfer agent, a thickener, and an inorganic filler as components different from the above-mentioned components.
  • a chain transfer agent include thiols, thiol acids, secondary alcohols, hypophosphorous acid, phosphorous acid, achlorine and the like.
  • the thickener include carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, polyethylene glycol, polyacrylic acid, neutralized polyacrylic acid, polyacrylamide and the like.
  • the inorganic filler include metal oxides, ceramics, and viscous minerals.
  • a polymerization method for aqueous solution polymerization As a polymerization method for aqueous solution polymerization, a static polymerization method in which the monomer composition is polymerized without stirring (for example, a static state); a stirring polymerization method in which the monomer composition is polymerized while stirring in a reaction apparatus. And so on.
  • a static polymerization method when the polymerization is completed, a single block-shaped gel occupying substantially the same volume as the monomer composition present in the reaction vessel is obtained.
  • the form of polymerization may be batch, semi-continuous, continuous, or the like.
  • the polymerization reaction can be carried out while continuously supplying the monomer composition to the continuous polymerization apparatus to continuously obtain a gel.
  • the polymerization temperature varies depending on the polymerization initiator used, but from the viewpoint of rapidly advancing the polymerization, increasing the productivity by shortening the polymerization time, removing the heat of polymerization, and facilitating the smooth reaction, 0 to 0 to It is preferably 130 ° C. or 10 to 110 ° C.
  • the polymerization time is appropriately set depending on the type and amount of the polymerization initiator used, the reaction temperature, and the like, but is preferably 1 to 200 minutes or 5 to 100 minutes.
  • the method for producing a crosslinked polymer may include a coarse crushing step and a drying step after the polymerization step.
  • the coarse crushing step is, for example, a step of coarsely crushing the crosslinked polymer (for example, a crosslinked polymer gel) obtained in the polymerization step to obtain a coarsely crushed product (for example, a gel coarse crushed product).
  • a kneader pressurized kneader, double-armed kneader, etc.
  • a meat chopper, a cutter mill, a pharma mill, or the like can be used.
  • the drying step is a step of drying the crushed product obtained in the crushing step to obtain a dried product.
  • a dried product for example, a gel dried product
  • the drying method may be natural drying, heat drying, vacuum drying or the like.
  • the drying temperature is, for example, 70 to 250 ° C.
  • the crosslinked polymer particles according to the present embodiment include a crosslinked polymer having a structural unit derived from an ethylenically unsaturated monomer (for example, a (meth) acrylic acid compound). ..
  • the crosslinked polymer particles according to the present embodiment include a gel stabilizer, a metal chelating agent (ethylenediamine tetraacetic acid and its salt, diethylenetriamine 5 acetic acid and its salt (for example, diethylenetriamine 5 sodium acetate), etc.), and a fluidity improver (lubricant).
  • Other components such as may be further contained.
  • Other components may be located inside, on the surface, or both of the crosslinked polymers.
  • the crosslinked polymer particles according to the present embodiment may contain inorganic particles arranged on the surface of the crosslinked polymer.
  • the inorganic particles can be arranged on the surface of the crosslinked polymer.
  • the inorganic particles include silica particles such as amorphous silica.
  • the water-absorbent resin particles according to the present embodiment can be obtained by cross-linking the crosslinked polymer particles obtained in the pulverization step (crosslinking step).
  • the cross-linking may be surface cross-linking to the cross-linked polymer particles.
  • the cross-linking can be performed, for example, by reacting a cross-linking agent (for example, a surface cross-linking agent) with the cross-linked polymer particles.
  • a cross-linking agent for example, a surface cross-linking agent
  • the cross-linking density of the cross-linked polymer particles for example, the cross-linking density near the surface of the cross-linked polymer particles
  • the water absorption performance CRC in the water-absorbent resin particles, water absorption under load
  • the amount of the cross-linking agent used may be adjusted in order to adjust the CRC of the water-absorbent resin particles equally.
  • cross-linking agent examples include compounds containing two or more functional groups (reactive functional groups) having reactivity with functional groups derived from ethylenically unsaturated monomers.
  • examples of the cross-linking agent include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol diglycidyl ether, Polyglycidyl compounds such as (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydrin, epibromhydrin, ⁇ -methylepicrolhydrin, etc.
  • Haloepoxy compounds compounds having two or more reactive functional groups such as isocyanate compounds (2,4-tolylene diisocyanate, hexamethylene diisocyanate, etc.); 3-methyl-3-oxetane methanol, 3-ethyl-3-oxetane Oxetane compounds such as methanol, 3-butyl-3-oxetane methanol, 3-methyl-oxetane ethanol, 3-ethyl-3-oxetane ethanol, 3-butyl-3-oxetane ethanol; oxazoline such as 1,2-ethylenebisoxazoline Compounds: Carbonate compounds such as ethylene carbonate; Hydroxyalkylamide compounds such as bis [N, N-di ( ⁇ -hydroxyethyl)] adipamide may be mentioned.
  • the content of the cross-linking agent (for example, the surface cross-linking agent) is preferably in the following range with respect to the total mass of the cross-linked polymer particles.
  • the content of the cross-linking agent is 500 ppm or more, 750 ppm or more, 1000 ppm or more, 1000 ppm or more, 1250 ppm or more, 1500 ppm or more from the viewpoint that good water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.) can be easily obtained.
  • 1750 ppm or more, 1800 ppm or more, 1900 ppm or more, or 2000 ppm or more is preferable.
  • the content of the cross-linking agent is preferably 3000 ppm or less, 2750 ppm or less, 2500 ppm or less, 2250 ppm or less, or 2000 ppm or less from the viewpoint that good water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.) can be easily obtained. .. From these viewpoints, the content of the cross-linking agent is preferably 500 to 3000 ppm. The content of the cross-linking agent may be less than 2000 ppm, 1750 ppm or less, 1500 ppm or less, 1250 ppm or less, or 1000 ppm or less.
  • the water-absorbent resin particles according to the present embodiment have a gel stabilizer on the surface thereof; a metal chelating agent (ethylenediaminetetraacetic acid and its salt thereof, diethylenetriamine-5 acetic acid and its salt (for example, diethylenetriamine-5 sodium acetate), etc.); It may contain inorganic particles of an agent (lubricant).
  • a metal chelating agent ethylenediaminetetraacetic acid and its salt thereof, diethylenetriamine-5 acetic acid and its salt (for example, diethylenetriamine-5 sodium acetate), etc.
  • the inorganic particles can be arranged on the surface of the post-crosslinked particles.
  • the inorganic particles include silica particles such as amorphous silica.
  • the water-absorbent resin particles according to the present embodiment can retain water and can absorb body fluids such as urine, sweat, and blood (for example, menstrual blood).
  • the water-absorbent resin particles according to the present embodiment can be used as a constituent component of the absorber.
  • This embodiment can be used in the fields of, for example, sanitary materials such as disposable diapers and sanitary products; agricultural and horticultural materials such as water retention agents and soil conditioners; and industrial materials such as water stop agents and dew condensation inhibitors.
  • the CRC of the water-absorbent resin particles according to the present embodiment is 10 g / g or more, 15 g / g or more, 20 g / g or more, 25 g / g or more, 30 g / g or more, 35 g / g or more, 37 g / g or more, or It may be 38 g / g or more.
  • the CRC of the water-absorbent resin particles is 60 g / g or less, 55 g / g or less, 50 g / g or less, 45 g / g or less, 43 g / g or less, 40 g / g or less, 39 g / g or less, or 38 g / g or less. It may be there. From these viewpoints, the CRC of the water-absorbent resin particles may be 10 to 60 g / g.
  • CRC is an abbreviation for Centrifuge Retention Capacity (centrifuge holding capacity).
  • the CRC of the water-absorbent resin particles can be measured by the method described in Examples described later with reference to the EDANA method (NWSP 241.0.R2 (15), page.769-778).
  • NWSP 241.0.R2 15
  • a water absorption ratio when a non-woven bag containing 0.2 g of water-absorbent resin particles in a dry state is immersed in 1000 g of physiological saline for 30 minutes and then centrifuged using a centrifuge to drain water. Obtainable.
  • the CRC of the water-absorbent resin particles a measured value at room temperature can be used.
  • the method for improving the water absorption under load may include the above-mentioned cross-linking step and a measurement step for measuring the water absorption under load of the water-absorbent resin particles after the crushing step.
  • the amount of water absorption of the water-absorbent resin particles under load is preferably 11 mL / g or more, 12 mL / g or more, 15 mL / g or more, or 20 mL / g or more.
  • the amount of water absorption under load can be measured by the method described in Examples described later.
  • As the water absorption amount of the water-absorbent resin particles under load a measured value at room temperature can be used.
  • the absorber according to the present embodiment contains the water-absorbent resin particles according to the present embodiment.
  • the absorber according to the present embodiment may contain a fibrous substance, for example, a mixture containing water-absorbent resin particles and the fibrous substance.
  • the structure of the absorber may be, for example, a structure in which the water-absorbent resin particles and the fibrous material are uniformly mixed, and the water-absorbent resin particles are sandwiched between the fibrous material formed in a sheet or layer. It may be a configuration or another configuration.
  • the fibrous material examples include finely pulverized wood pulp; cotton; cotton linter; rayon; cellulosic fibers such as cellulose acetate; synthetic fibers such as polyamide, polyester and polyolefin; and a mixture of these fibers.
  • hydrophilic fibers can be used as the fibrous material.
  • the fibers may be adhered to each other by adding an adhesive binder to the fibrous material.
  • the adhesive binder include heat-sealing synthetic fibers, hot melt adhesives, and adhesive emulsions.
  • the heat-bondable synthetic fiber examples include a total fusion type binder such as polyethylene, polypropylene, and an ethylene-propylene copolymer; a non-total fusion type binder having a side-by-side or core-sheath structure of polypropylene and polyethylene.
  • a total fusion type binder such as polyethylene, polypropylene, and an ethylene-propylene copolymer
  • non-total fusion type binder having a side-by-side or core-sheath structure of polypropylene and polyethylene.
  • hot melt adhesive examples include ethylene-vinyl acetate copolymer, styrene-isoprene-styrene block copolymer, styrene-butadiene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, and styrene-ethylene-propylene-styrene block copolymer.
  • a mixture of a base polymer such as amorphous polypropylene and a tackifier, a plasticizer, an antioxidant and the like.
  • Examples of the adhesive emulsion include polymers of at least one monomer selected from the group consisting of methyl methacrylate, styrene, acrylonitrile, 2-ethylhexyl acrylate, butyl acrylate, butadiene, ethylene, and vinyl acetate.
  • the absorber according to the present embodiment may contain inorganic particles (for example, amorphous silica), a deodorant, an antibacterial agent, a pigment, a dye, a fragrance, an adhesive and the like.
  • inorganic particles for example, amorphous silica
  • the absorber may contain inorganic particles in addition to the inorganic particles in the water-absorbent resin particles.
  • the shape of the absorber according to this embodiment may be, for example, a sheet shape.
  • the thickness of the absorber (for example, the thickness of the sheet-shaped absorber) may be 0.1 to 20 mm or 0.3 to 15 mm.
  • the content of the water-absorbent resin particles in the absorber is 2 to 95% by mass, 10 to 80% by mass, or 20 to 20 to 95% by mass with respect to the total of the water-absorbent resin particles and the fibrous material from the viewpoint of easily obtaining sufficient absorption characteristics. It may be 60% by mass.
  • the content of the water-absorbent resin particles in the absorber is preferably 100 to 1000 g, 150 to 800 g, or 200 to 700 g per 1 m 2 of the absorber from the viewpoint of easily obtaining sufficient absorption characteristics.
  • the content of the fibrous material in the absorber is preferably 50 to 800 g, 100 to 600 g, or 150 to 500 g per 1 m 2 of the absorber from the viewpoint of easily obtaining sufficient absorption characteristics.
  • the absorbent article according to the present embodiment includes an absorber according to the present embodiment.
  • a core wrap that retains the shape of the absorber and prevents the constituent member of the absorber from falling off or flowing; Liquid permeable sheet to be arranged; Examples thereof include a liquid permeable sheet arranged on the outermost side opposite to the side on which the liquid to be absorbed enters.
  • absorbent articles include diapers (for example, paper diapers), toilet training pants, incontinence pads, sanitary materials (sanitary napkins, tampons, etc.), sweat pads, pet sheets, toilet members, animal excrement treatment materials, and the like. ..
  • FIG. 1 is a cross-sectional view showing an example of an absorbent article.
  • the absorbent article 100 shown in FIG. 1 includes an absorbent body 10, core wraps 20a and 20b, a liquid permeable sheet 30, and a liquid permeable sheet 40.
  • the liquid permeable sheet 40, the core wrap 20b, the absorbent body 10, the core wrap 20a, and the liquid permeable sheet 30 are laminated in this order.
  • the absorber 10 has a water-absorbent resin particle 10a and a fiber layer 10b containing a fibrous material.
  • the water-absorbent resin particles 10a are dispersed in the fiber layer 10b.
  • the core wrap 20a is arranged on one side of the absorber 10 (upper side of the absorber 10 in FIG. 1) in contact with the absorber 10.
  • the core wrap 20b is arranged on the other side of the absorber 10 (lower side of the absorber 10 in FIG. 1) in contact with the absorber 10.
  • the absorber 10 is arranged between the core wrap 20a and the core wrap 20b.
  • Examples of the core wraps 20a and 20b include tissues, non-woven fabrics, woven fabrics, synthetic resin films having liquid permeation holes, net-like sheets having a mesh, and the like.
  • the core wrap 20a and the core wrap 20b have, for example, a main surface having the same size as the absorber 10.
  • the liquid permeable sheet 30 is arranged on the outermost side on the side where the liquid to be absorbed enters.
  • the liquid permeable sheet 30 is arranged on the core wrap 20a in contact with the core wrap 20a.
  • Examples of the liquid permeable sheet 30 include non-woven fabrics made of synthetic resins such as polyethylene, polypropylene, polyester and polyamide, and porous sheets.
  • the liquid permeable sheet 40 is arranged on the outermost side of the absorbent article 100 on the opposite side of the liquid permeable sheet 30.
  • the liquid impermeable sheet 40 is arranged under the core wrap 20b in contact with the core wrap 20b.
  • liquid impermeable sheet 40 examples include a sheet made of a synthetic resin such as polyethylene, polypropylene, and polyvinyl chloride, and a sheet made of a composite material of these synthetic resins and a non-woven fabric.
  • the liquid permeable sheet 30 and the liquid permeable sheet 40 have, for example, a main surface wider than the main surface of the absorber 10, and the outer edges of the liquid permeable sheet 30 and the liquid permeable sheet 40 are It extends around the absorber 10 and the core wraps 20a, 20b.
  • the magnitude relationship between the absorbent body 10, the core wraps 20a and 20b, the liquid permeable sheet 30, and the liquid permeable sheet 40 is not particularly limited, and is appropriately adjusted according to the use of the absorbent article and the like. Further, the method of retaining the shape of the absorber 10 using the core wraps 20a and 20b is not particularly limited, and as shown in FIG. 1, the absorber may be wrapped by a plurality of core wraps, and the absorber is wrapped by one core wrap. But it may be.
  • the absorber may be adhered to the top sheet.
  • a hot melt adhesive is applied to the top sheet at predetermined intervals in a striped shape, a spiral shape, etc. in the width direction and adhered; starch, carboxymethyl cellulose, polyvinyl alcohol, polyvinylpyrrolidone, etc. Examples thereof include a method of adhering using a water-soluble binder such as a water-soluble polymer.
  • a method of adhering by heat-sealing of the heat-sealing synthetic fibers may be adopted.
  • the present embodiment it is possible to provide a liquid absorbing method using the water-absorbent resin particles, the absorber or the absorbent article according to the present embodiment.
  • the liquid absorbing method according to the present embodiment includes a step of bringing the liquid to be absorbed into contact with the water-absorbent resin particles, the absorber or the absorbent article according to the present embodiment.
  • the present embodiment it is possible to provide a method for producing an absorber using the above-mentioned water-absorbent resin particles.
  • the method for producing an absorber according to the present embodiment includes a process for producing water-absorbent resin particles for obtaining the above-mentioned water-absorbent resin particles.
  • the method for producing an absorber according to the present embodiment may include a step of mixing the water-absorbent resin particles and the fibrous material after the step of producing the water-absorbent resin particles.
  • the method for producing an absorbent article according to the present embodiment includes an absorber manufacturing step for obtaining an absorber by the above-mentioned method for manufacturing an absorber.
  • the method for producing an absorbent article according to the present embodiment may include a step of obtaining an absorbent article by using the absorber and other constituent members of the absorbent article after the absorbent body manufacturing step. For example, an absorbent article is obtained by laminating the absorber and other constituent members of the absorbent article with each other.
  • Partial neutralization solution of sodium acrylate (monomer used for polymerization, monomer concentration: 45% by mass, neutralization rate of sodium acrylate: 75 mol%) 340.0 g, ethylene glycol diglycidyl ether 0.0077 g (inside) A cross-linking agent (0.044 mmol) and 59.0 g of ion-exchanged water were added, and then the mixture was uniformly mixed by rotating the stirrer to obtain a mixture. Then, the upper part of the stainless steel vat was covered with a polyethylene film. After adjusting the temperature of the mixture in the stainless steel pad to 25 ° C., the amount of dissolved oxygen was adjusted to 0.1 ppm or less by substituting nitrogen in the mixture.
  • the gel was cut in a grid pattern at 5 cm intervals.
  • the entire amount of the cut gel was sequentially put into a meat chopper (model number: 12VR-750SDX, manufactured by Kiren Royal Co., Ltd.) to coarsely crush the gel.
  • the diameter of the hole (circular) of the plate located at the outlet of the meat chopper was 6.4 mm, and the density of the holes was 40 holes / 36.30 cm 2 .
  • Rough crushing was performed until no crushed material (coarse crushed gel, hydrogel crushed material) came out from the plate of the meat chopper.
  • the pyroclastic material was dried with hot air at 180 ° C. for 30 minutes to obtain a dried product (crosslinked polymer dried product).
  • Example 2 The amount of ethylene glycol diglycidyl ether (internal cross-linking agent) used to obtain the gel after polymerization was changed to 0.0155 g (0.089 mmol), and the composition of the cross-linking agent aqueous solution was changed to ethylene glycol diglycidyl ether.
  • Partial neutralization solution of sodium acrylate (monomer used for polymerization, monomer concentration: 45% by mass, neutralization rate of sodium acrylate: 75 mol%) 340.0 g, ethylene glycol diglycidyl ether 0.0541 g (inside) A cross-linking agent (0.311 mmol) and 59.0 g of ion-exchanged water were added, and then the mixture was uniformly mixed by rotating the stirrer to obtain a mixture. Then, the upper part of the stainless steel vat was covered with a polyethylene film. After adjusting the temperature of the mixture in the stainless steel pad to 25 ° C., the amount of dissolved oxygen was adjusted to 0.1 ppm or less by substituting nitrogen in the mixture.
  • the gel was cut in a grid pattern at 5 cm intervals.
  • the entire amount of the cut gel was sequentially put into a meat chopper (model number: 12VR-750SDX, manufactured by Kiren Royal Co., Ltd.) to coarsely crush the gel.
  • the diameter of the hole (circular) of the plate located at the outlet of the meat chopper was 6.4 mm, and the density of the holes was 40 holes / 36.30 cm 2 .
  • Rough crushing was performed until no crushed material (coarse crushed gel, hydrogel crushed material) came out from the plate of the meat chopper.
  • the pyroclastic material was dried with hot air at 180 ° C. for 30 minutes to obtain a dried product (crosslinked polymer dried product).
  • a non-woven fabric having a size of 85 mm ⁇ 170 mm (product name: Heat Pack MWA-18, manufactured by Nippon Paper Papylia Co., Ltd.) was folded in half in the longitudinal direction to adjust the size to 85 mm ⁇ 85 mm.
  • a non-woven fabric bag having a width of 5 mm was produced by crimping the non-woven fabrics to each other with heat seals on both sides extending in the longitudinal direction (a crimping portion having a width of 5 mm was formed on both sides along the longitudinal direction).
  • 0.2 g of the above-mentioned crosslinked polymer was contained in the non-woven fabric bag. Then, the non-woven fabric bag was closed by crimping the remaining one side extending in the lateral direction with a heat seal.
  • the entire non-woven fabric bag was completely moistened by floating the non-woven fabric bag on 500 g of physiological saline contained in a stainless steel vat (240 mm ⁇ 320 mm ⁇ 45 mm) without folding the non-woven fabric bag.
  • a stainless steel vat 240 mm ⁇ 320 mm ⁇ 45 mm
  • the non-woven fabric bag was taken out from the physiological saline solution. Then, the non-woven fabric bag was put in a centrifuge (manufactured by Kokusan Co., Ltd., model number: H-122). After the centrifugal force in the centrifuge reached 250 G, the non-woven fabric bag was dehydrated for 3 minutes. After dehydration, it was weighed mass M x of the nonwoven fabric bag containing a mass of gel. Subjected to the same operation as the aforementioned operation on the woven bags without accommodating the crosslinked polymer, the mass was measured M y nonwoven bag.
  • the static water absorption retention capacity was calculated based on the following formula.
  • M z is a precise value of 0.2 g of the mass of the crosslinked polymer used for the measurement.
  • Table 1 shows the results including the ratio of the static water absorption retention capacity of the crosslinked polymer after pulverization to the static water absorption retention capacity of the crosslinked polymer before pulverization.
  • Static water holding capacity [g / g] (M x -M y) / M z
  • ⁇ Particle size distribution> Using a continuous fully automatic sonic vibration type sieving measuring instrument (Robot Shifter RPS-205, manufactured by Seishin Enterprise Co., Ltd.), JIS standard meshes of 850 ⁇ m, 710 ⁇ m, 600 ⁇ m, 500 ⁇ m, 300 ⁇ m, 250 ⁇ m and 150 ⁇ m, and a saucer. The particle size distribution of 5 g of the crosslinked polymer particles was measured in.
  • Mass ratios in the particle size range of "more than 0 ⁇ m and less than 150 ⁇ m", “150 ⁇ m or more and less than 300 ⁇ m", “300 ⁇ m or more and less than 600 ⁇ m", “600 ⁇ m or more and less than 850 ⁇ m", and “850 ⁇ m or more” were obtained.
  • the mass percentage of "600 ⁇ m or more and less than 850 ⁇ m” is calculated based on the total amount of particles remaining on the sieves of 710 ⁇ m and 600 ⁇ m, and the mass percentage of “300 ⁇ m or more and less than 600 ⁇ m” is the particles remaining on the sieves of 500 ⁇ m and 300 ⁇ m.
  • the mass percentage of "150 ⁇ m or more and less than 300 ⁇ m” was calculated based on the total amount of particles remaining on the sieves of 250 ⁇ m and 150 ⁇ m. The results are shown in Table 1.
  • ⁇ CRC of water-absorbent resin particles was measured by the following procedure with reference to the EDANA method (NWSP 241.0.R2 (15), page.769-778).
  • a non-woven fabric with a size of 60 mm x 170 mm (product name: Heat Pack MWA-18, manufactured by Nippon Paper Papylia Co., Ltd.) was folded in half in the longitudinal direction to adjust the size to 60 mm x 85 mm.
  • a 60 mm ⁇ 85 mm non-woven fabric bag was produced by crimping the non-woven fabrics to each other on both sides extending in the longitudinal direction with a heat seal (a crimped portion having a width of 5 mm was formed on both sides along the longitudinal direction).
  • 0.2 g of the above-mentioned water-absorbent resin particles were contained in the non-woven fabric bag. Then, the non-woven fabric bag was closed by crimping the remaining one side extending in the lateral direction with a heat seal.
  • the entire non-woven fabric bag was completely moistened by floating the non-woven fabric bag on 1000 g of physiological saline contained in a stainless steel vat (240 mm ⁇ 320 mm ⁇ 45 mm) without folding the non-woven fabric bag.
  • a stainless steel vat 240 mm ⁇ 320 mm ⁇ 45 mm
  • the non-woven fabric bag was taken out from the physiological saline solution. Then, the non-woven fabric bag was put in a centrifuge (manufactured by Kokusan Co., Ltd., model number: H-122). After the centrifugal force in the centrifuge reached 250 G, the non-woven fabric bag was dehydrated for 3 minutes. After dehydration, it was weighed mass M a nonwoven bag containing the mass of gel. Subjecting the above procedure similar relative woven bags without accommodating the water-absorbent resin particles, the mass was measured M b of the nonwoven fabric bag.
  • the water absorption amount (room temperature) of the physiological saline under the load (pressurization) of the water-absorbent resin particles was measured using the measuring device Y shown in FIG.
  • the measuring device Y is composed of a burette unit 61, a conduit 62, a measuring table 63, and a measuring unit 64 placed on the measuring table 63.
  • the burette portion 61 has a burette 61a extending in the vertical direction, a rubber stopper 61b arranged at the upper end of the burette 61a, a cock 61c arranged at the lower end of the burette 61a, and one end extending into the burette 61a in the vicinity of the cock 61c.
  • the conduit 62 has an air introduction pipe 61d and a cock 61e arranged on the other end side of the air introduction pipe 61d.
  • the conduit 62 is attached between the burette portion 61 and the measuring table 63.
  • the inner diameter of the conduit 62 is 6 mm.
  • a hole having a diameter of 2 mm is formed in the central portion of the measuring table 63, and the conduit 62 is connected to the hole.
  • the measuring unit 64 has a cylinder 64a (made of acrylic resin (plexiglass)), a nylon mesh 64b adhered to the bottom of the cylinder 64a, and a weight 64c.
  • the inner diameter of the cylinder 64a is 20 mm.
  • the opening of the nylon mesh 64b is 75 ⁇ m (200 mesh).
  • the water-absorbent resin particles 65 to be measured are uniformly sprinkled on the nylon mesh 64b.
  • the diameter of the weight 64c is 19 mm, and the mass of the weight 64c is 119.6 g.
  • the weight 64c is placed on the water-absorbent resin particles 65, and a load of 4.14 kPa can be applied to the water-absorbent resin particles 65.
  • the weight 64c was placed and the measurement was started. Since the same volume of air as the physiological saline absorbed by the water-absorbent resin particles 65 is quickly and smoothly supplied to the inside of the burette 61a from the air introduction pipe, the water level of the physiological saline inside the burette 61a is reduced. However, the amount of physiological saline absorbed by the water-absorbent resin particles 65 is obtained.
  • the scale of the burette 61a is engraved from top to bottom in increments of 0 mL to 0.5 mL, and the scale Va of the burette 61a before the start of water absorption and the burette 61a 60 minutes after the start of water absorption are used as the water level of the physiological saline.
  • 10 Absorbent, 10a, 65 ... Water-absorbent resin particles, 10b ... Fiber layer, 20a, 20b ... Core wrap, 30 ... Liquid permeable sheet, 40 ... Liquid permeable sheet, 61 ... Burette part, 61a ... Burette, 61b ... Rubber stopper, 61c, 61e ... Cock, 61d ... Air introduction pipe, 62 ... Conduit, 63 ... Measuring table, 64 ... Measuring unit, 64a ... Cylindrical, 64b ... Nylon mesh, 64c ... Weight, 100 ... Absorbent article, Y ...measuring device.

Abstract

A production method for cross-linked polymer particles that are to be further cross-linked to produce water-absorbent resin particles 10a. The production method comprises a crushing step for crushing a cross-linked polymer that has a structural unit that is derived from an ethylenic unsaturated monomer. When the static absorbed water retention capacity of the cross-linked polymer is the amount of absorbed water per 1 g of the cross-linked polymer after physiological saline has been absorbed into the cross-linked polymer and then the cross-linked polymer has been centrifuged, the ratio of the static absorbed water retention capacity of the cross-linked polymer after the cross-linked polymer is crushed in the crushing step to the static absorbed water retention capacity of the cross-linked polymer before the cross-linked polymer is crushed is at least 1.5, and the static absorbed water retention capacity of the cross-linked polymer after the cross-linked polymer is crushed is at least 30 g/g.

Description

架橋重合体粒子の製造方法、吸水性樹脂粒子の製造方法、及び、荷重下吸水量の向上方法A method for producing crosslinked polymer particles, a method for producing water-absorbent resin particles, and a method for improving the amount of water absorption under load.
 本発明は、架橋重合体粒子の製造方法、吸水性樹脂粒子の製造方法、及び、荷重下吸水量の向上方法に関する。 The present invention relates to a method for producing crosslinked polymer particles, a method for producing water-absorbent resin particles, and a method for improving the amount of water absorption under load.
 従来、水を主成分とする液体(例えば尿)を吸収するための吸収性物品には、吸水性樹脂粒子を含有する吸収体が用いられている(例えば、下記特許文献1参照)。吸水性樹脂粒子は、例えば、エチレン性不飽和単量体に由来する構造単位を有する架橋重合体を粉砕して架橋重合体粒子を得た後、当該架橋重合体粒子に追架橋を施すことにより得ることができる。 Conventionally, an absorber containing water-absorbent resin particles has been used as an absorbent article for absorbing a liquid containing water as a main component (for example, urine) (see, for example, Patent Document 1 below). The water-absorbent resin particles are obtained, for example, by crushing a crosslinked polymer having a structural unit derived from an ethylenically unsaturated monomer to obtain crosslinked polymer particles, and then subjecting the crosslinked polymer particles to crosslinking. Obtainable.
特開平06-345819号公報Japanese Unexamined Patent Publication No. 06-345819
 水を主成分とする液体が吸収性物品に供された際、吸収性物品の吸収体に液体が充分吸収されなければ、余剰の液体は吸収体物品の表面を流れる等して吸収性物品の外に漏れるといった不具合が生じ得る。そのため、吸収体を構成する吸水性樹脂粒子に対しては、優れた吸水量を有することが求められる。特に、おむつ等の吸収性物品を使用者に装着した状態では、吸水性樹脂粒子に対して荷重が負荷されており、このように荷重が負荷された状態における吸水性樹脂粒子の吸水量を向上させることが求められる。 When a liquid containing water as a main component is provided to an absorbent article, if the liquid is not sufficiently absorbed by the absorbent body of the absorbent article, the excess liquid flows on the surface of the absorbent article and the absorbent article is used. Problems such as leakage to the outside may occur. Therefore, the water-absorbent resin particles constituting the absorber are required to have an excellent water absorption amount. In particular, when an absorbent article such as a diaper is attached to the user, a load is applied to the water-absorbent resin particles, and the water absorption amount of the water-absorbent resin particles in such a loaded state is improved. It is required to make it.
 本発明の一側面は、荷重下吸水量に優れる吸水性樹脂粒子を得ることが可能な架橋重合体粒子の製造方法を提供することを目的とする。本発明の他の一側面は、荷重下吸水量に優れる吸水性樹脂粒子の製造方法を提供することを目的とする。本発明の他の一側面は、吸水性樹脂粒子の荷重下吸水量の向上方法を提供することを目的とする。 One aspect of the present invention is to provide a method for producing crosslinked polymer particles capable of obtaining water-absorbent resin particles having an excellent amount of water absorption under load. Another aspect of the present invention is to provide a method for producing water-absorbent resin particles having an excellent amount of water absorption under load. Another aspect of the present invention is to provide a method for improving the amount of water absorption of water-absorbent resin particles under load.
 本発明者は、荷重下吸水量とは異なる吸水特性として遠心分離機保持容量(CRC)に優れる吸水性樹脂粒子であっても充分な荷重下吸水量が得られない場合があることを見出すと共に、生理食塩水を架橋重合体に吸水させた後に架橋重合体に遠心分離を施した際の架橋重合体1gあたりの吸水量である静的吸水保持能に優れる(30g/g以上である)架橋重合体に追架橋を施しても、充分な荷重下吸水量を有する吸水性樹脂粒子が得られない場合があることを見出した上で、追架橋前において架橋重合体を粉砕する粉砕工程における粉砕前後の静的吸水保持能の比率を調整することにより、吸水性樹脂粒子の荷重下吸水量を向上させることができることを見出した。 The present inventor has found that a sufficient amount of water absorption under load may not be obtained even with water-absorbent resin particles having an excellent centrifuge holding capacity (CRC) as a water absorption characteristic different from the amount of water absorption under load. , Excellent static water absorption retention ability (30 g / g or more), which is the amount of water absorbed per 1 g of the crosslinked polymer when the crosslinked polymer is centrifuged after the crosslinked polymer is made to absorb water. After finding that water-absorbent resin particles having a sufficient amount of water absorption under a load may not be obtained even if the polymer is cross-linked, crushing in a crushing step of crushing the cross-linked polymer before the cross-linking. It has been found that the amount of water absorption under load of the water-absorbent resin particles can be improved by adjusting the ratio of the static water absorption retention capacity before and after.
 本発明の一側面は、エチレン性不飽和単量体に由来する構造単位を有する架橋重合体を粉砕する粉砕工程を備え、生理食塩水を架橋重合体に吸水させた後に架橋重合体に遠心分離を施した際の架橋重合体1gあたりの吸水量である静的吸水保持能に関して、粉砕工程における架橋重合体の粉砕前の静的吸水保持能に対する架橋重合体の粉砕後の静的吸水保持能の比率が1.5以上であり、架橋重合体の粉砕後の静的吸水保持能が30g/g以上である、架橋重合体粒子の製造方法を提供する。 One aspect of the present invention includes a pulverization step of pulverizing a crosslinked polymer having a structural unit derived from an ethylenically unsaturated monomer, allowing physiological saline to be absorbed by the crosslinked polymer and then centrifugation into the crosslinked polymer. With respect to the static water absorption retention ability which is the amount of water absorption per 1 g of the crosslinked polymer when the above is applied, the static water absorption retention ability after crushing of the crosslinked polymer as opposed to the static water absorption retention ability before crushing of the crosslinked polymer in the crushing step. Provided is a method for producing crosslinked polymer particles, wherein the ratio of the crosslinked polymer is 1.5 or more, and the static water absorption retention ability of the crosslinked polymer after pulverization is 30 g / g or more.
 本発明の他の一側面は、上述の架橋重合体粒子の製造方法により得られた架橋重合体粒子に追架橋を施す工程を備える、吸水性樹脂粒子の製造方法を提供する。 Another aspect of the present invention provides a method for producing water-absorbent resin particles, which comprises a step of performing additional cross-linking on the cross-linked polymer particles obtained by the above-mentioned method for producing cross-linked polymer particles.
 本発明の他の一側面は、架橋重合体粒子に追架橋を施して得られる吸水性樹脂粒子の荷重下における吸水量の向上方法であって、エチレン性不飽和単量体に由来する構造単位を有する架橋重合体を粉砕する粉砕工程を備え、生理食塩水を架橋重合体に吸水させた後に架橋重合体に遠心分離を施した際の架橋重合体1gあたりの吸水量である静的吸水保持能に関して、粉砕工程における架橋重合体の粉砕前の静的吸水保持能に対する架橋重合体の粉砕後の静的吸水保持能の比率が1.5以上であり、架橋重合体の粉砕後の静的吸水保持能が30g/g以上である、荷重下吸水量の向上方法を提供する。 Another aspect of the present invention is a method for improving the amount of water absorption under load of the water-absorbent resin particles obtained by performing cross-linking on the cross-linked polymer particles, and is a structural unit derived from an ethylenically unsaturated monomer. It is provided with a crushing step of crushing the crosslinked polymer having the above, and static water absorption retention which is the amount of water absorption per 1 g of the crosslinked polymer when the crosslinked polymer is centrifuged after the crosslinked polymer is made to absorb water. Regarding the ability, the ratio of the static water absorption retention capacity after crushing of the crosslinked polymer to the static water absorption retention capacity before crushing of the crosslinked polymer in the crushing step is 1.5 or more, and the static after crushing of the crosslinked polymer. Provided is a method for improving the amount of water absorption under load, which has a water absorption retention capacity of 30 g / g or more.
 上述の架橋重合体粒子の製造方法、吸水性樹脂粒子の製造方法、及び、荷重下吸水量の向上方法によれば、吸水性樹脂粒子の荷重下吸水量を向上させることが可能であり、荷重下吸水量に優れる吸水性樹脂粒子を得ることができる。 According to the above-mentioned method for producing crosslinked polymer particles, the method for producing water-absorbent resin particles, and the method for improving the amount of water absorption under load, it is possible to improve the amount of water absorption under load of the water-absorbent resin particles. It is possible to obtain water-absorbent resin particles having an excellent amount of lower water absorption.
 本発明の一側面によれば、荷重下吸水量に優れる吸水性樹脂粒子を得ることが可能な架橋重合体粒子の製造方法を提供することができる。本発明の他の一側面によれば、荷重下吸水量に優れる吸水性樹脂粒子の製造方法を提供することができる。本発明の他の一側面によれば、吸水性樹脂粒子の荷重下吸水量の向上方法を提供することができる。 According to one aspect of the present invention, it is possible to provide a method for producing crosslinked polymer particles capable of obtaining water-absorbent resin particles having an excellent amount of water absorption under load. According to another aspect of the present invention, it is possible to provide a method for producing water-absorbent resin particles having an excellent amount of water absorption under load. According to another aspect of the present invention, it is possible to provide a method for improving the amount of water absorption under load of the water-absorbent resin particles.
吸収性物品の一例を示す断面図である。It is sectional drawing which shows an example of an absorbent article. 吸水性樹脂粒子の荷重下吸水量の測定装置を示す概略図である。It is the schematic which shows the measuring apparatus of the water absorption amount under load of a water-absorbing resin particle.
 以下、本発明の実施形態について詳細に説明する。但し、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.
 本明細書において、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。「ポリエチレングリコール」及び「エチレングリコール」を合わせて「(ポリ)エチレングリコール」と表記する。「(ポリ)」を含む他の表現についても同様である。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「水溶性」とは、25℃において水に5質量%以上の溶解性を示すことをいう。本明細書に例示する材料は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「生理食塩水」とは、0.9質量%塩化ナトリウム水溶液をいう。(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも一種の(メタ)アクリル酸化合物に関して、「(メタ)アクリル酸化合物の含有量」及び「(メタ)アクリル酸化合物の全質量」とは、アクリル酸、アクリル酸塩、メタクリル酸及びメタクリル酸塩の合計量を意味する。「室温」は、25℃±2℃を意味する。 In this specification, "acrylic" and "methacryl" are collectively referred to as "(meth) acrylic". Similarly, "acrylate" and "methacrylate" are also referred to as "(meth) acrylate". "Polyethylene glycol" and "ethylene glycol" are collectively referred to as "(poly) ethylene glycol". The same applies to other expressions including "(poly)". In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. "Water-soluble" means that it exhibits a solubility in water of 5% by mass or more at 25 ° C. The materials exemplified in the present specification may be used alone or in combination of two or more. The content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. "Saline" refers to a 0.9% by mass sodium chloride aqueous solution. With respect to at least one (meth) acrylic acid compound selected from the group consisting of (meth) acrylic acid and salts thereof, what are "content of (meth) acrylic acid compound" and "total mass of (meth) acrylic acid compound"? , Acrylic acid, acrylate, methacrylic acid and methacrylic acid total amount. "Room temperature" means 25 ° C ± 2 ° C.
 本実施形態に係る架橋重合体粒子の製造方法は、追架橋を施すことにより吸水性樹脂粒子を得ることが可能な架橋重合体粒子の製造方法である。本実施形態に係る荷重下吸水量の向上方法は、架橋重合体粒子に追架橋を施して得られる吸水性樹脂粒子の荷重下における吸水量の向上方法である。本実施形態に係る架橋重合体粒子の製造方法、及び、本実施形態に係る荷重下吸水量の向上方法は、エチレン性不飽和単量体に由来する構造単位を有する架橋重合体を粉砕することにより架橋重合体粒子(粉砕物)を得る粉砕工程を備える。本実施形態に係る架橋重合体粒子は、追架橋を施すことにより吸水性樹脂粒子を得ることが可能な架橋重合体粒子であり、エチレン性不飽和単量体に由来する構造単位を有する。本実施形態に係る架橋重合体粒子及びその製造方法、並びに、本実施形態に係る荷重下吸水量の向上方法において、生理食塩水を架橋重合体に吸水させた後に架橋重合体に遠心分離を施した際の架橋重合体1gあたりの吸水量である静的吸水保持能に関して、粉砕工程における架橋重合体の粉砕前の静的吸水保持能に対する架橋重合体の粉砕後の静的吸水保持能の比率は1.5以上であり、架橋重合体の粉砕後の静的吸水保持能が30g/g以上である。 The method for producing crosslinked polymer particles according to the present embodiment is a method for producing crosslinked polymer particles capable of obtaining water-absorbent resin particles by subjecting crosslinking. The method for improving the amount of water absorption under load according to the present embodiment is a method for improving the amount of water absorption under load of the water-absorbent resin particles obtained by subjecting the crosslinked polymer particles to cross-linking. The method for producing crosslinked polymer particles according to the present embodiment and the method for improving the amount of water absorption under load according to the present embodiment are to pulverize a crosslinked polymer having a structural unit derived from an ethylenically unsaturated monomer. A pulverization step for obtaining crosslinked polymer particles (crushed product) is provided. The crosslinked polymer particles according to the present embodiment are crosslinked polymer particles from which water-absorbent resin particles can be obtained by performing additional cross-linking, and have a structural unit derived from an ethylenically unsaturated monomer. In the crosslinked polymer particles according to the present embodiment, the method for producing the same, and the method for improving the amount of water absorption under load according to the present embodiment, the crosslinked polymer is centrifuged after allowing the crosslinked polymer to absorb water. With respect to the static water absorption retention capacity, which is the amount of water absorption per 1 g of the crosslinked polymer, the ratio of the static water absorption retention capacity after crushing of the crosslinked polymer to the static water absorption retention capacity before crushing of the crosslinked polymer in the crushing step. Is 1.5 or more, and the static water absorption retention capacity after pulverization of the crosslinked polymer is 30 g / g or more.
 本実施形態に係る吸水性樹脂粒子の製造方法は、本実施形態に係る架橋重合体粒子、又は、本実施形態に係る架橋重合体粒子の製造方法により得られた架橋重合体粒子に追架橋を施す追架橋工程を備える。 In the method for producing water-absorbent resin particles according to the present embodiment, the crosslinked polymer particles according to the present embodiment or the crosslinked polymer particles obtained by the method for producing the crosslinked polymer particles according to the present embodiment are crosslinked. It is provided with a cross-linking step to be applied.
 本実施形態に係る架橋重合体粒子及びその製造方法、本実施形態に係る吸水性樹脂粒子の製造方法、並びに、本実施形態に係る荷重下吸水量の向上方法によれば、吸水性樹脂粒子の荷重下吸水量を向上させることが可能であり、荷重下吸水量に優れる吸水性樹脂粒子を得ることができる。荷重下吸水量を向上させることが可能な原因は明らかではないが、静的吸水保持能の比率が上述の所定値以上である場合、架橋重合体粒子の架橋構造が均一な状態であるため、追架橋を施した際に荷重下吸水量が向上しやすいと推察される。但し、原因は当該内容に限定されない。 According to the crosslinked polymer particles according to the present embodiment and the method for producing the same, the method for producing the water-absorbent resin particles according to the present embodiment, and the method for improving the amount of water absorption under load according to the present embodiment, the water-absorbent resin particles It is possible to improve the amount of water absorption under load, and it is possible to obtain water-absorbent resin particles having an excellent amount of water absorption under load. The reason why the amount of water absorption under load can be improved is not clear, but when the ratio of static water absorption retention capacity is equal to or more than the above-mentioned predetermined value, the crosslinked structure of the crosslinked polymer particles is in a uniform state. It is presumed that the amount of water absorption under load is likely to improve when cross-linking is performed. However, the cause is not limited to the content.
 ところで、吸水性樹脂粒子を得るための架橋重合体粒子を作製するに際しては、架橋重合体を粉砕して架橋重合体粒子を得た後に、架橋重合体粒子に含まれる粒子の粒子径を分級処理等の粒子径調整処理により調整する場合がある。これに対し、本発明者は、粒子径調整処理が追加されることによって吸水性樹脂粒子の製造過程が煩雑化すること等に着目した上で、荷重下吸水量に優れる吸水性樹脂粒子を得ることが可能な架橋重合体粒子を簡便な方法で得ることに着想し、上述のとおり優れた荷重下吸水量を与える架橋重合体粒子を粉砕工程において得ることを見出した。本実施形態に係る架橋重合体粒子及びその製造方法、本実施形態に係る吸水性樹脂粒子の製造方法、並びに、本実施形態に係る荷重下吸水量の向上方法によれば、粉砕工程の後に粒子径調整処理を行うことなく吸水性樹脂粒子の荷重下吸水量を向上させることが可能であり、荷重下吸水量に優れる吸水性樹脂粒子を簡便な方法で得ることができる。 By the way, when producing the crosslinked polymer particles for obtaining the water-absorbent resin particles, the crosslinked polymer is crushed to obtain the crosslinked polymer particles, and then the particle size of the particles contained in the crosslinked polymer particles is classified. It may be adjusted by particle size adjustment processing such as. On the other hand, the present inventor obtains water-absorbent resin particles having an excellent amount of water absorption under load, paying attention to the fact that the manufacturing process of the water-absorbent resin particles becomes complicated due to the addition of the particle size adjusting treatment. Based on the idea of obtaining crosslinked polymer particles capable of this by a simple method, it has been found that the crosslinked polymer particles that give excellent water absorption under load as described above can be obtained in the pulverization step. According to the crosslinked polymer particles according to the present embodiment and the method for producing the same, the method for producing the water-absorbent resin particles according to the present embodiment, and the method for improving the amount of water absorption under load according to the present embodiment, the particles are particles after the pulverization step. It is possible to improve the water absorption amount of the water-absorbent resin particles under load without performing the diameter adjustment treatment, and the water-absorbent resin particles having excellent water absorption amount under load can be obtained by a simple method.
 本実施形態では、粉砕工程において、架橋重合体の粉砕前の静的吸水保持能に対する架橋重合体の粉砕後の静的吸水保持能の比率が1.5以上であり、架橋重合体の粉砕後の静的吸水保持能が30g/g以上である。粉砕工程では、粉砕機の種類、粉砕条件等を調整することにより、粉砕前後の静的吸水保持能の比率及び粉砕後の静的吸水保持能を調整できる。 In the present embodiment, in the pulverization step, the ratio of the static water absorption retention ability after pulverization of the crosslinked polymer to the static water absorption retention ability before pulverization of the crosslinked polymer is 1.5 or more, and after pulverization of the crosslinked polymer. The static water absorption retention capacity of the polymer is 30 g / g or more. In the crushing step, the ratio of the static water absorption retention capacity before and after crushing and the static water absorption retention capacity after crushing can be adjusted by adjusting the type of the crusher, the crushing conditions, and the like.
 架橋重合体の粉砕前後の静的吸水保持能の比率は、吸水性樹脂粒子の荷重下吸水量を向上させる観点から、1.5以上である。静的吸水保持能の比率は、吸水性樹脂粒子の荷重下吸水量を向上させやすい観点から、1.6以上、1.8以上、1.9以上、2以上、2.2以上、2.3以上、2.4以上、2.5以上、又は、2.6以上であってよい。静的吸水保持能の比率は、4以下、3.75以下、3.5以下、3.25以下、3以下、2.9以下、2.8以下、2.7以下、又は、2.6以下であってよい。これらの観点から、静的吸水保持能の比率は、1.5~4であってよい。静的吸水保持能の比率は、2.6未満、2.5以下、2.4以下、2.3以下、2.2以下、2.1以下、2以下、1.9以下、又は、1.8以下であってもよい。 The ratio of static water absorption retention capacity before and after pulverization of the crosslinked polymer is 1.5 or more from the viewpoint of improving the amount of water absorption under load of the water-absorbent resin particles. The ratio of static water absorption retention capacity is 1.6 or more, 1.8 or more, 1.9 or more, 2 or more, 2.2 or more, from the viewpoint of easily improving the amount of water absorption under load of the water-absorbent resin particles. It may be 3 or more, 2.4 or more, 2.5 or more, or 2.6 or more. The ratio of static water absorption retention capacity is 4 or less, 3.75 or less, 3.5 or less, 3.25 or less, 3 or less, 2.9 or less, 2.8 or less, 2.7 or less, or 2.6. It may be: From these viewpoints, the ratio of static water absorption retention ability may be 1.5 to 4. The ratio of static water absorption retention capacity is less than 2.6, 2.5 or less, 2.4 or less, 2.3 or less, 2.2 or less, 2.1 or less, 2 or less, 1.9 or less, or 1 It may be 0.8 or less.
 架橋重合体の粉砕後の静的吸水保持能(架橋重合体粒子の静的吸水保持能)は、30g/g以上であり、下記の範囲であってよい。架橋重合体の粉砕後の静的吸水保持能は、35g/g以上、40g/g以上、45g/g以上、48g/g以上、50g/g以上、55g/g以上、56g/g以上、58g/g以上、60g/g以上、62g/g以上、又は、63g/g以上であってよい。架橋重合体の粉砕後の静的吸水保持能は、80g/g以下、75g/g以下、70g/g以下、65g/g以下、又は、64g/g以下であってよい。これらの観点から、架橋重合体の粉砕後の静的吸水保持能は、30~80g/gであってよい。粉砕後の静的吸水保持能は、重合開始剤、架橋剤等の使用量の調整;後述のスクリーンを用いた粉砕処理などにより調整しやすい。 The static water absorption retention capacity of the crosslinked polymer particles after pulverization (static water absorption retention capacity of the crosslinked polymer particles) is 30 g / g or more, and may be in the following range. The static water absorption retention capacity of the crosslinked polymer after pulverization is 35 g / g or more, 40 g / g or more, 45 g / g or more, 48 g / g or more, 50 g / g or more, 55 g / g or more, 56 g / g or more, 58 g. It may be / g or more, 60 g / g or more, 62 g / g or more, or 63 g / g or more. The static water absorption retention capacity of the crosslinked polymer after pulverization may be 80 g / g or less, 75 g / g or less, 70 g / g or less, 65 g / g or less, or 64 g / g or less. From these viewpoints, the static water absorption retention capacity of the crosslinked polymer after pulverization may be 30 to 80 g / g. The static water absorption retention ability after pulverization can be easily adjusted by adjusting the amount of polymerization initiator, cross-linking agent, etc. used; by pulverization treatment using a screen described later.
 架橋重合体の粉砕前の静的吸水保持能は、20g/g以上、21g/g以上、22g/g以上、23g/g以上、又は、24g/g以上であってよい。架橋重合体の粉砕前の静的吸水保持能は、53g/g以下、52g/g以下、50g/g以下、45g/g以下、40g/g以下、35g/g以下、30g/g以下、28g/g以下、27g/g以下、26g/g以下、又は、25g/g以下であってよい。これらの観点から、架橋重合体の粉砕前の静的吸水保持能は、20~53g/gであってよい。粉砕前の静的吸水保持能は、重合開始剤、架橋剤等の使用量の調整などにより調整しやすい。 The static water absorption retention capacity of the crosslinked polymer before pulverization may be 20 g / g or more, 21 g / g or more, 22 g / g or more, 23 g / g or more, or 24 g / g or more. The static water absorption retention capacity of the crosslinked polymer before pulverization is 53 g / g or less, 52 g / g or less, 50 g / g or less, 45 g / g or less, 40 g / g or less, 35 g / g or less, 30 g / g or less, 28 g. It may be / g or less, 27 g / g or less, 26 g / g or less, or 25 g / g or less. From these viewpoints, the static water absorption retention capacity of the crosslinked polymer before pulverization may be 20 to 53 g / g. The static water absorption retention capacity before pulverization can be easily adjusted by adjusting the amount of polymerization initiator, cross-linking agent, etc. used.
 静的吸水保持能は、生理食塩水を架橋重合体に吸水させた後に架橋重合体に遠心分離を施した際の架橋重合体1gあたりの吸水量を測定することにより得ることができる。静的吸水保持能は、生理食塩水500gに対して架橋重合体0.2gを浸漬することにより測定できる。静的吸水保持能は、生理食塩水に架橋重合体を30分間接触させることにより測定可能であり、例えば、架橋重合体を収容した不織布バッグを生理食塩水に1分間浮かべた後に不織布バッグを生理食塩水に29分間浸漬することにより測定できる。架橋重合体に対する遠心分離の遠心力は250Gであってよく、遠心分離の処理時間は3分間であってよい。粉砕前の静的吸水保持能は、架橋重合体を粒子径1.4~1.7mmに分級(粒子径1.4mm未満の重合体、及び、粒子径1.7mm超えの重合体を除去)した後に測定してよい。 The static water absorption retention ability can be obtained by measuring the amount of water absorption per 1 g of the crosslinked polymer when the crosslinked polymer is centrifuged after the physiological saline is absorbed by the crosslinked polymer. The static water absorption retention ability can be measured by immersing 0.2 g of the crosslinked polymer in 500 g of physiological saline. The static water absorption retention ability can be measured by contacting the crosslinked polymer with physiological saline for 30 minutes. For example, a non-woven fabric bag containing the crosslinked polymer is floated in physiological saline for 1 minute, and then the non-woven fabric bag is physiologically prepared. It can be measured by immersing it in a saline solution for 29 minutes. The centrifugal force of centrifugation on the crosslinked polymer may be 250 G, and the treatment time of centrifugation may be 3 minutes. The static water absorption retention capacity before crushing classifies the crosslinked polymer into a particle size of 1.4 to 1.7 mm (removes polymers with a particle size of less than 1.4 mm and polymers with a particle size of more than 1.7 mm). After that, it may be measured.
 粉砕工程では、開口(貫通孔;網目)を有するスクリーン(網状部材、パンチングプレート等)を用いて架橋重合体を粉砕できる。本実施形態は、例えば、粉砕工程において、架橋重合体をスクリーンに通過させつつ架橋重合体を粉砕する態様であってよい。この場合、スクリーンの一方面側から他方面側に架橋重合体をスクリーンに通過させることにより、架橋重合体粒子を構成する粒子をスクリーンの他方面側において得ることができる。また、架橋重合体を粉砕しつつ粒子径調整することが可能であり、スクリーンの開口の開口径に応じた径を有する粒子をスクリーンの他方面側において得ることができる。スクリーンの開口の開口径を調整することにより、架橋重合体粒子に含まれる粒子の粒子径及び粒度分布を調整できる。スクリーンの開口は、粉砕対象である架橋重合体の少なくとも一部の径よりも大きな開口径を有している。スクリーンの開口の開口径(孔径)は、例えば、0.08~10mm、0.50~2.0mm、又は、0.75~1.5mmであってよい。スクリーンは、環状(例えば円環状)、板状等であってよい。 In the crushing step, the crosslinked polymer can be crushed using a screen (net member, punching plate, etc.) having openings (through holes; mesh). The present embodiment may be, for example, an embodiment in which the crosslinked polymer is pulverized while passing the crosslinked polymer through the screen in the pulverization step. In this case, by passing the crosslinked polymer through the screen from one side to the other side of the screen, the particles constituting the crosslinked polymer particles can be obtained on the other side of the screen. Further, the particle size can be adjusted while crushing the crosslinked polymer, and particles having a diameter corresponding to the opening diameter of the opening of the screen can be obtained on the other side of the screen. By adjusting the opening diameter of the opening of the screen, the particle size and particle size distribution of the particles contained in the crosslinked polymer particles can be adjusted. The opening of the screen has an opening diameter larger than the diameter of at least a part of the crosslinked polymer to be pulverized. The opening diameter (hole diameter) of the screen opening may be, for example, 0.08 to 10 mm, 0.50 to 2.0 mm, or 0.75 to 1.5 mm. The screen may be annular (for example, annular), plate-shaped, or the like.
 本実施形態は、例えば、粉砕工程において、架橋重合体に遠心力を印加することにより、架橋重合体をスクリーンに通過させつつ架橋重合体を粉砕する態様であってよい。この場合、遠心力により架橋重合体をスクリーン又は他の部材(例えば、後述の回転部材)に衝突させることにより架橋重合体を衝撃粉砕できる。本実施形態は、例えば、スクリーンが環状であり、粉砕工程において、スクリーンの内周側において架橋重合体に遠心力(内周側から外周側に向かう遠心力)を印加することにより、架橋重合体をスクリーンに通過させつつ架橋重合体を粉砕する態様であってよい。この場合、スクリーンの内周側から外周側に架橋重合体をスクリーンに通過させることにより、架橋重合体粒子を構成する粒子をスクリーンの外周側において得ることができる。また、衝撃粉砕により架橋重合体を粉砕しつつ粒子径調整することが可能であり、スクリーンの開口の開口径に応じた径を有する粒子をスクリーンの外周側において得ることができる。 The present embodiment may be, for example, an embodiment in which the crosslinked polymer is pulverized while passing the crosslinked polymer through the screen by applying a centrifugal force to the crosslinked polymer in the pulverization step. In this case, the crosslinked polymer can be impact pulverized by colliding the crosslinked polymer with a screen or another member (for example, a rotating member described later) by centrifugal force. In this embodiment, for example, the screen is cyclic, and in the pulverization step, the crosslinked polymer is subjected to centrifugal force (centrifugal force from the inner peripheral side to the outer peripheral side) on the inner peripheral side of the screen. May be an embodiment in which the crosslinked polymer is pulverized while passing the crosslinked polymer through a screen. In this case, by passing the crosslinked polymer through the screen from the inner peripheral side to the outer peripheral side of the screen, the particles constituting the crosslinked polymer particles can be obtained on the outer peripheral side of the screen. Further, the particle size can be adjusted while crushing the crosslinked polymer by impact pulverization, and particles having a diameter corresponding to the opening diameter of the opening of the screen can be obtained on the outer peripheral side of the screen.
 粉砕工程において用いる粉砕機は、例えば、架橋重合体が供給される試料台と、当該試料台を囲う環状のスクリーンと、を有してよい。試料台は回転可能であってよく、試料台を回転させることにより架橋重合体に遠心力を印加してよい。例えば、環状のスクリーンの中心軸(周方向に直交する軸)を中心として試料台を回転させることにより架橋重合体に遠心力を印加することができる。 The crusher used in the crushing step may have, for example, a sample table to which the crosslinked polymer is supplied and an annular screen surrounding the sample table. The sample table may be rotatable, and centrifugal force may be applied to the crosslinked polymer by rotating the sample table. For example, centrifugal force can be applied to the crosslinked polymer by rotating the sample table around the central axis (axis orthogonal to the circumferential direction) of the annular screen.
 粉砕機は、試料台及び環状のスクリーンに加えて、環状のスクリーンの内壁に沿って回転可能な回転部材(例えば刃部材)を備えてよい。この場合、回転部材を回転させつつ遠心力により架橋重合体を回転部材に衝突させることにより架橋重合体を衝撃粉砕しやすい。回転部材は、スクリーンの内壁の近傍に配置されてよい。この場合、回転部材とスクリーンの内壁との間に存在する架橋重合体に対してせん断力を印加することが可能であり、架橋重合体を粉砕しやすい。回転部材は、環状のスクリーンの中心軸に沿って延びる部材であってよい。回転部材は、試料台と一体であってよく、試料台と別体であってもよい。回転部材は、試料台と共に回転可能であってよい。回転部材は、試料台の外周部において間隔をおいて複数(例えば6本)配置されていてよい。試料台及び回転部材のそれぞれの回転数は、例えば、6000~18000rpmであってよい。 In addition to the sample table and the annular screen, the crusher may include a rotating member (for example, a blade member) that can rotate along the inner wall of the annular screen. In this case, the crosslinked polymer is easily impact-milled by colliding the crosslinked polymer with the rotating member by centrifugal force while rotating the rotating member. The rotating member may be located near the inner wall of the screen. In this case, it is possible to apply a shearing force to the crosslinked polymer existing between the rotating member and the inner wall of the screen, and the crosslinked polymer can be easily crushed. The rotating member may be a member that extends along the central axis of the annular screen. The rotating member may be integrated with the sample table or may be separate from the sample table. The rotating member may be rotatable with the sample table. A plurality (for example, 6) of rotating members may be arranged at intervals on the outer peripheral portion of the sample table. The rotation speed of each of the sample table and the rotating member may be, for example, 6000 to 18000 rpm.
 粉砕機としては、ヴァーダー・サイエンティフィック株式会社製の製品名:ZM200;フリッチュ・ジャパン株式会社製の製品名:P-14 ロータースピードミル(Pulverisette 14)等を用いることができる。粉砕工程においては、スクリーンを通過した粒子が更に粒子径調整されない粉砕機を用いることができる。 As the crusher, a product name manufactured by Verder Scientific Co., Ltd .: ZM200; a product name manufactured by Fritsch Japan Co., Ltd .: P-14 rotor speed mill (Pulveristte 14) or the like can be used. In the crushing step, a crusher in which the particles that have passed through the screen are not further adjusted in particle size can be used.
 上述の粉砕工程では、吸水性樹脂粒子の荷重下吸水量を向上させやすい架橋重合体粒子として、架橋重合体を粉砕することにより、下記の粒度分布及び/又は中位粒子径を有する架橋重合体粒子を得ることができる。 In the above-mentioned pulverization step, the crosslinked polymer having the following particle size distribution and / or medium particle size is obtained by pulverizing the crosslinked polymer as the crosslinked polymer particles that can easily improve the amount of water absorption under load of the water-absorbent resin particles. Particles can be obtained.
 本実施形態に係る架橋重合体粒子(粉砕後の架橋重合体)における粒子径150μm未満(0μmを超え150μm未満)の粒子の割合は、架橋重合体粒子の全質量を基準として下記の範囲であってよい。粒子径150μm未満の粒子の割合は、20質量%以下、20質量%未満、18質量%以下、17質量%以下、16質量%以下、又は、15.5質量%以下であってよい。粒子径150μm未満の粒子の割合は、0質量%以上、0質量%を超え、1質量%以上、3質量%以上、5質量%以上、8質量%以上、10質量%以上、12質量%以上、13質量%以上、14質量%以上、又は、15質量%以上であってよい。これらの観点から、粒子径150μm未満の粒子の割合は、0~20質量%であってよい。 The proportion of particles having a particle diameter of less than 150 μm (more than 0 μm and less than 150 μm) in the crosslinked polymer particles (crosslinked polymer after pulverization) according to the present embodiment is in the following range based on the total mass of the crosslinked polymer particles. It's okay. The proportion of particles having a particle diameter of less than 150 μm may be 20% by mass or less, less than 20% by mass, 18% by mass or less, 17% by mass or less, 16% by mass or less, or 15.5% by mass or less. The proportion of particles with a particle size of less than 150 μm is 0% by mass or more, more than 0% by mass, 1% by mass or more, 3% by mass or more, 5% by mass or more, 8% by mass or more, 10% by mass or more, 12% by mass or more. , 13% by mass or more, 14% by mass or more, or 15% by mass or more. From these viewpoints, the proportion of particles having a particle diameter of less than 150 μm may be 0 to 20% by mass.
 本実施形態に係る架橋重合体粒子(粉砕後の架橋重合体)における粒子径150μm以上300μm未満の粒子の割合は、架橋重合体粒子の全質量を基準として下記の範囲であってよい。粒子径150μm以上300μm未満の粒子の割合は、40質量%以下、40質量%未満、35質量%以下、35質量%未満、30質量%以下、30質量%未満、28質量%以下、25質量%以下、又は、25質量%未満であってよい。粒子径150μm以上300μm未満の粒子の割合は、0質量%以上、0質量%を超え、1質量%以上、5質量%以上、10質量%以上、15質量%以上、20質量%以上、23質量%以上、又は、24質量%以上であってよい。これらの観点から、粒子径150μm以上300μm未満の粒子の割合は、0~40質量%であってよい。 The proportion of particles having a particle diameter of 150 μm or more and less than 300 μm in the crosslinked polymer particles (crosslinked polymer after pulverization) according to the present embodiment may be in the following range based on the total mass of the crosslinked polymer particles. The proportion of particles with a particle size of 150 μm or more and less than 300 μm is 40% by mass or less, less than 40% by mass, 35% by mass or less, less than 35% by mass, 30% by mass or less, less than 30% by mass, 28% by mass or less, 25% by mass. Below, or less than 25% by mass. The proportion of particles with a particle size of 150 μm or more and less than 300 μm is 0% by mass or more, more than 0% by mass, 1% by mass or more, 5% by mass or more, 10% by mass or more, 15% by mass or more, 20% by mass or more, and 23% by mass. % Or more, or 24% by mass or more. From these viewpoints, the proportion of particles having a particle diameter of 150 μm or more and less than 300 μm may be 0 to 40% by mass.
 本実施形態に係る架橋重合体粒子(粉砕後の架橋重合体)における粒子径300μm以上600μm未満の粒子の割合は、架橋重合体粒子の全質量を基準として下記の範囲であってよい。粒子径300μm以上600μm未満の粒子の割合は、50質量%以下、50質量%未満、45質量%以下、43質量%以下、42質量%以下、又は、41質量%以下であってよい。粒子径300μm以上600μm未満の粒子の割合は、0質量%以上、0質量%を超え、1質量%以上、5質量%以上、10質量%以上、15質量%以上、20質量%以上、25質量%以上、30質量%以上、35質量%以上、38質量%以上、又は、40質量%以上であってよい。これらの観点から、粒子径300μm以上600μm未満の粒子の割合は、0~50質量%であってよい。 The proportion of particles having a particle diameter of 300 μm or more and less than 600 μm in the crosslinked polymer particles (crosslinked polymer after pulverization) according to the present embodiment may be in the following range based on the total mass of the crosslinked polymer particles. The proportion of particles having a particle diameter of 300 μm or more and less than 600 μm may be 50% by mass or less, less than 50% by mass, 45% by mass or less, 43% by mass or less, 42% by mass or less, or 41% by mass or less. The proportion of particles with a particle size of 300 μm or more and less than 600 μm is 0% by mass or more, more than 0% by mass, 1% by mass or more, 5% by mass or more, 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass. % Or more, 30% by mass or more, 35% by mass or more, 38% by mass or more, or 40% by mass or more. From these viewpoints, the proportion of particles having a particle diameter of 300 μm or more and less than 600 μm may be 0 to 50% by mass.
 本実施形態に係る架橋重合体粒子(粉砕後の架橋重合体)における粒子径600μm以上850μm未満の粒子の割合は、架橋重合体粒子の全質量を基準として下記の範囲であってよい。粒子径600μm以上850μm未満の粒子の割合は、30質量%以下、30質量%未満、25質量%以下、20質量%以下、20質量%未満、又は、18質量%以下であってよい。粒子径600μm以上850μm未満の粒子の割合は、0質量%以上、0質量%を超え、1質量%以上、5質量%以上、10質量%以上、12質量%以上、14質量%以上、15質量%以上、又は、17質量%以上であってよい。これらの観点から、粒子径600μm以上850μm未満の粒子の割合は、0~30質量%であってよい。 The proportion of particles having a particle diameter of 600 μm or more and less than 850 μm in the crosslinked polymer particles (crosslinked polymer after pulverization) according to the present embodiment may be in the following range based on the total mass of the crosslinked polymer particles. The proportion of particles having a particle diameter of 600 μm or more and less than 850 μm may be 30% by mass or less, less than 30% by mass, 25% by mass or less, 20% by mass or less, less than 20% by mass, or 18% by mass or less. The proportion of particles with a particle size of 600 μm or more and less than 850 μm is 0% by mass or more, more than 0% by mass, 1% by mass or more, 5% by mass or more, 10% by mass or more, 12% by mass or more, 14% by mass or more, and 15% by mass. % Or more, or 17% by mass or more. From these viewpoints, the proportion of particles having a particle diameter of 600 μm or more and less than 850 μm may be 0 to 30% by mass.
 本実施形態に係る架橋重合体粒子(粉砕後の架橋重合体)における粒子径850μm以上の粒子の割合は、架橋重合体粒子の全質量を基準として下記の範囲であってよい。粒子径850μm以上の粒子の割合は、10質量%以下、10質量%未満、8質量%以下、6質量%以下、5質量%以下、4質量%以下、又は、3質量%以下であってよい。粒子径850μm以上の粒子の割合は、0質量%以上、0質量%を超え、1質量%以上、又は、2質量%以上であってよい。これらの観点から、粒子径850μm以上の粒子の割合は、0~10質量%であってよい。 The proportion of particles having a particle diameter of 850 μm or more in the crosslinked polymer particles (crosslinked polymer after pulverization) according to the present embodiment may be in the following range based on the total mass of the crosslinked polymer particles. The proportion of particles having a particle diameter of 850 μm or more may be 10% by mass or less, less than 10% by mass, 8% by mass or less, 6% by mass or less, 5% by mass or less, 4% by mass or less, or 3% by mass or less. .. The proportion of particles having a particle diameter of 850 μm or more may be 0% by mass or more, more than 0% by mass, 1% by mass or more, or 2% by mass or more. From these viewpoints, the proportion of particles having a particle diameter of 850 μm or more may be 0 to 10% by mass.
 本実施形態に係る架橋重合体粒子の中位粒子径は、下記の範囲が好ましい。中位粒子径は、200μm以上、230μm以上、250μm以上、280μm以上、300μm以上、330μm以上、340μm以上、350μm以上、又は、355μm以上であってよい。中位粒子径は、600μm以下、550μm以下、500μm以下、450μm以下、400μm以下、380μm以下、370μm以下、365μm以下、又は、360μm以下であってよい。これらの観点から、中位粒子径は、200~600μmであってよい。中位粒子径は、後述する実施例に記載の方法によって測定できる。中位粒子径は、室温における測定値を用いることができる。 The medium particle size of the crosslinked polymer particles according to this embodiment is preferably in the following range. The medium particle size may be 200 μm or more, 230 μm or more, 250 μm or more, 280 μm or more, 300 μm or more, 330 μm or more, 340 μm or more, 350 μm or more, or 355 μm or more. The medium particle size may be 600 μm or less, 550 μm or less, 500 μm or less, 450 μm or less, 400 μm or less, 380 μm or less, 370 μm or less, 365 μm or less, or 360 μm or less. From these viewpoints, the medium particle size may be 200 to 600 μm. The medium particle size can be measured by the method described in Examples described later. For the medium particle size, the measured value at room temperature can be used.
 架橋重合体(粉砕工程において粉砕される架橋重合体)の製造方法は、エチレン性不飽和単量体を含有する単量体組成物を重合する重合工程を備える。重合工程では、エチレン性不飽和単量体を含有する単量体組成物を重合することにより架橋重合体ゲルを得てよい。 The method for producing a crosslinked polymer (crosslinked polymer that is pulverized in the pulverization step) includes a polymerization step of polymerizing a monomer composition containing an ethylenically unsaturated monomer. In the polymerization step, a crosslinked polymer gel may be obtained by polymerizing a monomer composition containing an ethylenically unsaturated monomer.
 単量体組成物は、水、有機溶媒等を含有してよい。単量体組成物は、単量体水溶液であってよい。単量体組成物の重合方法としては、水溶液重合法、バルク重合法等が挙げられる。これらの中では、良好な吸水性能(吸水性樹脂粒子におけるCRC、荷重下吸水量等)が得られやすい観点、及び、重合反応の制御が容易である観点から、水溶液重合法が好ましい。以下においては、重合方法の一例として水溶液重合法を用いた場合について説明する。 The monomer composition may contain water, an organic solvent, and the like. The monomer composition may be a monomer aqueous solution. Examples of the polymerization method of the monomer composition include an aqueous solution polymerization method and a bulk polymerization method. Among these, the aqueous solution polymerization method is preferable from the viewpoint that good water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.) can be easily obtained and the polymerization reaction can be easily controlled. In the following, a case where the aqueous solution polymerization method is used as an example of the polymerization method will be described.
 エチレン性不飽和単量体としては、水溶性エチレン性不飽和単量体を用いることができる。エチレン性不飽和単量体としては、(メタ)アクリル酸、マレイン酸、無水マレイン酸、フマル酸等のα,β-不飽和カルボン酸、及び、その塩などのカルボン酸系単量体;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート等の非イオン性単量体;N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体、及び、その第4級化物;ビニルスルホン酸、スチレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸、及び、それらの塩等のスルホン酸系単量体などが挙げられる。エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも一種の(メタ)アクリル酸化合物を含むことができる。エチレン性不飽和単量体は、(メタ)アクリル酸、及び、(メタ)アクリル酸の塩の双方を含んでよい。α,β-不飽和カルボン酸((メタ)アクリル酸等)の塩としては、アルカリ金属塩(ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(カルシウム塩等)などが挙げられる。 As the ethylenically unsaturated monomer, a water-soluble ethylenically unsaturated monomer can be used. Examples of the ethylenically unsaturated monomer include α, β-unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid, maleic anhydride and fumaric acid, and carboxylic acid-based monomers such as salts thereof; Nonionic monomers such as meta) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate; N, N -Amino group-containing unsaturated monomers such as diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, diethylaminopropyl (meth) acrylamide, and quaternary products thereof; vinyl sulfonic acid, styrene sulfone. Examples thereof include acids, 2- (meth) acrylamide-2-methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid, and sulfonic acid-based monomers such as salts thereof. The ethylenically unsaturated monomer can contain at least one (meth) acrylic acid compound selected from the group consisting of (meth) acrylic acid and salts thereof. The ethylenically unsaturated monomer may contain both (meth) acrylic acid and a salt of (meth) acrylic acid. Examples of salts of α, β-unsaturated carboxylic acid ((meth) acrylic acid, etc.) include alkali metal salts (sodium salt, potassium salt, etc.), alkaline earth metal salts (calcium salt, etc.) and the like.
 酸基を有するエチレン性不飽和単量体(例えば(メタ)アクリル酸)は、酸基が予めアルカリ性中和剤により中和されていてよい。アルカリ性中和剤としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニアなどが挙げられる。アルカリ性中和剤は、中和操作を簡便化するために水溶液の状態にして用いてもよい。酸基の中和は、原料であるエチレン性不飽和単量体の重合前に行ってもよく、重合中又は重合後に行ってもよい。 The ethylenically unsaturated monomer having an acid group (for example, (meth) acrylic acid) may have an acid group neutralized in advance with an alkaline neutralizer. Examples of the alkaline neutralizing agent include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide and potassium carbonate; ammonia and the like. The alkaline neutralizer may be used in the form of an aqueous solution in order to simplify the neutralization operation. The acid group may be neutralized before the polymerization of the ethylenically unsaturated monomer as a raw material, or during or after the polymerization.
 アルカリ性中和剤によるエチレン性不飽和単量体の中和度は、浸透圧を高めることで、良好な吸水性能(吸水性樹脂粒子におけるCRC、荷重下吸水量等)が得られやすい観点、及び、余剰のアルカリ性中和剤の存在に起因する不具合を抑制する観点から、10~100モル%、30~90モル%、40~85モル%、又は、50~80モル%が好ましい。「中和度」は、エチレン性不飽和単量体が有する全ての酸基に対する中和度とする。 The degree of neutralization of the ethylenically unsaturated monomer by the alkaline neutralizer is from the viewpoint that good water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.) can be easily obtained by increasing the osmotic pressure. From the viewpoint of suppressing defects caused by the presence of excess alkaline neutralizer, 10 to 100 mol%, 30 to 90 mol%, 40 to 85 mol%, or 50 to 80 mol% is preferable. The "neutralization degree" is the neutralization degree for all the acid groups of the ethylenically unsaturated monomer.
 (メタ)アクリル酸化合物の含有量は、単量体組成物の全質量を基準として下記の範囲が好ましい。(メタ)アクリル酸化合物の含有量は、生産性を高めやすい観点から、10質量%以上、15質量%以上、20質量%以上、25質量%以上、30質量%以上、又は、35質量%以上が好ましい。(メタ)アクリル酸化合物の含有量は、吸水性能(吸水性樹脂粒子におけるCRC、荷重下吸水量等)を高めやすい観点から、60質量%以下、55質量%以下、50質量%以下、50質量%未満、45質量%以下、又は、40質量%以下が好ましい。これらの観点から、(メタ)アクリル酸化合物の含有量は、10~60質量%が好ましい。 The content of the (meth) acrylic acid compound is preferably in the following range based on the total mass of the monomer composition. The content of the (meth) acrylic acid compound is 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more, or 35% by mass or more from the viewpoint of easily increasing productivity. Is preferable. The content of the (meth) acrylic acid compound is 60% by mass or less, 55% by mass or less, 50% by mass or less, 50% by mass from the viewpoint of easily improving the water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.). %, 45% by mass or less, or 40% by mass or less is preferable. From these viewpoints, the content of the (meth) acrylic acid compound is preferably 10 to 60% by mass.
 (メタ)アクリル酸化合物の含有量は、単量体組成物に含有される単量体の合計量、及び/又は、単量体組成物に含有されるエチレン性不飽和単量体の合計量を基準として下記の範囲が好ましい。(メタ)アクリル酸化合物の含有量は、50モル%以上、70モル%以上、90モル%以上、95モル%以上、97モル%以上、又は、99モル%以上が好ましい。単量体組成物に含有される単量体、及び/又は、単量体組成物に含有されるエチレン性不飽和単量体は、実質的に(メタ)アクリル酸化合物からなる態様(実質的に、単量体組成物に含有される単量体、及び/又は、単量体組成物に含有されるエチレン性不飽和単量体の100モル%が(メタ)アクリル酸化合物である態様)であってもよい。 The content of the (meth) acrylic acid compound is the total amount of the monomers contained in the monomer composition and / or the total amount of the ethylenically unsaturated monomer contained in the monomer composition. The following range is preferable with reference to. The content of the (meth) acrylic acid compound is preferably 50 mol% or more, 70 mol% or more, 90 mol% or more, 95 mol% or more, 97 mol% or more, or 99 mol% or more. The monomer contained in the monomer composition and / or the ethylenically unsaturated monomer contained in the monomer composition is substantially composed of a (meth) acrylic acid compound (substantially). In addition, 100 mol% of the monomer contained in the monomer composition and / or the ethylenically unsaturated monomer contained in the monomer composition is a (meth) acrylic acid compound). It may be.
 単量体組成物は、重合開始剤を含有してよい。単量体組成物に含まれる単量体の重合は、単量体組成物に重合開始剤を添加し、必要により加熱、光照射等を行うことで開始してよい。重合開始剤としては、光重合開始剤、ラジカル重合開始剤等が挙げられ、水溶性ラジカル重合開始剤が好ましい。重合開始剤は、吸水性能(吸水性樹脂粒子におけるCRC、荷重下吸水量等)を高めやすい観点から、アゾ系化合物及び過酸化物からなる群より選ばれる少なくとも一種を含むことが好ましい。 The monomer composition may contain a polymerization initiator. The polymerization of the monomer contained in the monomer composition may be started by adding a polymerization initiator to the monomer composition and, if necessary, heating, irradiating with light or the like. Examples of the polymerization initiator include a photopolymerization initiator and a radical polymerization initiator, and a water-soluble radical polymerization initiator is preferable. The polymerization initiator preferably contains at least one selected from the group consisting of azo compounds and peroxides from the viewpoint of easily enhancing water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.).
 アゾ系化合物としては、2,2’-アゾビス[2-(N-フェニルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス{2-[N-(4-クロロフェニル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス{2-[N-(4-ヒドロキシフェニル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス[2-(N-ベンジルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス[2-(N-アリルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス{2-[N-(2-ヒドロキシエチル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二硫酸塩二水和物、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]等が挙げられる。アゾ系化合物は、良好な吸水性能(吸水性樹脂粒子におけるCRC、荷重下吸水量等)が得られやすい観点から、2,2’-アゾビス(2-メチルプロピオンアミド)二塩酸塩、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩、及び、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物からなる群より選ばれる少なくとも一種を含むことが好ましい。 Examples of the azo compound include 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride and 2,2'-azobis {2- [N- (4-chlorophenyl) amidino] propane} dihydrochloride. Salt, 2,2'-azobis {2- [N- (4-hydroxyphenyl) amidino] propane} dihydrochloride, 2,2'-azobis [2- (N-benzylamidino) propane] dihydrochloride, 2 , 2'-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis {2- [N- (2) -Hydroxyethyl) amidino] propane} dihydrochloride, 2,2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2-( 2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (4,5,6,7-tetrahydro-1H-1,3-diazepine-2-yl) propane] dihydrochloride Salt, 2,2'-azobis [2- (5-hydroxy-3,4,5,6-tetrahydropyrimidine-2-yl) propane] dihydrochloride, 2,2'-azobis {2- [1-( 2-Hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate, 2, 2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] tetrahydrate, 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide] and the like can be mentioned. Be done. The azo compound is 2,2'-azobis (2-methylpropionamide) dihydrochloride, 2,2 from the viewpoint that good water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.) can be easily obtained. '-Azobis (2-amidineopropane) dihydrochloride, 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride, and 2, It preferably contains at least one selected from the group consisting of 2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] tetrahydrate.
 過酸化物としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩類;メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート等の有機過酸化物類などが挙げられる。過酸化物は、良好な吸水性能(吸水性樹脂粒子におけるCRC、荷重下吸水量等)が得られやすい観点から、過硫酸カリウム、過硫酸アンモニウム、及び、過硫酸ナトリウムからなる群より選ばれる少なくとも一種を含むことが好ましい。 Peroxides include persulfates such as potassium persulfate, ammonium persulfate, sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t-butyl. Examples thereof include organic peroxides such as peroxyacetate, t-butylperoxyisobutyrate, and t-butylperoxypivalate. Peroxide is at least one selected from the group consisting of potassium persulfate, ammonium persulfate, and sodium persulfate from the viewpoint that good water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.) can be easily obtained. Is preferably included.
 重合開始剤の含有量は、エチレン性不飽和単量体(例えば(メタ)アクリル酸化合物)1モルに対して、下記の範囲が好ましい。重合開始剤の含有量は、吸水性能(吸水性樹脂粒子におけるCRC、荷重下吸水量等)を高めやすい観点、及び、重合反応時間を短縮する観点から、0.001ミリモル以上、0.005ミリモル以上、0.01ミリモル以上、0.05ミリモル以上、0.1ミリモル以上、又は、0.13ミリモル以上が好ましい。重合開始剤の含有量は、吸水性能(吸水性樹脂粒子におけるCRC、荷重下吸水量等)を高めやすい観点、及び、急激な重合反応を回避しやすい観点から、5ミリモル以下、4ミリモル以下、2ミリモル以下、1ミリモル以下、0.5ミリモル以下、0.3ミリモル以下、0.25ミリモル以下、0.2ミリモル以下、又は、0.15ミリモル以下が好ましい。これらの観点から、重合開始剤の含有量は、0.001~5ミリモルが好ましい。 The content of the polymerization initiator is preferably in the following range with respect to 1 mol of the ethylenically unsaturated monomer (for example, (meth) acrylic acid compound). The content of the polymerization initiator is 0.001 mmol or more and 0.005 mmol from the viewpoint of easily improving the water absorption performance (CRC in the water-absorbent resin particles, the amount of water absorption under load, etc.) and shortening the polymerization reaction time. As mentioned above, 0.01 mmol or more, 0.05 mmol or more, 0.1 mmol or more, or 0.13 mmol or more is preferable. The content of the polymerization initiator is 5 mmol or less, 4 mmol or less, from the viewpoint of easily improving the water absorption performance (CRC in the water-absorbent resin particles, the amount of water absorption under load, etc.) and from the viewpoint of easily avoiding a rapid polymerization reaction. It is preferably 2 mmol or less, 1 mmol or less, 0.5 mmol or less, 0.3 mmol or less, 0.25 mmol or less, 0.2 mmol or less, or 0.15 mmol or less. From these viewpoints, the content of the polymerization initiator is preferably 0.001 to 5 mmol.
 単量体組成物は、還元剤を含有してよい。還元剤としては、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第1鉄、L-アスコルビン酸等が挙げられる。重合開始剤と還元剤とを併用してよい。 The monomer composition may contain a reducing agent. Examples of the reducing agent include sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, L-ascorbic acid and the like. A polymerization initiator and a reducing agent may be used in combination.
 単量体組成物は、酸化剤を含有してよい。酸化剤としては、過酸化水素、過ホウ酸ナトリウム、過リン酸及びその塩、過マンガン酸カリウム等が挙げられる。 The monomer composition may contain an oxidizing agent. Examples of the oxidizing agent include hydrogen peroxide, sodium perborate, perphosphoric acid and salts thereof, potassium permanganate and the like.
 単量体組成物は、内部架橋剤を含有してよい。内部架橋剤を用いることにより、得られる架橋重合体が、その内部架橋構造として、重合反応による自己架橋構造に加え、内部架橋剤による架橋構造を有することができる。 The monomer composition may contain an internal cross-linking agent. By using the internal cross-linking agent, the obtained cross-linked polymer can have a cross-linked structure by the internal cross-linking agent in addition to the self-cross-linking structure by the polymerization reaction as the internal cross-linking structure.
 内部架橋剤としては、反応性官能基(例えば重合性不飽和基)を2個以上有する化合物等が挙げられる。内部架橋剤としては、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、トリメチロールプロパン、グリセリンポリオキシエチレングリコール、ポリオキシプロピレングリコール、(ポリ)グリセリン等のポリオールのジ又はトリ(メタ)アクリル酸エステル類;上記ポリオールと不飽和酸(マレイン酸、フマル酸等)とを反応させて得られる不飽和ポリエステル類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)グリセリンポリグリシジルエーテル、グリシジル(メタ)アクリレート等のグリシジル基含有化合物;N,N’-メチレンビス(メタ)アクリルアミド等のビスアクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ又はトリ(メタ)アクリル酸エステル類;ポリイソシアネート(トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)と(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉;アリル化セルロース;ジアリルフタレート;N,N’,N”-トリアリルイソシアヌレート;ジビニルベンゼン;ペンタエリスリトール;エチレンジアミン;ポリエチレンイミンなどが挙げられる。内部架橋剤は、吸水性能(吸水性樹脂粒子におけるCRC、荷重下吸水量等)を高めやすい観点、及び、低温での反応性に優れる観点から、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、及び、(ポリ)グリセリンジグリシジルエーテルからなる群より選ばれる少なくとも一種を含むことが好ましい。 Examples of the internal cross-linking agent include compounds having two or more reactive functional groups (for example, polymerizable unsaturated groups). Examples of the internal cross-linking agent include di or tri (meth) acrylic acid esters of polyols such as (poly) ethylene glycol, (poly) propylene glycol, trimethylolpropane, glycerin polyoxyethylene glycol, polyoxypropylene glycol, and (poly) glycerin. Class: Unsaturated polyesters obtained by reacting the above polyol with an unsaturated acid (maleic acid, fumaric acid, etc.); (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin Glycidyl group-containing compounds such as diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) glycerin polyglycidyl ether, glycidyl (meth) acrylate; bisacrylamides such as N, N'-methylenebis (meth) acrylamide; Di or tri (meth) acrylic acid esters obtained by reacting with (meth) acrylic acid; obtained by reacting polyisocyanate (tolylene diisocyanate, hexamethylene diisocyanate, etc.) with hydroxyethyl (meth) acrylate. Di (meth) acrylic acid carbamil esters; allylated starch; allylated cellulose; diallyl phthalate; N, N', N "-triallyl isocyanurate; divinylbenzene; pentaerythritol; ethylenediamine; polyethyleneimine and the like. The internal cross-linking agent is (poly) ethylene glycol diglycidyl ether, (poly) from the viewpoint of easily enhancing water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.) and excellent reactivity at low temperature. It is preferable to contain at least one selected from the group consisting of propylene glycol diglycidyl ether, (poly) glycerin triglycidyl ether, and (poly) glycerin diglycidyl ether.
 内部架橋剤の含有量は、エチレン性不飽和単量体(例えば(メタ)アクリル酸化合物)1モルに対して下記の範囲が好ましい。内部架橋剤の含有量は、良好な吸水性能(吸水性樹脂粒子におけるCRC、荷重下吸水量等)が得られやすい観点から、0.0005ミリモル以上、0.001ミリモル以上、0.002ミリモル以上、0.005ミリモル以上、0.01ミリモル以上、0.015ミリモル以上、0.02ミリモル以上、又は、0.025ミリモル以上が好ましい。内部架橋剤の含有量は、良好な吸水性能(吸水性樹脂粒子におけるCRC、荷重下吸水量等)が得られやすい観点から、0.3ミリモル以下、0.25ミリモル以下、0.2ミリモル以下、0.18ミリモル以下、0.18ミリモル未満、0.17ミリモル以下、0.16ミリモル以下、0.15ミリモル以下、0.1ミリモル以下、0.06ミリモル以下、0.06ミリモル未満、0.05ミリモル以下、0.05ミリモル未満、0.04ミリモル以下、又は、0.03ミリモル以下が好ましい。これらの観点から、内部架橋剤の含有量は、0.0005~0.3ミリモルが好ましい。 The content of the internal cross-linking agent is preferably in the following range with respect to 1 mol of the ethylenically unsaturated monomer (for example, (meth) acrylic acid compound). The content of the internal cross-linking agent is 0.0005 mmol or more, 0.001 mmol or more, 0.002 mmol or more from the viewpoint that good water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.) can be easily obtained. , 0.005 mmol or more, 0.01 mmol or more, 0.015 mmol or more, 0.02 mmol or more, or 0.025 mmol or more is preferable. The content of the internal cross-linking agent is 0.3 mmol or less, 0.25 mmol or less, 0.2 mmol or less from the viewpoint that good water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.) can be easily obtained. , 0.18 mmol or less, less than 0.18 mmol, 0.17 mmol or less, 0.16 mmol or less, 0.15 mmol or less, 0.1 mmol or less, 0.06 mmol or less, less than 0.06 mmol, 0 It is preferably 0.05 mmol or less, less than 0.05 mmol, 0.04 mmol or less, or 0.03 mmol or less. From these viewpoints, the content of the internal cross-linking agent is preferably 0.0005 to 0.3 mmol.
 単量体組成物は、必要に応じて、上述の各成分とは異なる成分として、連鎖移動剤、増粘剤、無機フィラー等の添加剤を含有してよい。連鎖移動剤としては、チオール類、チオール酸類、第2級アルコール類、次亜リン酸、亜リン酸、アクロレイン等が挙げられる。増粘剤としては、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ポリエチレングリコール、ポリアクリル酸、ポリアクリル酸中和物、ポリアクリルアミド等が挙げられる。無機フィラーとしては、金属酸化物、セラミック、粘度鉱物等が挙げられる。 If necessary, the monomer composition may contain additives such as a chain transfer agent, a thickener, and an inorganic filler as components different from the above-mentioned components. Examples of the chain transfer agent include thiols, thiol acids, secondary alcohols, hypophosphorous acid, phosphorous acid, achlorine and the like. Examples of the thickener include carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, polyethylene glycol, polyacrylic acid, neutralized polyacrylic acid, polyacrylamide and the like. Examples of the inorganic filler include metal oxides, ceramics, and viscous minerals.
 水溶液重合の重合方式としては、単量体組成物を撹拌しない状態(例えば、静置状態)で重合する静置重合方式;反応装置内で単量体組成物を撹拌しながら重合する撹拌重合方式等が挙げられる。静置重合方式では、重合完了時、反応容器中に存在した単量体組成物と略同じ体積を占める単一のブロック状のゲルが得られる。 As a polymerization method for aqueous solution polymerization, a static polymerization method in which the monomer composition is polymerized without stirring (for example, a static state); a stirring polymerization method in which the monomer composition is polymerized while stirring in a reaction apparatus. And so on. In the static polymerization method, when the polymerization is completed, a single block-shaped gel occupying substantially the same volume as the monomer composition present in the reaction vessel is obtained.
 重合の形態は、回分、半連続、連続等であってよい。例えば、静置重合方式を連続重合にて行う場合、連続重合装置に単量体組成物を連続的に供給しながら重合反応を行い、連続的にゲルを得ることができる。 The form of polymerization may be batch, semi-continuous, continuous, or the like. For example, when the static polymerization method is carried out by continuous polymerization, the polymerization reaction can be carried out while continuously supplying the monomer composition to the continuous polymerization apparatus to continuously obtain a gel.
 重合温度は、使用する重合開始剤によって異なるが、重合を迅速に進行させ、重合時間を短くすることにより生産性を高めると共に、重合熱を除去して円滑に反応を行いやすい観点から、0~130℃又は10~110℃が好ましい。重合時間は、使用する重合開始剤の種類及び量、反応温度等に応じて適宜設定されるが、1~200分又は5~100分が好ましい。 The polymerization temperature varies depending on the polymerization initiator used, but from the viewpoint of rapidly advancing the polymerization, increasing the productivity by shortening the polymerization time, removing the heat of polymerization, and facilitating the smooth reaction, 0 to 0 to It is preferably 130 ° C. or 10 to 110 ° C. The polymerization time is appropriately set depending on the type and amount of the polymerization initiator used, the reaction temperature, and the like, but is preferably 1 to 200 minutes or 5 to 100 minutes.
 架橋重合体(粉砕工程において粉砕される架橋重合体)の製造方法は、重合工程の後に粗砕工程及び乾燥工程を備えてよい。 The method for producing a crosslinked polymer (crosslinked polymer that is crushed in the pulverization step) may include a coarse crushing step and a drying step after the polymerization step.
 粗砕工程は、例えば、重合工程において得られた架橋重合体(例えば架橋重合体ゲル)を粗砕して粗砕物(例えばゲル粗砕物)を得る工程である。粗砕工程における粗砕装置としては、例えば、ニーダー(加圧式ニーダー、双腕型ニーダー等)、ミートチョッパー、カッターミル、ファーマミル等を用いることができる。 The coarse crushing step is, for example, a step of coarsely crushing the crosslinked polymer (for example, a crosslinked polymer gel) obtained in the polymerization step to obtain a coarsely crushed product (for example, a gel coarse crushed product). As the crushing apparatus in the crushing step, for example, a kneader (pressurized kneader, double-armed kneader, etc.), a meat chopper, a cutter mill, a pharma mill, or the like can be used.
 乾燥工程は、粗砕工程で得られた粗砕物を乾燥して乾燥物を得る工程である。乾燥工程では、粗砕物中の液体成分(水等)を加熱及び/又は送風により除去することで乾燥物(例えばゲル乾燥物)を得ることができる。乾燥方法は、自然乾燥、加熱乾燥、減圧乾燥等であってよい。乾燥温度は、例えば70~250℃である。 The drying step is a step of drying the crushed product obtained in the crushing step to obtain a dried product. In the drying step, a dried product (for example, a gel dried product) can be obtained by removing the liquid component (water or the like) in the pyroclastic material by heating and / or blowing air. The drying method may be natural drying, heat drying, vacuum drying or the like. The drying temperature is, for example, 70 to 250 ° C.
 本実施形態に係る架橋重合体粒子(粉砕工程において得られる架橋重合体粒子)は、エチレン性不飽和単量体(例えば(メタ)アクリル酸化合物)に由来する構造単位を有する架橋重合体を含む。本実施形態に係る架橋重合体粒子は、ゲル安定剤、金属キレート剤(エチレンジアミン4酢酸及びその塩、ジエチレントリアミン5酢酸及びその塩(例えばジエチレントリアミン5酢酸5ナトリウム)等)、流動性向上剤(滑剤)などの他成分を更に含んでよい。他成分は、架橋重合体の内部、表面上、又は、これらの両方に配置され得る。 The crosslinked polymer particles according to the present embodiment (crosslinked polymer particles obtained in the pulverization step) include a crosslinked polymer having a structural unit derived from an ethylenically unsaturated monomer (for example, a (meth) acrylic acid compound). .. The crosslinked polymer particles according to the present embodiment include a gel stabilizer, a metal chelating agent (ethylenediamine tetraacetic acid and its salt, diethylenetriamine 5 acetic acid and its salt (for example, diethylenetriamine 5 sodium acetate), etc.), and a fluidity improver (lubricant). Other components such as may be further contained. Other components may be located inside, on the surface, or both of the crosslinked polymers.
 本実施形態に係る架橋重合体粒子は、架橋重合体の表面上に配置された無機粒子を含んでよい。例えば、架橋重合体と無機粒子とを混合することにより、架橋重合体の表面上に無機粒子を配置することができる。無機粒子としては、例えば、非晶質シリカ等のシリカ粒子が挙げられる。 The crosslinked polymer particles according to the present embodiment may contain inorganic particles arranged on the surface of the crosslinked polymer. For example, by mixing the crosslinked polymer and the inorganic particles, the inorganic particles can be arranged on the surface of the crosslinked polymer. Examples of the inorganic particles include silica particles such as amorphous silica.
 本実施形態に係る吸水性樹脂粒子は、粉砕工程において得られた架橋重合体粒子を追架橋させること(追架橋工程)により得ることができる。追架橋は、架橋重合体粒子に対する表面架橋であってよい。追架橋は、例えば、架橋剤(例えば表面架橋剤)を架橋重合体粒子と反応させることにより行うことができる。架橋剤を用いて追架橋を行うことにより、架橋重合体粒子の架橋密度(例えば、架橋重合体粒子の表面近傍の架橋密度)が高まるため、吸水性能(吸水性樹脂粒子におけるCRC、荷重下吸水量、吸水速度等)を高めやすい。吸水性樹脂粒子の荷重下吸水量の比較に際しては、吸水性樹脂粒子のCRCを同等に調整するために架橋剤の使用量を調整してよい。 The water-absorbent resin particles according to the present embodiment can be obtained by cross-linking the crosslinked polymer particles obtained in the pulverization step (crosslinking step). The cross-linking may be surface cross-linking to the cross-linked polymer particles. The cross-linking can be performed, for example, by reacting a cross-linking agent (for example, a surface cross-linking agent) with the cross-linked polymer particles. By performing additional cross-linking using a cross-linking agent, the cross-linking density of the cross-linked polymer particles (for example, the cross-linking density near the surface of the cross-linked polymer particles) is increased, so that the water absorption performance (CRC in the water-absorbent resin particles, water absorption under load) is increased. It is easy to increase the amount, water absorption rate, etc.). When comparing the amount of water absorption under load of the water-absorbent resin particles, the amount of the cross-linking agent used may be adjusted in order to adjust the CRC of the water-absorbent resin particles equally.
 架橋剤としては、例えば、エチレン性不飽和単量体由来の官能基との反応性を有する官能基(反応性官能基)を2個以上含有する化合物が挙げられる。架橋剤としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のハロエポキシ化合物;イソシアネート化合物(2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)などの、反応性官能基を2個以上有する化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物などが挙げられる。 Examples of the cross-linking agent include compounds containing two or more functional groups (reactive functional groups) having reactivity with functional groups derived from ethylenically unsaturated monomers. Examples of the cross-linking agent include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol diglycidyl ether, Polyglycidyl compounds such as (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydrin, epibromhydrin, α-methylepicrolhydrin, etc. Haloepoxy compounds; compounds having two or more reactive functional groups such as isocyanate compounds (2,4-tolylene diisocyanate, hexamethylene diisocyanate, etc.); 3-methyl-3-oxetane methanol, 3-ethyl-3-oxetane Oxetane compounds such as methanol, 3-butyl-3-oxetane methanol, 3-methyl-oxetane ethanol, 3-ethyl-3-oxetane ethanol, 3-butyl-3-oxetane ethanol; oxazoline such as 1,2-ethylenebisoxazoline Compounds: Carbonate compounds such as ethylene carbonate; Hydroxyalkylamide compounds such as bis [N, N-di (β-hydroxyethyl)] adipamide may be mentioned.
 架橋剤(例えば表面架橋剤)の含有量は、架橋重合体粒子の全質量に対して下記の範囲が好ましい。架橋剤の含有量は、良好な吸水性能(吸水性樹脂粒子におけるCRC、荷重下吸水量等)が得られやすい観点から、500ppm以上、750ppm以上、1000ppm以上、1000ppmを超え、1250ppm以上、1500ppm以上、1750ppm以上、1800ppm以上、1900ppm以上、又は、2000ppm以上が好ましい。架橋剤の含有量は、良好な吸水性能(吸水性樹脂粒子におけるCRC、荷重下吸水量等)が得られやすい観点から、3000ppm以下、2750ppm以下、2500ppm以下、2250ppm以下、又は、2000ppm以下が好ましい。これらの観点から、架橋剤の含有量は、500~3000ppmが好ましい。架橋剤の含有量は、2000ppm未満、1750ppm以下、1500ppm以下、1250ppm以下、又は、1000ppm以下であってよい。 The content of the cross-linking agent (for example, the surface cross-linking agent) is preferably in the following range with respect to the total mass of the cross-linked polymer particles. The content of the cross-linking agent is 500 ppm or more, 750 ppm or more, 1000 ppm or more, 1000 ppm or more, 1250 ppm or more, 1500 ppm or more from the viewpoint that good water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.) can be easily obtained. , 1750 ppm or more, 1800 ppm or more, 1900 ppm or more, or 2000 ppm or more is preferable. The content of the cross-linking agent is preferably 3000 ppm or less, 2750 ppm or less, 2500 ppm or less, 2250 ppm or less, or 2000 ppm or less from the viewpoint that good water absorption performance (CRC in water-absorbent resin particles, water absorption under load, etc.) can be easily obtained. .. From these viewpoints, the content of the cross-linking agent is preferably 500 to 3000 ppm. The content of the cross-linking agent may be less than 2000 ppm, 1750 ppm or less, 1500 ppm or less, 1250 ppm or less, or 1000 ppm or less.
 本実施形態に係る吸水性樹脂粒子は、その表面に、ゲル安定剤;金属キレート剤(エチレンジアミン4酢酸及びその塩、ジエチレントリアミン5酢酸及びその塩(例えばジエチレントリアミン5酢酸5ナトリウム)等);流動性向上剤(滑剤)の無機粒子などを含んでよい。例えば、追架橋後の粒子と無機粒子とを混合することにより、追架橋後の粒子の表面上に無機粒子を配置することができる。無機粒子としては、例えば、非晶質シリカ等のシリカ粒子が挙げられる。 The water-absorbent resin particles according to the present embodiment have a gel stabilizer on the surface thereof; a metal chelating agent (ethylenediaminetetraacetic acid and its salt thereof, diethylenetriamine-5 acetic acid and its salt (for example, diethylenetriamine-5 sodium acetate), etc.); It may contain inorganic particles of an agent (lubricant). For example, by mixing the post-crosslinked particles and the inorganic particles, the inorganic particles can be arranged on the surface of the post-crosslinked particles. Examples of the inorganic particles include silica particles such as amorphous silica.
 本実施形態に係る吸水性樹脂粒子は、水を保水可能であり、尿、汗、血液(例えば経血)等の体液を吸液できる。本実施形態に係る吸水性樹脂粒子は、吸収体の構成成分として用いることができる。本実施形態は、例えば、紙おむつ、生理用品等の衛生材料;保水剤、土壌改良剤等の農園芸材料;止水剤、結露防止剤等の工業資材などの分野において用いることができる。 The water-absorbent resin particles according to the present embodiment can retain water and can absorb body fluids such as urine, sweat, and blood (for example, menstrual blood). The water-absorbent resin particles according to the present embodiment can be used as a constituent component of the absorber. This embodiment can be used in the fields of, for example, sanitary materials such as disposable diapers and sanitary products; agricultural and horticultural materials such as water retention agents and soil conditioners; and industrial materials such as water stop agents and dew condensation inhibitors.
 本実施形態に係る吸水性樹脂粒子のCRCは、10g/g以上、15g/g以上、20g/g以上、25g/g以上、30g/g以上、35g/g以上、37g/g以上、又は、38g/g以上であってよい。吸水性樹脂粒子のCRCは、60g/g以下、55g/g以下、50g/g以下、45g/g以下、43g/g以下、40g/g以下、39g/g以下、又は、38g/g以下であってよい。これらの観点から、吸水性樹脂粒子のCRCは、10~60g/gであってよい。 The CRC of the water-absorbent resin particles according to the present embodiment is 10 g / g or more, 15 g / g or more, 20 g / g or more, 25 g / g or more, 30 g / g or more, 35 g / g or more, 37 g / g or more, or It may be 38 g / g or more. The CRC of the water-absorbent resin particles is 60 g / g or less, 55 g / g or less, 50 g / g or less, 45 g / g or less, 43 g / g or less, 40 g / g or less, 39 g / g or less, or 38 g / g or less. It may be there. From these viewpoints, the CRC of the water-absorbent resin particles may be 10 to 60 g / g.
 CRCは、Centrifuge Retention Capacity(遠心分離機保持容量)の略称である。吸水性樹脂粒子のCRCは、EDANA法(NWSP 241.0.R2(15)、page.769~778)を参考に、後述する実施例に記載の方法によって測定可能であり、具体的には、乾燥状態の0.2gの吸水性樹脂粒子が収容された不織布バッグを生理食塩水1000gに30分浸漬させた後、遠心分離機を用いて遠心分離を施して水切りを行った際の吸水倍率として得ることができる。吸水性樹脂粒子のCRCとしては、室温における測定値を用いることができる。 CRC is an abbreviation for Centrifuge Retention Capacity (centrifuge holding capacity). The CRC of the water-absorbent resin particles can be measured by the method described in Examples described later with reference to the EDANA method (NWSP 241.0.R2 (15), page.769-778). As a water absorption ratio when a non-woven bag containing 0.2 g of water-absorbent resin particles in a dry state is immersed in 1000 g of physiological saline for 30 minutes and then centrifuged using a centrifuge to drain water. Obtainable. As the CRC of the water-absorbent resin particles, a measured value at room temperature can be used.
 本実施形態に係る荷重下吸水量の向上方法は、粉砕工程の後に、上述の追架橋工程と、吸水性樹脂粒子の荷重下吸水量を測定する測定工程と、を備えてよい。吸水性樹脂粒子の荷重下吸水量は、11mL/g以上、12mL/g以上、15mL/g以上、又は、20mL/g以上が好ましい。荷重下吸水量は、後述する実施例に記載の方法によって測定できる。吸水性樹脂粒子の荷重下吸水量は、室温における測定値を用いることができる。 The method for improving the water absorption under load according to the present embodiment may include the above-mentioned cross-linking step and a measurement step for measuring the water absorption under load of the water-absorbent resin particles after the crushing step. The amount of water absorption of the water-absorbent resin particles under load is preferably 11 mL / g or more, 12 mL / g or more, 15 mL / g or more, or 20 mL / g or more. The amount of water absorption under load can be measured by the method described in Examples described later. As the water absorption amount of the water-absorbent resin particles under load, a measured value at room temperature can be used.
 本実施形態に係る吸収体は、本実施形態に係る吸水性樹脂粒子を含有する。本実施形態に係る吸収体は、繊維状物を含有していてもよく、例えば、吸水性樹脂粒子及び繊維状物を含む混合物である。吸収体の構成としては、例えば、吸水性樹脂粒子及び繊維状物が均一混合された構成であってよく、シート状又は層状に形成された繊維状物の間に吸水性樹脂粒子が挟まれた構成であってもよく、その他の構成であってもよい。 The absorber according to the present embodiment contains the water-absorbent resin particles according to the present embodiment. The absorber according to the present embodiment may contain a fibrous substance, for example, a mixture containing water-absorbent resin particles and the fibrous substance. The structure of the absorber may be, for example, a structure in which the water-absorbent resin particles and the fibrous material are uniformly mixed, and the water-absorbent resin particles are sandwiched between the fibrous material formed in a sheet or layer. It may be a configuration or another configuration.
 繊維状物としては、微粉砕された木材パルプ;コットン;コットンリンター;レーヨン;セルロースアセテート等のセルロース系繊維;ポリアミド、ポリエステル、ポリオレフィン等の合成繊維;これらの繊維の混合物などが挙げられる。繊維状物としては、親水性繊維を用いることができる。 Examples of the fibrous material include finely pulverized wood pulp; cotton; cotton linter; rayon; cellulosic fibers such as cellulose acetate; synthetic fibers such as polyamide, polyester and polyolefin; and a mixture of these fibers. As the fibrous material, hydrophilic fibers can be used.
 吸収体の使用前及び使用中における形態保持性を高めるために、繊維状物に接着性バインダーを添加することによって繊維同士を接着させてもよい。接着性バインダーとしては、熱融着性合成繊維、ホットメルト接着剤、接着性エマルジョン等が挙げられる。 In order to improve the morphological retention before and during use of the absorber, the fibers may be adhered to each other by adding an adhesive binder to the fibrous material. Examples of the adhesive binder include heat-sealing synthetic fibers, hot melt adhesives, and adhesive emulsions.
 熱融着性合成繊維としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等の全融型バインダー;ポリプロピレンとポリエチレンとのサイドバイサイド又は芯鞘構造からなる非全融型バインダーなどが挙げられる。上述の非全融型バインダーにおいては、ポリエチレン部分のみ熱融着することができる。 Examples of the heat-bondable synthetic fiber include a total fusion type binder such as polyethylene, polypropylene, and an ethylene-propylene copolymer; a non-total fusion type binder having a side-by-side or core-sheath structure of polypropylene and polyethylene. In the above-mentioned non-total fusion type binder, only the polyethylene portion can be heat-sealed.
 ホットメルト接着剤としては、例えば、エチレン-酢酸ビニルコポリマー、スチレン-イソプレン-スチレンブロックコポリマー、スチレン-ブタジエン-スチレンブロックコポリマー、スチレン-エチレン-ブチレン-スチレンブロックコポリマー、スチレン-エチレン-プロピレン-スチレンブロックコポリマー、アモルファスポリプロピレン等のベースポリマーと、粘着付与剤、可塑剤、酸化防止剤等との混合物が挙げられる。 Examples of the hot melt adhesive include ethylene-vinyl acetate copolymer, styrene-isoprene-styrene block copolymer, styrene-butadiene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, and styrene-ethylene-propylene-styrene block copolymer. , A mixture of a base polymer such as amorphous polypropylene and a tackifier, a plasticizer, an antioxidant and the like.
 接着性エマルジョンとしては、例えば、メチルメタクリレート、スチレン、アクリロニトリル、2-エチルヘキシルアクリレート、ブチルアクリレート、ブタジエン、エチレン、及び、酢酸ビニルからなる群より選ばれる少なくとも一種の単量体の重合物が挙げられる。 Examples of the adhesive emulsion include polymers of at least one monomer selected from the group consisting of methyl methacrylate, styrene, acrylonitrile, 2-ethylhexyl acrylate, butyl acrylate, butadiene, ethylene, and vinyl acetate.
 本実施形態に係る吸収体は、無機粒子(例えば非晶質シリカ)、消臭剤、抗菌剤、顔料、染料、香料、粘着剤等を含有してもよい。吸水性樹脂粒子が無機粒子を含む場合、吸収体は、吸水性樹脂粒子中の無機粒子とは別に無機粒子を含有してよい。 The absorber according to the present embodiment may contain inorganic particles (for example, amorphous silica), a deodorant, an antibacterial agent, a pigment, a dye, a fragrance, an adhesive and the like. When the water-absorbent resin particles contain inorganic particles, the absorber may contain inorganic particles in addition to the inorganic particles in the water-absorbent resin particles.
 本実施形態に係る吸収体の形状は、例えばシート状であってよい。吸収体の厚さ(例えば、シート状の吸収体の厚さ)は、0.1~20mm又は0.3~15mmであってよい。 The shape of the absorber according to this embodiment may be, for example, a sheet shape. The thickness of the absorber (for example, the thickness of the sheet-shaped absorber) may be 0.1 to 20 mm or 0.3 to 15 mm.
 吸収体における吸水性樹脂粒子の含有量は、充分な吸収特性を得やすい観点から、吸水性樹脂粒子及び繊維状物の合計に対して、2~95質量%、10~80質量%又は20~60質量%であってよい。 The content of the water-absorbent resin particles in the absorber is 2 to 95% by mass, 10 to 80% by mass, or 20 to 20 to 95% by mass with respect to the total of the water-absorbent resin particles and the fibrous material from the viewpoint of easily obtaining sufficient absorption characteristics. It may be 60% by mass.
 吸収体における吸水性樹脂粒子の含有量は、充分な吸収特性を得やすい観点から、吸収体1m当たり、100~1000g、150~800g、又は、200~700gが好ましい。吸収体における繊維状物の含有量は、充分な吸収特性を得やすい観点から、吸収体1mあたり、50~800g、100~600g、又は、150~500gが好ましい。 The content of the water-absorbent resin particles in the absorber is preferably 100 to 1000 g, 150 to 800 g, or 200 to 700 g per 1 m 2 of the absorber from the viewpoint of easily obtaining sufficient absorption characteristics. The content of the fibrous material in the absorber is preferably 50 to 800 g, 100 to 600 g, or 150 to 500 g per 1 m 2 of the absorber from the viewpoint of easily obtaining sufficient absorption characteristics.
 本実施形態に係る吸収性物品は、本実施形態に係る吸収体を備える。本実施形態に係る吸収性物品の他の構成部材としては、吸収体を保形すると共に吸収体の構成部材の脱落や流動を防止するコアラップ;吸液対象の液が浸入する側の最外部に配置される液体透過性シート;吸液対象の液が浸入する側とは反対側の最外部に配置される液体不透過性シート等が挙げられる。吸収性物品としては、おむつ(例えば紙おむつ)、トイレトレーニングパンツ、失禁パッド、衛生材料(生理用ナプキン、タンポン等)、汗取りパッド、ペットシート、簡易トイレ用部材、動物排泄物処理材などが挙げられる。 The absorbent article according to the present embodiment includes an absorber according to the present embodiment. As another constituent member of the absorbent article according to the present embodiment, a core wrap that retains the shape of the absorber and prevents the constituent member of the absorber from falling off or flowing; Liquid permeable sheet to be arranged; Examples thereof include a liquid permeable sheet arranged on the outermost side opposite to the side on which the liquid to be absorbed enters. Examples of absorbent articles include diapers (for example, paper diapers), toilet training pants, incontinence pads, sanitary materials (sanitary napkins, tampons, etc.), sweat pads, pet sheets, toilet members, animal excrement treatment materials, and the like. ..
 図1は、吸収性物品の一例を示す断面図である。図1に示す吸収性物品100は、吸収体10と、コアラップ20a,20bと、液体透過性シート30と、液体不透過性シート40と、を備える。吸収性物品100において、液体不透過性シート40、コアラップ20b、吸収体10、コアラップ20a、及び、液体透過性シート30がこの順に積層している。図1において、部材間に間隙があるように図示されている部分があるが、当該間隙が存在することなく部材間が密着していてよい。 FIG. 1 is a cross-sectional view showing an example of an absorbent article. The absorbent article 100 shown in FIG. 1 includes an absorbent body 10, core wraps 20a and 20b, a liquid permeable sheet 30, and a liquid permeable sheet 40. In the absorbent article 100, the liquid permeable sheet 40, the core wrap 20b, the absorbent body 10, the core wrap 20a, and the liquid permeable sheet 30 are laminated in this order. In FIG. 1, there is a portion shown so that there is a gap between the members, but the members may be in close contact with each other without the gap.
 吸収体10は、吸水性樹脂粒子10aと、繊維状物を含む繊維層10bと、を有する。吸水性樹脂粒子10aは、繊維層10b内に分散している。 The absorber 10 has a water-absorbent resin particle 10a and a fiber layer 10b containing a fibrous material. The water-absorbent resin particles 10a are dispersed in the fiber layer 10b.
 コアラップ20aは、吸収体10に接した状態で吸収体10の一方面側(図1中、吸収体10の上側)に配置されている。コアラップ20bは、吸収体10に接した状態で吸収体10の他方面側(図1中、吸収体10の下側)に配置されている。吸収体10は、コアラップ20aとコアラップ20bとの間に配置されている。コアラップ20a,20bとしては、ティッシュ、不織布、織布、液体透過孔を有する合成樹脂フィルム、網目を有するネット状シート等が挙げられる。コアラップ20a及びコアラップ20bは、例えば、吸収体10と同等の大きさの主面を有している。 The core wrap 20a is arranged on one side of the absorber 10 (upper side of the absorber 10 in FIG. 1) in contact with the absorber 10. The core wrap 20b is arranged on the other side of the absorber 10 (lower side of the absorber 10 in FIG. 1) in contact with the absorber 10. The absorber 10 is arranged between the core wrap 20a and the core wrap 20b. Examples of the core wraps 20a and 20b include tissues, non-woven fabrics, woven fabrics, synthetic resin films having liquid permeation holes, net-like sheets having a mesh, and the like. The core wrap 20a and the core wrap 20b have, for example, a main surface having the same size as the absorber 10.
 液体透過性シート30は、吸収対象の液が浸入する側の最外部に配置されている。液体透過性シート30は、コアラップ20aに接した状態でコアラップ20a上に配置されている。液体透過性シート30としては、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド等の合成樹脂からなる不織布、多孔質シートなどが挙げられる。液体不透過性シート40は、吸収性物品100において液体透過性シート30とは反対側の最外部に配置されている。液体不透過性シート40は、コアラップ20bに接した状態でコアラップ20bの下側に配置されている。液体不透過性シート40としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の合成樹脂からなるシート、これらの合成樹脂と不織布との複合材料からなるシートなどが挙げられる。液体透過性シート30及び液体不透過性シート40は、例えば、吸収体10の主面よりも広い主面を有しており、液体透過性シート30及び液体不透過性シート40の外縁部は、吸収体10及びコアラップ20a,20bの周囲に延在している。 The liquid permeable sheet 30 is arranged on the outermost side on the side where the liquid to be absorbed enters. The liquid permeable sheet 30 is arranged on the core wrap 20a in contact with the core wrap 20a. Examples of the liquid permeable sheet 30 include non-woven fabrics made of synthetic resins such as polyethylene, polypropylene, polyester and polyamide, and porous sheets. The liquid permeable sheet 40 is arranged on the outermost side of the absorbent article 100 on the opposite side of the liquid permeable sheet 30. The liquid impermeable sheet 40 is arranged under the core wrap 20b in contact with the core wrap 20b. Examples of the liquid impermeable sheet 40 include a sheet made of a synthetic resin such as polyethylene, polypropylene, and polyvinyl chloride, and a sheet made of a composite material of these synthetic resins and a non-woven fabric. The liquid permeable sheet 30 and the liquid permeable sheet 40 have, for example, a main surface wider than the main surface of the absorber 10, and the outer edges of the liquid permeable sheet 30 and the liquid permeable sheet 40 are It extends around the absorber 10 and the core wraps 20a, 20b.
 吸収体10、コアラップ20a,20b、液体透過性シート30、及び、液体不透過性シート40の大小関係は、特に限定されず、吸収性物品の用途等に応じて適宜調整される。また、コアラップ20a,20bを用いて吸収体10を保形する方法は、特に限定されず、図1に示すように複数のコアラップにより吸収体を包んでよく、1枚のコアラップにより吸収体を包んでもよい。 The magnitude relationship between the absorbent body 10, the core wraps 20a and 20b, the liquid permeable sheet 30, and the liquid permeable sheet 40 is not particularly limited, and is appropriately adjusted according to the use of the absorbent article and the like. Further, the method of retaining the shape of the absorber 10 using the core wraps 20a and 20b is not particularly limited, and as shown in FIG. 1, the absorber may be wrapped by a plurality of core wraps, and the absorber is wrapped by one core wrap. But it may be.
 吸収体は、トップシートに接着されていてもよい。吸収体がコアラップにより挟持又は被覆されている場合、少なくともコアラップとトップシートとが接着されていることが好ましく、コアラップとトップシートとが接着されていると共にコアラップと吸収体とが接着されていることがより好ましい。吸収体の接着方法としては、ホットメルト接着剤をトップシートに対して所定間隔で幅方向にストライプ状、スパイラル状等に塗布して接着する方法;デンプン、カルボキシメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン、その他の水溶性高分子等の水溶性バインダーを用いて接着する方法などが挙げられる。また、吸収体が熱融着性合成繊維を含む場合、熱融着性合成繊維の熱融着によって接着する方法を採用してもよい。 The absorber may be adhered to the top sheet. When the absorber is sandwiched or covered by the core wrap, it is preferable that at least the core wrap and the top sheet are adhered, and the core wrap and the top sheet are adhered and the core wrap and the absorber are adhered to each other. Is more preferable. As a method of adhering the absorber, a hot melt adhesive is applied to the top sheet at predetermined intervals in a striped shape, a spiral shape, etc. in the width direction and adhered; starch, carboxymethyl cellulose, polyvinyl alcohol, polyvinylpyrrolidone, etc. Examples thereof include a method of adhering using a water-soluble binder such as a water-soluble polymer. Further, when the absorber contains heat-sealing synthetic fibers, a method of adhering by heat-sealing of the heat-sealing synthetic fibers may be adopted.
 本実施形態によれば、本実施形態に係る吸水性樹脂粒子、吸収体又は吸収性物品を用いた吸液方法を提供することができる。本実施形態に係る吸液方法は、本実施形態に係る吸水性樹脂粒子、吸収体又は吸収性物品に吸液対象の液を接触させる工程を備える。本実施形態によれば、吸液への吸水性樹脂粒子、吸収体及び吸収性物品の応用を提供することができる。 According to the present embodiment, it is possible to provide a liquid absorbing method using the water-absorbent resin particles, the absorber or the absorbent article according to the present embodiment. The liquid absorbing method according to the present embodiment includes a step of bringing the liquid to be absorbed into contact with the water-absorbent resin particles, the absorber or the absorbent article according to the present embodiment. According to this embodiment, it is possible to provide an application of water-absorbent resin particles, an absorber and an absorbent article to a liquid absorbent.
 本実施形態によれば、上述の吸水性樹脂粒子を用いた、吸収体の製造方法を提供することができる。本実施形態に係る吸収体の製造方法は、上述の吸水性樹脂粒子を得る吸水性樹脂粒子製造工程を備える。本実施形態に係る吸収体の製造方法は、吸水性樹脂粒子製造工程の後に、吸水性樹脂粒子と繊維状物とを混合する工程を備えてよい。本実施形態によれば、上述の吸収体の製造方法により得られた吸収体を用いた、吸収性物品の製造方法を提供することができる。本実施形態に係る吸収性物品の製造方法は、上述の吸収体の製造方法により吸収体を得る吸収体製造工程を備える。本実施形態に係る吸収性物品の製造方法は、吸収体製造工程の後に、吸収体と吸収性物品の他の構成部材とを用いて吸収性物品を得る工程を備えてよく、当該工程では、例えば、吸収体と吸収性物品の他の構成部材とを互いに積層することにより吸収性物品を得る。 According to the present embodiment, it is possible to provide a method for producing an absorber using the above-mentioned water-absorbent resin particles. The method for producing an absorber according to the present embodiment includes a process for producing water-absorbent resin particles for obtaining the above-mentioned water-absorbent resin particles. The method for producing an absorber according to the present embodiment may include a step of mixing the water-absorbent resin particles and the fibrous material after the step of producing the water-absorbent resin particles. According to the present embodiment, it is possible to provide a method for producing an absorbent article using the absorber obtained by the above-mentioned method for producing an absorber. The method for producing an absorbent article according to the present embodiment includes an absorber manufacturing step for obtaining an absorber by the above-mentioned method for manufacturing an absorber. The method for producing an absorbent article according to the present embodiment may include a step of obtaining an absorbent article by using the absorber and other constituent members of the absorbent article after the absorbent body manufacturing step. For example, an absorbent article is obtained by laminating the absorber and other constituent members of the absorbent article with each other.
 以下、実施例及び比較例を用いて本発明の内容を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the content of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
<吸水性樹脂粒子の作製>
(実施例1)
 フッ素樹脂コーティングした内面を有するステンレスバット(開口部の外寸法:210mm×170mm、底面の内寸法:170×130mm、高さ:30mm)内の中心部に撹拌子(直径:8mm、長さ:40mm、リングなし)を入れた。アクリル酸ナトリウム部分中和液(重合に用いる単量体、単量体濃度:45質量%、アクリル酸ナトリウムの中和率:75モル%)340.0g、エチレングリコールジグリシジルエーテル0.0077g(内部架橋剤、0.044ミリモル)、及び、イオン交換水59.0gを加えた後、撹拌子を回転させることにより均一に混合して混合物を得た。その後、ステンレスバットの上部をポリエチレンフィルムでカバーした。ステンレスバッド内の前記混合物の温度を25℃に調整後、混合物を窒素置換することにより溶存酸素量を0.1ppm以下に調整した。次いで、300rpmの撹拌下で、2質量%過硫酸カリウム水溶液3.09g(過硫酸カリウム:0.229ミリモル)、及び、0.5質量%L-アスコルビン酸水溶液0.65gを順に滴下することにより単量体水溶液を調製した。単量体水溶液中のアクリル酸ナトリウム部分中和物濃度は38質量%であった。0.5質量%L-アスコルビン酸水溶液を滴下して2分後に重合が開始した。重合開始から22分後に最高温度に到達した後、温度が下がり始めた。得られた生成物を容器に入れたまま75℃の水浴に浸して20分間熟成することによりゲル(重合後ゲル)を得た。
<Preparation of water-absorbent resin particles>
(Example 1)
Stirrer (diameter: 8 mm, length: 40 mm) in the center of a stainless steel bat with a fluororesin-coated inner surface (outer dimensions of opening: 210 mm x 170 mm, inner dimensions of bottom surface: 170 x 130 mm, height: 30 mm) , Without ring) was put in. Partial neutralization solution of sodium acrylate (monomer used for polymerization, monomer concentration: 45% by mass, neutralization rate of sodium acrylate: 75 mol%) 340.0 g, ethylene glycol diglycidyl ether 0.0077 g (inside) A cross-linking agent (0.044 mmol) and 59.0 g of ion-exchanged water were added, and then the mixture was uniformly mixed by rotating the stirrer to obtain a mixture. Then, the upper part of the stainless steel vat was covered with a polyethylene film. After adjusting the temperature of the mixture in the stainless steel pad to 25 ° C., the amount of dissolved oxygen was adjusted to 0.1 ppm or less by substituting nitrogen in the mixture. Then, under stirring at 300 rpm, 3.09 g of a 2 mass% potassium persulfate aqueous solution (potassium persulfate: 0.229 mmol) and 0.65 g of a 0.5 mass% L-ascorbic acid aqueous solution were added dropwise in this order. A monomer aqueous solution was prepared. The concentration of the partially neutralized sodium acrylate in the aqueous monomer solution was 38% by mass. A 0.5 mass% L-ascorbic acid aqueous solution was added dropwise, and polymerization started 2 minutes later. After reaching the maximum temperature 22 minutes after the start of polymerization, the temperature began to decrease. The obtained product was immersed in a water bath at 75 ° C. in a container and aged for 20 minutes to obtain a gel (gel after polymerization).
 熟成後のゲルの全量を容器から取り出した後、5cm間隔の格子状に切れ目を入れて裁断した。裁断したゲルの全量をミートチョッパー(型番:12VR-750SDX、喜連ローヤル株式会社製)に順次投入してゲルを粗砕した。ミートチョッパーの出口に位置するプレートの穴(円形)の径は6.4mmであり、穴の密度は40穴/36.30cmであった。ミートチョッパーのプレートから粗砕物(粗砕されたゲル、含水ゲル粗砕物)が出てこなくなるまで粗砕を行った。次いで、粗砕物を180℃で30分間熱風乾燥することにより乾燥物(架橋重合体乾燥物)を得た。 After removing the entire amount of the aged gel from the container, the gel was cut in a grid pattern at 5 cm intervals. The entire amount of the cut gel was sequentially put into a meat chopper (model number: 12VR-750SDX, manufactured by Kiren Royal Co., Ltd.) to coarsely crush the gel. The diameter of the hole (circular) of the plate located at the outlet of the meat chopper was 6.4 mm, and the density of the holes was 40 holes / 36.30 cm 2 . Rough crushing was performed until no crushed material (coarse crushed gel, hydrogel crushed material) came out from the plate of the meat chopper. Next, the pyroclastic material was dried with hot air at 180 ° C. for 30 minutes to obtain a dried product (crosslinked polymer dried product).
 乾燥物を低密度ポリエチレン袋(サイズ:チャック下120mm×85mm、厚さ:0.04mm)に20g入れた。低密度ポリエチレン袋の上で4.0kgのローラー(ステンレス製、径:10.5cm、幅:6.0cm)を15往復させて乾燥物を解砕することにより粉砕前の架橋重合体として解砕物を得た。粉砕前の架橋重合体の静的吸水保持能を後述の手順で測定した。 20 g of the dried product was placed in a low-density polyethylene bag (size: 120 mm x 85 mm under the zipper, thickness: 0.04 mm). A 4.0 kg roller (stainless steel, diameter: 10.5 cm, width: 6.0 cm) is reciprocated 15 times on a low-density polyethylene bag to crush the dried product, thereby crushing the dried product as a crosslinked polymer before crushing. Got The static water absorption retention ability of the crosslinked polymer before pulverization was measured by the procedure described later.
 超遠心粉砕機(ヴァーダー・サイエンティフィック株式会社製、製品名:ZM200、6本刃ローター、ローター回転数:6000rpm、スクリーン梯形孔:1.00mm)を用いて解砕物20gを粉砕することにより粉砕後の架橋重合体として架橋重合体粒子を得た。粉砕後の架橋重合体の静的吸水保持能及び中位粒子径を後述の手順で測定した。 Crushed by crushing 20 g of crushed material using an ultracentrifuge crusher (manufactured by Verder Scientific Co., Ltd., product name: ZM200, 6-blade rotor, rotor rotation speed: 6000 rpm, screen ladder hole: 1.00 mm). Crosslinked polymer particles were obtained as the later crosslinked polymer. The static water absorption retention ability and the medium particle size of the crosslinked polymer after pulverization were measured by the procedure described later.
 フッ素樹脂製の碇型撹拌翼を備えた内径11cmの丸底円筒型セパラブルフラスコに上述の架橋重合体粒子5.0gを量りとった。次に、400rpmで撹拌しながら、エチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)、水0.600g、プロピレングリコール0.200g、及び、イソプロピルアルコール0.200gを混合して得られた架橋剤水溶液をパスツールピペットにてセパラブルフラスコ内に滴下することにより混合物を得た。この混合物を40分間撹拌させながら、180℃のオイルバスにセパラブルフラスコを浸けて混合物を加熱することにより追架橋を行った。室温まで冷却した後、混合物を目開き850μmのメッシュに通すことにより吸水性樹脂粒子を4.5g得た。 5.0 g of the above-mentioned crosslinked polymer particles was weighed in a round-bottomed cylindrical separable flask having an inner diameter of 11 cm equipped with a fluororesin anchor-shaped stirring blade. Next, the cross-linking obtained by mixing 0.010 g (0.057 mmol) of ethylene glycol diglycidyl ether, 0.600 g of water, 0.200 g of propylene glycol, and 0.200 g of isopropyl alcohol while stirring at 400 rpm. A mixture was obtained by dropping the aqueous agent solution into a separable flask with a pasteur pipette. Cross-linking was performed by immersing the separable flask in an oil bath at 180 ° C. and heating the mixture while stirring the mixture for 40 minutes. After cooling to room temperature, the mixture was passed through a mesh having an opening of 850 μm to obtain 4.5 g of water-absorbent resin particles.
(実施例2)
 重合後ゲルを得るために使用するエチレングリコールジグリシジルエーテル(内部架橋剤)の使用量を0.0155g(0.089ミリモル)に変更したこと、並びに、架橋剤水溶液の組成をエチレングリコールジグリシジルエーテル0.005g(0.029ミリモル)、水0.300g、プロピレングリコール0.100g、及び、イソプロピルアルコール0.100gに変更し追架橋を行ったこと以外は実施例1と同様にして吸水性樹脂粒子を4.4g得た。
(Example 2)
The amount of ethylene glycol diglycidyl ether (internal cross-linking agent) used to obtain the gel after polymerization was changed to 0.0155 g (0.089 mmol), and the composition of the cross-linking agent aqueous solution was changed to ethylene glycol diglycidyl ether. Water-absorbent resin particles in the same manner as in Example 1 except that 0.005 g (0.029 mmol), 0.300 g of water, 0.100 g of propylene glycol, and 0.100 g of isopropyl alcohol were changed to perform cross-linking. Was obtained in an amount of 4.4 g.
(実施例3)
 フッ素樹脂コーティングした内面を有するステンレスバット(開口部の外寸法:210mm×170mm、底面の内寸法:170×130mm、高さ:30mm)内の中心部に撹拌子(直径:8mm、長さ:40mm、リングなし)を入れた。アクリル酸ナトリウム部分中和液(重合に用いる単量体、単量体濃度:45質量%、アクリル酸ナトリウムの中和率:75モル%)340.0g、エチレングリコールジグリシジルエーテル0.0541g(内部架橋剤、0.311ミリモル)、及び、イオン交換水59.0gを加えた後、撹拌子を回転させることにより均一に混合して混合物を得た。その後、ステンレスバットの上部をポリエチレンフィルムでカバーした。ステンレスバッド内の前記混合物の温度を25℃に調整後、混合物を窒素置換することにより溶存酸素量を0.1ppm以下に調整した。次いで、300rpmの撹拌下で、2質量%過硫酸カリウム水溶液6.19g(過硫酸カリウム:0.458ミリモル)、及び、0.5質量%L-アスコルビン酸水溶液1.30gを順に滴下することにより単量体水溶液を調製した。単量体水溶液中のアクリル酸ナトリウム部分中和物濃度は38質量%であった。0.5質量%L-アスコルビン酸水溶液を滴下して1分後に重合が開始した。重合開始から12分後に最高温度に到達した後、温度が下がり始めた。得られた生成物を容器に入れたまま75℃の水浴に浸して20分間熟成することによりゲル(重合後ゲル)を得た。
(Example 3)
Stirrer (diameter: 8 mm, length: 40 mm) in the center of a stainless steel bat with a fluororesin-coated inner surface (outer dimensions of opening: 210 mm x 170 mm, inner dimensions of bottom surface: 170 x 130 mm, height: 30 mm) , Without ring) was put in. Partial neutralization solution of sodium acrylate (monomer used for polymerization, monomer concentration: 45% by mass, neutralization rate of sodium acrylate: 75 mol%) 340.0 g, ethylene glycol diglycidyl ether 0.0541 g (inside) A cross-linking agent (0.311 mmol) and 59.0 g of ion-exchanged water were added, and then the mixture was uniformly mixed by rotating the stirrer to obtain a mixture. Then, the upper part of the stainless steel vat was covered with a polyethylene film. After adjusting the temperature of the mixture in the stainless steel pad to 25 ° C., the amount of dissolved oxygen was adjusted to 0.1 ppm or less by substituting nitrogen in the mixture. Then, under stirring at 300 rpm, 6.19 g of a 2 mass% potassium persulfate aqueous solution (potassium persulfate: 0.458 mmol) and 1.30 g of a 0.5 mass% L-ascorbic acid aqueous solution were added dropwise in this order. A monomer aqueous solution was prepared. The concentration of the partially neutralized sodium acrylate in the aqueous monomer solution was 38% by mass. A 0.5 mass% L-ascorbic acid aqueous solution was added dropwise, and polymerization started 1 minute later. After reaching the maximum temperature 12 minutes after the start of polymerization, the temperature began to decrease. The obtained product was immersed in a water bath at 75 ° C. in a container and aged for 20 minutes to obtain a gel (gel after polymerization).
 熟成後のゲルの全量を容器から取り出した後、5cm間隔の格子状に切れ目を入れて裁断した。裁断したゲルの全量をミートチョッパー(型番:12VR-750SDX、喜連ローヤル株式会社製)に順次投入してゲルを粗砕した。ミートチョッパーの出口に位置するプレートの穴(円形)の径は6.4mmであり、穴の密度は40穴/36.30cmであった。ミートチョッパーのプレートから粗砕物(粗砕されたゲル、含水ゲル粗砕物)が出てこなくなるまで粗砕を行った。次いで、粗砕物を180℃で30分間熱風乾燥することにより乾燥物(架橋重合体乾燥物)を得た。 After removing the entire amount of the aged gel from the container, the gel was cut in a grid pattern at 5 cm intervals. The entire amount of the cut gel was sequentially put into a meat chopper (model number: 12VR-750SDX, manufactured by Kiren Royal Co., Ltd.) to coarsely crush the gel. The diameter of the hole (circular) of the plate located at the outlet of the meat chopper was 6.4 mm, and the density of the holes was 40 holes / 36.30 cm 2 . Rough crushing was performed until no crushed material (coarse crushed gel, hydrogel crushed material) came out from the plate of the meat chopper. Next, the pyroclastic material was dried with hot air at 180 ° C. for 30 minutes to obtain a dried product (crosslinked polymer dried product).
 乾燥物を低密度ポリエチレン袋(サイズ:チャック下120mm×85mm、厚さ:0.04mm)に20g入れた。低密度ポリエチレン袋の上で4.0kgのローラー(ステンレス製、径:10.5cm、幅:6.0cm)を15往復させて乾燥物を解砕することにより粉砕前の架橋重合体として解砕物を得た。粉砕前の架橋重合体の静的吸水保持能を後述の手順で測定した。 20 g of the dried product was placed in a low-density polyethylene bag (size: 120 mm x 85 mm under the zipper, thickness: 0.04 mm). A 4.0 kg roller (stainless steel, diameter: 10.5 cm, width: 6.0 cm) is reciprocated 15 times on a low-density polyethylene bag to crush the dried product, thereby crushing the dried product as a crosslinked polymer before crushing. Got The static water absorption retention ability of the crosslinked polymer before pulverization was measured by the procedure described later.
 超遠心粉砕機(ヴァーダー・サイエンティフィック株式会社製、製品名:ZM200、6本刃ローター、ローター回転数:6000rpm、スクリーン梯形孔:1.00mm)を用いて解砕物20gを粉砕することにより粉砕後の架橋重合体として架橋重合体粒子を得た。粉砕後の架橋重合体の静的吸水保持能及び中位粒子径を後述の手順で測定した。 Crushed by crushing 20 g of crushed material using an ultracentrifuge crusher (manufactured by Verder Scientific Co., Ltd., product name: ZM200, 6-blade rotor, rotor rotation speed: 6000 rpm, screen ladder hole: 1.00 mm). Crosslinked polymer particles were obtained as the later crosslinked polymer. The static water absorption retention ability and the medium particle size of the crosslinked polymer after pulverization were measured by the procedure described later.
 フッ素樹脂製の碇型撹拌翼を備えた内径11cmの丸底円筒型セパラブルフラスコに上述の架橋重合体粒子5.0gを量りとった。次に、400rpmで撹拌しながら、エチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)、水0.600g、プロピレングリコール0.200g、及び、イソプロピルアルコール0.200gを混合して得られた架橋剤水溶液をパスツールピペットにてセパラブルフラスコ内に滴下することにより混合物を得た。この混合物を40分間撹拌させながら、180℃のオイルバスにセパラブルフラスコを浸けて混合物を加熱することにより追架橋を行った。室温まで冷却した後、混合物を目開き850μmのメッシュに通すことにより吸水性樹脂粒子を4.6g得た。 5.0 g of the above-mentioned crosslinked polymer particles was weighed in a round-bottomed cylindrical separable flask having an inner diameter of 11 cm equipped with a fluororesin anchor-shaped stirring blade. Next, the cross-linking obtained by mixing 0.010 g (0.057 mmol) of ethylene glycol diglycidyl ether, 0.600 g of water, 0.200 g of propylene glycol, and 0.200 g of isopropyl alcohol while stirring at 400 rpm. A mixture was obtained by dropping the aqueous agent solution into a separable flask with a pasteur pipette. Cross-linking was performed by immersing the separable flask in an oil bath at 180 ° C. and heating the mixture while stirring the mixture for 40 minutes. After cooling to room temperature, the mixture was passed through a mesh having an opening of 850 μm to obtain 4.6 g of water-absorbent resin particles.
(比較例1)
 重合後ゲルを得るために使用するエチレングリコールジグリシジルエーテル(内部架橋剤)の使用量を0.0541g(0.311ミリモル)に変更したこと、並びに、架橋剤水溶液の組成をエチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)、水0.600g、プロピレングリコール0.200g、及び、イソプロピルアルコール0.200gに変更し追架橋を行ったこと以外は実施例1と同様にして吸水性樹脂粒子を4.5g得た。
(Comparative Example 1)
The amount of ethylene glycol diglycidyl ether (internal cross-linking agent) used to obtain the gel after polymerization was changed to 0.0541 g (0.311 mmol), and the composition of the cross-linking agent aqueous solution was changed to ethylene glycol diglycidyl ether. Water-absorbent resin particles in the same manner as in Example 1 except that they were changed to 0.010 g (0.057 mmol), 0.600 g of water, 0.200 g of propylene glycol, and 0.200 g of isopropyl alcohol and crosslinked. Was obtained in an amount of 4.5 g.
<架橋重合体の静的吸水保持能>
 架橋重合体の静的吸水保持能を下記の手順で測定した。粉砕前の架橋重合体の静的吸水保持能は、測定前に架橋重合体を粒子径1.4~1.7mmに分級した。
<Static water absorption retention capacity of crosslinked polymer>
The static water absorption retention ability of the crosslinked polymer was measured by the following procedure. The static water absorption retention capacity of the crosslinked polymer before pulverization was classified into a particle size of 1.4 to 1.7 mm before the measurement.
 85mm×170mmの大きさの不織布(製品名:ヒートパックMWA-18、日本製紙パピリア株式会社製)を長手方向に半分に折ることで85mm×85mmの大きさに調整した。長手方向に延びる両辺のそれぞれにおいて不織布同士をヒートシールで圧着することにより85mm×85mmの不織布バッグを作製した(幅5mmの圧着部を長手方向に沿って両辺に形成した)。不織布バッグの内部に上述の架橋重合体を0.2g収容した。その後、短手方向に延びる残りの一辺をヒートシールで圧着することにより不織布バッグを閉じた。 A non-woven fabric having a size of 85 mm × 170 mm (product name: Heat Pack MWA-18, manufactured by Nippon Paper Papylia Co., Ltd.) was folded in half in the longitudinal direction to adjust the size to 85 mm × 85 mm. A non-woven fabric bag having a width of 5 mm was produced by crimping the non-woven fabrics to each other with heat seals on both sides extending in the longitudinal direction (a crimping portion having a width of 5 mm was formed on both sides along the longitudinal direction). 0.2 g of the above-mentioned crosslinked polymer was contained in the non-woven fabric bag. Then, the non-woven fabric bag was closed by crimping the remaining one side extending in the lateral direction with a heat seal.
 不織布バッグが折り重ならない状態で、ステンレス製バット(240mm×320mm×45mm)に収容された生理食塩水500g上に不織布バッグを浮かべることにより、不織布バッグの全体を完全に湿らせた。不織布バッグを生理食塩水に投入してから1分後にスパチュラにて不織布バッグを生理食塩水に浸漬することにより、ゲルが収容された不織布バッグを得た。 The entire non-woven fabric bag was completely moistened by floating the non-woven fabric bag on 500 g of physiological saline contained in a stainless steel vat (240 mm × 320 mm × 45 mm) without folding the non-woven fabric bag. One minute after the non-woven fabric bag was put into the physiological saline solution, the non-woven fabric bag was immersed in the physiological saline solution with a spatula to obtain a non-woven fabric bag containing the gel.
 不織布バッグを生理食塩水に投入してから30分後(浮かべた時間1分、及び、浸漬時間29分の合計)に生理食塩水の中から不織布バッグを取り出した。そして、遠心分離機(株式会社コクサン製、型番:H-122)に不織布バッグを入れた。遠心分離機における遠心力が250Gに到達した後、3分間不織布バッグの脱水を行った。脱水後、ゲルの質量を含む不織布バッグの質量Mを秤量した。架橋重合体を収容することなく不織布バッグに対して上述の操作と同様の操作を施し、不織布バッグの質量Mを測定した。下記式に基づき静的吸水保持能を算出した。Mは、測定に用いた架橋重合体の質量0.2gの精秤値である。架橋重合体の粉砕前の静的吸水保持能に対する架橋重合体の粉砕後の静的吸水保持能の比率を含め、結果を表1に示す。
  静的吸水保持能[g/g] = (M-M)/M
Thirty minutes after the non-woven fabric bag was put into the physiological saline solution (a total of 1 minute of floating time and 29 minutes of immersion time), the non-woven fabric bag was taken out from the physiological saline solution. Then, the non-woven fabric bag was put in a centrifuge (manufactured by Kokusan Co., Ltd., model number: H-122). After the centrifugal force in the centrifuge reached 250 G, the non-woven fabric bag was dehydrated for 3 minutes. After dehydration, it was weighed mass M x of the nonwoven fabric bag containing a mass of gel. Subjected to the same operation as the aforementioned operation on the woven bags without accommodating the crosslinked polymer, the mass was measured M y nonwoven bag. The static water absorption retention capacity was calculated based on the following formula. M z is a precise value of 0.2 g of the mass of the crosslinked polymer used for the measurement. Table 1 shows the results including the ratio of the static water absorption retention capacity of the crosslinked polymer after pulverization to the static water absorption retention capacity of the crosslinked polymer before pulverization.
Static water holding capacity [g / g] = (M x -M y) / M z
<粒度分布>
 連続全自動音波振動式ふるい分け測定器(ロボットシフター RPS-205、株式会社セイシン企業製)を用いて、JIS規格の目開き850μm、710μm、600μm、500μm、300μm、250μm及び150μmの篩、並びに、受け皿で架橋重合体粒子5gの粒度分布を測定した。「0μmを超え150μm未満」、「150μm以上300μm未満」、「300μm以上600μm未満」、「600μm以上850μm未満」、「850μm以上」の粒子径範囲の質量割合を得た。「600μm以上850μm未満」の質量百分率は、710μm及び600μmの篩上に残存した粒子の合計量に基づき算出し、「300μm以上600μm未満」の質量百分率は、500μm及び300μmの篩上に残存した粒子の合計量に基づき算出し、「150μm以上300μm未満」の質量百分率は、250μm及び150μmの篩上に残存した粒子の合計量に基づき算出した。結果を表1に示す。
<Particle size distribution>
Using a continuous fully automatic sonic vibration type sieving measuring instrument (Robot Shifter RPS-205, manufactured by Seishin Enterprise Co., Ltd.), JIS standard meshes of 850 μm, 710 μm, 600 μm, 500 μm, 300 μm, 250 μm and 150 μm, and a saucer. The particle size distribution of 5 g of the crosslinked polymer particles was measured in. Mass ratios in the particle size range of "more than 0 μm and less than 150 μm", "150 μm or more and less than 300 μm", "300 μm or more and less than 600 μm", "600 μm or more and less than 850 μm", and "850 μm or more" were obtained. The mass percentage of "600 μm or more and less than 850 μm" is calculated based on the total amount of particles remaining on the sieves of 710 μm and 600 μm, and the mass percentage of “300 μm or more and less than 600 μm” is the particles remaining on the sieves of 500 μm and 300 μm. The mass percentage of "150 μm or more and less than 300 μm" was calculated based on the total amount of particles remaining on the sieves of 250 μm and 150 μm. The results are shown in Table 1.
<中位粒子径>
 上記の粒度分布に関して、篩上に残存した粒子の質量を粒子径の大きい方から順に積算することにより、篩の目開きと、篩上に残った粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径として得た。結果を表1に示す。
<Medium particle size>
With respect to the above particle size distribution, by integrating the masses of the particles remaining on the sieve in order from the one with the largest particle diameter, the relationship between the mesh size of the sieve and the integrated value of the mass percentage of the particles remaining on the sieve is logarithmic. Plotted on probability paper. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass was obtained as the medium particle size. The results are shown in Table 1.
<吸水性樹脂粒子のCRC>
 EDANA法(NWSP 241.0.R2(15)、page.769~778)を参考に吸水性樹脂粒子のCRCを下記の手順で測定した。
<CRC of water-absorbent resin particles>
The CRC of the water-absorbent resin particles was measured by the following procedure with reference to the EDANA method (NWSP 241.0.R2 (15), page.769-778).
 60mm×170mmの大きさの不織布(製品名:ヒートパックMWA-18、日本製紙パピリア株式会社製)を長手方向に半分に折ることで60mm×85mmの大きさに調整した。長手方向に延びる両辺のそれぞれにおいて不織布同士をヒートシールで圧着することにより60mm×85mmの不織布バッグを作製した(幅5mmの圧着部を長手方向に沿って両辺に形成した)。不織布バッグの内部に上述の吸水性樹脂粒子を0.2g収容した。その後、短手方向に延びる残りの一辺をヒートシールで圧着することにより不織布バッグを閉じた。 A non-woven fabric with a size of 60 mm x 170 mm (product name: Heat Pack MWA-18, manufactured by Nippon Paper Papylia Co., Ltd.) was folded in half in the longitudinal direction to adjust the size to 60 mm x 85 mm. A 60 mm × 85 mm non-woven fabric bag was produced by crimping the non-woven fabrics to each other on both sides extending in the longitudinal direction with a heat seal (a crimped portion having a width of 5 mm was formed on both sides along the longitudinal direction). 0.2 g of the above-mentioned water-absorbent resin particles were contained in the non-woven fabric bag. Then, the non-woven fabric bag was closed by crimping the remaining one side extending in the lateral direction with a heat seal.
 不織布バッグが折り重ならない状態で、ステンレス製バット(240mm×320mm×45mm)に収容された生理食塩水1000g上に不織布バッグを浮かべることにより、不織布バッグの全体を完全に湿らせた。不織布バッグを生理食塩水に投入してから1分後にスパチュラにて不織布バッグを生理食塩水に浸漬することにより、ゲルが収容された不織布バッグを得た。 The entire non-woven fabric bag was completely moistened by floating the non-woven fabric bag on 1000 g of physiological saline contained in a stainless steel vat (240 mm × 320 mm × 45 mm) without folding the non-woven fabric bag. One minute after the non-woven fabric bag was put into the physiological saline solution, the non-woven fabric bag was immersed in the physiological saline solution with a spatula to obtain a non-woven fabric bag containing the gel.
 不織布バッグを生理食塩水に投入してから30分後(浮かべた時間1分、及び、浸漬時間29分の合計)に生理食塩水の中から不織布バッグを取り出した。そして、遠心分離機(株式会社コクサン製、型番:H-122)に不織布バッグを入れた。遠心分離機における遠心力が250Gに到達した後、3分間不織布バッグの脱水を行った。脱水後、ゲルの質量を含む不織布バッグの質量Mを秤量した。吸水性樹脂粒子を収容することなく不織布バッグに対して上述の操作と同様の操作を施し、不織布バッグの質量Mを測定した。下記式に基づきCRCを算出した。Mは、測定に用いた吸水性樹脂粒子の質量0.2gの精秤値である。結果を表1に示す。
  CRC[g/g] = {(M-M)-M}/M
Thirty minutes after the non-woven fabric bag was put into the physiological saline solution (a total of 1 minute of floating time and 29 minutes of immersion time), the non-woven fabric bag was taken out from the physiological saline solution. Then, the non-woven fabric bag was put in a centrifuge (manufactured by Kokusan Co., Ltd., model number: H-122). After the centrifugal force in the centrifuge reached 250 G, the non-woven fabric bag was dehydrated for 3 minutes. After dehydration, it was weighed mass M a nonwoven bag containing the mass of gel. Subjecting the above procedure similar relative woven bags without accommodating the water-absorbent resin particles, the mass was measured M b of the nonwoven fabric bag. The CRC was calculated based on the following formula. M c is the precisely weighed value of the mass 0.2g of water-absorbent resin particles used for the measurement. The results are shown in Table 1.
CRC [g / g] = {(M a- M b ) -M c } / M c
<荷重下吸水量>
 吸水性樹脂粒子の荷重下(加圧下)の生理食塩水の吸水量(室温)を、図2に示す測定装置Yを用いて測定した。測定装置Yは、ビュレット部61、導管62、測定台63、及び、測定台63上に置かれた測定部64から構成される。ビュレット部61は、鉛直方向に伸びるビュレット61aと、ビュレット61aの上端に配置されたゴム栓61bと、ビュレット61aの下端に配置されたコック61cと、コック61cの近傍において一端がビュレット61a内に伸びる空気導入管61dと、空気導入管61dの他端側に配置されたコック61eとを有している。導管62は、ビュレット部61と測定台63との間に取り付けられている。導管62の内径は6mmである。測定台63の中央部には、直径2mmの穴があいており、導管62が連結されている。測定部64は、円筒64a(アクリル樹脂(プレキシグラス)製)と、円筒64aの底部に接着されたナイロンメッシュ64bと、重り64cとを有している。円筒64aの内径は20mmである。ナイロンメッシュ64bの目開きは75μm(200メッシュ)である。そして、測定時にはナイロンメッシュ64b上に測定対象の吸水性樹脂粒子65が均一に撒布される。重り64cの直径は19mmであり、重り64cの質量は119.6gである。重り64cは、吸水性樹脂粒子65上に置かれ、吸水性樹脂粒子65に対して4.14kPaの荷重を加えることができる。
<Water absorption under load>
The water absorption amount (room temperature) of the physiological saline under the load (pressurization) of the water-absorbent resin particles was measured using the measuring device Y shown in FIG. The measuring device Y is composed of a burette unit 61, a conduit 62, a measuring table 63, and a measuring unit 64 placed on the measuring table 63. The burette portion 61 has a burette 61a extending in the vertical direction, a rubber stopper 61b arranged at the upper end of the burette 61a, a cock 61c arranged at the lower end of the burette 61a, and one end extending into the burette 61a in the vicinity of the cock 61c. It has an air introduction pipe 61d and a cock 61e arranged on the other end side of the air introduction pipe 61d. The conduit 62 is attached between the burette portion 61 and the measuring table 63. The inner diameter of the conduit 62 is 6 mm. A hole having a diameter of 2 mm is formed in the central portion of the measuring table 63, and the conduit 62 is connected to the hole. The measuring unit 64 has a cylinder 64a (made of acrylic resin (plexiglass)), a nylon mesh 64b adhered to the bottom of the cylinder 64a, and a weight 64c. The inner diameter of the cylinder 64a is 20 mm. The opening of the nylon mesh 64b is 75 μm (200 mesh). Then, at the time of measurement, the water-absorbent resin particles 65 to be measured are uniformly sprinkled on the nylon mesh 64b. The diameter of the weight 64c is 19 mm, and the mass of the weight 64c is 119.6 g. The weight 64c is placed on the water-absorbent resin particles 65, and a load of 4.14 kPa can be applied to the water-absorbent resin particles 65.
 測定装置Yの円筒64aの中に0.100gの吸水性樹脂粒子65を入れた後、重り64cを載せて測定を開始した。吸水性樹脂粒子65が吸水した生理食塩水と同容積の空気が、空気導入管より、速やかにかつスムーズにビュレット61aの内部に供給されるため、ビュレット61aの内部の生理食塩水の水位の減量が、吸水性樹脂粒子65が吸水した生理食塩水量となる。ビュレット61aの目盛は、上から下方向に0mLから0.5mL刻みで刻印されており、生理食塩水の水位として、吸水開始前のビュレット61aの目盛りVaと、吸水開始から60分後のビュレット61aの目盛りVbとを読み取り、下記式より荷重下の吸水量を算出した。結果を表1に示す。
  荷重下の吸水量[mL/g] = (Vb-Va)/0.1
After 0.100 g of the water-absorbent resin particles 65 were placed in the cylinder 64a of the measuring device Y, the weight 64c was placed and the measurement was started. Since the same volume of air as the physiological saline absorbed by the water-absorbent resin particles 65 is quickly and smoothly supplied to the inside of the burette 61a from the air introduction pipe, the water level of the physiological saline inside the burette 61a is reduced. However, the amount of physiological saline absorbed by the water-absorbent resin particles 65 is obtained. The scale of the burette 61a is engraved from top to bottom in increments of 0 mL to 0.5 mL, and the scale Va of the burette 61a before the start of water absorption and the burette 61a 60 minutes after the start of water absorption are used as the water level of the physiological saline. The scale Vb of was read, and the amount of water absorption under load was calculated from the following formula. The results are shown in Table 1.
Water absorption under load [mL / g] = (Vb-Va) /0.1
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1によれば、粉砕工程における粉砕前後の静的吸水保持能の比率を調整することが吸水性樹脂粒子の荷重下吸水量を向上させることに有効であることが確認される。 According to Table 1, it is confirmed that adjusting the ratio of static water absorption retention capacity before and after crushing in the crushing step is effective in improving the amount of water absorption under load of the water-absorbent resin particles.
 10…吸収体、10a,65…吸水性樹脂粒子、10b…繊維層、20a,20b…コアラップ、30…液体透過性シート、40…液体不透過性シート、61…ビュレット部、61a…ビュレット、61b…ゴム栓、61c,61e…コック、61d…空気導入管、62…導管、63…測定台、64…測定部、64a…円筒、64b…ナイロンメッシュ、64c…重り、100…吸収性物品、Y…測定装置。

 
10 ... Absorbent, 10a, 65 ... Water-absorbent resin particles, 10b ... Fiber layer, 20a, 20b ... Core wrap, 30 ... Liquid permeable sheet, 40 ... Liquid permeable sheet, 61 ... Burette part, 61a ... Burette, 61b ... Rubber stopper, 61c, 61e ... Cock, 61d ... Air introduction pipe, 62 ... Conduit, 63 ... Measuring table, 64 ... Measuring unit, 64a ... Cylindrical, 64b ... Nylon mesh, 64c ... Weight, 100 ... Absorbent article, Y …measuring device.

Claims (7)

  1.  エチレン性不飽和単量体に由来する構造単位を有する架橋重合体を粉砕する粉砕工程を備え、
     生理食塩水を前記架橋重合体に吸水させた後に前記架橋重合体に遠心分離を施した際の前記架橋重合体1gあたりの吸水量である静的吸水保持能に関して、前記粉砕工程における前記架橋重合体の粉砕前の静的吸水保持能に対する前記架橋重合体の粉砕後の静的吸水保持能の比率が1.5以上であり、
     前記架橋重合体の粉砕後の前記静的吸水保持能が30g/g以上である、架橋重合体粒子の製造方法。
    A pulverization step for pulverizing a crosslinked polymer having a structural unit derived from an ethylenically unsaturated monomer is provided.
    Regarding the static water absorption retention ability, which is the amount of water absorbed per 1 g of the crosslinked polymer when the crosslinked polymer is centrifuged after the crosslinked polymer is made to absorb water, the crosslinked weight in the crushing step. The ratio of the static water absorption retention capacity after crushing of the crosslinked polymer to the static water absorption retention capacity before crushing of the coalescence is 1.5 or more.
    A method for producing crosslinked polymer particles, wherein the static water absorption retention capacity after pulverization of the crosslinked polymer is 30 g / g or more.
  2.  前記比率が1.5~4である、請求項1に記載の架橋重合体粒子の製造方法。 The method for producing crosslinked polymer particles according to claim 1, wherein the ratio is 1.5 to 4.
  3.  前記架橋重合体の粉砕後の前記静的吸水保持能が30~80g/gである、請求項1又は2に記載の架橋重合体粒子の製造方法。 The method for producing crosslinked polymer particles according to claim 1 or 2, wherein the static water absorption retention capacity after pulverization of the crosslinked polymer is 30 to 80 g / g.
  4.  前記架橋重合体の粉砕前の前記静的吸水保持能が20~53g/gである、請求項1~3のいずれか一項に記載の架橋重合体粒子の製造方法。 The method for producing crosslinked polymer particles according to any one of claims 1 to 3, wherein the static water absorption retaining ability before pulverization of the crosslinked polymer is 20 to 53 g / g.
  5.  前記エチレン性不飽和単量体が、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも一種を含む、請求項1~4のいずれか一項に記載の架橋重合体粒子の製造方法。 The method for producing crosslinked polymer particles according to any one of claims 1 to 4, wherein the ethylenically unsaturated monomer contains at least one selected from the group consisting of (meth) acrylic acid and a salt thereof.
  6.  請求項1~5のいずれか一項に記載の架橋重合体粒子の製造方法により得られた架橋重合体粒子に追架橋を施す工程を備える、吸水性樹脂粒子の製造方法。 A method for producing water-absorbent resin particles, comprising a step of performing additional cross-linking on the cross-linked polymer particles obtained by the method for producing cross-linked polymer particles according to any one of claims 1 to 5.
  7.  架橋重合体粒子に追架橋を施して得られる吸水性樹脂粒子の荷重下における吸水量の向上方法であって、
     エチレン性不飽和単量体に由来する構造単位を有する架橋重合体を粉砕する粉砕工程を備え、
     生理食塩水を前記架橋重合体に吸水させた後に前記架橋重合体に遠心分離を施した際の前記架橋重合体1gあたりの吸水量である静的吸水保持能に関して、前記粉砕工程における前記架橋重合体の粉砕前の静的吸水保持能に対する前記架橋重合体の粉砕後の静的吸水保持能の比率が1.5以上であり、
     前記架橋重合体の粉砕後の前記静的吸水保持能が30g/g以上である、荷重下吸水量の向上方法。

     
    It is a method for improving the amount of water absorption under the load of the water-absorbent resin particles obtained by performing additional cross-linking on the crosslinked polymer particles.
    A pulverization step for pulverizing a crosslinked polymer having a structural unit derived from an ethylenically unsaturated monomer is provided.
    Regarding the static water absorption retention ability, which is the amount of water absorbed per 1 g of the crosslinked polymer when the crosslinked polymer is centrifuged after the crosslinked polymer is made to absorb water, the crosslinked weight in the crushing step. The ratio of the static water absorption retention capacity after crushing of the crosslinked polymer to the static water absorption retention capacity before crushing of the coalescence is 1.5 or more.
    A method for improving the amount of water absorption under load, wherein the static water absorption retention capacity after pulverization of the crosslinked polymer is 30 g / g or more.

PCT/JP2020/033832 2019-09-09 2020-09-07 Production method for cross-linked polymer particles, production method for water-absorbent resin particles, and method for improving water absorption under load WO2021049466A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021545531A JP7448553B2 (en) 2019-09-09 2020-09-07 Method for producing crosslinked polymer particles, method for producing water-absorbing resin particles, and method for improving water absorption under load

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-163870 2019-09-09
JP2019163870 2019-09-09

Publications (1)

Publication Number Publication Date
WO2021049466A1 true WO2021049466A1 (en) 2021-03-18

Family

ID=74865680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033832 WO2021049466A1 (en) 2019-09-09 2020-09-07 Production method for cross-linked polymer particles, production method for water-absorbent resin particles, and method for improving water absorption under load

Country Status (2)

Country Link
JP (1) JP7448553B2 (en)
WO (1) WO2021049466A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242011A (en) * 2009-04-09 2010-10-28 San-Dia Polymer Ltd Water absorbing resin particle and method for manufacturing water absorbing resin particle
WO2016204302A1 (en) * 2015-06-19 2016-12-22 株式会社日本触媒 Poly (meth) acrylic acid (salt) granular water absorbent and method for producing same
JP2018030991A (en) * 2016-08-22 2018-03-01 三洋化成工業株式会社 Method for producing absorptive resin particle
WO2018135629A1 (en) * 2017-01-23 2018-07-26 住友精化株式会社 Method for producing water absorbent resin
JP2019524944A (en) * 2017-06-30 2019-09-05 エルジー・ケム・リミテッド Method for producing superabsorbent resin and superabsorbent resin obtained by such method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170501A1 (en) 2016-03-28 2017-10-05 株式会社日本触媒 Water-absorbing agent and method for producing same, and absorbent article produced using water-absorbing agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242011A (en) * 2009-04-09 2010-10-28 San-Dia Polymer Ltd Water absorbing resin particle and method for manufacturing water absorbing resin particle
WO2016204302A1 (en) * 2015-06-19 2016-12-22 株式会社日本触媒 Poly (meth) acrylic acid (salt) granular water absorbent and method for producing same
JP2018030991A (en) * 2016-08-22 2018-03-01 三洋化成工業株式会社 Method for producing absorptive resin particle
WO2018135629A1 (en) * 2017-01-23 2018-07-26 住友精化株式会社 Method for producing water absorbent resin
JP2019524944A (en) * 2017-06-30 2019-09-05 エルジー・ケム・リミテッド Method for producing superabsorbent resin and superabsorbent resin obtained by such method

Also Published As

Publication number Publication date
JPWO2021049466A1 (en) 2021-03-18
JP7448553B2 (en) 2024-03-12

Similar Documents

Publication Publication Date Title
US10265226B2 (en) Water-absorbent resin, water-absorbent material, and water-absorbent article
WO2018181548A1 (en) Water-absorbent resin particles
JP6828222B1 (en) A method for producing water-absorbent resin particles, an absorbent article, a method for producing water-absorbent resin particles, and a method for increasing the amount of absorption of the absorber under pressure.
JP7443330B2 (en) Water-absorbing resin particles and their manufacturing method, absorbers, absorbent articles, and methods for adjusting penetration rate
EP3936540A1 (en) Water absorbing resin particles and method for producing same, absorbent body, and absorbent article
WO2020184387A1 (en) Water absorbing resin particles and method for producing same, absorbent body, and absorbent article
EP3896095A1 (en) Water-absorbent resin particles, absorbent body, and absorbent article
WO2020122219A1 (en) Water absorbent resin particles, absorbent, absorbent article and liquid suction power measurement method
WO2020122202A1 (en) Absorbent article
WO2021187526A1 (en) Production methods for granular water absorbent resin composition, absorbent body, and absorbent article
WO2021006149A1 (en) Cross-linked polymer particle production method and cross-linked polymer gel
EP3960792A1 (en) Water-absorbent resin particles
WO2021049466A1 (en) Production method for cross-linked polymer particles, production method for water-absorbent resin particles, and method for improving water absorption under load
JP7194197B2 (en) Absorbent bodies and absorbent articles
WO2021049465A1 (en) Method for improving amount of water absorption under load, method for manufacturing cross-linked polymer particles, and method for manufacturing water-absorbing resin particles
EP3936537A1 (en) Water-absorbing resin particles and method for producing same
JP7386809B2 (en) Water-absorbing resin particles
WO2020218168A1 (en) Water-absorbent resin particles, absorbent body, and absorbent article
EP3896120A1 (en) Water-absorbing resin particles, absorbent, and absorbent article
WO2021006148A1 (en) Crosslinked polymer gel, method for producing same, monomer composition, and method for producing crosslinked polymer particle
WO2021131898A1 (en) Method for manufacturing water absorbing resin particles, and method for manufacturing polymer particles
WO2021187525A1 (en) Production methods for water absorbent resin particles, absorbent body, and absorbent article
WO2020218161A1 (en) Water-absorbing resin particles and manufacturing method therefor, absorbent body, and absorbent article
EP3960795A1 (en) Water-absorbent resin particles, absorbent body, and absorbent article
JP6780048B2 (en) Water-absorbent resin particles, absorbers and absorbent articles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545531

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862976

Country of ref document: EP

Kind code of ref document: A1