JP2003507574A5 - - Google Patents

Download PDF

Info

Publication number
JP2003507574A5
JP2003507574A5 JP2001516965A JP2001516965A JP2003507574A5 JP 2003507574 A5 JP2003507574 A5 JP 2003507574A5 JP 2001516965 A JP2001516965 A JP 2001516965A JP 2001516965 A JP2001516965 A JP 2001516965A JP 2003507574 A5 JP2003507574 A5 JP 2003507574A5
Authority
JP
Japan
Prior art keywords
coating
oxide
matrix coating
ceramic
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001516965A
Other languages
Japanese (ja)
Other versions
JP2003507574A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/RU1999/000298 external-priority patent/WO2001012883A1/en
Publication of JP2003507574A publication Critical patent/JP2003507574A/en
Publication of JP2003507574A5 publication Critical patent/JP2003507574A5/ja
Pending legal-status Critical Current

Links

Description

【特許請求の範囲】
【請求項1】 非鉄金属、それらの合金および金属間化合物およびまたそれらから作られた構成材の上に付着していてこの保護を受けさせるべき材料の表面層のプラズマ電解酸化で生じた1番目の多孔質酸化物−セラミックマトリックス被膜とこの1番目のマトリックス被膜の孔の中にNi、Cu、Co、Fe、Cr、Mo、Ti、Al、Sb、Ag、Zn、Cd、Pb、Sn、Bi、In、Gaおよびそれらの混合物、メンデレエフの元素周期律表のIVB−VIB族の金属の炭化物、酸化物、窒化物、ホウ化物、ケイ化物およびそれらの混合物を包含する群から選択される少なくとも1種の機能的成分が入り込むことで生じた2番目の被膜の形態を有する保護用複合被膜であって、前記1番目のマトリックス被膜の表面部分が前記2番目の被膜を越えて突き出ていることを特徴とする複合被膜。
【請求項2】 非鉄金属であるAl、Mg、Ti、Nbおよびそれらの合金かつまた化合物Al−Ti、Ti−NbおよびAl−Beに付着している被膜であることを特徴とする請求項1記載の複合被膜。
【請求項3】 前記酸化物−セラミックマトリックス被膜が5−35%の開放間隙率を有していて間隙率が被膜の厚みを通して外側層から内側に向かう方向に低下しており、前記酸化物−セラミック被膜が300−2000HVのミクロ硬度を有していてミクロ硬度が厚みを通して外側層から内側に向かって高くなっておりそして前記酸化物−セラミック層の全厚が1−600μm、好適には3−150μmから成ることを特徴とする請求項1または2記載の複合被膜。
【請求項4】 前記酸化物−セラミックマトリックス被膜が10−12%の開放間隙率を有することを特徴とする請求項3記載の複合被膜。
【請求項】 前記機能的成分が前記酸化物−セラミックマトリックス被膜の孔の中に1−150μm、好適には2−100μmの深さにまで入り込んでいることを特徴とする請求項1、2、3または4記載の複合被膜。
【請求項6】 保護用複合被膜を非鉄金属、それらの合金および金属間化合物およびまたそれらから作られた構成材に付着させる方法であって、下記の段階:
(a)保護を受けさせるべき材料の表面層にプラズマ電解酸化を前以て決めておいた間隙率を有する1番目の酸化物−セラミックマトリックス被膜が生じるように調節した工程電圧および電流密度を用いて受けさせ、
(b)段階(a)で生じさせた1番目の酸化物−セラミックマトリックス被膜の孔の中にNi、Cu、Co、Fe、Cr、Mo、Ti、Al、Sb、Ag、Zn、Cd、Pb、Sn、Bi、In、Gaおよびそれらの混合物、メンデレエフの元素周期律表のIVB−VIB族の金属の炭化物、酸化物、窒化物、ホウ化物、ケイ化物およびそれらの混合物を包含する群から選択される少なくとも1種の機能的成分を入り込ませることで2番目の被膜を生じさせ、そして
(c)その複合被膜の表面に仕上げを受けさせることで前記1番目のマトリックス被膜の表面部分が前記2番目の被膜を越えて突き出るようにする、
段階を包含することを特徴とする方法。
【請求項 前記プラズマ電解酸化を100−1000Vの電圧および2−200A/dm2の電流密度で起こさせることを特徴とする請求項記載の方法。
【請求項8】 前記プラズマ電解酸化を10−55℃の温度で起こさせることを特徴とする請求項6または7記載の方法。
【請求項】 超分散粉末の使用を包含する水溶液または有機溶液を用いた電気化学的沈澱によって前記機能的成分を前記1番目のマトリックス被膜の孔の中に入り込ませることを特徴とする請求項6、7または8記載の方法。
【請求項10】 水溶液または有機溶液を用いた化学的沈澱によって前記機能的成分を前記1番目のマトリックス被膜の孔の中に入り込ませることを特徴とする請求項6、7または8記載の方法。
【請求項11】 気相を用いた化学的沈澱によって前記機能的成分を前記1番目のマトリックス被膜の孔の中に入り込ませることを特徴とする請求項6、7または8記載の方法。
【請求項12】 物理的沈澱方法を用いて前記機能的成分を前記1番目のマトリックス被膜の孔の中に入り込ませることを特徴とする請求項6、7または8記載の方法。
【請求項13】 粉末、バーまたはブラシを用いて摩擦−機械的にこすることで前記機能的成分を前記1番目のマトリックス被膜の孔の中に入り込ませることを特徴とする請求項6、7または8記載の方法。
【請求項14】 前記複合被膜の仕上げ処理を下記の操作:研磨、微細研削、ラップ仕上げ、研ぎ仕上げおよび超仕上げから選択することを特徴とする請求項6から13のいずれか記載の方法。
      [Claims]
    (1) First porous oxides produced by plasma electrolytic oxidation of surface layers of non-ferrous metals, their alloys and intermetallic compounds and also components made from them and which are to be protected, Ni, Cu, Co, Fe, Cr, Mo, Ti, Al, Sb, Ag, Zn, Cd, Pb, Sn, Bi, In, Ga and Ni in the pores of the ceramic matrix coating and this first matrix coating At least one functional component selected from the group consisting of mixtures thereof, carbides, oxides, nitrides, borides, silicides and mixtures thereof of metals of group IVB-VIB of the Periodic Table of the Elements of Mendeleev. A protective composite coating having the form of a second coating formed by the penetration of the second coating, wherein a surface portion of the first matrix coating extends beyond the second coating. Composite coating, characterized in that out come.
    2. A film adhered to non-ferrous metals Al, Mg, Ti, Nb and alloys thereof and also to compounds Al-Ti, Ti-Nb and Al-Be. A composite coating as described.
    3. The method of claim 2, wherein said oxide-ceramic matrix coating is 5-3.5%And the porosity decreases in the direction from the outer layer to the inner side through the thickness of the coating, and the oxide-ceramic coating has a micro hardness of 300-2000 HV, and the micro hardness is The thickness of the oxide-ceramic layer is increased from the outer layer to the inner side through the thickness and the total thickness of the oxide-ceramic layer is comprised between 1 and 600 μm, preferably between 3 and 150 μm.1 or 2A composite coating as described.
    (4) 4. The composite coating of claim 3 wherein said oxide-ceramic matrix coating has an open porosity of 10-12%.
    Claims5] FunctionalcomponentPenetrate into the pores of the oxide-ceramic matrix coating to a depth of 1-150 μm, preferably 2-100 μm.1, 2, 3 or 4A composite coating as described.
    6. A method of applying a protective composite coating to non-ferrous metals, their alloys and intermetallic compounds and also components made therefrom, comprising the following steps:
(A) using a process voltage and current density adjusted to produce a first oxide-ceramic matrix coating having a predetermined porosity on the surface layer of the material to be protected by plasma electrolytic oxidation; Let me accept
(B) Ni, Cu, Co, Fe, Cr, Mo, Ti, Al, Sb, Ag, Zn, Cd, Pb in the pores of the first oxide-ceramic matrix coating produced in step (a). , Sn, Bi, In, Ga and mixtures thereof, selected from the group comprising carbides, oxides, nitrides, borides, silicides and mixtures thereof of metals of group IVB-VIB of Mendeleev's Periodic Table of Elements. Inducing at least one functional component to form a second coating, and
(C) subjecting the surface of the composite coating to a finish so that the surface portion of the first matrix coating protrudes beyond the second coating;
A method comprising the steps of:
    Claims7] The plasma electrolytic oxidation is performed at a voltage of 100-1000V and2-200A / dmTwoCurrent densityTo wake upClaims characterized6The described method.
    8. The method according to claim 6 or 7, wherein the plasma electrolytic oxidation is performed at a temperature of 10-55 ° C.
    Claims9The functionalization by electrochemical precipitation with aqueous or organic solutions involving the use of superdispersed powders.Ingredients of the first matrix coatingCharacterized in that it is inserted into the hole of6, 7 or 8The described method.
    Claims10The functionalization by chemical precipitation using an aqueous or organic solutionThe components of the first matrix coatingClaims characterized in that they enter into the hole6, 7 or 8The described method.
    Claims1110. The method according to claim 1, wherein the chemical precipitationIngredients of the first matrix coatingCharacterized in that it is inserted into the hole of6, 7 or 8The described method.
    Claims12The method of claim 1, wherein said functional precipitation method is used.Ingredients of the first matrix coatingCharacterized in that it is inserted into the hole of6, 7 or 8The described method.
    Claims13The said functionality is achieved by friction-mechanical rubbing with a powder, bar or brush.Ingredients of the first matrix coatingCharacterized in that it is inserted into the hole of6, 7 or 8The described method.
    Claims14The finishing treatment of the composite film is selected from the following operations: polishing, fine grinding, lapping, sharpening and superfinishing.DoClaims characterized by the following:6 to 13The method according to any one of the above.

JP2001516965A 1999-08-17 1999-08-17 Multifunctional composite coating for protection based on lightweight alloy Pending JP2003507574A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU1999/000298 WO2001012883A1 (en) 1999-08-17 1999-08-17 Light alloy-based composite protective multifunction coating

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008045712A Division JP2008144281A (en) 2008-02-27 2008-02-27 Multifunctional composite coating for protection based on lightweight alloy

Publications (2)

Publication Number Publication Date
JP2003507574A JP2003507574A (en) 2003-02-25
JP2003507574A5 true JP2003507574A5 (en) 2006-09-21

Family

ID=20130390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001516965A Pending JP2003507574A (en) 1999-08-17 1999-08-17 Multifunctional composite coating for protection based on lightweight alloy

Country Status (12)

Country Link
EP (1) EP1231299B1 (en)
JP (1) JP2003507574A (en)
KR (1) KR20020042642A (en)
CN (1) CN1367849A (en)
AT (1) ATE541962T1 (en)
AU (1) AU1588600A (en)
BR (1) BR9917460A (en)
CA (1) CA2382164A1 (en)
CZ (1) CZ2002572A3 (en)
MX (1) MXPA02001672A (en)
NO (1) NO20020748L (en)
WO (1) WO2001012883A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9284647B2 (en) 2002-09-24 2016-03-15 Mitsubishi Denki Kabushiki Kaisha Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
CA2484285C (en) * 2002-09-24 2012-10-02 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for coating sliding surface of high temperature member, and high-temperature member and electrode for electric-discharge surface treatment
WO2004095532A2 (en) * 2003-03-31 2004-11-04 Tokyo Electron Limited A barrier layer for a processing element and a method of forming the same
JP4714945B2 (en) * 2003-08-19 2011-07-06 岡山県 Manufacturing method of product made of magnesium or magnesium alloy
DE102004057403B4 (en) * 2004-11-26 2007-09-06 Frank Fischer Crimping die, crimping apparatus and a method of making the same
US8124240B2 (en) 2005-06-17 2012-02-28 Tohoku University Protective film structure of metal member, metal component employing protective film structure, and equipment for producing semiconductor or flat-plate display employing protective film structure
JP4697629B2 (en) * 2005-06-30 2011-06-08 国立大学法人北海道大学 Valve spring for internal combustion engine, method for producing the same, and method for producing anodized film-formed titanium member
NZ544373A (en) * 2005-12-20 2008-05-30 Auckland Uniservices Ltd Micro-arc plasma assisted electroless nickel plating methods
US10610614B2 (en) 2006-09-08 2020-04-07 Kyocera Corporation Bioimplant with evanescent coating film
US11278642B2 (en) 2006-09-08 2022-03-22 Takao Hotokebuchi Bioimplant with evanescent coating film
US10004604B2 (en) * 2006-09-08 2018-06-26 Kyocera Corporation Bioimplant for artifical joint with evanescent coating film
DE102007042382B3 (en) 2007-09-05 2009-04-02 Siemens Ag Component for the sliding mounting of another component and method for its production
DE102007052575A1 (en) * 2007-11-03 2009-05-07 Märzhäuser Wetzlar GmbH & Co. KG Protective layer of hard-anodized microscopic aluminum workpieces, comprises a composite-lacquer reinforced with a filler, and a hard-anodized layer that is colored black
DE102008026558B4 (en) 2008-06-03 2010-04-01 Königsee Implantate und Instrumente zur Osteosynthese GmbH Electrochemical immersion process in an aqueous electrolyte to produce a biologically degradable surface layer on bases of titanium or titanium-based alloys
DE102008026557A1 (en) 2008-06-03 2009-12-17 Königsee Implantate und Instrumente zur Osteosynthese GmbH Electrochemically produced, biodegradation-stable, ductile and adherent titanium oxide surface layer on titanium or titanium-based alloys
GB2469115B (en) * 2009-04-03 2013-08-21 Keronite Internat Ltd Process for the enhanced corrosion protection of valve metals
DE102009023459B4 (en) * 2009-06-02 2017-08-31 Aap Implantate Ag Osteosynthesis with nanosilver
GB201009772D0 (en) 2010-06-11 2010-07-21 Accentus Plc Metal treatment
ES2730116T3 (en) * 2010-07-16 2019-11-08 Aap Implantate Ag Apatite coating on biodegradable implants
US9297090B2 (en) 2010-07-16 2016-03-29 Aap Implantate Ag PEO coating on Mg screws
FR2966533B1 (en) * 2010-10-21 2014-02-21 Astrium Sas FRICTION BODY FOR THE ASSEMBLY OF TWO PIECES.
CN102168295B (en) * 2011-02-15 2012-05-30 艾荻环境技术(上海)有限公司 Composite material coating having selective absorption function
US20130221816A1 (en) * 2012-02-24 2013-08-29 Htc Corporation Casing of electronic device and method of manufacturing the same
CN103770397B (en) * 2012-10-26 2016-04-27 南昌航空大学 A kind of (Ti, Al, Si) N-Mo (S, N) 2-Ag/TiAlN nano laminated coating
CH707176A1 (en) * 2012-11-13 2014-05-15 Frédéric Gonzales Surface treatment of rigid metallic material for cleaning textiles, by ceramicizing or anodizing surface of material to create residual porosity of surface, and impregnating porous surface obtained by bio-based polymers
WO2015007924A1 (en) 2013-07-19 2015-01-22 Fundación Cidaut Metallic substrate with ceramic coating and method for obtaining it
FR3014912B1 (en) 2013-12-16 2016-01-01 Snecma PROCESS FOR MANUFACTURING A COVERED PART WITH A PROTECTIVE COATING
CN105887159B (en) * 2016-05-12 2018-04-10 广东省材料与加工研究所 One kind has ornamental and functional magnesium alloy preparation method of composite coating concurrently
CN105887084B (en) * 2016-05-12 2018-10-30 广东省材料与加工研究所 A kind of magnesium alloy preparation method of composite coating with self-repair function
CN108823619B (en) * 2018-07-16 2020-06-09 长安大学 Method for depositing Ni-Mo-SiC-TiN composite coating on surface of closed-cell foamed aluminum
CZ2019201A3 (en) * 2019-04-01 2020-06-17 Vysoké Učení Technické V Brně A method of manufacturing a ceramic-metal composite by gravity casting and a ceramic-metal composite made according to this method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU726213A1 (en) * 1977-12-20 1980-04-05 Предприятие П/Я В-2652 Antifrictional coating method
DD151330A1 (en) * 1980-06-03 1981-10-14 Peter Kurze METHOD FOR PRODUCING DIFFUSION LAYERS IN METALS
DE3401951C1 (en) * 1984-01-20 1985-08-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Method for improving the corrosion stability of the anodised surface of aluminium parts
DE3671764D1 (en) * 1985-02-06 1990-07-12 Fujitsu Ltd METHOD FOR FORMING A COMPOSITE ALUMINUM FILM.
US4784732A (en) * 1986-07-24 1988-11-15 Covino Charles P Electrolytic formation of an aluminum oxide layer
US5364522A (en) * 1993-03-22 1994-11-15 Liang Wang Boride, carbide, nitride, oxynitride, and silicide infiltrated electrochemical ceramic films and coatings and the method of forming such
PT842309E (en) * 1995-07-28 2002-07-31 Electro Chem Eng Gmbh PROCESS FOR THE DEPOSITION OF SOLES IN MICROPOROUS COATING LAYERS
AU747068C (en) * 1997-12-17 2002-11-07 Isle Coat Limited Method for producing hard protection coatings on articles made of aluminium alloys

Similar Documents

Publication Publication Date Title
JP2003507574A5 (en)
US6926969B2 (en) Process for the production of sintered porous bodies
EP1231299A4 (en) Light alloy-based composite protective multifunction coating
EP0769821A3 (en) Battery electrode substrate and process for producing the same
CN101539170A (en) An aerospace bearing component
JPS6124100B2 (en)
JP2000225506A (en) Cutting insert and manufacture thereof
JP5175449B2 (en) Sliding member with film
WO2001062451A1 (en) Scissors with minute recessed parts formed at blade tip and method of manufacturing the scissors
JPH0225961B2 (en)
CN1092819A (en) Salt bath process for rare-earth-vanadium-boron co-diffusion
WO2011135100A1 (en) Coated body and a process for coating a body
JP3627088B2 (en) Discharge surface treatment method and object to be processed formed by the method
Fransaer et al. New insights into the mechanism of composite plating
JPS6051972B2 (en) Manufacturing method of electrode material for electrical discharge machining
JP3192914B2 (en) Aluminum surface nitriding method, nitriding aid and surface aluminum nitride material
DE2323122A1 (en) METAL-BOND CHIPPING DIAMOND TOOL
CN109628884A (en) A kind of surface metalation technique of diamond
Kobayashi et al. Alloying of stacked tin and nickel surface films on iron substrate and its limitation
JP2005008942A (en) Surface treatment method
Zheng et al. Surface microstructure and forming mechanism of Ti (C, N) based cermet heat-treated in nitrogen.
JP3194802B2 (en) Sintered alloy having Al-containing surface layer and method for producing the same
Zhang et al. Microstructure and Properties of Laser Clad Ni 60 A+ WC/12 Co Composite Coating
Liu et al. Thermal oxidation/vacuum diffusion treatment on surface of titanium alloy
Akamatsu et al. Composite plating treatment on magnesium alloy