JP2003347502A - Semiconductor chip and stacked type semiconductor module - Google Patents

Semiconductor chip and stacked type semiconductor module

Info

Publication number
JP2003347502A
JP2003347502A JP2002152253A JP2002152253A JP2003347502A JP 2003347502 A JP2003347502 A JP 2003347502A JP 2002152253 A JP2002152253 A JP 2002152253A JP 2002152253 A JP2002152253 A JP 2002152253A JP 2003347502 A JP2003347502 A JP 2003347502A
Authority
JP
Japan
Prior art keywords
chip
electrodes
semiconductor
stacked
chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002152253A
Other languages
Japanese (ja)
Other versions
JP3896038B2 (en
Inventor
Yasuhiro Yamaji
泰弘 山地
Tomotoshi Satou
知稔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Sharp Corp
Original Assignee
Toshiba Corp
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Sharp Corp filed Critical Toshiba Corp
Priority to JP2002152253A priority Critical patent/JP3896038B2/en
Publication of JP2003347502A publication Critical patent/JP2003347502A/en
Application granted granted Critical
Publication of JP3896038B2 publication Critical patent/JP3896038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06562Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking at least one device in the stack being rotated or offset
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To increase a reliability and reduce a manufacturing cost by reducing damages due to an external bonding force and preventing the falling-off of through electrodes and the interfacial separation when stacking a plurality of semiconductor chips. <P>SOLUTION: The semiconductor chip comprises a main body 11 of the chip formed with a desired circuit, the through electrodes 16 embedded in a plurality of through holes 12 extended through the main body 11 of the chip, and external electrodes 17 and 18 formed on both end parts of each through electrode 16. In such a semiconductor chip, the plurality of through holes 12 are formed at a constant pitch α along the periphery of the main body 11 of the chip, with ends of each through hole 12 being shifted by an integer times (N≥1) as large as the pitch α on the front and rear faces of the main body 11 of the chip. In a stacked type semiconductor module wherein a plurality of such semiconductor chips 10 are stacked, part of the through electrodes 16 of one semiconductor chip are electrically connected to part of those of the adjacent semiconductor chips which are shifted by one pitch. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チップ本体の表裏
面を貫通する貫通電極を有する半導体チップに係わり、
更にこの半導体チップを複数個積層して構成される3次
元積層型半導体モジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor chip having a through electrode penetrating the front and back surfaces of a chip body.
Further, the present invention relates to a three-dimensional stacked semiconductor module configured by stacking a plurality of the semiconductor chips.

【0002】[0002]

【従来の技術】従来、積層タイプの3次元積層型半導体
モジュールに使用される半導体チップは、図5(a)に
平面図を、図5(b)に(a)の矢視A−A’断面図を
示すように構成されている。チップ本体11の周辺部の
4辺に、表裏の主平面間を最短距離でつなぐように主平
面に対して垂直に貫通孔12が設けられ、各々の貫通孔
12内に貫通電極16がそれぞれ埋め込み形成されてい
る。そして、貫通電極16の両端には、外部電極17,
18が設けられている。また、貫通孔12の内面には絶
縁膜13が形成され、チップ本体11の表裏面にも絶縁
膜14,15が形成されている。
2. Description of the Related Art Conventionally, a semiconductor chip used for a stacked three-dimensional stacked semiconductor module is shown in a plan view in FIG. 5A and an AA 'view in FIG. It is configured as shown in a sectional view. Through holes 12 are provided on the four sides of the peripheral portion of the chip body 11 so as to be perpendicular to the main plane so as to connect the main planes on the front and back surfaces with the shortest distance, and through electrodes 16 are embedded in the respective through holes 12. Is formed. The external electrodes 17,
18 are provided. An insulating film 13 is formed on the inner surface of the through hole 12, and insulating films 14 and 15 are formed on the front and back surfaces of the chip body 11.

【0003】そして、この半導体チップ10を複数個積
層すると、図6(a)に示すように、各々のチップの対
応する貫通電極同士が電気的に接続されることになり、
インターポーザ基板30に対して共通に電極をとること
が可能となる。
When a plurality of semiconductor chips 10 are stacked, as shown in FIG. 6A, the corresponding through electrodes of each chip are electrically connected to each other.
An electrode can be commonly used for the interposer substrate 30.

【0004】しかしながら、この種の装置にあっては次
のような問題があった。図7に示すように、接合ツール
50を用いて複数チップ10を垂直実装する際、貫通電
極16に垂直に加わる接合外力により、貫通電極16と
チップ本体11とが接する界面(壁面)においてダメー
ジを受け、貫通電極16そのものが抜け落ちたり、界面
の剥離が発生したりすることがある。
However, this type of device has the following problems. As shown in FIG. 7, when a plurality of chips 10 are vertically mounted using the bonding tool 50, damage is caused at an interface (wall surface) where the through electrode 16 and the chip body 11 are in contact with each other due to a bonding external force applied perpendicularly to the through electrode 16. In this case, the through electrode 16 itself may fall off or the interface may peel off.

【0005】一方、メモリモジュール等で同一チップを
複数積層した場合、外部から個々のチップのパッドを独
立に電気的にアクセスする必要がある。
On the other hand, when a plurality of the same chips are stacked in a memory module or the like, it is necessary to independently and electrically access pads of the individual chips from outside.

【0006】従来のパッケージデバイスの場合、例えば
テープキャリアパッケージ(Tape Carrier Package:T
CP)デバイスを複数積層してモジュールにする場合、
図8に示すような手段にて同一パッケージデバイスを積
層する提案が成されている。図8(a)は斜視図、図8
(b)は断面図である。
In the case of a conventional package device, for example, a Tape Carrier Package (T)
CP) When stacking multiple devices to make a module,
A proposal has been made to stack the same package device by means as shown in FIG. FIG. 8A is a perspective view, and FIG.
(B) is a sectional view.

【0007】図8(b)に示されるように、TCPデバ
イスを積層してモジュールとする。このとき、個々のチ
ップに対して独立にアクセスする必要のある端子(例え
ばセレクト端子など)を801、各チップに共通にアク
セスする端子(例えば電源,グランド,アドレス端子な
ど)を802、テープキャリア上の配線で、端子801
に接続するものを811、端子802に接続するものを
812とする。また、モジュールを搭載する基板の端子
で、各チップ共通にアクセスする端子802に対応する
ものを802a、個々のチップに独立にアクセスする端
子801の一番上のチップに対応するものを801c、
上から二つ目のチップに対応するものを801b、上か
ら三つ目のチップに対応するものを801aとする。
As shown in FIG. 8B, TCP devices are stacked to form a module. At this time, a terminal 801 (for example, a select terminal, etc.) which needs to access each chip independently, a terminal 802 (for example, power supply, ground, address terminal, etc.) commonly accessed for each chip, Terminal 801
Are connected to the terminal 802 and 812 is connected to the terminal 802. 802a denotes a terminal of the substrate on which the module is mounted and corresponds to the terminal 802 that is commonly accessed for each chip, and 801c corresponds to the top chip of the terminal 801 that independently accesses each chip.
The one corresponding to the second chip from the top is denoted by 801b, and the one corresponding to the third chip from the top is denoted by 801a.

【0008】個々のチップに独立にアクセスする端子8
01に接続するテープキャリア上配線811は、801
a〜801c…に接続する冗長な接続部を持ち、TCP
デバイスは積層モジュールを作る全チップとも共通化さ
れている。実装時に811の冗長な部分を必要なものを
残して切除することで、図8(a)に示されるように実
装し、メモリモジュールとする。以上のように、TCP
デバイスを用いて積層モジュールを作る際には、デバイ
ス自体は共通で、実装時に作り分けていた。デバイスを
共通化することで、積層モジュール作成のコストアップ
は低く抑えられていた。
Terminal 8 for independently accessing each chip
01 on the tape carrier to be connected to the
a to 801c... have redundant connection parts,
Devices are common to all chips that make stacked modules. At the time of mounting, the redundant portion of 811 is cut away while leaving necessary parts, so that it is mounted as shown in FIG. As described above, TCP
When making a laminated module using a device, the device itself is common, and it is made separately at the time of mounting. By using a common device, the cost of producing a stacked module was kept low.

【0009】しかし、TCPデバイスの積層モジュール
は、パッケージにするための配線(811,812)が
存在するため、この部分での信号遅延が発生し、またこ
の部分での配線間のクロストークノイズ発生など、電気
特性上で問題を引き起こす要因となっている。この状況
は、デバイスが高速に動作するようになり益々顕在化し
ている。
However, since the stacked module of the TCP device has wirings (811, 812) for forming a package, a signal delay occurs at this portion, and a crosstalk noise between the wirings occurs at this portion. This is a factor that causes problems in electrical characteristics. This situation is becoming increasingly apparent as devices operate at higher speeds.

【0010】そこで、パッケージにしない、チップ状態
で積層して積層モジュールを作る試みが成されてきた。
チップ状態で積層して積層モジュールを作る場合には、
実装で作り分けていたような手法は不可能である。図8
(a)の801a〜801cに対応するものをチップ配
線で実現する場合、図6(b)〜(d)に示すような配
線を予めチップ上に形成しておく必要がある。
[0010] Attempts have been made to make a stacked module by stacking in a chip state without packaging.
When making a laminated module by laminating in chip state,
It is not possible to use a technique that was created by implementation. FIG.
In the case where the one corresponding to 801a to 801c in (a) is realized by the chip wiring, it is necessary to previously form the wiring as shown in FIGS. 6 (b) to (d) on the chip.

【0011】601d,612d,623dは個々にア
クセスする必要がある各チップの端子である。601a
は一番下のチップ601dにアクセスする貫通電極であ
る。602aは下から二つ目のチップの612dにアク
セスするための1番下のチップに設けた貫通電極であ
る。603aは下から三つ目のチップの623dにアク
セスするための1番下のチップに設けた貫通電極であ
る。612aは下から二つ目のチップの612dにアク
セスする貫通電極である。613aは下から三つ目のチ
ップの623dにアクセスするための下から二つ目のチ
ップに設けた貫通電極である。623aは下から三つ目
のチップの623dにアクセスするための下から三つ目
のチップに設けた貫通電極である。
Reference numerals 601d, 612d, and 623d denote terminals of each chip which need to be individually accessed. 601a
Is a through electrode for accessing the lowermost chip 601d. Reference numeral 602a denotes a through electrode provided on the lowermost chip for accessing 612d of the second chip from the bottom. Reference numeral 603a is a through electrode provided on the lowest chip for accessing the third chip 623d from the bottom. A through electrode 612a accesses the second chip 612d from the bottom. 613a is a through electrode provided on the second chip from the bottom to access 623d of the third chip from the bottom. 623a is a through electrode provided on the third chip from the bottom to access 623d of the third chip from the bottom.

【0012】これらの配線及び貫通電極配置は、個々の
チップで共通化できないため、チップ毎に作り分ける必
要があり、積層する各チップは別デバイスとして作成し
て積層する必要がある。これは、積層モジュール作製に
大きなコストアップとなると共に、積層実装する際に、
別デバイスとして作製されたチップを正しい順序で積層
することを強いるため著しいデメリットとなっていた。
Since these wirings and through-electrode arrangements cannot be shared by individual chips, it is necessary to create them separately for each chip, and it is necessary to create and stack each chip as a separate device. This greatly increases the cost of producing a laminated module, and when laminating and mounting,
This is a significant disadvantage because it forces the chips fabricated as separate devices to be stacked in the correct order.

【0013】これを解決する一つの提案としてUSP6
141245では、図9に示されるように、チップをシ
フトさせて積層するものがある。このように積層するこ
とで、シフトすることでずれた部分で個々のチップに独
立にアクセスでき、且つチップは共通化する手段が得ら
れる。しかし、図9のような手法を用いた場合、チップ
を斜めに積層するため、単に製造工程上困難であるだけ
でなく、外部からの衝撃に弱く、端部のチップに欠けや
割れが発生する可能性が大であった。また、この手法で
はシフトする方向が限定されていることから、図9に示
したような周辺配置の場合、チップ間の接続に関して2
辺のパッド列しか適用できないという問題もあった。
One solution to this problem is USP6
In the case of 141245, as shown in FIG. 9, a chip is shifted and stacked. By stacking in this manner, individual chips can be independently accessed at the portions shifted by shifting, and a means for sharing the chips can be obtained. However, when the method as shown in FIG. 9 is used, the chips are stacked diagonally, which is not only difficult in the manufacturing process, but also vulnerable to an external impact, and chipping or cracking occurs at the end chip. The possibilities were great. Further, since the shifting direction is limited in this method, in the case of the peripheral arrangement as shown in FIG.
There is also a problem that only the side pad row can be applied.

【0014】[0014]

【発明が解決しようとする課題】このように従来、チッ
プ表裏を貫通した貫通電極を有する半導体チップを複数
個積層して積層型半導体モジュールを構成する場合、貫
通電極に垂直に加わる接合外力により貫通電極と半導体
チップとが接する界面においてダメージを受け、貫通電
極そのものが抜け落ちたり、界面の剥離が発生したりす
る問題があった。
As described above, conventionally, when a stacked semiconductor module is formed by stacking a plurality of semiconductor chips each having a through electrode penetrating the front and back of the chip, a through-hole is formed by a bonding external force applied perpendicularly to the through electrode. There has been a problem that the interface between the electrode and the semiconductor chip is damaged, the through electrode itself falls off, or the interface peels off.

【0015】また、同一チップを複数積層した積層型半
導体モジュールにおいては、外部から個々のチップのパ
ッドを独立に電気的にアクセスすることが難しかった。
即ち、各層のチップ固有の再配線層を付与することは、
設計上或いは製造上に著しいデメリットを与えてモジュ
ール全体のコストアップを招き、さらに配線長の増大に
より信号遅延を招く。また、各層のチップをパッドピッ
チの倍数分だけシフトさせて積層した場合、機械的強度
が弱く、外部からの衝撃により端部のチップに欠けや割
れが発生する問題があり、さらに周辺配置の場合には2
辺のパッド列しか適用できないという問題もあった。
Further, in a stacked semiconductor module in which a plurality of the same chips are stacked, it is difficult to electrically independently access the pads of each chip from outside.
That is, to provide a chip-specific rewiring layer for each layer,
Significant demerits are given to the design or manufacture, resulting in an increase in the cost of the entire module, and further, an increase in the wiring length causes a signal delay. In addition, when the chips of each layer are stacked by being shifted by a multiple of the pad pitch, the mechanical strength is weak, and there is a problem that the chip at the end may be chipped or cracked by an external impact, and in the case of a peripheral arrangement 2
There is also a problem that only the side pad row can be applied.

【0016】本発明は、上記事情を考慮して成されたも
ので、その目的とするところは、複数個積層した場合に
おける、接合外力によるダメージを低減することがで
き、貫通電極の抜け落ちや界面の剥離を防止することが
でき、信頼性向上及び製造コストの低減をはかり得る半
導体チップを提供することにある。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to reduce damage due to an external bonding force when a plurality of layers are stacked, and to prevent the penetration electrode from falling off or the interface. An object of the present invention is to provide a semiconductor chip which can prevent peeling of the semiconductor chip and can improve reliability and reduce manufacturing cost.

【0017】また、本発明の他の目的は、上記の半導体
チップを複数個積層配置することによって、各層にチッ
プ固有の再配線層を設けたり、チップをずらして配置す
ることなしに、外部から個々のチップのパッドに対して
独立に電気的アクセス可能とし、モジュールとしての信
頼性向上及び製造コストの低減をはかり得る積層型半導
体モジュールを提供することにある。
Another object of the present invention is to provide a semiconductor device having a plurality of the above-described semiconductor chips stacked and arranged without providing a chip-specific rewiring layer in each layer or disposing the chips in a shifted manner. It is an object of the present invention to provide a stacked semiconductor module that enables electrical access to pads of individual chips independently, thereby improving reliability as a module and reducing manufacturing costs.

【0018】[0018]

【課題を解決するための手段】(構成)上記課題を解決
するために本発明は次のような構成を採用している。
(Structure) In order to solve the above problem, the present invention employs the following structure.

【0019】即ち本発明は、所望の回路が形成されたチ
ップ本体と、このチップ本体の表裏を貫通した複数の貫
通孔にそれぞれ埋め込み形成された貫通電極とを備えた
半導体チップであって、貫通孔は、チップ本体の主平面
と垂直な方向に対し傾けて形成されていることを特徴と
する。
That is, the present invention relates to a semiconductor chip having a chip body on which a desired circuit is formed, and through electrodes respectively embedded in a plurality of through holes penetrating the chip body. The hole is formed so as to be inclined with respect to a direction perpendicular to the main plane of the chip body.

【0020】ここで、本発明の望ましい実施態様として
は次のものが挙げられる。
Here, preferred embodiments of the present invention include the following.

【0021】(1) 貫通孔は、チップ本体の周辺部に沿っ
て一定ピッチで設けられていること。 (2) 貫通孔は、表面側の開口と裏面側の開口とがチップ
本体の主平面と垂直な方向の投影に対して重ならない位
置に形成されていること。 (3) 貫通孔は、一定ピッチαで複数個設けられ、且つチ
ップ本体の表裏においてピッチαの整数倍(N≧1)の
ずれを持つこと。
(1) The through holes are provided at a constant pitch along the periphery of the chip body. (2) The through hole is formed at a position where the opening on the front side and the opening on the back side do not overlap with respect to projection in a direction perpendicular to the main plane of the chip body. (3) A plurality of through-holes are provided at a constant pitch α, and have a deviation of an integral multiple of the pitch α (N ≧ 1) on the front and back of the chip body.

【0022】(4) チップ本体の表裏面に、貫通電極の各
々の端部にそれぞれ電気的に接続される外部電極が設け
られていること。 (5) 貫通電極は、チップ本体とは電気的に絶縁されてい
ること。
(4) External electrodes electrically connected to the respective ends of the through electrodes are provided on the front and back surfaces of the chip body. (5) The through electrode must be electrically insulated from the chip body.

【0023】また本発明は、上記構成の半導体チップを
複数個積層してなる積層型半導体モジュールであって、
貫通電極の少なくとも一部は、隣接する半導体チップ同
士でピッチαの整数倍(N≧1)だけ、対応する端子が
ずれて電気的に接続されていることを特徴とする。
The present invention also provides a stacked semiconductor module comprising a plurality of stacked semiconductor chips having the above structure,
At least a part of the through-electrode is characterized in that adjacent semiconductor chips are electrically connected with their corresponding terminals shifted by an integral multiple of the pitch α (N ≧ 1).

【0024】ここで、本発明の望ましい実施態様として
は次のものが挙げられる。
Here, preferred embodiments of the present invention include the following.

【0025】(1) 貫通孔は、チップ本体の周辺部のX方
向に沿った2辺とX方向に直交するY方向に沿った2辺
に形成され、全ての貫通孔はX方向に傾けて形成され、
X方向に沿った2辺において貫通電極は、隣接する半導
体チップ同士で対応する端子がずれて電気的に接続され
ていること。
(1) The through holes are formed on two sides along the X direction of the peripheral portion of the chip body and two sides along the Y direction orthogonal to the X direction, and all the through holes are inclined in the X direction. Formed,
On two sides along the X direction, the through electrodes are electrically connected to adjacent semiconductor chips with corresponding terminals shifted.

【0026】(1-1) 半導体チップ毎に、X方向に沿った
2辺に形成された貫通電極に対し、想定する積層段数×
Nのピッチを持って内部回路との接続用の電極が設けら
れていること。 (1-2) Y方向に沿った2辺に形成された貫通電極は、積
層されたチップ間のみの信号のやり取りに用いられるこ
と。 (1-3) Y方向に沿った2辺に形成された貫通電極は、チ
ップ表面若しくはチップ裏面の再配線により、同一位置
のバンプに接続されること。 (1-4) X方向に沿った2辺に形成された貫通電極は、各
々のチップに個別に与えるべき信号が入力されるもので
あること。 (1-5) Y方向に沿った2辺に形成された貫通電極は、全
てのチップに共通に与えるべき信号が入力されるもので
あること。 (1-6) 隣接する半導体チップにおける貫通電極のずれは
1ピッチであること。
(1-1) For each semiconductor chip, the expected number of stacked layers × the through electrodes formed on two sides along the X direction
Electrodes for connection with internal circuits are provided with a pitch of N. (1-2) The through electrodes formed on two sides along the Y direction are used for exchanging signals only between the stacked chips. (1-3) The through electrodes formed on the two sides along the Y direction are connected to the bumps at the same position by rewiring on the chip surface or the chip back surface. (1-4) Signals to be individually applied to each chip are input to the through electrodes formed on two sides along the X direction. (1-5) The through electrodes formed on the two sides along the Y direction are to receive signals to be commonly applied to all chips. (1-6) The gap between the through electrodes in adjacent semiconductor chips is one pitch.

【0027】(2) 貫通孔は、チップ本体の周辺部のX方
向に沿った2辺とX方向に直交するY方向に沿った2辺
に形成され、X方向に沿った2辺ではX方向に傾けて形
成され、Y方向に沿った2辺ではY方向に傾けて形成さ
れ、各々の辺において貫通電極は、隣接する半導体チッ
プ同士で対応する端子がずれて電気的に接続されている
こと。
(2) The through holes are formed on two sides along the X direction of the peripheral portion of the chip body and two sides along the Y direction orthogonal to the X direction, and on two sides along the X direction in the X direction. The two sides along the Y direction are formed so as to be inclined in the Y direction, and in each side, the through electrodes are electrically connected to adjacent semiconductor chips with corresponding terminals being shifted from each other. .

【0028】(2-1) 半導体チップ毎に、貫通孔を傾けた
方向と平行に並ぶ貫通電極に対し、想定する積層段数×
Nのピッチを持って内部回路との接続用の電極が設けら
れていること。 (2-2) 貫通電極の内の少なくとも1組は、各々のチップ
に個別に与えるべき信号が入力されるものであること。 (2-3) 隣接する半導体チップにおける貫通電極のずれは
1ピッチであること。
(2-1) For each semiconductor chip, the expected number of laminations ×
Electrodes for connection with internal circuits are provided with a pitch of N. (2-2) At least one set of the through electrodes is to be supplied with a signal to be individually applied to each chip. (2-3) The gap between the through electrodes in adjacent semiconductor chips is one pitch.

【0029】(作用)本発明によれば、チップ本体に設
けた貫通電極がチップ面に対し傾けて配置されているた
め、複数チップを積層した場合においても、応力分散効
果により垂直方向の力に対する耐性が増加する。具体的
には、製造工程若しくは完成品において、外部から加わ
る垂直な外力が直接、各半導体チップの貫通電極の壁面
に加わるのを防ぎ、応力分散により機械的なダメージを
著しく低減し、貫通電極に関する接続信頼性を向上させ
ることができる。
(Function) According to the present invention, the through electrodes provided on the chip body are arranged at an angle to the chip surface. Increases resistance. Specifically, in a manufacturing process or a finished product, a vertical external force applied from the outside is directly prevented from being applied to a wall surface of a through electrode of each semiconductor chip, mechanical damage is significantly reduced by stress dispersion, and Connection reliability can be improved.

【0030】また、半導体チップの表裏の同一位置のパ
ッドが垂直に直結されず、隣接する半導体チップ同士で
1ピッチずれて電気的に接続しているため、同一チップ
を複数積層した場合でも、半導体チップの個々の端子
に、外部から独立に電気的にアクセスすることが可能と
なる。そしてこの場合、各層にチップ固有の再配線層を
設けたり、チップをずらして配置することが不要とな
り、これにより信頼性向上及び製造コストの低減をはか
ることが可能となる。
Further, since pads at the same position on the front and back of the semiconductor chip are not directly connected vertically but are electrically connected to each other with a pitch of one pitch between adjacent semiconductor chips, even if a plurality of the same chips are stacked, the semiconductor The individual terminals of the chip can be electrically accessed independently from the outside. In this case, it is not necessary to provide a chip-specific rewiring layer for each layer or to displace the chips in a displaced manner. This makes it possible to improve reliability and reduce manufacturing costs.

【0031】[0031]

【発明の実施の形態】以下、本発明の詳細を図示の実施
形態によって説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the illustrated embodiments.

【0032】(第1の実施形態)図1は、本発明の第1
の実施形態に係わる半導体チップの概略構成を説明する
ためのもので、(a)は平面図、(b)は(a)の矢視
A−A’断面図、(c)は(a)の矢視B−B’断面図
を示している。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
(A) is a plan view, (b) is a cross-sectional view taken along the line AA 'of (a), and (c) is a view of (a) in FIG. The sectional view taken along the line BB 'is shown.

【0033】図中11はチップ本体であり、このチップ
本体11の周辺部の4辺には、チップ表裏面を貫通する
貫通孔12が等ピッチで設けられている。ここで、X方
向に沿った2辺を辺1,3とし、Y方向に沿った2辺を
辺2,4とする。
In the figure, reference numeral 11 denotes a chip body, and through holes 12 penetrating the front and back surfaces of the chip are provided at equal pitches on four sides of the periphery of the chip body 11. Here, two sides along the X direction are referred to as sides 1 and 3, and two sides along the Y direction are referred to as sides 2 and 4.

【0034】貫通孔12は、チップ本体11の主面に垂
直な方向に対しX方向に傾けて設けられており、チップ
本体11の表裏においてX方向に電極配置の1ピッチに
相当する分だけずれている。即ち、チップ本体11に対
し貫通孔12の表面側の開口と裏面側の開口とが電極配
置の1ピッチに相当する分だけX方向にずれている。貫
通孔12の内部には絶縁膜13が形成され、チップ本体
11の表裏面にも絶縁膜14,15が形成されている。
貫通孔12の内部には、絶縁膜13を介して金属電極
(貫通電極)16が埋め込み形成されている。これらの
貫通電極16はチップ本体11とは電気的に絶縁されて
いる。そして、貫通電極16の両端部には外部電極1
7,18がそれぞれ形成されている。
The through holes 12 are provided in the X direction with respect to the direction perpendicular to the main surface of the chip body 11, and are shifted in the X direction on the front and back sides of the chip body 11 by an amount corresponding to one pitch of the electrode arrangement. ing. That is, the opening on the front surface side and the opening on the rear surface side of the through hole 12 are shifted from the chip body 11 in the X direction by an amount corresponding to one pitch of the electrode arrangement. An insulating film 13 is formed inside the through hole 12, and insulating films 14 and 15 are also formed on the front and back surfaces of the chip body 11.
A metal electrode (through electrode) 16 is buried in the through hole 12 via an insulating film 13. These through electrodes 16 are electrically insulated from the chip body 11. The external electrodes 1 are provided at both ends of the through electrode 16.
7, 18 are formed respectively.

【0035】次に、本実施形態の半導体チップの製造方
法を、図2の工程断面図を参照して説明する。
Next, a method of manufacturing a semiconductor chip according to the present embodiment will be described with reference to the cross-sectional views in FIGS.

【0036】まず、図2(a)に示すように、半導体チ
ップを含む回路形成終了後の半導体ウェハ19上にSi
2 等の絶縁膜14を形成し、この絶縁膜14を周知の
リソグラフィによりパターニングして一定周期の開口を
形成する。
First, as shown in FIG. 2A, Si is formed on the semiconductor wafer 19 after the formation of the circuit including the semiconductor chip.
An insulating film 14 of O 2 or the like is formed, and the insulating film 14 is patterned by well-known lithography to form openings having a constant period.

【0037】次いで、図2(b)に示すように、異方性
エッチング等による湿式又は乾式エッチング法若しくは
レーザ法等の加工方法により、半導体ウエハ19の片側
から主平面に対して斜めの傾斜角を有する「上下を貫通
する孔」若しくは「現段階では貫通しない孔」(最終的
には貫通電極になる)12を形成する。例えば、平行平
板電極を有するRIEにより、ウェハを電界印加方向に
対して傾けて配置し、絶縁膜14をマスクにウェハ19
を選択エッチングすることにより、斜め方向の孔12を
形成する。
Next, as shown in FIG. 2B, the oblique inclination angle from one side of the semiconductor wafer 19 with respect to the main plane by a wet or dry etching method using anisotropic etching or a processing method such as a laser method. A "hole penetrating vertically" or a "hole not penetrating at this stage" (finally becoming a penetrating electrode) 12 is formed. For example, by RIE having parallel plate electrodes, the wafer is arranged at an angle to the direction of application of the electric field, and the wafer
Is selectively etched to form an oblique hole 12.

【0038】次いで、図2(c)に示すように、孔12
の側壁への絶縁膜13の形成工程、更にはメッキ法など
による導電材の埋め込み工程,エッチング法/スパッタ
法などによるメタル配線工程を行い、孔12に、ウエハ
表側の金属パッドと接続された貫通電極16を形成す
る。具体的には、プラズマCVD法で孔12の内面にS
iO2 からなる絶縁膜13を形成した後、その表面にT
aN等のバリア層(図示せず)を形成する。更に、バリ
ア層の表面に、プラズマCVD法でシード層となるCu
膜(図示せず)を形成する。続いて、電解メッキを施す
ことにより、孔12の内部にCu膜を埋め込み形成し、
これにより貫通電極16を形成する。
Next, as shown in FIG.
A process of forming an insulating film 13 on the side wall of the substrate, a process of embedding a conductive material by a plating method or the like, and a metal wiring process by an etching method / sputtering method are performed. An electrode 16 is formed. Specifically, the inner surface of the hole 12 is formed by plasma CVD using S
After forming the insulating film 13 made of iO 2 , T
A barrier layer (not shown) such as aN is formed. Further, a Cu layer serving as a seed layer is formed on the surface of the barrier layer by a plasma CVD method.
A film (not shown) is formed. Subsequently, a Cu film is buried in the hole 12 by performing electrolytic plating,
As a result, a through electrode 16 is formed.

【0039】次いで、図2(d)に示すように、Cuや
Al等を用いて、貫通電極16に電気的に接続される表
面側の外部電極17を形成する。続いて、半導体ウエハ
19の表面に半導体ウエハ19の機械的強度を補強する
ための石英ガラス等の補強部材20を貼り付ける。
Next, as shown in FIG. 2D, an external electrode 17 on the front side electrically connected to the through electrode 16 is formed using Cu, Al or the like. Subsequently, a reinforcing member 20 such as quartz glass for reinforcing the mechanical strength of the semiconductor wafer 19 is attached to the surface of the semiconductor wafer 19.

【0040】次いで、図2(e)に示すように、機械的
研削法若しくは湿式又は乾式エッチング法などにより、
半導体ウェハ19を裏面側から研削(又はエッチング)
し、貫通電極16を裏面に露出させる。
Next, as shown in FIG. 2E, a mechanical grinding method or a wet or dry etching method is used.
Grinding (or etching) the semiconductor wafer 19 from the back side
Then, the through electrodes 16 are exposed on the back surface.

【0041】次いで、図2(f)に示すように、裏面側
の絶縁膜15の形成工程、さらにエッチング法/スパッ
タ法などによる裏面側の外部電極18の形成工程を経
て、半導体ウエハ19の表裏の外部電極17,18をつ
なぐ貫通電極16を有する構造を完成する。この後、図
2(g)に示すように、ダイシング工程を経ることによ
り、個別のチップ10に分割する。
Then, as shown in FIG. 2F, the semiconductor wafer 19 is subjected to a step of forming the insulating film 15 on the back side and a step of forming the external electrodes 18 on the back side by an etching method / sputtering method. The structure having the through electrode 16 connecting the external electrodes 17 and 18 is completed. Thereafter, as shown in FIG. 2G, the wafer is divided into individual chips 10 through a dicing process.

【0042】なお、本製造工程においては、貫通電極1
6を形成するための孔12は、半導体ウェハ19を裏面
から薄膜化することにより貫通させたが、図2(b)の
段階で、貫通させることも可能であることは言うまでも
ない。また、図1(a)では、周辺にパッドが一列配置
された場合を示しているが、パッドが複数列存在する場
合にも、各貫通電極の傾斜角を調節することにより本発
明を適用できることは言うまでもない。
In this manufacturing process, the through electrode 1
The hole 12 for forming the hole 6 is formed by making the semiconductor wafer 19 thinner from the back surface, but it is needless to say that the hole 12 can be formed at the stage of FIG. FIG. 1A shows a case where pads are arranged in a row in the periphery. However, the present invention can be applied to a case where a plurality of rows of pads are present by adjusting the inclination angle of each through electrode. Needless to say.

【0043】このように本実施形態では、チップ本体1
1の表裏面の外部電極17,18を電気的に接続するた
めの貫通電極16が、チップ本体11の主平面(回路
面)に対して斜めに貫くように設けられている。即ち、
貫通電極16につながる表裏一対の外部電極17,18
の「半導体チップの主平面上の位置」(座標)が、表裏
で異なるように形成される。従って、アセンブリ時に外
部から加わる垂直な外力が直接、各チップ本体11の貫
通電極16と絶縁膜13の界面に加わるのを防ぎ、応力
分散により機械的なダメージを大幅に低減し、貫通電極
16に関する接続信頼性を向上させることができる。
As described above, in the present embodiment, the chip body 1
A through electrode 16 for electrically connecting the external electrodes 17 and 18 on the front and back surfaces of the chip body 1 is provided so as to penetrate obliquely with respect to the main plane (circuit surface) of the chip body 11. That is,
A pair of front and back external electrodes 17 and 18 connected to the through electrode 16
Are formed so that the “position on the main plane of the semiconductor chip” (coordinates) differs between the front and back sides. Therefore, a vertical external force applied from the outside during assembly is prevented from being directly applied to the interface between the through electrode 16 of each chip body 11 and the insulating film 13, and mechanical damage is greatly reduced due to stress distribution. Connection reliability can be improved.

【0044】また、貫通電極11は、必ずしもX方向に
電極配置の1ピッチ分だけずらす必要はなく、X方向に
対し、チップ表裏において略電極ピッチの整数倍(N≧
1)のずれが生じるように形成すればよい。そして、図
1の辺1上の外部電極、辺3上の外部電極は斜めの貫通
電極により、縦方向に積層実装した際に、1段毎にNだ
けずれて接続される。これにより、後述するように、積
層したチップ個々に個別の信号を与えることが可能とな
る。
The penetrating electrodes 11 do not necessarily need to be shifted by one pitch of the electrode arrangement in the X direction.
What is necessary is just to form so that the displacement of 1) may arise. The external electrodes on the side 1 and the external electrodes on the side 3 in FIG. 1 are connected by being shifted by N for each stage when stacked and mounted in the vertical direction by oblique through electrodes. This makes it possible to provide individual signals to the stacked chips as described later.

【0045】(第2の実施形態)図3は、本発明の第2
の実施形態に係わる積層型半導体モジュールを説明する
ためのもので、(a)は平面図、(b)は(a)の矢視
A−A’断面図である。なお、図1と同一部分には同一
符号を付して、その詳しい説明は省略する。
(Second Embodiment) FIG. 3 shows a second embodiment of the present invention.
1A is a plan view, and FIG. 2B is a cross-sectional view taken along the line AA ′ of FIG. 1A. The same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0046】本実施形態は、第1の実施形態の半導体チ
ップ10を複数個積層したものである。インターポーザ
基板30上に、図1の半導体チップ10が例えば4個
(チップA〜D)積層されている。各々の半導体チップ
10のX方向に沿った辺1,3では、図3(b)に示す
ように、隣接するチップ間で貫通電極がX方向に1ピッ
チずれて接続されている。これにより、積層したチップ
個々に個別の信号を与えることが可能となる。
In this embodiment, a plurality of semiconductor chips 10 of the first embodiment are stacked. On the interposer substrate 30, for example, four semiconductor chips 10 of FIG. 1 (chips A to D) are stacked. On sides 1 and 3 of each semiconductor chip 10 along the X direction, as shown in FIG. 3B, through electrodes are connected between adjacent chips with a shift of one pitch in the X direction. This makes it possible to provide individual signals to the stacked chips.

【0047】図3(b)に積層したチップに個別に信号
を与える方法を説明する。但し、ここではN=1の場合
を示している。4つのチップA,B,C,Dの左端の電
極をそれぞれa1,b1,c1,d1とする。これらの
a1,b1,c1,d1は、チップとしては同じ位置に
ある電極である。貫通電極16が斜めに形成され、1段
で1ピッチずれた位置に接続されるため、チップAのa
1端子へはインターポーザ20のからの信号を、チッ
プBのb1端子へはインターポーザ20のからの信号
を、というように4つの電極a1〜d1に対して個別に
信号を与えることができる。
FIG. 3B illustrates a method of individually applying signals to the stacked chips. However, here, the case of N = 1 is shown. The leftmost electrodes of the four chips A, B, C, and D are referred to as a1, b1, c1, and d1, respectively. These electrodes a1, b1, c1, and d1 are electrodes located at the same position as a chip. Since the penetrating electrodes 16 are formed obliquely and connected to positions shifted by one pitch in one step, a
The signal from the interposer 20 can be given to one terminal, the signal from the interposer 20 can be given to the b1 terminal of the chip B, and so on, and the signals can be individually given to the four electrodes a1 to d1.

【0048】ここで、各々のチップ10において、X方
向の辺1,3上の外部電極17は4つおきに内部回路と
接続され、それ以外は内部回路とは接続されず、上下接
続用の配線として機能している。これにより、全く同じ
構成の4つのチップ10に対し、内部回路と接続されて
同じ位置に相当する各電極17に独立にアクセスするこ
とが可能となる。
Here, in each chip 10, the external electrodes 17 on the sides 1 and 3 in the X direction are connected to the internal circuit every fourth, and the other electrodes are not connected to the internal circuit, Functions as wiring. This makes it possible for the four chips 10 having exactly the same configuration to independently access each electrode 17 connected to the internal circuit and corresponding to the same position.

【0049】なお、辺2上の電極、辺4上の電極は、そ
のままでは上下に導通しない電極となる。これらの電極
は、積層実装されたチップ間でのみ接続したい端子とし
て用いることも可能であるが、チップ表面若しくは裏面
の再配線により同一位置にある電極が導通するように配
線することで、積層したチップに共通に与える信号端子
として使用することができる。共通に与える信号として
は、例えば電源,グランド,バス信号などである。
The electrodes on the side 2 and the electrodes on the side 4 are electrodes that do not conduct up and down as they are. These electrodes can be used as terminals to be connected only between the stacked chips, but they are stacked by wiring so that electrodes at the same position are electrically connected by rewiring on the front surface or the back surface of the chip. It can be used as a signal terminal commonly applied to chips. Commonly applied signals include, for example, power, ground, and bus signals.

【0050】このように本実施形態によれば、前記図1
に示すような半導体チップ10を複数個積層することに
より、X方向に沿った辺に関して、隣接する半導体チッ
プ同士で貫通電極16をX方向に1ピッチずらして電気
的に接続することができる。このため、積層した半導体
チップ10の個々の端子に、外部から独立に電気的にア
クセスすることが可能となる。そしてこの場合、各層に
チップ固有の再配線層を設けたり、チップをずらして配
置することが不要となり、これにより信頼性向上及び製
造コストの低減をはかることが可能となる。
As described above, according to the present embodiment, FIG.
By stacking a plurality of semiconductor chips 10 as shown in FIG. 1, adjacent semiconductor chips can be electrically connected to each other by shifting the through electrodes 16 by one pitch in the X direction. For this reason, it is possible to independently and electrically access the individual terminals of the stacked semiconductor chips 10 from the outside. In this case, it is not necessary to provide a chip-specific rewiring layer for each layer or to displace the chips in a displaced manner. This makes it possible to improve reliability and reduce manufacturing costs.

【0051】従来の主平面に対して垂直に伸びる構造の
貫通電極では、空間上主平面内の外部電極の座標が表裏
で同じであるためこのような独立のアクセスは、別途、
引き回し配線を設けるなどの工夫をしなければ不可能で
あった。本実施形態のこの特徴は、同一チップを積層し
たモジュールにおいて、各チップを電気的に機能させる
ために非常に重要なことである。
In a conventional through electrode having a structure extending perpendicularly to the main plane, since the coordinates of the external electrodes in the main plane in space are the same on the front and back, such independent access is separately required.
This would not be possible without other measures such as providing wiring. This feature of the present embodiment is very important for electrically operating each chip in a module in which the same chips are stacked.

【0052】(第3の実施形態)図4は、本発明の第3
の実施形態に係わる積層型半導体モジュールを説明する
ためのもので、(a)は平面図、(b)は(a)の矢視
A−A’断面図である。なお、図1と同一部分には同一
符号を付して、その詳しい説明は省略する。
(Third Embodiment) FIG. 4 shows a third embodiment of the present invention.
1A is a plan view, and FIG. 2B is a cross-sectional view taken along the line AA ′ of FIG. 1A. The same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0053】本実施形態に用いる半導体チップ40は、
前記図1に示す半導体チップ10と同様にチップ主面上
の周辺部の4辺に貫通孔12が設けられているが、貫通
孔12の傾斜方向が半導体チップ10とは異なってい
る。即ち、本実施形態に用いる半導体チップ40の貫通
孔12は、全てX方向に傾いているのではなく、X方向
に沿った2辺はX方向に傾けて設けられており、Y方向
に沿った2辺はY方向に傾けて設けられている。
The semiconductor chip 40 used in this embodiment is
Similar to the semiconductor chip 10 shown in FIG. 1, through holes 12 are provided on four peripheral sides on the chip main surface, but the inclination direction of the through holes 12 is different from that of the semiconductor chip 10. That is, the through holes 12 of the semiconductor chip 40 used in the present embodiment are not all inclined in the X direction, but two sides along the X direction are provided inclined in the X direction, and the through holes 12 along the Y direction are provided. The two sides are provided to be inclined in the Y direction.

【0054】このような構成であれば、X方向は勿論の
ことY方向に関しても、図4(b)に示すように、隣接
チップで貫通電極16を1ピッチずらして接続すること
ができる。従って、先の第2の実施形態と同様の効果が
得られる。
With such a configuration, as shown in FIG. 4 (b), the through electrodes 16 can be connected by shifting one pitch between adjacent chips in the Y direction as well as in the X direction. Therefore, the same effect as the second embodiment can be obtained.

【0055】なお、本発明は上述した各実施形態に限定
されるものではない。チップ本体に設ける貫通孔(貫通
電極)は、必ずしもチップ本体の周辺部に沿って1列設
けたものに限らず、複数列設けたものであってもよい。
さらに、必ずしも周辺部のみに限らず、周辺以外の部分
に設けることも可能である。また、貫通孔は、電極ピッ
チと同じだけずらす必要はなく、チップ本体の表裏にお
いて電極ピッチαの整数倍(N≧1)のずれを持つもの
であればよい。
The present invention is not limited to the above embodiments. The through holes (through electrodes) provided in the chip body are not necessarily provided in a single row along the periphery of the chip body, and may be provided in a plurality of rows.
Furthermore, it is not necessarily limited to only the peripheral part, but it is also possible to provide the part other than the peripheral part. Further, the through holes do not need to be shifted by the same amount as the electrode pitch, and may have a shift of an integral multiple of the electrode pitch α (N ≧ 1) on the front and back of the chip body.

【0056】また、実施形態では4層積層の例を説明し
たが、2層,3層、更には5層以上の積層に適用できる
のは勿論のことである。さらに、実施形態では、4層積
層のために4つおきに外部電極と内部回路との接続用の
配線を設けたが、2層の場合は2つおきに、3層の場合
は3つおきに、接続用の配線を設ければよい。つまり、
各々の半導体チップ毎に、貫通孔を傾けた方向と平行に
並ぶ貫通電極に対し、想定する積層段数×Nのピッチを
持って内部回路との接続用配線を設けるようにすればよ
い。
Further, in the embodiment, the example of the four-layer lamination has been described, but it is needless to say that the present invention can be applied to the lamination of two, three, or five or more layers. Further, in the embodiment, wirings for connecting the external electrodes and the internal circuit are provided every four layers for laminating four layers. However, every two layers are provided for every three layers, and every three layers are provided for every three layers. , A connection wiring may be provided. That is,
In each of the semiconductor chips, wiring for connecting to the internal circuit may be provided at a pitch of the expected number of laminations × N for through electrodes arranged in parallel to the direction in which the through holes are inclined.

【0057】その他、本発明の要旨を逸脱しない範囲
で、種々変形して実施することができる。
In addition, various modifications can be made without departing from the spirit of the present invention.

【0058】[0058]

【発明の効果】以上詳述したように本発明によれば、複
数個積層した場合における、接合外力によるダメージを
低減することができ、貫通電極の抜け落ちや界面の剥離
を防止することができ、信頼性向上及び製造コストの低
減をはかることができる。さらに、この半導体チップを
複数積層することにより、各層にチップ固有の再配線層
を設けたり、チップをずらして配置することなしに、半
導体チップの個々の端子に、外部から独立に電気的にア
クセスすることが可能となる。
As described above in detail, according to the present invention, it is possible to reduce the damage due to the external bonding force when a plurality of layers are stacked, to prevent the penetration electrodes from dropping off and the interface to be separated. The reliability can be improved and the manufacturing cost can be reduced. Furthermore, by stacking a plurality of these semiconductor chips, the individual terminals of the semiconductor chips can be electrically accessed from the outside independently without providing a chip-specific rewiring layer in each layer or displacing the chips. It is possible to do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態に係わる半導体チップの概略構
成を示す平面図と断面図。
FIG. 1 is a plan view and a cross-sectional view illustrating a schematic configuration of a semiconductor chip according to a first embodiment.

【図2】第1の実施形態の半導体チップの製造工程を示
す断面図。
FIG. 2 is a sectional view showing a manufacturing step of the semiconductor chip of the first embodiment.

【図3】第2の実施形態に係わる積層型半導体モジュー
ルの概略構成を示す平面図と断面図。
FIGS. 3A and 3B are a plan view and a cross-sectional view illustrating a schematic configuration of a stacked semiconductor module according to a second embodiment.

【図4】第3の実施形態に係わる積層型半導体モジュー
ルの概略構成を示す平面図と断面図。
FIG. 4 is a plan view and a cross-sectional view illustrating a schematic configuration of a stacked semiconductor module according to a third embodiment.

【図5】従来の積層型半導体モジュールの概略構成を示
す平面図と断面図。
FIG. 5 is a plan view and a cross-sectional view illustrating a schematic configuration of a conventional stacked semiconductor module.

【図6】従来の半導体チップを積層したモジュール構成
を示す断面図と斜視図。
FIG. 6 is a cross-sectional view and a perspective view showing a module configuration in which conventional semiconductor chips are stacked.

【図7】接合ツールを用いて複数チップを垂直実装する
際の問題を説明するための断面図。
FIG. 7 is a cross-sectional view for explaining a problem when a plurality of chips are vertically mounted using a joining tool.

【図8】TCPを積層したモジュール構成を示す斜視図
と断面図。
FIG. 8 is a perspective view and a cross-sectional view showing a module configuration in which TCPs are stacked.

【図9】半導体チップをずらして積層したモジュール構
成を示す平面図と断面図。
9A and 9B are a plan view and a cross-sectional view illustrating a module configuration in which semiconductor chips are stacked while being shifted;

【符号の説明】[Explanation of symbols]

10,40…半導体チップ 11…チップ本体 12…貫通孔 13,14,15…絶縁膜 16…貫通電極 17,18…外部電極 19…半導体ウェハ 20…補強部材 30…インターポーザ基板 50…接合ツール 10, 40 ... semiconductor chip 11 ... Chip body 12 ... Through-hole 13, 14, 15 ... insulating film 16 ... Through electrode 17, 18 ... external electrodes 19 ... Semiconductor wafer 20 ... Reinforcing member 30 ... interposer substrate 50 ... joining tool

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 知稔 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Tomomi Sato             22-22 Nagaikecho, Abeno-ku, Osaka City, Osaka Prefecture             In the company

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】所望の回路が形成されたチップ本体と、こ
のチップ本体の表裏を貫通した複数の貫通孔にそれぞれ
埋め込み形成された貫通電極とを備えた半導体チップで
あって、 前記貫通孔は、前記チップ本体の主平面と垂直な方向に
対し傾けて形成されていることを特徴とする半導体チッ
プ。
1. A semiconductor chip comprising: a chip body on which a desired circuit is formed; and a plurality of through-electrodes embedded in a plurality of through-holes penetrating the chip body. A semiconductor chip formed to be inclined with respect to a direction perpendicular to a main plane of the chip body.
【請求項2】前記貫通孔は、前記チップ本体の周辺部に
沿って一定ピッチで設けられていることを特徴とする請
求項1記載の半導体チップ。
2. The semiconductor chip according to claim 1, wherein said through holes are provided at a constant pitch along a peripheral portion of said chip body.
【請求項3】前記貫通孔は、表面側の開口と裏面側の開
口とが前記チップ本体の主平面と垂直な方向の投影に対
して重ならない位置に形成されていることを特徴とする
請求項1又は2記載の半導体チップ。
3. The through hole according to claim 1, wherein the opening on the front side and the opening on the back side do not overlap with respect to projection in a direction perpendicular to the main plane of the chip body. Item 3. A semiconductor chip according to item 1 or 2.
【請求項4】前記貫通孔は、一定ピッチαで複数個設け
られ、且つ前記チップ本体の表裏においてピッチαの整
数倍(N≧1)のずれを持つことを特徴とする請求項3
記載の半導体チップ。
4. The semiconductor device according to claim 3, wherein a plurality of the through holes are provided at a constant pitch α, and the front and back surfaces of the chip body have a shift of an integral multiple of the pitch α (N ≧ 1).
The semiconductor chip according to the above.
【請求項5】前記チップ本体の表裏面に、前記貫通電極
の各々の端部にそれぞれ電気的に接続される外部電極が
設けられていることを特徴とする請求項1記載の半導体
チップ。
5. The semiconductor chip according to claim 1, wherein external electrodes electrically connected to respective ends of the through electrodes are provided on the front and back surfaces of the chip body.
【請求項6】請求項4又は5記載の半導体チップを複数
個積層してなる積層型半導体モジュールであって、前記
貫通電極の少なくとも一部は、隣接する半導体チップ同
士でピッチαの整数倍(N≧1)だけ、対応する端子が
ずれて電気的に接続されていることを特徴とする積層型
半導体モジュール。
6. A stacked semiconductor module comprising a plurality of stacked semiconductor chips according to claim 4 or 5, wherein at least a part of said through electrode is an integral multiple of a pitch α between adjacent semiconductor chips. A stacked semiconductor module, wherein the corresponding terminals are electrically connected by being shifted by N ≧ 1).
【請求項7】前記貫通孔は、前記チップ本体の周辺部の
X方向に沿った2辺とX方向に直交するY方向に沿った
2辺に形成され、全ての貫通孔はX方向に傾けて形成さ
れ、X方向に沿った2辺において前記貫通電極は、隣接
する半導体チップ同士で対応する端子がずれて電気的に
接続されていることを特徴とする請求項6記載の積層型
半導体モジュール。
7. The through holes are formed on two sides along the X direction of the peripheral portion of the chip body and two sides along the Y direction orthogonal to the X direction, and all the through holes are inclined in the X direction. 7. The stacked semiconductor module according to claim 6, wherein the through electrodes are electrically connected on two sides along the X direction, with corresponding terminals shifted between adjacent semiconductor chips. .
【請求項8】前記半導体チップ毎に、X方向に沿った2
辺に形成された貫通電極に対し、想定する積層段数×N
のピッチを持って内部回路との接続用の電極が設けられ
ていることを特徴とする請求項7記載の積層型半導体モ
ジュール。
8. A semiconductor device according to claim 2, wherein each of said semiconductor chips has
With respect to the through electrodes formed on the sides, the assumed number of lamination steps × N
8. The stacked semiconductor module according to claim 7, wherein electrodes for connection to an internal circuit are provided at a pitch of:
【請求項9】Y方向に沿った2辺に形成された貫通電極
は、積層されたチップ間のみの信号のやり取りに用いら
れることを特徴とする請求項7記載の積層型半導体モジ
ュール。
9. The stacked semiconductor module according to claim 7, wherein the through electrodes formed on two sides along the Y direction are used for exchanging signals only between the stacked chips.
【請求項10】Y方向に沿った2辺に形成された貫通電
極は、チップ表面若しくはチップ裏面の再配線により、
同一位置のバンプに接続されることを特徴とする請求項
7記載の積層型半導体モジュール。
10. A through electrode formed on two sides along the Y direction is formed by rewiring on the front surface or the rear surface of the chip.
The stacked semiconductor module according to claim 7, wherein the stacked semiconductor modules are connected to bumps at the same position.
【請求項11】X方向に沿った2辺に形成された貫通電
極は、各々のチップに個別に与えるべき信号が入力され
るものであることを特徴とする請求項7記載の積層型半
導体モジュール。
11. The stacked semiconductor module according to claim 7, wherein the through electrodes formed on two sides along the X direction receive signals to be individually applied to each chip. .
【請求項12】Y方向に沿った2辺に形成された貫通電
極は、全てのチップに共通に与えるべき信号が入力され
るものであることを特徴とする請求項7記載の積層型半
導体モジュール。
12. The stacked semiconductor module according to claim 7, wherein the through electrodes formed on two sides along the Y direction receive signals to be commonly applied to all chips. .
【請求項13】前記貫通孔は、前記チップ本体の周辺の
X方向に沿った2辺とX方向に直交するY方向に沿った
2辺に形成され、X方向に沿った2辺ではX方向に傾け
て形成され、Y方向に沿った2辺ではY方向に傾けて形
成され、各々の辺において貫通電極は、隣接する半導体
チップ同士で対応する端子がずれて電気的に接続されて
いることを特徴とする請求項6記載の積層型半導体モジ
ュール。
13. The through hole is formed on two sides along the X direction around the periphery of the chip body and two sides along the Y direction orthogonal to the X direction, and on two sides along the X direction in the X direction. The two sides along the Y direction are formed so as to be inclined in the Y direction, and in each side, the through electrodes are electrically connected to adjacent semiconductor chips with corresponding terminals being shifted from each other. The stacked semiconductor module according to claim 6, wherein:
【請求項14】前記半導体チップ毎に、前記貫通孔を傾
けた方向と平行に並ぶ貫通電極に対し、想定する積層段
数×Nのピッチを持って内部回路との接続用の電極が設
けられていることを特徴とする請求項13記載の積層型
半導体モジュール。
14. An electrode for connection to an internal circuit is provided for each of the semiconductor chips at a pitch of the expected number of laminations × N with respect to through electrodes arranged in parallel to the direction in which the through holes are inclined. 14. The stacked semiconductor module according to claim 13, wherein:
【請求項15】前記貫通電極の内の少なくとも1組は、
各々のチップに個別に与えるべき信号が入力されるもの
であることを特徴とする請求項13記載の積層型半導体
モジュール。
15. At least one set of the through electrodes includes:
14. The stacked semiconductor module according to claim 13, wherein a signal to be individually applied to each chip is input.
JP2002152253A 2002-05-27 2002-05-27 Multilayer semiconductor module Expired - Fee Related JP3896038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002152253A JP3896038B2 (en) 2002-05-27 2002-05-27 Multilayer semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002152253A JP3896038B2 (en) 2002-05-27 2002-05-27 Multilayer semiconductor module

Publications (2)

Publication Number Publication Date
JP2003347502A true JP2003347502A (en) 2003-12-05
JP3896038B2 JP3896038B2 (en) 2007-03-22

Family

ID=29769626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002152253A Expired - Fee Related JP3896038B2 (en) 2002-05-27 2002-05-27 Multilayer semiconductor module

Country Status (1)

Country Link
JP (1) JP3896038B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103521A (en) * 2005-09-30 2007-04-19 Oki Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP2009004723A (en) * 2007-06-20 2009-01-08 Hynix Semiconductor Inc Through silicon via chip stack package
US7989706B2 (en) 2004-11-19 2011-08-02 Oki Semiconductor Co., Ltd. Circuit board with embedded component and method of manufacturing same
US8138023B2 (en) 2005-03-30 2012-03-20 Lapis Semiconductor Co., Ltd. Method for forming laminated structure and method for manufacturing semiconductor device using the method thereof
US20120205148A1 (en) * 2009-10-23 2012-08-16 Fujikura Ltd. Device packaging structure and device packaging method
US20130328214A1 (en) * 2009-09-09 2013-12-12 Dai Nippon Printing Co., Ltd. Through-hole electrode substrate
US9691737B2 (en) 2014-06-05 2017-06-27 Samsung Electronics Co., Ltd. Semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100042021A (en) 2008-10-15 2010-04-23 삼성전자주식회사 Semiconductor chip, stack module, memory card, and method of fabricating the semiconductor chip
WO2011004559A1 (en) 2009-07-10 2011-01-13 株式会社フジクラ Through-wiring board and method of manufacturing same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8381394B2 (en) 2004-11-19 2013-02-26 Oki Semiconductor Co., Ltd. Circuit board with embedded component and method of manufacturing same
US7989706B2 (en) 2004-11-19 2011-08-02 Oki Semiconductor Co., Ltd. Circuit board with embedded component and method of manufacturing same
US8138023B2 (en) 2005-03-30 2012-03-20 Lapis Semiconductor Co., Ltd. Method for forming laminated structure and method for manufacturing semiconductor device using the method thereof
US7521807B2 (en) 2005-09-30 2009-04-21 Oki Semiconductor Co., Ltd. Semiconductor device with inclined through holes
JP4564434B2 (en) * 2005-09-30 2010-10-20 Okiセミコンダクタ株式会社 Semiconductor device and manufacturing method of semiconductor device
JP2007103521A (en) * 2005-09-30 2007-04-19 Oki Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP2009004723A (en) * 2007-06-20 2009-01-08 Hynix Semiconductor Inc Through silicon via chip stack package
US9443788B2 (en) * 2009-09-09 2016-09-13 Dai Nippon Printing Co., Ltd. Through-hole electrode substrate
US20130328214A1 (en) * 2009-09-09 2013-12-12 Dai Nippon Printing Co., Ltd. Through-hole electrode substrate
US10014244B2 (en) 2009-09-09 2018-07-03 Dai Nippon Printing Co., Ltd. Through-hole electrode substrate
US10600728B2 (en) 2009-09-09 2020-03-24 Dai Nippon Printing Co., Ltd. Through-hole electrode substrate
US20120205148A1 (en) * 2009-10-23 2012-08-16 Fujikura Ltd. Device packaging structure and device packaging method
US9691737B2 (en) 2014-06-05 2017-06-27 Samsung Electronics Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JP3896038B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP3245006B2 (en) Manufacturing method of monolithic electronic module and work piece for facilitating the manufacturing
US5495397A (en) Three dimensional package and architecture for high performance computer
US6548391B1 (en) Method of vertically integrating electric components by means of back contacting
CN101515554B (en) Semiconductor device manufacturing mehtod, semiconductor device, and wiring board
US5424920A (en) Non-conductive end layer for integrated stack of IC chips
US8970047B2 (en) Method for creating a 3D stacked multichip module
US7535109B2 (en) Die assembly having electrical interconnect
KR100435813B1 (en) Multi chip package using metal bar and manufacturing method thereof
EP2596689B1 (en) Microelectronic elements with post-assembly planarization
TWI229890B (en) Semiconductor device and method of manufacturing same
US5744862A (en) Reduced thickness semiconductor device with IC packages mounted in openings on substrate
US9847248B2 (en) Method of making a stacked device assembly
US20040115867A1 (en) Semiconductor device and method for manufacturing same
US7700410B2 (en) Chip-in-slot interconnect for 3D chip stacks
JP2002305283A (en) Three-dimensional multichip package and method of manufacturing the same
US8580581B2 (en) Substrate for electronic device, stack for electronic device, electronice device, and method for manufacturing the same
JP2004342883A (en) Semiconductor device and its fabricating process
JP2001274288A (en) Integrated circuit chip carrier structure
JP2004342861A (en) Chip type electronic component, dummy wafer, methods of manufacturing them, and packaging structure of electronic component
JP3896038B2 (en) Multilayer semiconductor module
JP2003142647A (en) Semiconductor device
CN116686085A (en) Chip packaging structure, manufacturing method thereof and electronic equipment
TW200939442A (en) Semiconductor chip having TSV (through silicon via) and stacked assembly including the chips
TWI611530B (en) Thermally enhanced face-to-face semiconductor assembly with heat spreader and method of making the same
US11621219B2 (en) Method and apparatus for through silicon die level interconnect

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees