JP2003346905A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2003346905A
JP2003346905A JP2002155035A JP2002155035A JP2003346905A JP 2003346905 A JP2003346905 A JP 2003346905A JP 2002155035 A JP2002155035 A JP 2002155035A JP 2002155035 A JP2002155035 A JP 2002155035A JP 2003346905 A JP2003346905 A JP 2003346905A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
battery
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002155035A
Other languages
Japanese (ja)
Other versions
JP2003346905A5 (en
Inventor
Hiroshi Wada
和田  弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002155035A priority Critical patent/JP2003346905A/en
Publication of JP2003346905A publication Critical patent/JP2003346905A/en
Publication of JP2003346905A5 publication Critical patent/JP2003346905A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the life of a nonaqueous electrolyte secondary battery. <P>SOLUTION: The nonaqueous electrolyte secondary battery uses a spinel- structure lithium-manganese compound oxide as a positive electrode active material, and a carbon material as a negative electrode active material. The discharging capacity of the positive electrode active material when the battery is charged so that the open terminal voltage after charging becomes 4.1 V is 70 to 80% of the discharging capacity of the positive electrode active material in discharging at a voltage between 4.3 V and 3.0 V. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スピネル構造のリ
チウムマンガン複合酸化物を正極活物質とする非水電解
質二次電池に関する。
The present invention relates to a nonaqueous electrolyte secondary battery using a lithium manganese composite oxide having a spinel structure as a positive electrode active material.

【0002】[0002]

【従来の技術】非水電解質二次電池は、軽量で高エネル
ギー密度を有するという特徴から、携帯電話等の電源と
して普及している。この非水電解質二次電池は、リチウ
ム又はリチウム合金、リチウムを含有する負極と、リチ
ウム複合酸化物を含有する正極と、上記負極と上記正極
との間に配されたセパレータと、非水電解液とを備えた
二次電池である。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries are widely used as power sources for mobile phones and the like because of their characteristics of being lightweight and having a high energy density. This non-aqueous electrolyte secondary battery includes a lithium or lithium alloy, a negative electrode containing lithium, a positive electrode containing a lithium composite oxide, a separator disposed between the negative electrode and the positive electrode, and a non-aqueous electrolyte. And a secondary battery comprising:

【0003】携帯電話等で多く用いられている非水電解
質二次電池は、小型非水電解質二次電池と呼ばれている
もので、正極活物質としてリチウムコバルト複合酸化物
が用いられ、負極活物質として黒鉛系炭素材料が用いら
れているもので、電池容量は1Ah程度と比較的小さ
く、通常使用時の放電率は1C未満と比較的小さなもの
である。
A non-aqueous electrolyte secondary battery that is often used in mobile phones and the like is called a small non-aqueous electrolyte secondary battery, and uses a lithium-cobalt composite oxide as a positive electrode active material and a negative electrode active battery. A graphite-based carbon material is used as the substance. The battery capacity is relatively small at about 1 Ah, and the discharge rate during normal use is relatively small at less than 1 C.

【0004】[0004]

【発明が解決しようとする課題】上記のような小型非水
電解質二次電池に対し、電気自動車等の電動車両や非常
用無停電電源装置に用いることのできる大型非水電解質
二次電池の実用化が望まれている。このような大型非水
電解質二次電池には、その用途から小型非水電解質二次
電池に求められるよりもより長寿命であり、高率放電が
可能であるという性能が求められ、例えば寿命10年、
5C放電可能といったような性能が求められる。
In contrast to the above-mentioned small non-aqueous electrolyte secondary battery, the practical use of a large non-aqueous electrolyte secondary battery which can be used for electric vehicles such as electric vehicles and emergency uninterruptible power supplies. Is desired. Such a large non-aqueous electrolyte secondary battery is required to have a longer life than that required for a small non-aqueous electrolyte secondary battery for its use and to be capable of discharging at a high rate. Year,
Performance such as 5C discharge is required.

【0005】さらに、電池容量が大きいことや、将来の
需要増大時の環境負荷も考えることが必要であることか
ら、正極活物質としてリチウムマンガン複合酸化物を用
いることが望まれている。
[0005] Further, since it is necessary to consider the large battery capacity and the environmental load when the future demand increases, it is desired to use a lithium manganese composite oxide as the positive electrode active material.

【0006】しかしながら、既に広く用いられている小
型非水電解質二次電池をそのまま大きくしただけでは、
必要とされる寿命性能や放電性能を満たすことができ
ず、さらに、リチウムマンガン複合酸化物を用いた場合
には、より寿命性能が悪くなってしまうというのが現状
であった。
However, simply increasing the size of a small non-aqueous electrolyte secondary battery that is already widely used,
At present, the required life performance and discharge performance cannot be satisfied, and further, the life performance deteriorates when a lithium manganese composite oxide is used.

【0007】以上に鑑み、本発明は、スピネル構造のリ
チウムマンガン複合酸化物を正極活物質とし、5Ah以
上の容量(1C放電時)を備え、1C放電時の容量に対
する3C放電時の容量の比率が90%以上となるレート
性能を満たす非水電解質二次電池において、その寿命性
能を改善することを目的とする。
In view of the above, the present invention uses a lithium manganese composite oxide having a spinel structure as a positive electrode active material, has a capacity of 5 Ah or more (at 1C discharge), and has a ratio of a capacity at 3C discharge to a capacity at 1C discharge. It is an object of the present invention to improve the life performance of a non-aqueous electrolyte secondary battery satisfying a rate performance of 90% or more.

【0008】[0008]

【課題を解決するための手段】本願発明は、正極活物質
にスピネル構造のリチウムマンガン複合酸化物、負極活
物質に炭素材料を用いた非水電解質二次電池であって、
前記非水電解質二次電池を充電後の開放端子電圧が4.
1Vとなるように充電した際の正極活物質の放電容量
が、4.3Vと3.0Vの間で放電した際の正極活物質
の放電容量の70から80%であることを特徴とする非
水電解質二次電池である。
The present invention relates to a nonaqueous electrolyte secondary battery using a lithium manganese composite oxide having a spinel structure as a positive electrode active material and a carbon material as a negative electrode active material,
3. The open terminal voltage after charging the non-aqueous electrolyte secondary battery is 4.
The discharge capacity of the positive electrode active material when charged to 1 V is 70 to 80% of the discharge capacity of the positive electrode active material when discharged between 4.3 V and 3.0 V. It is a water electrolyte secondary battery.

【0009】ここで、「充電後の開放端子電圧が4.1
Vとなるように充電した際の正極活物質の放電容量」は
1C放電を基準とする。また、「4.3Vと3.0Vの
間で放電した際の正極活物質の放電容量」に対する「」
充電後の開放端子電圧が4.1Vとなるように充電した
際の正極活物質の放電容量」の比を「利用容量比
(%)」と定義する。
Here, "the open terminal voltage after charging is 4.1
The “discharge capacity of the positive electrode active material when charged to V” is based on 1C discharge. In addition, "" with respect to "the discharge capacity of the positive electrode active material when discharged between 4.3 V and 3.0 V"
The ratio of the “discharge capacity of the positive electrode active material when charged so that the open terminal voltage after charging is 4.1 V” is defined as “utilized capacity ratio (%)”.

【0010】このような利用容量の範囲で正極の充放電
を行うことにより、正極活物質構造の破壊やMnの溶出
が抑制され、電池の容量維持率が改善される。
[0010] By charging and discharging the positive electrode in such a range of the used capacity, destruction of the positive electrode active material structure and elution of Mn are suppressed, and the capacity retention rate of the battery is improved.

【0011】特に、上記リチウムマンガン複合酸化物と
してLi1+xMn2−x−y(0.05≦x
≦0.15、0.02≦y≦0.15)で表されるもの
を用いることにより、電池の容量維持率がさらに改善さ
れる。
Particularly, as the lithium-manganese composite oxide, Li 1 + x Mn 2- xy My O 4 (0.05 ≦ x
≤ 0.15, 0.02 ≤ y ≤ 0.15), the capacity retention of the battery is further improved.

【0012】[0012]

【発明の実施の形態】本発明の非水電解質二次電池で
は、4.3Vから3.0Vの間で放電させた際の正極活
物質の放電容量に対する充電後の開放端子電圧が4.1
Vとなるように充電した際の正極活物質の放電容量(1
Cを基準とする)の比、すなわち利用容量比を70%か
ら80%となるようにする。
BEST MODE FOR CARRYING OUT THE INVENTION In the nonaqueous electrolyte secondary battery of the present invention, the open terminal voltage after charging with respect to the discharge capacity of the positive electrode active material when discharged between 4.3 V and 3.0 V is 4.1.
V, the discharge capacity of the positive electrode active material (1
C), that is, the used capacity ratio is 70% to 80%.

【0013】なお、4.3Vから3.0Vの間で電流を
変化させて放電容量を測定した場合、電流値が小さくな
るにしたがって正極活物質の放電容量は大きくなるが、
ある電流値以下では正極活物質の放電容量は飽和に達
し、ほぼ一定値となる。ここでは、「4.3Vから3.
0Vの間で放電させた際の正極活物質の放電容量」と
は、この飽和に達した正極活物質の放電容量を意味する
ものとする。
When the discharge capacity is measured by changing the current between 4.3 V and 3.0 V, the discharge capacity of the positive electrode active material increases as the current value decreases.
Below a certain current value, the discharge capacity of the positive electrode active material reaches saturation and becomes almost constant. Here, "4.3V to 3.
The term “discharge capacity of the positive electrode active material when discharged between 0 V” means the discharge capacity of the positive electrode active material that has reached saturation.

【0014】このようにするには、例えば、用いる負極
活物質炭素材料の不可逆容量を調整したり、負極活物質
量を相対的に増やすようにする。ただ、不可逆容量を増
やせば利用率は小さくなるが、利用率を小さくするとい
うことは正極のエネルギー密度を小さくすることになる
から、70%より小さくすることは意味がない。これ以
上小さくしても寿命は変わらないからである。
For this purpose, for example, the irreversible capacity of the negative electrode active material carbon material to be used is adjusted, or the amount of the negative electrode active material is relatively increased. However, if the irreversible capacity is increased, the utilization rate decreases. However, since decreasing the utilization rate decreases the energy density of the positive electrode, it is meaningless to reduce the utilization rate to less than 70%. The reason is that the life is not changed even if the length is further reduced.

【0015】本発明で用いられる正極活物質としては、
スピネル構造のLi1+xMn2− x−y
(0.05≦x≦0.15、0.02≦y≦0.1
5、Mは、Ti、Cr、Fe、Co、Ni、Zn、A
l、Mgの中から選んだ少なくとも1種以上の金属元
素)が好ましく、特に金属元素Mが、寿命をより長くし
重負荷特性も良好となることから、Alであるものがよ
り好ましい。なお、基本的に前記組成で示されるもので
あるが、酸素サイトの一部が硫黄やハロゲン元素で置換
されているもの、酸素量に多少の不定比性のあるものも
好ましい。
The positive electrode active material used in the present invention includes:
Li 1 + x Mn 2 - xy My O having a spinel structure
4 (0.05 ≦ x ≦ 0.15, 0.02 ≦ y ≦ 0.1
5, M is Ti, Cr, Fe, Co, Ni, Zn, A
and at least one metal element selected from Mg) is preferable. In particular, the metal element M is more preferably Al because the metal element M has a longer life and good heavy load characteristics. It is to be noted that, although it is basically represented by the above-mentioned composition, it is also preferable that the oxygen site is partially replaced by sulfur or a halogen element, or that the oxygen content is somewhat non-stoichiometric.

【0016】また、リチウムマンガン複合酸化物の粒子
を用いる場合、粒子の外観が多角形状の一次粒子が集合
して表面に多数の凹凸を有してなる球状二次粒子となっ
たもので、平均粒径が10μm〜20μmのものを用い
るのがより好ましく、比表面積は0.1m/g以上
1.0m/g以下のものを用いるのがより好ましい。
このような粉体を用いることで巻回構造の電極を剥離等
が生じない良好な状態で作製することが容易となり、寿
命性能を良好に維持することができる。また、比表面積
は、0.1m/gより小さくなると、高率放電性能が
悪くなり、1.0m/gを越えると寿命が急激に悪く
なる。
When lithium manganese composite oxide particles are used, primary particles having a polygonal appearance are aggregated into spherical secondary particles having a large number of irregularities on the surface. It is more preferable to use one having a particle size of 10 μm to 20 μm, and it is more preferable to use one having a specific surface area of 0.1 m 2 / g or more and 1.0 m 2 / g or less.
By using such a powder, it becomes easy to manufacture the electrode having the wound structure in a favorable state in which peeling or the like does not occur, and the life performance can be favorably maintained. When the specific surface area is smaller than 0.1 m 2 / g, the high rate discharge performance is deteriorated, and when the specific surface area exceeds 1.0 m 2 / g, the life is sharply deteriorated.

【0017】上記のようなリチウムマンガン複合酸化物
粒子は、例えば、リチウム、マンガン及び金属元素を含
有する出発原料を混合後、酸素存在下で焼成・冷却する
ことによって製造することができる。出発原料として用
いるリチウム化合物としては、LiCO、LiNO
、LiOH、LiCl、LiOがあり、出発原料と
して用いるマンガン化合物としては、Mn、Mn
等のマンガン酸化物、MnCO、Mn(NO
等がある。また、他金属元素の出発原料として用いる
他金属元素の化合物としては、酸化物、水酸化物、硝酸
塩、炭酸塩、ジカルボン酸塩、脂肪酸塩、アンモニウム
塩等が挙げられる。
The lithium-manganese composite oxide particles as described above can be produced, for example, by mixing starting materials containing lithium, manganese and a metal element, followed by firing and cooling in the presence of oxygen. Lithium compounds used as starting materials include Li 2 CO 3 and LiNO
3, LiOH, LiCl, there are Li 2 O, as the manganese compound used as a starting material, Mn 2 O 3, Mn
Manganese oxides such as O 2 , MnCO 3 , Mn (NO 3 )
There are 2 etc. Examples of the compound of the other metal element used as a starting material of the other metal element include an oxide, a hydroxide, a nitrate, a carbonate, a dicarboxylate, a fatty acid salt, and an ammonium salt.

【0018】本発明で用いられる炭素材料としては、リ
チウムイオンが挿入脱離するものであれば特に限定され
ないが、C軸方向の面間隔d(002)が0.337n
m以下の炭素材料を、負極活物質の90%以上となる割
合で含ませて用いるのが特に好ましい。これは、このよ
うにすることで大きなエネルギー密度と高い放電レート
性能を有する電池を作製できるからである。
The carbon material used in the present invention is not particularly limited as long as it allows lithium ions to be inserted and desorbed, but the plane distance d (002) in the C-axis direction is 0.337 n.
It is particularly preferable to use a carbon material of m or less in a proportion of 90% or more of the negative electrode active material. This is because a battery having a large energy density and a high discharge rate performance can be manufactured in this manner.

【0019】さらに負極活物質に、C軸方向の面間隔d
(002)が0.337nm以下の炭素材料で、球状ま
たは塊状のものと鱗片状のものとを用いるようにするの
がより好ましい。こうすることで、放電性能をより良好
に保つことが可能となる。
Further, the surface distance d in the C-axis direction is added to the negative electrode active material.
It is more preferable to use a carbon material having a (002) of 0.337 nm or less, which is spherical or massive and scaly. This makes it possible to maintain better discharge performance.

【0020】球状炭素材料としては、例えば、メソフェ
ーズピッチ小球体を焼成したもの、塊状炭素材料として
は、例えば、コークスを焼成して粉砕したものを用いる
ことができ、その粒径としては、40μm以下のものを
用いるのが好ましく、平均粒径としては、20〜35μ
mのものを用いるのがよい。これは、大電流、特に5C
以上の大電流での使用を前提とする電池では、負極の炭
素材料層の厚さを片面で80μm以下とするのが好まし
く、上記粒径以下のものを用いることで塗工性を良好に
でき、膜密度も大きくできるからである。また、平均粒
径20μm以下の場合、寿命が悪くなりやすいからであ
る。
As the spherical carbon material, for example, a material obtained by firing mesophase pitch small spheres can be used, and as the massive carbon material, for example, a material obtained by firing and grinding pulverized coke can be used. It is preferable to use those having an average particle size of 20 to 35 μm.
m. This is a large current, especially 5C
In a battery premised on use at a large current as described above, it is preferable that the thickness of the carbon material layer of the negative electrode be 80 μm or less on one side, and that the use of a material having the above particle size or less can improve coating properties. This is because the film density can be increased. If the average particle size is 20 μm or less, the life is likely to be deteriorated.

【0021】鱗片状炭素材料としては、鱗片状天然黒鉛
または鱗片状人造黒鉛を用いるのが好ましい。また、面
方向の大きさは、球状・塊状炭素材料の粒径よりも小さ
い方が容量密度を大きくできるため、その平均粒径とし
て、球状または塊状炭素材料の平均粒径、またはこれら
混合物の平均粒径よりも小さいものを用いるのが好まし
い。なお、平均粒径は、例えば、レーザー回折/散乱式
粒度分布測定装置を用いて測定できる。これは他でも同
様である。
As the scaly carbon material, scaly natural graphite or scaly artificial graphite is preferably used. The size in the plane direction is smaller than the particle diameter of the spherical or massive carbon material, so that the capacity density can be increased. Therefore, the average particle diameter is the average particle diameter of the spherical or massive carbon material, or the average of these mixtures. It is preferable to use one smaller than the particle size. The average particle size can be measured using, for example, a laser diffraction / scattering type particle size distribution analyzer. This is the same in other cases.

【0022】上記鱗片状炭素材料の含有重量は、球状
(または塊状)炭素材料の含有重量よりも少なくするの
が好ましく、より好ましくは、リチウムイオンをドープ
及び脱ドープ可能な炭素材料総重量に対して、重量比で
30%以下、さらに好ましくは、25%以下とするのが
良い。これは、量が多くなると負極をプレスする際に鱗
片状炭素材料が配向して大電流での充放電容量が小さく
なるからである。
The content of the flaky carbon material is preferably smaller than the content of the spherical (or massive) carbon material, and more preferably the total weight of the carbon material capable of doping and undoping lithium ions. Therefore, the weight ratio is preferably 30% or less, more preferably 25% or less. This is because when the amount increases, the flaky carbon material is oriented when the negative electrode is pressed, and the charge / discharge capacity under a large current decreases.

【0023】正極および負極は、金属箔の集電体の上に
各活物質合剤を塗布することにより形成し、正極の多孔
度は、31〜36%、より好ましくは、32〜35%と
するのが良く、負極の多孔度は、32〜37%より好ま
しくは33〜36%とするのが良い。多孔度は、小さす
ぎても大きすぎても電池の寿命が悪くなるからであり、
さらに、大きくすると電池のエネルギー密度が小さくな
るからである。
The positive electrode and the negative electrode are formed by coating each active material mixture on a current collector of a metal foil, and the porosity of the positive electrode is 31 to 36%, more preferably 32 to 35%. The porosity of the negative electrode is preferably 32 to 37%, more preferably 33 to 36%. This is because the porosity is too small or too large to shorten the life of the battery,
Further, as the size increases, the energy density of the battery decreases.

【0024】また、負極の多孔度を正極の多孔度より大
きくするのが、より長寿命で高率放電性能の良好な電池
とするために好ましく、負極活物質層の片面厚さは80
μm以下とするのが良い。また、正極と負極の多孔度の
差は3%以下であるのが特に好ましい。これは、液量の
バランスがより良好になって寿命が長くなるからであ
る。
It is preferable that the porosity of the negative electrode is larger than the porosity of the positive electrode in order to obtain a battery having a longer life and good high-rate discharge performance.
It is better to be less than μm. It is particularly preferable that the difference in porosity between the positive electrode and the negative electrode is 3% or less. This is because the balance of the liquid amount becomes better and the life is prolonged.

【0025】なお、多孔度は、塗布重量と合剤層の厚さ
を制御することで調整できる。例えば、(1−(塗布重
量/(合剤層体積×合剤真密度)))×100(%)と
して多孔度を計算し、これにより制御する。また、電池
での多孔度を測定する場合には、例えば、放電状態で電
極を取り出して水銀ポロシメーターにより測定する。
The porosity can be adjusted by controlling the coating weight and the thickness of the mixture layer. For example, the porosity is calculated as (1− (application weight / (mixture layer volume × mixture true density))) × 100 (%), and the porosity is controlled by this. When the porosity of a battery is measured, for example, the electrode is taken out in a discharged state and measured by a mercury porosimeter.

【0026】本発明電池を作製する際に用いるセパレー
タとしては、例えばポリエチレンフィルム、ポリプロピ
レンフィルム等の微孔性ポリオレフィンフィルムを用い
ることができ、好ましくは、上記負極の活物質層の厚さ
(片面)と上記正極の活物質層の厚さ(片面)との和を
aとし、上記セパレータの厚さをbとしたときに、0.
05≦b/(a+b)≦0.25とし、さらにセパレー
タの透気度を300〜700sec/100ccとする
のが良い。このように活物質層とセパレータの厚さの関
係とセパレータの透気度とを規定することにより、電池
の長寿命と良好な高率放電性能が達成される。
As a separator used for producing the battery of the present invention, for example, a microporous polyolefin film such as a polyethylene film or a polypropylene film can be used, and preferably, the thickness (one side) of the negative electrode active material layer When the sum of the thickness of the active material layer of the positive electrode and the thickness (one side) of the positive electrode is defined as a, and the thickness of the separator is defined as b, 0.
It is preferable that the relation of 05 ≦ b / (a + b) ≦ 0.25 is satisfied, and the air permeability of the separator is 300 to 700 sec / 100 cc. By thus defining the relationship between the thickness of the active material layer and the thickness of the separator and the air permeability of the separator, a long life of the battery and good high-rate discharge performance can be achieved.

【0027】非水溶媒としては、例えば、炭酸プロピレ
ン、炭酸エチレン等の環状炭酸エステルや、炭酸ジエチ
ル、炭酸ジメチル等の鎖状炭酸エステル、プロピオン酸
メチルや酪酸メチル等のカルボン酸エステル、γ−ブチ
ルラクトン、スルホラン、2−メチルテトラヒドロフラ
ンやジメトキシエタン等のエーテル類等を使用すること
ができるが、特に本発明電池の場合、炭酸エチレンと鎖
状炭酸エステルとの混合溶媒を用いるのが良く、本願発
明の効果がよく発揮される。さらに、上記非水溶媒に
は、ビニレンカーボネートを添加するのが好ましく、電
解質としては、六フッ化リン酸リチウムを用いたものが
よい。
Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate and ethylene carbonate, chain carbonates such as diethyl carbonate and dimethyl carbonate, carboxylate esters such as methyl propionate and methyl butyrate, and γ-butyl. Lactone, sulfolane, ethers such as 2-methyltetrahydrofuran and dimethoxyethane can be used. In particular, in the case of the battery of the present invention, a mixed solvent of ethylene carbonate and a chain carbonate is preferably used. The effect of is exhibited well. Further, vinylene carbonate is preferably added to the non-aqueous solvent, and an electrolyte using lithium hexafluorophosphate is preferred as the electrolyte.

【0028】電解液の量は、Ah当たり6g〜8gとす
るのが良く、より好ましくは、Ah当たり6.3g〜
7.5gとするのが寿命を良くできるので良い。
The amount of the electrolyte is preferably from 6 g to 8 g per Ah, and more preferably from 6.3 g to Ah.
7.5 g is preferable because the life can be improved.

【0029】図1は、本願発明に係る電池例を示す分解
斜視図である。この非水電解質二次電池は、長円筒形の
巻回型の発電要素1を4個密着して並べ並列接続したも
のである。これらの発電要素1は、両端面部に配置され
た集電接続体2にそれぞれ正負の電極が接続固定されて
並列接続されている。集電接続体2は、正極側の場合に
はアルミニウム板、負極側の場合には銅板からなり、水
平に配置されたほぼ二等辺三角形の、板状の本体の底辺
部から下方に向けて簾状に突出した接続部に、発電要素
1の正極又は負極が接続固定されている。これらの集電
接続体2の、板状の本体は、それぞれ下部絶縁封止板3
を介して蓋板4の裏面の両端部に配置される。蓋板4
は、矩形のステンレス鋼板からなり、発電要素1を収納
するステンレス製の容器である電池筐体5の上端開口部
に嵌め込まれて溶接により固着される。この蓋板4と電
池筐体5は、非水電解質二次電池の電池ケースを構成す
る。
FIG. 1 is an exploded perspective view showing an example of a battery according to the present invention. This non-aqueous electrolyte secondary battery is a battery in which four long cylindrical wound power generating elements 1 are closely arranged and connected in parallel. These power generating elements 1 are connected in parallel with positive and negative electrodes connected and fixed to current collectors 2 arranged at both end faces. The current collecting connector 2 is made of an aluminum plate on the positive electrode side and a copper plate on the negative electrode side, and is a horizontal, approximately isosceles triangle. The positive electrode or the negative electrode of the power generation element 1 is connected and fixed to the connection portion protruding in the shape. The plate-shaped main bodies of these current collectors 2 are respectively provided with lower insulating sealing plates 3.
Are disposed at both ends of the back surface of the cover plate 4. Cover plate 4
Is made of a rectangular stainless steel plate, is fitted into an upper end opening of a battery case 5 which is a stainless steel container for housing the power generating element 1, and is fixed by welding. The cover plate 4 and the battery housing 5 constitute a battery case of the non-aqueous electrolyte secondary battery.

【0030】上記蓋板4の上面の両端部には、それぞれ
上部絶縁封止板6を介して端子が配置されている。端子
は、正極側の場合にはアルミニウム製、負極側の場合に
は銅製の金属材料からなり、それぞれリベット端子7と
端子台8と端子ボルト9とで構成されている。
Terminals are arranged on both ends of the upper surface of the cover plate 4 via upper insulating sealing plates 6 respectively. The terminal is made of a metal material made of aluminum on the positive electrode side and made of copper on the negative electrode side, and is composed of a rivet terminal 7, a terminal block 8 and a terminal bolt 9, respectively.

【0031】[0031]

【実施例】多角形状の1次粒子が集合して球状の二次粒
子を形成したリチウムマンガン複合酸化物Li1.1
1.82Al0.08(比表面積0.7m
g、平均粒径15μm)粉末を用い、アセチレンブラッ
ク及びポリフッ化ビニリデン(PVdF)を重量比で8
8:5:7の割合で混合して合剤を調整し、溶剤となる
N−メチル−2−ピロリドンに分散させてスラリーに
し、これを厚さ20ミクロンのアルミニウム箔両面に塗
布し、乾燥、プレスして多孔度33%で220μm厚さ
の帯状正極を作製した。この正極を切り出して、4.3
Vと3.0Vの間で放電させることで求めた正極活物質
の放電容量は109mAh/gであった。なお、平均粒
径はレーザー回折散乱法で測定したd50の値であり、
比表面積は、吸着ガスとして窒素ガスを用いたBET法
で測定したものである。
EXAMPLE Lithium-manganese composite oxide Li 1.1 M in which polygonal primary particles aggregate to form spherical secondary particles
n 1.82 Al 0.08 O 4 (specific surface area 0.7 m 2 /
g, average particle size of 15 μm) using acetylene black and polyvinylidene fluoride (PVdF) in a weight ratio of 8
The mixture was mixed at a ratio of 8: 5: 7 to prepare a mixture. The mixture was dispersed in N-methyl-2-pyrrolidone as a solvent to form a slurry. The slurry was applied to both sides of a 20-μm-thick aluminum foil, dried, and dried. By pressing, a belt-shaped positive electrode having a porosity of 33% and a thickness of 220 μm was produced. This positive electrode was cut out, and 4.3
The discharge capacity of the positive electrode active material determined by discharging between V and 3.0 V was 109 mAh / g. The average particle size is a value of d50 measured by a laser diffraction scattering method,
The specific surface area is measured by a BET method using nitrogen gas as an adsorption gas.

【0032】平均粒径26μmの球状人造黒鉛粉末75
重量部(C軸方向の平均面間隔0.335nm)、平均
粒径27μmの鱗片状人造黒鉛粉末15重量部(C軸方
向の平均面間隔0.335nm)、PVdF10重量部
を混合して負極合剤を調整し、溶剤となるN−メチル−
2−ピロリドンに分散させてスラリーにし、これを厚さ
15μmの銅箔両面に塗布し、乾燥させた後、一定圧力
で圧縮成型して多孔度34%で120μm厚さの帯状負
極を作製した。この負極を切り出して、不可逆容量を測
定したところ、33mAh/gであった。
Spherical artificial graphite powder 75 having an average particle size of 26 μm
Parts (average spacing of 0.335 nm in the C-axis direction), 15 parts by weight of flaky artificial graphite powder (average spacing of 0.335 nm in the C-axis direction) having an average particle diameter of 27 μm, and 10 parts by weight of PVdF were mixed together to form a negative electrode. After adjusting the agent, N-methyl-
The slurry was dispersed in 2-pyrrolidone to form a slurry. The slurry was applied to both sides of a 15-μm-thick copper foil, dried, and then compression-molded at a constant pressure to prepare a strip-shaped negative electrode having a porosity of 34% and a thickness of 120 μm. This negative electrode was cut out and its irreversible capacity was measured to be 33 mAh / g.

【0033】これら電極と40μm厚さのポリプロピレ
ン(PP)/ポリエチレン(PE)/ポリプロピレン
(PP)積層セパレータを用いて長円筒形の巻回型の発
電要素を作製し、これを2個密着して並べ並列接続する
ことで、上記図1に示したのと同様の構造の電池を作製
した。電池の外形は、W170×D47×H115(m
m)であり、容器は1mm厚さのステンレス製である。
Using these electrodes and a polypropylene (PP) / polyethylene (PE) / polypropylene (PP) laminated separator having a thickness of 40 μm, a long cylindrical wound-type power generating element is produced. By arranging and connecting in parallel, a battery having the same structure as that shown in FIG. 1 was produced. The outer shape of the battery is W170 × D47 × H115 (m
m), and the container is made of stainless steel having a thickness of 1 mm.

【0034】電解液としては、エチレンカーボネート
(EC)/エチルメチルカーボネート(EMC)/ジエ
チルカーボネート(DEC)の体積比3:4:3の混合
溶媒に、ビニレンカーボネート(VC)を体積比で1%
およびLiPFを1mol/l添加された電解液を3
00g注液した。
As an electrolytic solution, vinylene carbonate (VC) was added to a mixed solvent of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / diethyl carbonate (DEC) in a volume ratio of 3: 4: 3 and vinylene carbonate (VC) in a volume ratio of 1%.
And an electrolyte solution containing 1 mol / l of LiPF 6
00 g was injected.

【0035】4.1V充電時のこの電池(電池1)の放
電容量(下限電圧は2.7V)は46A定電流放電で4
6Ahであり、230A定電流放電で43.2Ahであ
る。1C放電での値から計算された正極活物質の放電容
量は85mAh/gであり、この値は、4.3Vと3.
0Vの間で放電させることで求めた正極活物質の放電容
量109mAh/gの78%(=利用容量比)であっ
た。
The discharge capacity (lower limit voltage of 2.7 V) of this battery (battery 1) at the time of 4.1 V charge is 4 A at a constant current discharge of 46 A.
6 Ah, and 43.2 Ah at 230 A constant current discharge. The discharge capacity of the positive electrode active material calculated from the value at 1 C discharge was 85 mAh / g, which was 4.3 V and 3.
It was 78% (= utilized capacity ratio) of the discharge capacity of 109 mAh / g of the positive electrode active material obtained by discharging between 0 V.

【0036】上記電池とは別に、負極の厚さを厚くする
ことで負極の不可逆容量を大きくして利用容量を小さく
したもの(電池2)と、負極の不可逆容量を変えて利用
容量を小さくしたもの(電池3)と大きくしたもの(電
池4)とを作製した。なお、その他の構成は同じにし
た。これら電池について25℃での充放電を繰り返し、
初期放電容量に対する1000サイクル目の放電容量の
比率を求め、これを百分率で表したものを容量維持率と
した。なお、充電は、終止電圧を4.1Vとする定電流
(46A)・定電圧(3H)充電、放電は、終止電圧を
2.7Vとする定電流(46A)放電にて行った。結果
を下記表1に示す。
Apart from the above-mentioned battery, the irreversible capacity of the negative electrode was increased by increasing the thickness of the negative electrode to reduce the available capacity (battery 2), and the irreversible capacity of the negative electrode was changed to reduce the available capacity. A battery (battery 3) and a larger one (battery 4) were produced. The other configurations were the same. These batteries were repeatedly charged and discharged at 25 ° C.
The ratio of the discharge capacity at the 1000th cycle to the initial discharge capacity was determined, and the ratio expressed as a percentage was defined as the capacity retention ratio. The charging was performed at a constant current (46 A) / constant voltage (3H) with a final voltage of 4.1 V, and the charging and discharging was performed with a constant current (46 A) with a final voltage of 2.7 V. The results are shown in Table 1 below.

【0037】[0037]

【表1】 [Table 1]

【0038】電池1と2は負極厚さが異なるだけであ
り、容量維持率はほとんど変わらなかったが、サイクル
後の各電極の劣化状況を比較したところ、正極の容量劣
化は電池2の方が小さかった。電池3は、負極に鱗片状
人造黒鉛に替えてハードカーボンが用いられている以外
は電池1と同じ構成であり、負極の不可逆容量は40m
Ah/gであった。
The batteries 1 and 2 differed only in the thickness of the negative electrode, and the capacity retention rate hardly changed. However, when the deterioration of each electrode after the cycle was compared, the capacity deterioration of the positive electrode was smaller in the battery 2 than in the battery 2. It was small. Battery 3 has the same configuration as battery 1 except that hard carbon is used instead of flaky artificial graphite for the negative electrode, and the irreversible capacity of the negative electrode is 40 m.
Ah / g.

【0039】電池4は、負極で用いられている球状人造
黒鉛、鱗片状人造黒鉛共に表面にCVD炭素薄膜を施し
たものを用いた以外は電池1と同じ構成であり、負極の
不可逆容量は21mAh/gである。電池4では、利用
容量比は82%であったが、容量維持率が急激に悪くな
っていることがわかった。
The battery 4 has the same configuration as the battery 1 except that both the spherical artificial graphite and the flaky artificial graphite used for the negative electrode have a surface coated with a CVD carbon thin film, and the irreversible capacity of the negative electrode is 21 mAh. / G. In the battery 4, the utilization capacity ratio was 82%, but it was found that the capacity maintenance rate was rapidly deteriorated.

【0040】上記は一例を示したのみであるが、不可逆
容量や厚みを変えずに、電池を組み立てる前に予め正極
または負極を所定状態にまで充電する方法により利用容
量比を細かく変えた検討結果から、利用容量比を小さく
することで、正極の劣化が小さくなり、負極上に析出す
るMn量も少なくなることがわかっており、利用容量比
が70%以下ではその差はほとんどなくなることがわか
っている。また、利用容量比が80%を越したところか
ら正極の劣化とMnの負極への析出が多くなることが分
かっている。一方、例えば電池2の容量は43Ahと小
さいのであるが、利用容量を小さくするのは電池のエネ
ルギー密度の観点から得策ではない。従って、利用容量
比は70%以上80%以下にするのが好ましい。
Although the above is only an example, the results of the study were conducted by finely changing the used capacity ratio by charging the positive electrode or the negative electrode to a predetermined state before assembling the battery without changing the irreversible capacity or thickness. From this, it is known that, by reducing the used capacity ratio, the deterioration of the positive electrode is reduced and the amount of Mn deposited on the negative electrode is also reduced, and it is understood that the difference is almost eliminated when the used capacity ratio is 70% or less. ing. Further, it is known that when the utilization capacity ratio exceeds 80%, the deterioration of the positive electrode and the deposition of Mn on the negative electrode increase. On the other hand, for example, the capacity of the battery 2 is as small as 43 Ah, but it is not advisable to reduce the used capacity from the viewpoint of the energy density of the battery. Therefore, it is preferable that the utilization capacity ratio be 70% or more and 80% or less.

【0041】[0041]

【発明の効果】本発明によれば、スピネル構造のリチウ
ムマンガン複合酸化物を正極活物質とし、5Ah以上の
容量(1C放電時)を備え、1C放電時の容量に対する
3C放電時の容量の比率が90%以上となるレート性能
を満たし、寿命も良好な非水電解質二次電池の製造が可
能となる。
According to the present invention, a lithium manganese composite oxide having a spinel structure is used as a positive electrode active material, and has a capacity of 5 Ah or more (at 1C discharge), and a ratio of a capacity at 3C discharge to a capacity at 1C discharge. Satisfies the rate performance of 90% or more, and a non-aqueous electrolyte secondary battery having a good life can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明に係る電池例を示す分解斜視図。FIG. 1 is an exploded perspective view showing an example of a battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 発電要素 2 集電接続体 3 下部絶縁封止板 4 蓋板 5 電池筐体 1 Power generation element 2 Current collector 3 Lower insulating sealing plate 4 lid plate 5 Battery case

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質にスピネル構造のリチウムマ
ンガン複合酸化物、負極活物質に炭素材料を用いた非水
電解質二次電池であって、前記非水電解質二次電池を充
電後の開放端子電圧が4.1Vとなるように充電した際
の正極活物質の放電容量が、4.3Vと3.0Vの間で
放電した際の正極活物質の放電容量の70から80%で
あることを特徴とする非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery using a lithium manganese composite oxide having a spinel structure as a positive electrode active material and a carbon material as a negative electrode active material, the open terminal after charging the non-aqueous electrolyte secondary battery The discharge capacity of the positive electrode active material when charged so that the voltage becomes 4.1 V is 70 to 80% of the discharge capacity of the positive electrode active material when discharged between 4.3 V and 3.0 V. Characteristic non-aqueous electrolyte secondary battery.
【請求項2】 リチウムマンガン複合酸化物がLi
1+xMn2−x−y (0.05≦x≦0.1
5、0.02≦y≦0.15)であることを特徴とする
請求項1記載の非水電解質二次電池。
2. The lithium manganese composite oxide is Li
1 + xMn2-xyM yO4(0.05 ≦ x ≦ 0.1
5, 0.02 ≦ y ≦ 0.15)
2. The non-aqueous electrolyte secondary battery according to claim 1.
JP2002155035A 2002-05-29 2002-05-29 Nonaqueous electrolyte secondary battery Pending JP2003346905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002155035A JP2003346905A (en) 2002-05-29 2002-05-29 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002155035A JP2003346905A (en) 2002-05-29 2002-05-29 Nonaqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010130104A Division JP5263223B2 (en) 2010-06-07 2010-06-07 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003346905A true JP2003346905A (en) 2003-12-05
JP2003346905A5 JP2003346905A5 (en) 2005-10-06

Family

ID=29771649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002155035A Pending JP2003346905A (en) 2002-05-29 2002-05-29 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2003346905A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216651A (en) * 2004-01-29 2005-08-11 Nichia Chem Ind Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode mixture for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2007184195A (en) * 2006-01-10 2007-07-19 Gs Yuasa Corporation:Kk Nonaqueous electrolytic solution secondary battery
JP2007287445A (en) * 2006-04-14 2007-11-01 Nissan Motor Co Ltd Secondary battery and battery pack, and vehicle mounting these
JP2014139897A (en) * 2013-01-21 2014-07-31 Toyota Industries Corp Secondary battery system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216651A (en) * 2004-01-29 2005-08-11 Nichia Chem Ind Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode mixture for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2007184195A (en) * 2006-01-10 2007-07-19 Gs Yuasa Corporation:Kk Nonaqueous electrolytic solution secondary battery
JP2007287445A (en) * 2006-04-14 2007-11-01 Nissan Motor Co Ltd Secondary battery and battery pack, and vehicle mounting these
JP2014139897A (en) * 2013-01-21 2014-07-31 Toyota Industries Corp Secondary battery system

Similar Documents

Publication Publication Date Title
WO2012001840A1 (en) Negative electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP2005228706A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2007317534A (en) Non-aqueous electrolyte secondary battery
JP2010129471A (en) Cathode active material and nonaqueous electrolyte battery
JP2006344509A (en) Lithium secondary battery
WO2012020647A1 (en) Electrode active material and non-aqueous electrolyte secondary battery provided with same
JP2022513679A (en) Lithium manganese-based positive electrode active material with octahedral structure, positive electrode containing this, and lithium secondary battery
WO2020026487A1 (en) Positive electrode active material and secondary battery
JP2002025611A (en) Nonaqueous electrolyte secondary battery
CN111095617B (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery comprising same
JP2009212021A (en) Electrode for electrochemical element, nonaqueous secondary battery, and battery system
JP3640164B2 (en) Nonaqueous electrolyte secondary battery
JP5263223B2 (en) Nonaqueous electrolyte secondary battery
JP5017010B2 (en) Lithium secondary battery
JP7122653B2 (en) Non-aqueous electrolyte secondary battery
JP4810794B2 (en) Nonaqueous electrolyte secondary battery
WO2019142744A1 (en) Non-aqueous electrolyte secondary battery
JP2004071159A (en) Nonaqueous electrolyte secondary battery
JP2002128526A (en) Lithium transition metal compound oxide for positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP4296591B2 (en) Nonaqueous electrolyte secondary battery
JP2010033998A (en) Nonaqueous electrolyte secondary battery
JP2003346905A (en) Nonaqueous electrolyte secondary battery
WO2020158169A1 (en) Non-aqueous electrolyte secondary cell and electrolytic solution used in same
WO2020158223A1 (en) Nonaqueous electrolyte secondary battery and electrolyte solution used in same
JPH06267539A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100607