JP4810794B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4810794B2
JP4810794B2 JP2004105030A JP2004105030A JP4810794B2 JP 4810794 B2 JP4810794 B2 JP 4810794B2 JP 2004105030 A JP2004105030 A JP 2004105030A JP 2004105030 A JP2004105030 A JP 2004105030A JP 4810794 B2 JP4810794 B2 JP 4810794B2
Authority
JP
Japan
Prior art keywords
negative electrode
composite particles
particles
mixture layer
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004105030A
Other languages
Japanese (ja)
Other versions
JP2005293943A (en
Inventor
厚志 船引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2004105030A priority Critical patent/JP4810794B2/en
Publication of JP2005293943A publication Critical patent/JP2005293943A/en
Application granted granted Critical
Publication of JP4810794B2 publication Critical patent/JP4810794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、リチウムを吸蔵放出可能な金属またはその化合物と電子伝導性材料とからなる複合粒子を含む負極合剤層を備えた非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery including a negative electrode mixture layer including composite particles made of a metal capable of inserting and extracting lithium or a compound thereof and an electron conductive material.

電解質に有機電解液やポリマー電解質を用いた非水電解質二次電池は、高エネルギー密度であることから、各種携帯用電子機器用電源として広く利用されており、さらに、電気自動車用などの大型機器への利用が期待されている。   Non-aqueous electrolyte secondary batteries using organic electrolytes or polymer electrolytes as electrolytes are widely used as power sources for various portable electronic devices because of their high energy density. The use to is expected.

非水電解質二次電池の中では、負極活物質にリチウムを吸蔵放出可能な炭素材料を用いるリチウムイオン二次電池が最も多く生産されているが、さらに高エネルギー密度電池を得るためには、炭素材料に代わる負極活物質が求められている。   Among non-aqueous electrolyte secondary batteries, lithium ion secondary batteries using a carbon material capable of occluding and releasing lithium as the negative electrode active material are the most produced, but in order to obtain a higher energy density battery, carbon There is a need for a negative electrode active material that can replace the material.

新しい負極活物質としては、特許文献1に、ケイ素、アルミニウム、鉛等の金属、錫含有酸化物、ケイ素酸化物が開示されているが、これらの負極活物質は高い放電容量を示すが、リチウムの吸蔵・放出過程での体積変化が大きく、そのため、充放電サイクル過程に伴い放電容量が著しく減少するという問題があり、実質的には負極活物質として利用することができなかった。   As a new negative electrode active material, Patent Document 1 discloses metals such as silicon, aluminum and lead, tin-containing oxides, and silicon oxides. These negative electrode active materials exhibit high discharge capacity, but lithium The volume change during the occlusion / release process is large, and therefore, there is a problem that the discharge capacity is remarkably reduced with the charge / discharge cycle process, and it cannot be practically used as the negative electrode active material.

また、ケイ素酸化物の体積が充放電に伴って膨張・収縮を繰り返した場合、導電材とケイ素酸化物との接触面積が減少し、導通がとれなくなり、充放電サイクル特性が劣る。これを改善するために、ケイ素酸化物の表面を炭素などの導電材物質で被覆する技術が特許文献2に開示されている。特許文献2ではSiO粒子を導電性物質で被覆した負極活物質が例示されているが、負極合剤層の厚さについての記載はない。 Further, when the volume of the silicon oxide repeatedly expands and contracts with charge / discharge, the contact area between the conductive material and the silicon oxide decreases, and conduction cannot be obtained, resulting in poor charge / discharge cycle characteristics. In order to improve this, Patent Document 2 discloses a technique for coating the surface of silicon oxide with a conductive material such as carbon. Patent Document 2 exemplifies a negative electrode active material in which SiO x particles are coated with a conductive material, but there is no description about the thickness of the negative electrode mixture layer.

負極活物質粒子と負極合剤層の厚さとの関係については、特許文献3に、合剤層の総和が80μm以上(片面塗布部分の厚さが40μm以上)が好適であり、その理由は、一般に使用されている電極材料が粒度分布上40μm程度の最大粒子径を有することから、大粒子が存在する部分において塗布のかすれなどが発生することが挙げられている。また、特許文献4では、平均粒子径約1μmのケイ素粉末の表面を炭素で被覆し、合剤層の厚さ150μmの負極を調整したことが開示されている。   Regarding the relationship between the negative electrode active material particles and the thickness of the negative electrode mixture layer, in Patent Document 3, the total sum of the mixture layer is preferably 80 μm or more (the thickness of the single-side coated portion is 40 μm or more). Since generally used electrode materials have a maximum particle size of about 40 μm in terms of particle size distribution, it is mentioned that fading of coating occurs in a portion where large particles exist. Patent Document 4 discloses that the surface of a silicon powder having an average particle diameter of about 1 μm is coated with carbon and a negative electrode having a mixture layer thickness of 150 μm is prepared.

特開2002−231225号公報JP 2002-231225 A 特開2002−373653号公報JP 2002-373653 A 特開2002−203606号公報JP 2002-203606 A 特開2001−160392号公報JP 2001-160392 A

非水電解質二次電池の負極活物質としてリチウムを吸蔵放出可能な金属またはその化合物を用いた場合、これらの金属またはその化合物の表面を炭素などの電子伝導性材料で被覆することや、金属またはその化合物と電子伝導性材料とをともに機械的に混合または造粒して複合物とすることによって、充放電サイクル特性は大きく向上する。しかしながら、充放電サイクルにともなう電池の膨れがいぜんとして大きいために実用的な電池を得ることが困難であった。   When a metal capable of occluding and releasing lithium or a compound thereof is used as the negative electrode active material of the non-aqueous electrolyte secondary battery, the surface of these metals or the compound thereof may be coated with an electron conductive material such as carbon, The charge / discharge cycle characteristics are greatly improved by mechanically mixing or granulating the compound and the electron conductive material together to form a composite. However, since the swelling of the battery accompanying the charge / discharge cycle is still large, it is difficult to obtain a practical battery.

電池の膨れが大きい原因は、リチウムを吸蔵放出可能な金属またはその化合物と電子伝導性材料とを含む活物質粒子の粒子径が負極合剤層厚さに対して小さすぎたことにある。
負極活物質粒子の大きさが小さい場合、負極合剤層中の単位体積当たりに含まれる負極活物質粒子の数が多くなる。
The cause of the large swelling of the battery is that the particle diameter of the active material particles containing a metal capable of inserting and extracting lithium or a compound thereof and an electron conductive material is too small with respect to the thickness of the negative electrode mixture layer.
When the size of the negative electrode active material particles is small, the number of negative electrode active material particles contained per unit volume in the negative electrode mixture layer increases.

その結果、活物質―活物質間および活物質―導電剤間の接触面積が大きくなる。このことは、負極活物質粒子の体積膨張・収縮にともなう活物質―活物質間および活物質―導電剤間の接触不良個所が増大することを意味する。この不良個所の増大は負極合剤層の膨れ、ひいては電池の膨れをもたらす。   As a result, the contact area between the active material and the active material and between the active material and the conductive agent is increased. This means that the number of contact failure points between the active material and the active material and between the active material and the conductive agent increases as the negative electrode active material particles expand and contract. This increase in the number of defective portions results in swelling of the negative electrode mixture layer, and consequently swelling of the battery.

負極活物質の体積が膨張すると、極板に平行および垂直な方向にそれぞれ負極合剤層が膨れる力が働く。しかしながら、極板の長さは決まっているので、極板に平行な方向に力がかかったとしても、この方向の負極合剤層の膨張率には限界がある。限界を超える力がかかった場合、その力が逆に極板に平行であって負極合剤層が収縮する方向に加わることになるが、この力は、体積膨張が容易な極板に垂直な方向に逃げることになる。このことは、極板に垂直な方向の負極合剤層の膨れが増幅されることを意味する。   When the volume of the negative electrode active material expands, a force that causes the negative electrode mixture layer to expand in directions parallel to and perpendicular to the electrode plate acts. However, since the length of the electrode plate is determined, even if a force is applied in a direction parallel to the electrode plate, the expansion rate of the negative electrode mixture layer in this direction is limited. When a force exceeding the limit is applied, the force is applied in a direction parallel to the electrode plate and contracting the negative electrode mixture layer, but this force is perpendicular to the electrode plate that easily expands in volume. Will run away in the direction. This means that the swelling of the negative electrode mixture layer in the direction perpendicular to the electrode plate is amplified.

黒鉛などの炭素材料を負極活物質として用いた場合は、充放電に伴う体積膨張率は小さいので(最大10%)、極板に平行な方向の力が比較的小さく、その結果、極板に垂直な方向の力が増幅される程度は小さいので、電池の膨れは比較的小さい。しかしながら、負極活物質としてリチウムを吸蔵放出可能な金属またはその化合物を含む場合は、活物質の充放電に伴う体積膨張が炭素材料と比べて著しく大きいので、極板に平行な方向の力が垂直方向の力と合わさって、極板に垂直な方向の負極合剤層の膨れが増幅されることになる。その結果、電池の膨れが著しく大きいという問題があった。   When a carbon material such as graphite is used as the negative electrode active material, the volume expansion coefficient associated with charge / discharge is small (up to 10%), so the force in the direction parallel to the electrode plate is relatively small. Since the degree to which the vertical force is amplified is small, the swelling of the battery is relatively small. However, when a metal capable of occluding and releasing lithium or a compound thereof is included as the negative electrode active material, the volume expansion associated with charging / discharging of the active material is significantly larger than that of the carbon material, so that the force in the direction parallel to the electrode plate is perpendicular. Combined with the directional force, the swelling of the negative electrode mixture layer in the direction perpendicular to the electrode plate is amplified. As a result, there is a problem that the swelling of the battery is remarkably large.

従来の非水電解質二次電池の、充放電に伴う負極合剤層内の粒子の体積変化を模式的に図4〜図6に示す。図4〜図6において、1は負極合剤層、2は負極集電体、3は負極活物質粒子、4は導電剤粒子、5は負極合剤層内の空間である。なお、図4〜図6においては、負極活物質粒子3および導電剤粒子4の形状を円形で表示したが、実際のこれらの粒子の断面形状は、円形以外にも、楕円形や多角形をはじめとする種々の形状のものを用いることができる。このことは、後述の図1〜図3の場合も同様である。   4 to 6 schematically show changes in the volume of the particles in the negative electrode mixture layer accompanying charge / discharge of a conventional nonaqueous electrolyte secondary battery. 4 to 6, 1 is a negative electrode mixture layer, 2 is a negative electrode current collector, 3 is a negative electrode active material particle, 4 is a conductive agent particle, and 5 is a space in the negative electrode mixture layer. 4 to 6, the shapes of the negative electrode active material particles 3 and the conductive agent particles 4 are shown as circles, but the actual cross-sectional shape of these particles may be an ellipse or a polygon other than a circle. Various shapes including the above can be used. This also applies to FIGS. 1 to 3 described later.

図4は、充放電サイクル前の、放電状態の負極合剤層の状態を示すもので、負極活物質粒子3と導電剤粒子4とは互いに接触し、これらの粒子間の電気的接触が保持されており、同時にこれらの粒子と負極集電体2との電気的接触も保持されている。この場合の負極合剤層の片面の厚さをTとする。 FIG. 4 shows the state of the negative electrode mixture layer in a discharged state before the charge / discharge cycle. The negative electrode active material particles 3 and the conductive agent particles 4 are in contact with each other, and electrical contact between these particles is maintained. At the same time, electrical contact between these particles and the negative electrode current collector 2 is also maintained. The thickness of one surface of the negative electrode mixture layer in this case a T 4.

図5は、充電後の負極合剤層の状態を示すもので、点線は充電前の負極活物質粒子の大きさを示す。負極活物質3は、充電によってリチウムを吸蔵し、体積が膨張する。この状態では、負極活物質粒子3と導電剤粒子4とは互いに接触しており、これらの粒子間の電気的接触は保持されたままである。負極活物質3の体積膨張により、負極合剤層1の片面の厚さはTとなり、Tは図4のTよりも大きくなっている。 FIG. 5 shows the state of the negative electrode mixture layer after charging, and the dotted line shows the size of the negative electrode active material particles before charging. The negative electrode active material 3 occludes lithium by charging and expands in volume. In this state, the negative electrode active material particles 3 and the conductive agent particles 4 are in contact with each other, and electrical contact between these particles remains maintained. The volume expansion of the negative electrode active material 3, the thickness of one surface of the negative electrode mixture layer 1 T 5 becomes, T 5 is larger than T 4 in FIG.

図6は、負極がいったん充電された後、放電された負極合剤層の状態を示すもので、負極活物質粒子3は元の図4に近い大きさに戻っている。ただし、負極活物質内には放電に使用されないリチウムが一部残るため、負極活物質粒子の大きさは、図4よりも図6の方が少し大きくなっている。負極合剤層1の片面の厚さはTとなり、Tは図5のTよりも小さくなるが、図4のTよりも大きくなっている。また、負極活物質粒子の体積変化が均一ではないため、充放電後の負極活物質粒子の形状は、元の形状に戻らないことが多い。 FIG. 6 shows the state of the negative electrode mixture layer discharged after the negative electrode has been charged once, and the negative electrode active material particles 3 have returned to a size close to the original FIG. However, since some lithium that is not used for discharge remains in the negative electrode active material, the size of the negative electrode active material particles in FIG. 6 is slightly larger than that in FIG. The thickness of one surface of the negative electrode mixture layer 1 becomes T 6, T 6 is smaller than T 5 in FIG. 5, it is greater than T 4 in FIG. In addition, since the volume change of the negative electrode active material particles is not uniform, the shape of the negative electrode active material particles after charge / discharge often does not return to the original shape.

その結果、負極活物質粒子間および負極活物質粒子3と導電剤粒子4との間の距離が大きくなり、お互いに離れて電気的接触を保たないものが発生する。充放電サイクルを繰り返すことにより、この粒子間で離反する負極活物質粒子が増加し、その結果電池の膨れが大きくなる。   As a result, the distances between the negative electrode active material particles and between the negative electrode active material particles 3 and the conductive agent particles 4 are increased, and those that are separated from each other and do not maintain electrical contact are generated. By repeating the charging / discharging cycle, the negative electrode active material particles separating between the particles are increased, and as a result, the swelling of the battery is increased.

この場合、負極合剤層の厚さに比べて、負極活物質粒子の大きさが相対的に小さい場合、小さい粒子は負極活物質間および負極活物質と導電性粒子との間の接触点が多いので、負極活物質粒子の体積変化がおこった場合、小さい粒子はお互いに離反しやすい。したがって、充放電サイクルに伴い、互いに離反する負極活物質粒子の個数が増加して、膨れが大きくなるという問題があった。   In this case, when the size of the negative electrode active material particles is relatively small compared to the thickness of the negative electrode mixture layer, the small particles have contact points between the negative electrode active materials and between the negative electrode active material and the conductive particles. Therefore, when the volume change of the negative electrode active material particles occurs, the small particles are likely to be separated from each other. Therefore, with the charge / discharge cycle, there is a problem that the number of negative electrode active material particles that are separated from each other increases and the swelling increases.

このように、充放電サイクルにおいて、リチウムを吸蔵放出可能な金属またはその化合物と電子伝導性材料とをともに含む粒子を負極活物質とする場合、負極合剤層の厚さと負極活物質粒子の大きさの関係がきわめて重要であることが理解される。   Thus, in the charge / discharge cycle, when the negative electrode active material is a particle containing both a metal capable of occluding and releasing lithium or a compound thereof and an electron conductive material, the thickness of the negative electrode mixture layer and the size of the negative electrode active material particle It is understood that this relationship is extremely important.

そこで本発明の目的は、リチウムを吸蔵放出可能な金属またはその化合物と電子伝導性材料とからなる複合粒子を含む負極合剤層を備えた非水電解質二次電池において、負極合剤層の厚さに対する負極活物質の粒子径を規定することにより、充放電サイクルに伴う負極合剤層の膨れを抑制し、膨れの小さい非水電解質二次電池を提供することにある。   Accordingly, an object of the present invention is to provide a thickness of the negative electrode mixture layer in a nonaqueous electrolyte secondary battery including a negative electrode mixture layer including composite particles made of a metal capable of occluding and releasing lithium or a compound thereof and an electron conductive material. By defining the particle diameter of the negative electrode active material relative to the thickness, it is intended to provide a non-aqueous electrolyte secondary battery that suppresses the swelling of the negative electrode mixture layer accompanying the charge / discharge cycle and has a small swelling.

請求項1の発明は、リチウムを吸蔵放出可能な金属またはその化合物と電子伝導性材料とからなる複合粒子を含む負極合剤層を備えた非水電解質二次電池において、前記複合粒子の積算分布曲線における、粒子径の小さい方から積算して合計個数50%の粒子径をD50(μm)、前記負極合剤層の片面の厚さをT(μm)とした場合、0.5<D50/T<1であることを特徴とする。(ただし、D 50 /T=0.6であり、且つ、D’ 50 /D 50 =1/30であるものを除く。ここで、前記複合粒子において、リチウムを吸蔵放出可能な金属またはその化合物の積算分布曲線における、粒子径の小さい方から積算して合計個数50%の粒子径をD’50(μm)とする) The invention according to claim 1 provides a cumulative distribution of the composite particles in a nonaqueous electrolyte secondary battery including a negative electrode mixture layer including composite particles made of a metal capable of occluding and releasing lithium or a compound thereof and an electron conductive material. In the curve, when the particle diameter of the total number 50% is D 50 (μm) and the thickness of one surface of the negative electrode mixture layer is T (μm) by integrating from the smaller particle diameter, 0.5 <D 50 / T <1. (However, the case where D 50 /T=0.6 and D ′ 50 / D 50 = 1/30 is excluded. Here, in the composite particles, a metal or a compound thereof capable of occluding and releasing lithium. In the cumulative distribution curve, the particle diameter of the total number 50% is D′ 50 (μm) by integrating from the smaller particle diameter)

請求項2の発明は、請求項1 記載の非水電解質二次電池において、前記複合粒子において、リチウムを吸蔵放出可能な金属またはその化合物の積算分布曲線における、粒子径の小さい方から積算して合計個数50%の粒子径をD’50(μm)とした場合、0.5<D’50(μm)、且つ、D’50/D50<0.2であることを特徴とする。 The invention according to claim 2 is the nonaqueous electrolyte secondary battery according to claim 1, wherein the composite particles are integrated from the smaller particle diameter in the integrated distribution curve of the metal or compound capable of occluding and releasing lithium. When the particle diameter of the total number of 50% is D′ 50 (μm), 0.5 <D′ 50 (μm) and D′ 50 / D50 <0.2.

本発明によれば、負極合剤層の厚さに対する負極活物質を含む複合粒子径が相対的に大きいので、負極合剤層中の単位体積当たりに含まれる複合粒子の数を少なくすることができ、その結果、充放電サイクルにともなって複合粒子の体積変化が生じた場合でも、複合粒子と複合粒子間および複合粒子と導電剤間の接触不良個所が少ないので、膨れの小さい非水電解質二次電池を得ることができる。   According to the present invention, since the composite particle size including the negative electrode active material relative to the thickness of the negative electrode mixture layer is relatively large, the number of composite particles contained per unit volume in the negative electrode mixture layer can be reduced. As a result, even when the volume of the composite particles changes with the charge / discharge cycle, the number of poor contact points between the composite particles and the composite particles and between the composite particles and the conductive agent is small. A secondary battery can be obtained.

本発明は、リチウムを吸蔵放出可能な金属またはその化合物と電子伝導性材料とからなる複合粒子を含む負極合剤層を備えた非水電解質二次電池において、前記複合粒子の積算分布曲線における、粒子径の小さい方から積算して合計個数50%の粒子径をD50(μm)、前記負極合剤層の片面の厚さをT(μm)とした場合、0.5<D50/T<1であることを特徴とするものである。(ただし、D 50 /T=0.6であり、且つ、D’ 50 /D 50 =1/30であるものを除く。ここで、前記複合粒子において、リチウムを吸蔵放出可能な金属またはその化合物の積算分布曲線における、粒子径の小さい方から積算して合計個数50%の粒子径をD’50(μm)とする) The present invention relates to a cumulative distribution curve of the composite particles in a non-aqueous electrolyte secondary battery including a negative electrode mixture layer including composite particles composed of a metal capable of occluding and releasing lithium or a compound thereof and an electron conductive material. When the particle diameter of the total number 50% is D 50 (μm) and the thickness of one surface of the negative electrode mixture layer is T (μm), the particles are integrated from the smaller particle diameter, and 0.5 <D 50 / T. <1. (However, the case where D 50 /T=0.6 and D ′ 50 / D 50 = 1/30 is excluded. Here, in the composite particles, a metal or a compound thereof capable of occluding and releasing lithium. In the cumulative distribution curve, the particle diameter of the total number 50% is D′ 50 (μm) by integrating from the smaller particle diameter)

本発明においては、負極合剤層の片面の厚さと、その中に含まれる負極活物質を含む複合粒子の大きさとの関係を上記範囲に限定することにより、充放電にともなう電池の膨れが小さい非水電解質二次電池を得ることができる。   In the present invention, by limiting the relationship between the thickness of one surface of the negative electrode mixture layer and the size of the composite particles containing the negative electrode active material contained therein to the above range, the swelling of the battery accompanying charge / discharge is small. A nonaqueous electrolyte secondary battery can be obtained.

Tよりも大きい複合粒子の個数が全体個数の10%よりも少ない場合には、負極合剤層を作製する際のロールプレスなどの加圧工程によって大きい粒子がつぶされるため、負極合剤層の厚さがほぼ均一であるものが得られる。しかしながら、Tよりも大きい複合粒子の個数が全体個数の10%以上となる場合には、得られる負極合剤層は不均一となるので好ましくない。また、この場合、大きな粒子が多数存在するので、この粒子の体積膨張によって負極合剤層厚さが著しく大きくなって電池の膨れが大きくなる。したがって、複合粒子の積算分布曲線において、粒子径の小さい方から積算して合計個数90%の粒子径をD90(μm)とする場合、D90/T<1であることが好ましい。 When the number of composite particles larger than T is less than 10% of the total number, the large particles are crushed by a pressurizing step such as a roll press when producing the negative electrode mixture layer. A material having a substantially uniform thickness is obtained. However, when the number of composite particles larger than T is 10% or more of the total number, the obtained negative electrode mixture layer is not preferable because it is not uniform. In this case, since there are a large number of large particles, the volume expansion of the particles significantly increases the thickness of the negative electrode mixture layer and the swelling of the battery increases. Therefore, in the cumulative distribution curve of the composite particles, when the particle diameter of the total number of 90% is D 90 (μm) by integrating from the smaller particle diameter, it is preferable that D 90 / T <1.

本発明では、0.5<D50/T<1とすることにより、負極合剤層中の単位体積当たりに含まれる複合粒子の数を少なくすることができ、その結果、充放電サイクルにともなって複合粒子の体積変化が生じた場合でも、複合粒子―複合粒子間および複合粒子―導電剤間の接触不良個所が少ないので、電池の膨れを小さくすることができる。 In the present invention, by setting 0.5 <D 50 / T <1, the number of composite particles contained per unit volume in the negative electrode mixture layer can be reduced. As a result, the charge / discharge cycle is accompanied. Even when the volume of the composite particles changes, the number of defective contact points between the composite particles and the composite particles and between the composite particles and the conductive agent is small, so that the swelling of the battery can be reduced.

本発明のリチウムを吸蔵放出可能な金属またはその化合物と電子伝導性材料とからなる複合粒子は、リチウムを吸蔵放出可能な金属またはその化合物の粒子と電子伝導性材料の粒子とが単に混合されたものではなく、単一粒子内にリチウムを吸蔵放出可能な金属またはその化合物と電子伝導性材料とが含まれ、しかも、複合粒子中においては、リチウムを吸蔵放出可能な金属またはその化合物の粒子が明確に存在している粒子である。なお、複合粒子中には、電池の特性に悪影響を与えない範囲で、リチウムを吸蔵放出可能な金属またはその化合物や電子伝導性材料以外の物質が含まれていてもかまわない。
本発明の、リチウムを吸蔵放出可能な金属またはその化合物と電子伝導性材料とからなる複合粒子の、充放電に伴う体積変化を模式的に図1〜図3に示す。図1〜図3の記号1〜5は、図4〜図6と同じものを示す。なお、負極活物質粒子3は、本発明のリチウムを吸蔵放出可能な金属またはその化合物と電子伝導性材料とからなる複合粒子である。
The composite particle comprising a metal capable of occluding and releasing lithium or a compound thereof and an electron conductive material according to the present invention is obtained by simply mixing particles of a metal capable of occluding and releasing lithium or a compound thereof and particles of an electron conductive material. In addition, a single particle includes a metal or a compound thereof capable of occluding and releasing lithium and an electron conductive material, and the composite particles include particles of a metal or a compound thereof capable of occluding and releasing lithium. It is a particle that is clearly present. The composite particles may contain a substance other than a metal capable of occluding and releasing lithium, a compound thereof, or an electron conductive material as long as the characteristics of the battery are not adversely affected.
The volume change accompanying charging / discharging of the composite particle which consists of the metal which can occlude / release lithium, its compound, and an electron conductive material of this invention is typically shown in FIGS. Symbols 1 to 5 in FIGS. 1 to 3 indicate the same components as those in FIGS. 4 to 6. The negative electrode active material particles 3 are composite particles made of the metal of the present invention capable of occluding and releasing lithium or a compound thereof and an electron conductive material.

図1は、充放電サイクル前の、放電状態の負極合剤層の状態を示すもので、負極活物質粒子3の粒子径は、負極合剤層の片面の厚さTに対し、0.5<D50/T<1の関係にある。すなわち、負極活物質粒子3の個数の半分が負極合剤層の厚さTの0.5倍よりも大きい粒子径をもつ。本発明の電池では、図4〜図6に示した従来の電池に比べ、負極合剤層の厚さTに対し、相対的に大きな負極活物質を含む複合粒子を用いている。図1における負極合剤層の厚さをTとする。 FIG. 1 shows the state of the negative electrode mixture layer in a discharged state before the charge / discharge cycle. The particle diameter of the negative electrode active material particles 3 is 0.5 with respect to the thickness T of one surface of the negative electrode mixture layer. <D 50 / T <1. That is, half of the number of the negative electrode active material particles 3 has a particle diameter larger than 0.5 times the thickness T of the negative electrode mixture layer. In the battery of the present invention, composite particles containing a relatively large negative electrode active material with respect to the thickness T of the negative electrode mixture layer are used as compared with the conventional batteries shown in FIGS. The thickness of the negative electrode mixture layer and T 1 in FIG. 1.

図2は、充電後の負極合剤層の状態を示すもので、点線は充電前の負極活物質粒子3の大きさを示す。負極活物質粒子3は、充電によってリチウムを吸蔵し、体積が膨張する。この体積膨張により負極合剤層1の厚さはTとなり、Tは図1のTよりも大きくなっている。 FIG. 2 shows the state of the negative electrode mixture layer after charging, and the dotted line shows the size of the negative electrode active material particles 3 before charging. The negative electrode active material particles 3 occlude lithium by charging and expand in volume. Due to this volume expansion, the thickness of the negative electrode mixture layer 1 becomes T 2 , and T 2 is larger than T 1 in FIG.

図3は、負極を充電および放電した後の負極合剤層の状態を示すもので、負極活物質粒子3は充放電サイクル前の図1に近い大きさに戻っているが、完全にはもどらない。この主な理由は、負極活物質粒子3がリチウムを吸蔵放出可能な金属またはその化合物を含んでおり、これらは一度リチウムを吸蔵してその体積が膨張すると、その後放電しても体積が元に戻らないからである。そして、負極合剤層1の厚みはTとなり、Tは図2のTよりも小さくなるが、図1のTよりも大きくなっている。 FIG. 3 shows the state of the negative electrode mixture layer after charging and discharging the negative electrode. The negative electrode active material particles 3 have returned to a size close to that of FIG. 1 before the charge / discharge cycle, but are completely returned. Absent. The main reason for this is that the negative electrode active material particles 3 contain a metal capable of occluding and releasing lithium or a compound thereof, and once these occlude lithium, the volume expands. It will not return. Then, next is the thickness T 3 the negative electrode mixture layer 1, T 3 is smaller than T 2 of the FIG. 2, it is larger than the T 1 of the Figure 1.

本発明では、従来の電池に比べ、負極合剤層の片面の厚さTに対して大きな負極活物質を含む複合粒子を用いている。さらに0.5<D50/T<1とすることにより、D50の大きさをもつ複合粒子が極板に垂直な方向に積み重なる個数を2個未満としている。したがって、複合粒子と複合粒子間および複合粒子と導電剤間の接触不良個所が最小であるので、充放電サイクルを繰り返しても互いに離反する複合粒子の個数が少なく、その結果負極合剤層および電池の膨れが抑制される。 In the present invention, composite particles containing a negative electrode active material larger than the thickness T on one side of the negative electrode mixture layer are used as compared with conventional batteries. Further, by setting 0.5 <D 50 / T <1, the number of composite particles having a size of D 50 stacked in the direction perpendicular to the electrode plate is less than two. Therefore, since the number of poor contact points between the composite particles and between the composite particles and between the composite particles and the conductive agent is minimized, the number of composite particles that are separated from each other even when the charge / discharge cycle is repeated is reduced. As a result, the negative electrode mixture layer and the battery Swelling is suppressed.

本発明に用いる複合粒子の粒子径は、積算分布曲線における、粒子径の小さい方から積算して合計個数10%の粒子径をD10(μm)とした場合、D10>1であることが好ましい。D10≦1の場合は、小粒子が多数存在するので、粒子の集電性を良好とするために電極合剤中での導電剤の量を多くしなければならず、その結果電池の放電容量が小さくなる。 The particle diameter of the composite particles used in the present invention is such that D 10 > 1 when the particle diameter of the total number of 10% is D 10 (μm) by integrating from the smaller particle diameter in the integrated distribution curve. preferable. In the case of D 10 ≦ 1, there are many small particles, so that the amount of the conductive agent in the electrode mixture has to be increased in order to improve the current collecting property of the particles. Capacity is reduced.

リチウムを吸蔵放出可能な金属またはその化合物と電子伝導性材料とからなる複合粒子において、リチウムを吸蔵放出可能な金属またはその化合物の粒子径の好適な大きさは、積算分布曲線における、これら粒子の小さい方から積算して合計個数50%の粒子径をD’50(μm)とする場合、0.5<D’50(μm)、且つ、D’50/D50<0.2である。0.5<D’50(μm)の場合、複合粒子の比表面積を小さくすることができ、充放電にともなう電解液の分解を抑制することができる。その結果、電池のサイクル寿命性能が向上する。負極活物質の比表面積は10m−1以下であることが好ましい。
In a composite particle composed of a metal capable of occluding and releasing lithium or a compound thereof and an electron conductive material, the preferred particle size of the metal capable of occluding and releasing lithium or a compound thereof is the cumulative distribution curve of these particles. When the particle diameter of the total number 50% is D′ 50 (μm) by integrating from the smaller one, 0.5 <D′ 50 (μm) and D′ 50 / D50 <0.2. In the case of 0.5 <D′ 50 (μm), the specific surface area of the composite particles can be reduced, and decomposition of the electrolytic solution accompanying charge / discharge can be suppressed. As a result, the cycle life performance of the battery is improved. The specific surface area of the negative electrode active material is preferably 10 m 2 g −1 or less.

また、D’50/D50<0.2とすることにより、複合粒子において、リチウムを吸蔵放出可能な金属またはその化合物と電子伝導性材料との混合をより均一にすることができ、電池のサイクル寿命性能が向上する。
なお、複合粒子の積算粒径は、それを溶媒中超音波分散した後、レーザー法によって求められる値である。
In addition, by setting D ′ 50 / D 50 <0.2, in the composite particles, the mixing of the metal capable of occluding and releasing lithium or a compound thereof and the electron conductive material can be made more uniform. Cycle life performance is improved.
The integrated particle size of the composite particles is a value obtained by a laser method after ultrasonically dispersing the composite particles in a solvent.

本発明の負極合剤層に含まれる複合粒子に使用するリチウムを吸蔵放出可能な金属またはその化合物としては、Si、Sn、Al、In、Bi、Zn、Sb、Ge、Pbなどの金属元素、SiO(0<x≦2)、SnO(0<x<2)、CoO、Co、Co、NiO、MnO、Mn、FeO、Fe、Feなどの酸化物、またはこれらの2種以上の混合物を用いることができる。なお、複合粒子の形状としては、板、薄膜、粒子および繊維などが例示される。 As a metal capable of occluding and releasing lithium used in the composite particles contained in the negative electrode mixture layer of the present invention or a compound thereof, a metal element such as Si, Sn, Al, In, Bi, Zn, Sb, Ge, Pb, SiO x (0 <x ≦ 2), SnO x (0 <x <2), CoO, Co 2 O 3 , Co 3 O 4 , NiO, MnO, Mn 2 O 3 , FeO, Fe 2 O 3 , Fe 3 An oxide such as O 4 or a mixture of two or more of these can be used. Examples of the shape of the composite particles include plates, thin films, particles, and fibers.

SiO(0<x<2)としては、SiO1.5(Si)、SiO1.33(Si)、SiOなどの化学量論組成の物質、および、xが0より大きく2未満である任意の組成の物質が例示される。また、この組成で表されるならば、SiとSiOとを任意の割合で含む物質でもよい。 As SiO x (0 <x <2), a substance having a stoichiometric composition such as SiO 1.5 (Si 2 O 3 ), SiO 1.33 (Si 3 O 4 ), SiO, and x is 0 or more. Substances of any composition that are largely less than 2 are exemplified. Also, if represented by the composition, it may be a material containing Si and SiO 2 at an arbitrary ratio.

SnO(0<x<2)としては、SnO、SnOなどの化学量論組成の物質、および、xが0より大きく2未満である任意の組成の物質が例示される。また、この組成で表されるならば、SnとSnOとを任意の割合で含む物質でもよい。
本発明の負極合剤層に含まれる複合粒子に使用する電子伝導性材料としては、炭素材料または金属を用いることができる。この金属はリチウムと合金化しないことが好ましい。
本発明の負極合剤層に含まれる複合粒子の合成方法としては、CVD法、機械的混合法、液相法、焼成法等を用いることができる。
Examples of SnO x (0 <x <2) include a substance having a stoichiometric composition such as SnO and SnO 2 and a substance having an arbitrary composition in which x is greater than 0 and less than 2. Also, if represented by the composition, it may be a material containing Sn and SnO 2 at an arbitrary ratio.
As the electron conductive material used for the composite particles contained in the negative electrode mixture layer of the present invention, a carbon material or a metal can be used. This metal is preferably not alloyed with lithium.
As a method for synthesizing the composite particles contained in the negative electrode mixture layer of the present invention, a CVD method, a mechanical mixing method, a liquid phase method, a firing method, or the like can be used.

炭素材料としては、天然黒鉛、人造黒鉛、アセチレンブラック、気相成長炭素繊維(VGCF)からなる群から選ばれた少なくとも1種類の炭素材料を用いることができる。リチウムと合金化しない金属としては銅、ニッケル、鉄、コバルト、マンガン、クロム、チタン、ジルコニウム、バナジウム、ニオブからなる群から選ばれた少なくとも一種の金属、または二種以上の金属からなる合金が例示される。   As the carbon material, at least one carbon material selected from the group consisting of natural graphite, artificial graphite, acetylene black, and vapor grown carbon fiber (VGCF) can be used. Examples of the metal not alloyed with lithium include at least one metal selected from the group consisting of copper, nickel, iron, cobalt, manganese, chromium, titanium, zirconium, vanadium, and niobium, or an alloy composed of two or more metals. Is done.

これら電子伝導性材料の中でもとくに炭素材料が好ましい。なぜなら、炭素は上記金属と異なり、その層間にリチウムを挿入・脱離することが可能であるため、炭素を備えた負極活物質を用いた電池の方が、上記金属を備えた負極活物質を用いた電池とくらべて大きい放電容量を示すからである。   Among these electron conductive materials, carbon materials are particularly preferable. Because carbon is different from the above metals and lithium can be inserted and desorbed between the layers, a battery using a negative electrode active material provided with carbon has a negative electrode active material provided with the above metal. This is because the discharge capacity is larger than that of the used battery.

また、本発明の負極合剤層に含まれる複合粒子は、リチウムを吸蔵放出可能な金属またはその化合物の表面を炭素材料で被覆した形状でもよく、表面に備えた炭素の形状は薄膜または粒子のいずれでもよい。   The composite particles contained in the negative electrode mixture layer of the present invention may have a shape in which the surface of a metal capable of occluding and releasing lithium or a compound thereof is coated with a carbon material, and the shape of the carbon provided on the surface is a thin film or a particle. Either is acceptable.

リチウムを吸蔵放出可能な金属またはその化合物を炭素材料で被覆した本発明の複合粒子の合成方法としては、メタン、エタン、エチレン、アセチレン、ブタン、ベンゼン、トルエン、キシレンのような有機化合物を気相中分解し、その分解性生物を負極活物質粒子の表面に付着させる方法(CVD法)や、ピッチ、タールまたはフルフリルアルコールなどの熱可塑性樹脂を、リチウムを吸蔵放出可能な金属またはその化合物の表面に塗布した後にそれらを焼成する方法、リチウムを吸蔵放出可能な金属またはその化合物と炭素材料粒子とを機械的方法によって付着させる方法が例示される。   As a method of synthesizing the composite particles of the present invention in which a metal capable of occluding and releasing lithium or a compound thereof is coated with a carbon material, an organic compound such as methane, ethane, ethylene, acetylene, butane, benzene, toluene, xylene is used in a gas phase. Decomposing medium and attaching the degradable organisms to the surface of the negative electrode active material particles (CVD method), and thermoplastic resins such as pitch, tar, or furfuryl alcohol, a metal or compound that can occlude and release lithium Examples thereof include a method of baking them after being applied to the surface, and a method of attaching a metal capable of occluding and releasing lithium or a compound thereof and carbon material particles by a mechanical method.

機械的方法には、造粒法、メカニカルミリング法、メカノフュージョン法、およびハイブリダイゼーション法が例示される。   Examples of the mechanical method include a granulation method, a mechanical milling method, a mechanofusion method, and a hybridization method.

本発明においては、負極活物質中に、B、C、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu等の遷移金属元素を含んでいてもよい。   In the present invention, typical nonmetallic elements such as B, C, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, and Ge are contained in the negative electrode active material. Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu may be included.

本発明の非水電解質電池に用いる正極活物質としては、二酸化マンガン、五酸化バナジウムのような遷移金属化合物や、硫化鉄、硫化チタンのような遷移金属カルコゲン化合物、リチウム含有オリビン形化合物、およびリチウム遷移金属酸化物を用いることができる。リチウム遷移金属酸化物としては、LiM1M2(M1、M2は、Ti、V、Cr、Mn、Fe、Co、Ni、Cuを表し、0.5≦x≦1、y+z=1)、LiM3Mn2−y(M3は、Ti、V、Cr、Fe、Co、Ni、Cuを表し、0.9≦x≦1.1、0.4≦y≦0.6)が例示される。 The positive electrode active material used in the nonaqueous electrolyte battery of the present invention includes transition metal compounds such as manganese dioxide and vanadium pentoxide, transition metal chalcogen compounds such as iron sulfide and titanium sulfide, lithium-containing olivine compounds, and lithium. Transition metal oxides can be used. As the lithium transition metal oxide, Li x M1 y M2 z O 2 (M1, M2 represents Ti, V, Cr, Mn, Fe, Co, Ni, Cu, 0.5 ≦ x ≦ 1, y + z = 1), Li x M3 y Mn 2-y O 4 (M3 represents Ti, V, Cr, Fe, Co, Ni, and Cu, 0.9 ≦ x ≦ 1.1,0.4 ≦ y ≦ 0 .6) is exemplified.

さらに、これらの化合物や酸化物にAl、P、B、またはそれ以外の典型非金属元素、典型金属元素を含有した物質を使用することができる。これら正極活物質のなかでも、リチウムとコバルトやニッケルとの複合酸化物、リチウムとコバルトおよびニッケルを含む複合酸化物、スピネル型リチウムマンガン酸化物が好ましい。その例としては、LiCoO、LiNiO、LiNiCo1−x(0<x<1)、LiMnO、LiMnなどが挙げられる。その理由は、これらの正極活物質を用いることにより、高電圧、高エネルギー密度および良好なサイクル性能をもつ電池が得られるからである。 Furthermore, substances containing Al, P, B, or other typical nonmetallic elements or typical metal elements in these compounds and oxides can be used. Among these positive electrode active materials, composite oxides of lithium, cobalt, and nickel, composite oxides including lithium, cobalt, and nickel, and spinel lithium manganese oxide are preferable. Examples thereof include LiCoO 2 , LiNiO 2 , LiNi x Co 1-x O 2 (0 <x <1), LiMnO 2 , LiMn 2 O 4 and the like. The reason is that a battery having a high voltage, a high energy density and good cycle performance can be obtained by using these positive electrode active materials.

本発明の非水電解質二次電池で用いられる正極および負極は、活物質または活物質を含む複合粒子と導電剤と結着剤とを所定の割合で混合し、適当な溶媒を加えてスラリーとし、このスラリーを集電体に塗布し、乾燥することにより製造することができる。   The positive electrode and negative electrode used in the non-aqueous electrolyte secondary battery of the present invention are prepared by mixing an active material or composite particles containing an active material, a conductive agent, and a binder at a predetermined ratio, and adding an appropriate solvent to form a slurry. The slurry can be applied to a current collector and dried.

正極または負極に用いられる導電剤としては、種々の炭素材料を用いることができる。炭素材料には、天然黒鉛、人造黒鉛等の黒鉛や、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素が例示される。   As the conductive agent used for the positive electrode or the negative electrode, various carbon materials can be used. Examples of the carbon material include graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon such as needle coke.

正極または負極に用いられる結着剤としては、例えば、PVdF(ポリフッ化ビニリデン)、P(VdF/HFP)(ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体)、PTFE(ポリテトラフルオロエチレン)、フッ素化ポリフッ化ビニリデン、EPDM(エチレン−プロピレン−ジエン三元共重合体)、SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース、またはこれらの誘導体を、単独でまたは混合して用いることができる。   Examples of the binder used for the positive electrode or the negative electrode include PVdF (polyvinylidene fluoride), P (VdF / HFP) (polyvinylidene fluoride-hexafluoropropylene copolymer), PTFE (polytetrafluoroethylene), and fluorination. Polyvinylidene fluoride, EPDM (ethylene-propylene-diene terpolymer), SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluororubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, Or these derivatives can be used individually or in mixture.

正極スラリーまたは負極スラリーに用いる溶媒または溶液としては、結着剤を溶解または分散する溶媒または溶液を用いることができる。その溶媒または溶液としては、非水溶媒または水溶液を用いることができる。非水溶媒には、N―メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等をあげることができる。一方、水溶液には、水、または分散剤、増粘剤等を加えた水溶液を用いることができる。後者の水溶液中で、SBR等のラテックスと活物質とを混合し、それらをスラリー化することができる。   As the solvent or solution used for the positive electrode slurry or the negative electrode slurry, a solvent or solution that dissolves or disperses the binder can be used. As the solvent or solution, a non-aqueous solvent or an aqueous solution can be used. Non-aqueous solvents include N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc. Can do. On the other hand, as the aqueous solution, water or an aqueous solution to which a dispersant, a thickener, or the like is added can be used. In the latter aqueous solution, latex such as SBR and an active material can be mixed and slurried.

正極または負極の集電体としては、鉄、銅、アルミニウム、ステンレス、ニッケルを用いることができる。また、その形状としては、シート、発泡体、焼結多孔体、エキスパンド格子が例示される。さらに、集電体として、前記集電体に任意の形状で穴を開けたものを用いてもよい。   As the current collector for the positive electrode or the negative electrode, iron, copper, aluminum, stainless steel, or nickel can be used. Examples of the shape include a sheet, a foam, a sintered porous body, and an expanded lattice. Furthermore, as the current collector, a current collector having a hole in an arbitrary shape may be used.

本発明の非水電解質電池用セパレーターには、微多孔性高分子膜を用いることができ、その材質としては、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、およびポリプロピレン、ポリエチレン、ポリブテン等のポリオレフィンが例示される。これらの中では、ポリオレフィンの微多   The separator for a non-aqueous electrolyte battery of the present invention can use a microporous polymer membrane, and the material thereof is nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene And polyolefins such as polybutene. Among these, the fineness of polyolefin

孔性膜がとくに好ましい。または、ポリエチレンとポリプロピレンとを積層した微多孔製膜を用いてもよい。 A porous membrane is particularly preferred. Alternatively, a microporous film in which polyethylene and polypropylene are laminated may be used.

本発明の非水電解質電池で用いられる非水電解質としては、非水電解液、高分子固体電解質、ゲル状電解質、無機固体電解質を用いることができる。電解質には孔があってもよい。非水電解液は、非水溶媒および溶質から構成される。   As the non-aqueous electrolyte used in the non-aqueous electrolyte battery of the present invention, a non-aqueous electrolyte, a polymer solid electrolyte, a gel electrolyte, and an inorganic solid electrolyte can be used. The electrolyte may have pores. The non-aqueous electrolyte is composed of a non-aqueous solvent and a solute.

非水電解液に用いられる溶媒としては、エチレンカーボネート、プロピレンカーボネートなどの環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1、2−ジメトキシエタン、1、2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート、酢酸メチル等の溶媒、およびこれらの混合溶媒が例示される。   Solvents used in the non-aqueous electrolyte include cyclic carbonates such as ethylene carbonate and propylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, Examples include dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate, methyl acetate, and mixed solvents thereof.

また、非水電解液に用いられる溶質としては、LiPF、LiBF、LiAsF、LiClO、LiSCN、LiCFCO、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCFおよびLiN(COCFCF等の塩、およびこれらの混合物が例示される。
高分子固体電解質としては、ポリエチレンオキサイド、ポリプロビレンオキサイド、ポリエチレンイミド等の高分子、またはこれらの混合物に上記のような溶質を加えて得られる物質を用いることができる。また、ゲル状電解質としては、上記高分子に、上記のような溶媒および溶質を加えて得られる物質を用いることができる。
また、電池の形状は特に限定されるものではなく、角形、楕円形、コイン形、ボタン形、シート形電池等の様々な形状の非水電解質電池に適用可能である。
As the solute to be used in the nonaqueous electrolyte, LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiSCN, LiCF 3 CO 2, LiCF 3 SO 3, LiN (SO 2 CF 3) 2, LiN (SO 2 Examples include salts such as CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 and LiN (COCF 2 CF 3 ) 2 , and mixtures thereof.
As the polymer solid electrolyte, a polymer obtained by adding a solute as described above to a polymer such as polyethylene oxide, polypropylene oxide, polyethylene imide, or a mixture thereof can be used. As the gel electrolyte, a substance obtained by adding the above solvent and solute to the above polymer can be used.
The shape of the battery is not particularly limited, and can be applied to various shapes of non-aqueous electrolyte batteries such as a square, an ellipse, a coin, a button, and a sheet battery.

以下に、本発明非水電解質電池を実施例に基づいて、さらに詳細に説明する。しかしながら、本発明は、以下の実施例によって限定されるものではない。
[実施例1〜4および比較例1〜4]
Hereinafter, the nonaqueous electrolyte battery of the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples.
[Examples 1 to 4 and Comparative Examples 1 to 4]

[実施例1]
D’50=1μmのSiO粒子を50質量%とD50=10μmの鱗片状黒鉛粒子を50質量%とをそれぞれ秤量し、両者を造粒することによって、粒子径がD10=14μm、D50=30μm、D90=47μmである複合粒子を得た。なお、粒子径は粒度分析装置(島津製作所(株)製SALD2000J)を用いて測定した。試料を水溶媒中20分超音波分散した。屈折率としては、2.00−0.05iを用いた。
[Example 1]
By weighing 50% by mass of SiO particles with D ′ 50 = 1 μm and 50% by mass of flaky graphite particles with D 50 = 10 μm, and granulating both, the particle diameter is D 10 = 14 μm, D 50 Composite particles with = 30 μm and D 90 = 47 μm were obtained. The particle size was measured using a particle size analyzer (SALD2000J manufactured by Shimadzu Corporation). The sample was ultrasonically dispersed in an aqueous solvent for 20 minutes. As a refractive index, 2.00-0.05i was used.

この複合粒子64質量%と、導電剤としての燐片状天然黒鉛粉末16質量%と、結着剤としてのPVdF20質量%とを混合し、NMPを加えて分散させ、負極ペーストを作製した。この負極ペーストを、厚さ10μmの銅箔上に塗布し、つぎに、150℃で乾燥することにより、NMPを蒸発させた。以上の操作を銅箔の両面に対しておこない、さらに、両面をロールプレスで圧縮成型した。このようにして、両面に負極合剤層を備えたシート状負極を製作した。負極合剤層の片面の厚さTを50μmとした。   64% by mass of the composite particles, 16% by mass of flake natural graphite powder as a conductive agent, and 20% by mass of PVdF as a binder were mixed, and NMP was added and dispersed to prepare a negative electrode paste. This negative electrode paste was applied onto a copper foil having a thickness of 10 μm, and then dried at 150 ° C. to evaporate NMP. The above operation was performed on both sides of the copper foil, and both sides were compression molded with a roll press. Thus, the sheet-like negative electrode provided with the negative mix layer on both surfaces was manufactured. The thickness T on one side of the negative electrode mixture layer was 50 μm.

つぎに、正極活物質としてのコバルト酸リチウム(LiCoO)90質量%と、導電剤としてのアセチレンブラック3質量%と、結着剤としてのPVdF4質量%とを混合し、NMPを加えて分散させ、正極ペーストを作製した。この正極ペーストを厚さ15μmのアルミニウム箔上に塗布し、つぎに150℃で乾燥することにより、NMPを蒸発させた。以上の操作をアルミニウム箔の両面に対しておこない、さらに両面をロールプレスで圧縮成型した。このようにして、両面に正極合剤層を備えたシート状正極を製作した。正極合剤層の片面の厚さを110μmとした。 Next, 90% by mass of lithium cobalt oxide (LiCoO 2 ) as a positive electrode active material, 3% by mass of acetylene black as a conductive agent, and 4% by mass of PVdF as a binder are mixed and dispersed by adding NMP. A positive electrode paste was prepared. This positive electrode paste was applied onto an aluminum foil having a thickness of 15 μm and then dried at 150 ° C. to evaporate NMP. The above operation was performed on both sides of the aluminum foil, and both sides were compression molded with a roll press. Thus, the sheet-like positive electrode provided with the positive mix layer on both surfaces was manufactured. The thickness of one surface of the positive electrode mixture layer was 110 μm.

このようにして準備した正極および負極を、厚さ20μm、多孔度40%の連通多孔体であるポリエチレンセパレータを間に挟んで重ねて巻き、高さ48mm、幅30mm、厚さ4.2mmの容器中に挿入して、角形電池を組立てた。最後に、この電池の内部に、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との体積比4:6の混合溶媒に1mol/lのLiPFを溶解した非水電解液を注入することによって、実施例1の電池を得た。
[実施例2]
The positive electrode and the negative electrode prepared in this way are rolled up with a polyethylene separator, which is a continuous porous body having a thickness of 20 μm and a porosity of 40%, interposed between them, and a container having a height of 48 mm, a width of 30 mm, and a thickness of 4.2 mm The prismatic battery was assembled by inserting it inside. Finally, by injecting a nonaqueous electrolytic solution in which 1 mol / l LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 4: 6, into the inside of the battery, The battery of Example 1 was obtained.
[Example 2]

負極に用いるSiOと黒鉛との複合粒子として、粒子径をD10=20μm、D50=35μm、D90=49μmとしたものを用いたこと以外は実施例1と同様にして、実施例2の電池を作製した。
[実施例3]
Example 2 was the same as Example 1 except that the composite particles of SiO and graphite used for the negative electrode were those having particle diameters of D 10 = 20 μm, D 50 = 35 μm, and D 90 = 49 μm. A battery was produced.
[Example 3]

負極に用いるSiOと黒鉛との複合粒子として、粒子径をD10=22μm、D50=40μm、D90=58μmとしたものを用いたこと以外は実施例1と同様にして、実施例3の電池を作製した。
[実施例4]
Example 3 was the same as Example 1 except that the composite particles of SiO and graphite used for the negative electrode were those having particle diameters of D 10 = 22 μm, D 50 = 40 μm, and D 90 = 58 μm. A battery was produced.
[Example 4]

負極に用いるSiOと黒鉛との複合粒子として、粒子径をD10=25μm、D50=45μm、D90=68μmとしたものを用いたこと以外は実施例1と同様にして、実施例4の電池を作製した。
[比較例1]
Example 4 is the same as Example 1 except that the composite particles of SiO and graphite used for the negative electrode were those having particle diameters of D 10 = 25 μm, D 50 = 45 μm, and D 90 = 68 μm. A battery was produced.
[Comparative Example 1]

負極に用いるSiOと黒鉛との複合粒子として、粒子径をD10=6μm、D50=20μm、D90=32μmとしたものを用いたこと以外は実施例1と同様にして、比較例1の電池を作製した。
[比較例2]
Comparative Example 1 was the same as Example 1 except that the composite particles of SiO and graphite used for the negative electrode were those having particle diameters of D 10 = 6 μm, D 50 = 20 μm, and D 90 = 32 μm. A battery was produced.
[Comparative Example 2]

負極に用いるSiOと黒鉛との複合粒子として、粒子径をD10=11μm、D50=25μm、D90=41μmとしたものを用いたこと以外は実施例1と同様にして、比較例2の電池を作製した。
[比較例3]
Comparative Example 2 was the same as Example 1 except that the composite particles of SiO and graphite used for the negative electrode were those having particle diameters of D 10 = 11 μm, D 50 = 25 μm, and D 90 = 41 μm. A battery was produced.
[Comparative Example 3]

負極に用いるSiOと黒鉛との複合粒子として、粒子径をD10=28μm、D50=50μm、D95=75μmとしたものを用いたこと以外は実施例1と同様にして、比較例3の電池を作製した。
[比較例4]
Comparative Example 3 was the same as Example 1 except that the composite particles of SiO and graphite used for the negative electrode were those having particle diameters of D 10 = 28 μm, D 50 = 50 μm, and D 95 = 75 μm. A battery was produced.
[Comparative Example 4]

負極に用いるSiOと黒鉛との複合粒子として、粒子径をD10=33μm、D50=55μm、D95=83μmとしたものを用いたこと以外は実施例1と同様にして、比較例4の電池を作製した。 Comparative Example 4 was the same as Example 1 except that the composite particles of SiO and graphite used for the negative electrode were those having particle diameters of D 10 = 33 μm, D 50 = 55 μm, and D 95 = 83 μm. A battery was produced.

実施例1〜4および比較例1〜4の電池について、25℃において、400mA定電流で4.2Vまで充電し、続いて4.2V定電圧で3時間充電した。その後、400mA定電流で2.5Vまで放電し、これを1サイクルとする。50サイクルの充放電終了後の電池厚みを測定し、電池組立て直後の電池厚み4.2mmに対するサイクル後の電池膨れ(%)を求めた。なお、いずれの電池においても1サイクル目に400mAhの放電容量が得られた。
実施例1〜4および比較例1〜4の電池の、複合粒子の粒子径および試験結果を表1に示す。
The batteries of Examples 1 to 4 and Comparative Examples 1 to 4 were charged to 4.2 V at a constant current of 400 mA at 25 ° C., and then charged at a constant voltage of 4.2 V for 3 hours. Then, it discharges to 2.5V with a 400 mA constant current, and makes this 1 cycle. The battery thickness after the completion of 50 cycles of charge / discharge was measured, and the battery swelling (%) after the cycle with respect to the battery thickness of 4.2 mm immediately after battery assembly was determined. In all the batteries, a discharge capacity of 400 mAh was obtained in the first cycle.
Table 1 shows the particle diameters and test results of the composite particles of the batteries of Examples 1 to 4 and Comparative Examples 1 to 4.

Figure 0004810794
Figure 0004810794

表1から、0.5<D50/T<1の場合に電池の膨れが小さく、さらにD90/T<1の場合に電池の膨れがとくに小さいことがわかった。
50/Tが0.5以下である比較例1および比較例2の電池では、充放電サイクル中に複合粒子間や複合粒子と導電剤との間の距離が増大した結果、電池の膨れが大きくなったと考えられる。また、D50/TおよびD90/Tが1.0以上である比較例3および比較例4の電池では、複合粒子が大きすぎて、その粒子の体積膨張によって負極合剤層が著しく膨れた結果、電池の膨れが大きくなったと考えられる。
[実施例5〜8および比較例5〜8]
From Table 1, it was found that the swelling of the battery was small when 0.5 <D 50 / T <1, and the swelling of the battery was particularly small when D 90 / T <1.
In the batteries of Comparative Example 1 and Comparative Example 2 in which D 50 / T is 0.5 or less, the battery swells as a result of an increase in the distance between the composite particles or between the composite particles and the conductive agent during the charge / discharge cycle. It seems that it has grown. Moreover, in the batteries of Comparative Example 3 and Comparative Example 4 in which D 50 / T and D 90 / T were 1.0 or more, the composite particles were too large, and the negative electrode mixture layer swelled significantly due to the volume expansion of the particles. As a result, it is considered that the swelling of the battery has increased.
[Examples 5 to 8 and Comparative Examples 5 to 8]

負極に用いる粒子として、実施例1と同様の方法でSiOの替わりにD’50=1μmのSnOを含む複合粒子を作製した。その粒子径を表2に示す。この複合粒子を用いたこと、および負極合剤層の片面の厚さTを60μm、正極合剤層の片面の厚さT’を90μmとしたこと以外は実施例1と同様にして、実施例5〜8および比較例5〜8の電池を作製し、実施例1と同様の試験を行った。いずれの電池においても1サイクル目に400mAhの放電容量が得られた。実施例5〜8および比較例5〜8の試験結果を表2に示す。 As particles used for the negative electrode, composite particles containing SnO of D ′ 50 = 1 μm instead of SiO were produced in the same manner as in Example 1. The particle diameter is shown in Table 2. In the same manner as in Example 1, except that this composite particle was used, and the thickness T on one side of the negative electrode mixture layer was 60 μm and the thickness T ′ on one side of the positive electrode mixture layer was 90 μm. Batteries 5 to 8 and Comparative Examples 5 to 8 were produced and tested in the same manner as in Example 1. In both batteries, a discharge capacity of 400 mAh was obtained in the first cycle. The test results of Examples 5 to 8 and Comparative Examples 5 to 8 are shown in Table 2.

Figure 0004810794
Figure 0004810794

表2から、SnOを用いた場合でも、複合粒子の大きさを0.5<D50/T<1することによって、電池の膨れを抑制することができることがわかる。
[実施例9〜12および比較例9〜12]
Table 2 shows that even when SnO is used, the swelling of the battery can be suppressed by setting the size of the composite particle to 0.5 <D 50 / T <1.
[Examples 9-12 and Comparative Examples 9-12]

負極に用いる粒子として、実施例1と同様の方法でSiOの替わりにD’50=1μmのSnを含む複合粒子を作製した。その粒子径を表3に示す。この複合粒子を用いたこと、および負極合剤層の片面の厚さTを55μm、正極合剤層の片面の厚さT’を75μmとしたこと以外は実施例1と同様にして、実施例9〜12および比較例9〜12の電池を作製し、実施例1と同様の試験を行った。いずれの電池においても1サイクル目に400mAhの放電容量が得られた。実施例9〜12および比較例9〜12の試験結果を表3に示す。 As particles used for the negative electrode, composite particles containing Sn of D ′ 50 = 1 μm instead of SiO were produced in the same manner as in Example 1. The particle size is shown in Table 3. In the same manner as in Example 1, except that this composite particle was used, and the thickness T on one side of the negative electrode mixture layer was 55 μm and the thickness T ′ on one side of the positive electrode mixture layer was 75 μm. Batteries 9 to 12 and Comparative Examples 9 to 12 were produced and tested in the same manner as in Example 1. In both batteries, a discharge capacity of 400 mAh was obtained in the first cycle. Table 3 shows the test results of Examples 9-12 and Comparative Examples 9-12.

Figure 0004810794
Figure 0004810794

表3から、Snを用いた場合でも、複合粒子の大きさを0.5<D50/T<1することによって、電池の膨れを抑制することができることがわかった。
[実施例13〜17]
負極に用いる粒子として、実施例2と同様の方法でD’50=1μmのSiOの替わりに種々のD’50をもつSiO粒子を含む複合粒子を作製した。この複合粒子の粒子径(D50)は、実施例2に用いた複合粒子の粒子径と一致した。したがって、いずれの実施例においてもD50/T=0.7であり、0.5<D50/T<1が満たされている。
SiO粒子径(D’50)、SiOの粒子径(D’50)と複合粒子径(D50)との比、および複合粒子の比表面積を表4に示す。この複合粒子を用いたこと以外は実施例2と同様にして、実施例13〜17の電池を作製し、実施例2と同様の試験を行った。いずれの電池においても1サイクル目に400mAhの放電容量が得られた。試験結果を表4に示す。なお、表4には比較のため、実施例2のデータも示した。1サイクル目の放電容量を「初期放電容量」とし、初期放電容量に対する100サイクル目放電容量の比率(%)を「容量維持率」とした。
From Table 3, it was found that even when Sn is used, the swelling of the battery can be suppressed by setting the size of the composite particles to 0.5 <D 50 / T <1.
[Examples 13 to 17]
As particles used for the negative electrode, composite particles containing SiO particles having various D ′ 50 instead of SiO having D ′ 50 = 1 μm were prepared in the same manner as in Example 2. The particle diameter (D 50 ) of the composite particles coincided with the particle diameter of the composite particles used in Example 2. Therefore, in any of the examples, D 50 /T=0.7, and 0.5 <D 50 / T <1 is satisfied.
Table 4 shows the SiO particle diameter (D ′ 50 ), the ratio of the SiO particle diameter (D ′ 50 ) to the composite particle diameter (D 50 ), and the specific surface area of the composite particles. Batteries of Examples 13 to 17 were produced in the same manner as in Example 2 except that the composite particles were used, and the same test as in Example 2 was performed. In both batteries, a discharge capacity of 400 mAh was obtained in the first cycle. The test results are shown in Table 4. Table 4 also shows data of Example 2 for comparison. The discharge capacity at the first cycle was defined as “initial discharge capacity”, and the ratio (%) of the discharge capacity at 100th cycle to the initial discharge capacity was defined as “capacity maintenance ratio”.

Figure 0004810794
Figure 0004810794

表4から、0.5<D50/T<1であって、さらにD’50/D50<0.2の場合に85%以上の高い容量保持率が得られることがわかった。また、0.5<D’50とすることにより、複合粒子の比表面積を10m−1以下に小さくすることができ、高い容量保持率が得られることがわかった。これは、電解液の分解が抑制されたからと考えられる。なお、実施例13〜17の電池の膨れは5.0〜5.3%であり、小さかった。
上記実施例では、リチウムを吸蔵放出可能な金属またはその化合物として、SiO、SnO、Snを用いたが、他にSi、Al、CoO、Mnなどを用いた場合でも同様にして、複合粒子の大きさを0.5<D50/T<1とすることによって、電池の膨れを抑制することが可能であった。また、複合粒子中の電子伝導性材料として鱗片状黒鉛を用いたが、気相成長炭素繊維を用いた場合でも同様にして複合粒子の製造が可能であって、その大きさを上記値に規定することにより、電池の膨れを抑制することが可能であった。
From Table 4, it was found that a high capacity retention rate of 85% or more was obtained when 0.5 <D 50 / T <1 and D ′ 50 / D 50 <0.2. In addition, it was found that by setting 0.5 <D ′ 50 , the specific surface area of the composite particles can be reduced to 10 m 2 g −1 or less, and a high capacity retention can be obtained. This is presumably because the decomposition of the electrolyte was suppressed. In addition, the swelling of the batteries of Examples 13 to 17 was 5.0 to 5.3%, which was small.
In the above embodiment, SiO, SnO, or Sn is used as a metal capable of occluding and releasing lithium or a compound thereof. However, in the case where Si, Al, CoO, Mn 2 O 3 or the like is used in addition, a composite material is similarly formed. By setting the particle size to 0.5 <D 50 / T <1, it was possible to suppress swelling of the battery. In addition, although scaly graphite was used as the electron conductive material in the composite particles, composite particles can be produced in the same manner even when vapor-grown carbon fibers are used, and the size is defined as the above value. By doing so, it was possible to suppress the swelling of the battery.

本発明電池の、充放電サイクル前の、放電状態の負極合剤層の状態を示す模式図。The schematic diagram which shows the state of the negative mix layer of the discharge state before the charging / discharging cycle of this invention battery. 本発明電池の、充電後の負極合剤層の状態を示す模式図。The schematic diagram which shows the state of the negative mix layer after charge of this invention battery. 本発明電池の、負極がいったん充電された後、放電された負極合剤層の状態を示す模式図。The schematic diagram which shows the state of the negative mix layer discharged after the negative electrode was once charged of this invention battery. 従来の電池の、充放電サイクル前の、放電状態の負極合剤層の状態を示す模式図。The schematic diagram which shows the state of the negative electrode mixture layer of the discharge state before the charging / discharging cycle of the conventional battery. 従来の電池の、充電後の負極合剤層の状態を示す模式図。The schematic diagram which shows the state of the negative mix layer after charge of the conventional battery. 従来の電池の、負極がいったん充電された後、放電された負極合剤層の状態を示す模式図。The schematic diagram which shows the state of the negative mix layer discharged after the negative electrode of the conventional battery was once charged.

符号の説明Explanation of symbols

1 負極合剤層
2 負極集電体
3 負極活物質粒子
4 導電剤粒子
5 負極合剤層内の空間




































DESCRIPTION OF SYMBOLS 1 Negative electrode mixture layer 2 Negative electrode collector 3 Negative electrode active material particle 4 Conductive agent particle 5 Space in negative electrode mixture layer




































Claims (3)

リチウムを吸蔵放出可能な金属またはその化合物と電子伝導性材料とからなる複合粒子を含む負極合剤層を備えた非水電解質二次電池において、前記複合粒子の積算分布曲線における、粒子径の小さい方から積算して合計個数50%の粒子径をD50(μm)、前記負極合剤層の片面の厚さをT(μm)とした場合、0.5<D50/T<1であることを特徴とする非水電解質二次電池。(ただし、D 50 /T=0.6であり、且つ、D’ 50 /D 50 =1/30であるものを除く。ここで、前記複合粒子において、リチウムを吸蔵放出可能な金属またはその化合物の積算分布曲線における、粒子径の小さい方から積算して合計個数50%の粒子径をD’50(μm)とする) In a non-aqueous electrolyte secondary battery including a negative electrode mixture layer including composite particles made of a metal capable of occluding and releasing lithium or a compound thereof and an electron conductive material, the particle size in the integrated distribution curve of the composite particles is small. When the particle diameter of the total number 50% is D 50 (μm) and the thickness of one surface of the negative electrode mixture layer is T (μm), the total number is 50 <T 50 / T <1. A non-aqueous electrolyte secondary battery. (However, the case where D 50 /T=0.6 and D ′ 50 / D 50 = 1/30 is excluded. Here, in the composite particles, a metal or a compound thereof capable of occluding and releasing lithium. In the cumulative distribution curve, the particle diameter of the total number 50% is D′ 50 (μm) by integrating from the smaller particle diameter) 前記複合粒子において、リチウムを吸蔵放出可能な金属またはその化合物の積算分布曲線における、粒子径の小さい方から積算して合計個数50%の粒子径をD’50(μm)とした場合、0.5<D’50(μm)、且つ、D’50/D50<0.2であることを特徴とする請求項1記載の非水電解質二次電池。 In the composite particles, when the particle diameter of the total number 50% is D′ 50 (μm) in the integrated distribution curve of the metal capable of occluding and releasing lithium or the compound thereof, the particle diameter of the total particle number is 0. The nonaqueous electrolyte secondary battery according to claim 1, wherein 5 <D ′ 50 (μm) and D ′ 50 / D 50 <0.2. 前記複合粒子において、複合粒子の積算分布曲線における、粒子径の小さい方から積算して合計個数90%の粒子径をDIn the composite particles, the total particle diameter of the composite particles accumulated from the smaller particle diameter in the integrated distribution curve of the composite particles is 90%. 9090 (μm)とした場合、D(Μm), D 9090 /T<1であることを特徴とする請求項1記載の非水電解質二次電池。The nonaqueous electrolyte secondary battery according to claim 1, wherein / T <1.
JP2004105030A 2004-03-31 2004-03-31 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4810794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004105030A JP4810794B2 (en) 2004-03-31 2004-03-31 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004105030A JP4810794B2 (en) 2004-03-31 2004-03-31 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005293943A JP2005293943A (en) 2005-10-20
JP4810794B2 true JP4810794B2 (en) 2011-11-09

Family

ID=35326663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004105030A Expired - Fee Related JP4810794B2 (en) 2004-03-31 2004-03-31 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4810794B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077268A1 (en) * 2010-12-07 2012-06-14 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material for lithium ion secondary battery, negative electrode of lithium ion secondary battery and negative electrode of capacitor respectively using same, lithium ion secondary battery and capacitor
JP5482858B2 (en) * 2011-11-24 2014-05-07 株式会社豊田自動織機 Lithium ion secondary battery
JP5601388B2 (en) * 2012-03-27 2014-10-08 Tdk株式会社 Negative electrode and lithium ion secondary battery
JPWO2014136180A1 (en) * 2013-03-04 2017-02-09 株式会社日立製作所 Negative electrode active material for lithium ion secondary battery
JP6397262B2 (en) * 2014-02-07 2018-09-26 信越化学工業株式会社 Nonaqueous electrolyte secondary battery
WO2015145522A1 (en) * 2014-03-24 2015-10-01 株式会社 東芝 Electrode active material for non-aqueous electrolyte cell, electrode for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and cell pack
WO2015163398A1 (en) * 2014-04-25 2015-10-29 三井金属鉱業株式会社 Negative electrode active substance for non-aqueous electrolyte secondary batteries
JP6517007B2 (en) 2014-11-27 2019-05-22 株式会社日立製作所 Method of manufacturing lithium ion secondary battery
WO2018096593A1 (en) * 2016-11-22 2018-05-31 日産自動車株式会社 Negative electrode for electrical devices, and electrical device in which same is used

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843836B2 (en) * 2000-08-02 2011-12-21 パナソニック株式会社 Nonaqueous electrolyte secondary battery and method for producing negative electrode plate thereof
JP4077294B2 (en) * 2002-10-22 2008-04-16 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
JP4375042B2 (en) * 2003-02-18 2009-12-02 三菱化学株式会社 Negative electrode material and negative electrode for non-aqueous lithium ion secondary battery, and non-aqueous lithium ion secondary battery
JP4150331B2 (en) * 2003-12-25 2008-09-17 Tdk株式会社 Electrode and electrochemical element, electrode manufacturing method and electrochemical element manufacturing method
JP2005093158A (en) * 2003-09-16 2005-04-07 Nissan Motor Co Ltd Lithium ion secondary battery

Also Published As

Publication number Publication date
JP2005293943A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP4273422B2 (en) Positive electrode material and battery
JP5568886B2 (en) Active material, battery and method for producing electrode
JP4985524B2 (en) Lithium secondary battery
JP5061497B2 (en) Nonaqueous electrolyte secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP4967321B2 (en) Lithium ion secondary battery
JP2006286599A (en) Anode for nonaqueous secondary battery
JP2007188861A (en) Battery
JP2009117159A (en) Positive electrode and lithium ion secondary battery
CN111602274A (en) Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery comprising same
JP4332845B2 (en) Non-aqueous electrolyte battery
KR20190047195A (en) Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
JP2010123331A (en) Nonaqueous electrolyte secondary battery
US20180198120A1 (en) Lithium secondary battery
US20220294037A1 (en) Method for manufacturing secondary battery
JP7177277B2 (en) Electrodes for lithium secondary batteries
JP4994628B2 (en) Nonaqueous electrolyte secondary battery
JP2004134207A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
US20030068555A1 (en) Non-aqueous electrolyte secondary battery
JP7460261B2 (en) Secondary battery charging and discharging method
JP4810794B2 (en) Nonaqueous electrolyte secondary battery
KR20200065625A (en) Lithium secondary battery, and method for preparing the same
CN112154557B (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP5626035B2 (en) Method for pretreatment and use of lithium ion secondary battery
JP5125050B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R150 Certificate of patent or registration of utility model

Ref document number: 4810794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees