JP2003346904A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2003346904A
JP2003346904A JP2002154975A JP2002154975A JP2003346904A JP 2003346904 A JP2003346904 A JP 2003346904A JP 2002154975 A JP2002154975 A JP 2002154975A JP 2002154975 A JP2002154975 A JP 2002154975A JP 2003346904 A JP2003346904 A JP 2003346904A
Authority
JP
Japan
Prior art keywords
battery
electrolyte secondary
negative electrode
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002154975A
Other languages
Japanese (ja)
Other versions
JP4296591B2 (en
JP2003346904A5 (en
Inventor
Hiroshi Wada
和田  弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002154975A priority Critical patent/JP4296591B2/en
Publication of JP2003346904A publication Critical patent/JP2003346904A/en
Publication of JP2003346904A5 publication Critical patent/JP2003346904A5/ja
Application granted granted Critical
Publication of JP4296591B2 publication Critical patent/JP4296591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the trickle charging life of a nonaqueous electrolyte secondary battery. <P>SOLUTION: The nonaqueous electrolyte secondary battery uses a spinel lithium-manganese compound oxide as a positive electrode active material, and a carbon material having an average spacing in a C-axial direction of 0.337 nm of less as a negative electrode active material. Discharging capacity of the battery at 4.1 V charging is 5 Ah or more, and the rate of the discharging capacity at 5C discharging to that at 1C discharging is 90% or more. The charging rate for the carbon material (the value of x when expressed as Li<SB>x</SB>C<SB>6</SB>) as the negative electrode active material when the battery voltage is 4.1 V is 0.6 or greater and 0.75 or smaller. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、比較的大きな容量
を有すると共に、比較的高率で放電される用途に用いら
れる非水電解質二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery having a relatively large capacity and used for discharging at a relatively high rate.

【0002】[0002]

【従来の技術】非水電解質二次電池は、軽量で高エネル
ギー密度を有するという特徴から、携帯電話等の電源と
して普及している。この非水電解質二次電池は、リチウ
ム又はリチウム合金、リチウムを含有する負極と、リチ
ウム複合酸化物を含有する正極と、上記負極と上記正極
との間に配されたセパレータと、非水電解液とを備えた
二次電池である。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries are widely used as power sources for mobile phones and the like because of their characteristics of being lightweight and having a high energy density. This non-aqueous electrolyte secondary battery includes a lithium or lithium alloy, a negative electrode containing lithium, a positive electrode containing a lithium composite oxide, a separator disposed between the negative electrode and the positive electrode, and a non-aqueous electrolyte. And a secondary battery comprising:

【0003】携帯電話等で多く用いられている非水電解
質二次電池は、小型非水電解質二次電池と呼ばれている
もので、正極活物質としてリチウムコバルト複合酸化物
が用いられ、負極活物質として黒鉛系炭素材料が用いら
れているもので、電池容量は1Ah程度と比較的小さ
く、通常使用時の放電率は1C未満と比較的小さなもの
である。
A non-aqueous electrolyte secondary battery that is often used in mobile phones and the like is called a small non-aqueous electrolyte secondary battery, and uses a lithium-cobalt composite oxide as a positive electrode active material and a negative electrode active battery. A graphite-based carbon material is used as the substance. The battery capacity is relatively small at about 1 Ah, and the discharge rate during normal use is relatively small at less than 1 C.

【0004】[0004]

【発明が解決しようとする課題】上記のような小型非水
電解質二次電池に対し、電気自動車等の電動車両や非常
用無停電電源装置に用いることのできる大型非水電解質
二次電池の実用化が望まれている。このような大型非水
電解質二次電池には、その用途から小型非水電解質二次
電池に求められるよりもより長寿命であり、高率放電が
可能であるという性能が求められ、例えば寿命10年、
5C放電可能といったような性能が求められる。
In contrast to the above-mentioned small non-aqueous electrolyte secondary battery, the practical use of a large non-aqueous electrolyte secondary battery which can be used for electric vehicles such as electric vehicles and emergency uninterruptible power supplies. Is desired. Such a large non-aqueous electrolyte secondary battery is required to have a longer life than that required for a small non-aqueous electrolyte secondary battery for its use and to be capable of discharging at a high rate. Year,
Performance such as 5C discharge is required.

【0005】さらに、電池容量が大きいことや、将来の
需要増大時の環境負荷も考えることが必要であることか
ら、正極活物質としてリチウムマンガン複合酸化物を用
いることが望まれている。
[0005] Further, since it is necessary to consider the large battery capacity and the environmental load when the future demand increases, it is desired to use a lithium manganese composite oxide as the positive electrode active material.

【0006】しかしながら、既に広く用いられている小
型非水電解質二次電池をそのまま大きくしただけでは、
必要とされる寿命性能や放電性能を満たすことができ
ず、さらに、リチウムマンガン複合酸化物を用いた場合
には、より寿命性能が悪くなってしまうというのが現状
であった。
However, simply increasing the size of a small non-aqueous electrolyte secondary battery that is already widely used,
At present, the required life performance and discharge performance cannot be satisfied, and further, the life performance deteriorates when a lithium manganese composite oxide is used.

【0007】以上に鑑み、本発明は、5Ah以上の容量
(1C放電時)を備え、1C放電時の容量に対する5C
放電時の容量の比率が90%以上となるレート性能を満
たす非水電解質二次電池のフロート充電寿命性能を改善
することを目的とする。
In view of the above, the present invention has a capacity of 5 Ah or more (at the time of 1 C discharge) and has a capacity of 5 C with respect to the capacity at the time of 1 C discharge.
An object of the present invention is to improve the float charge life performance of a nonaqueous electrolyte secondary battery that satisfies a rate performance in which a capacity ratio at the time of discharging is 90% or more.

【0008】[0008]

【課題を解決するための手段】本願発明は、正極活物に
スピネル型のリチウムマンガン複合酸化物、負極活物質
にC軸方向の平均面間隔が0.337nm以下の炭素材
料を用い、4.1V充電時の放電容量が5Ah以上で、
1C放電時の放電容量に対する5C放電時の放電容量の
比率が90%以上である非水電解質二次電池であって、
電池電圧が4.1Vの時の負極活物質である炭素材料の
充電率(Liと書いた時のxの値)が0.6以
上、0.75以下であることを特徴とする非水電解質二
次電池である。
The present invention uses a spinel-type lithium manganese composite oxide as a positive electrode active material and a carbon material having an average plane spacing of 0.337 nm or less in the C-axis direction as a negative electrode active material. When the discharge capacity at the time of charging 1 V is 5 Ah or more,
A nonaqueous electrolyte secondary battery in which the ratio of the discharge capacity at the time of 5C discharge to the discharge capacity at the time of 1C discharge is 90% or more,
When the battery voltage is 4.1 V, the charge rate (the value of x when written as Li x C 6 ) of the carbon material as the negative electrode active material is 0.6 or more and 0.75 or less. It is a non-aqueous electrolyte secondary battery.

【0009】xを0.75以下とすることによって負極
の性能劣化が抑制され、xを0.6以上とすることによ
って正極の充電時の電位が小さくなって正極の性能劣化
が抑制され、これによって常温で4.1Vで1年間フロ
ート充電を行った後の放電容量が85%以上を維持でき
るようになる。
By setting x to 0.75 or less, the deterioration of the performance of the negative electrode is suppressed. By setting x to 0.6 or more, the potential at the time of charging the positive electrode is reduced and the performance deterioration of the positive electrode is suppressed. As a result, the discharge capacity after float charging at 4.1 V at normal temperature for one year can be maintained at 85% or more.

【0010】さらに、上記電池において、電池の体積エ
ネルギー密度を150wh/l以上200wh/l以下と
することによって、常温で1500サイクル経過後も8
0%以上の容量を維持できる。
Further, in the above battery, by setting the volume energy density of the battery to be 150 wh / l or more and 200 wh / l or less, it is possible to maintain the volume energy density at room temperature after 1500 cycles.
0% or more capacity can be maintained.

【0011】[0011]

【発明の実施の形態】本発明で用いられる正極活物質と
しては、スピネル構造のLi1+xMn2− x−y
(0.05≦x≦0.15、0.02≦y≦0.1
5、Mは、Ti、Cr、Fe、Co、Ni、Zn、A
l、Mgの中から選んだ少なくとも1種以上の金属元
素)が好ましく、金属元素Mとしては、寿命をより長く
し容量を大きく保つことができるため、Al、Mgを用
いるのが特に良く、重負荷特性が良好であることから、
Alを用いるのがより好ましい。なお、基本的に前記組
成で示されるものであるが、酸素サイトの一部が硫黄や
ハロゲン元素で置換されているもの、酸素量に多少の不
定比性のあるものも好ましい。
As the positive electrode active material used in the Detailed Description of the Invention The present invention, a spinel structure Li 1 + x Mn 2- x- y M y
O 4 (0.05 ≦ x ≦ 0.15, 0.02 ≦ y ≦ 0.1
5, M is Ti, Cr, Fe, Co, Ni, Zn, A
At least one or more metal elements selected from l and Mg) is preferable. As the metal element M, it is particularly preferable to use Al or Mg because the life can be prolonged and the capacity can be kept large. Because the load characteristics are good,
More preferably, Al is used. It is to be noted that, although it is basically represented by the above-mentioned composition, it is also preferable that the oxygen site is partially replaced by sulfur or a halogen element, or that the oxygen content is somewhat non-stoichiometric.

【0012】また、リチウムマンガン複合酸化物の粒子
を用いる場合、粒子の外観が多角形状の一次粒子が集合
して表面に多数の凹凸を有してなる球状二次粒子となっ
たもので、平均粒径が10μm〜20μmのものを用い
るのがより好ましく、比表面積は0.1m/g以上
1.0m/g以下のものを用いるのがより好ましい。
このような粉体を用いることで巻回構造の電極を剥離等
が生じない良好な状態で作製することが容易となり、寿
命性能を良好に維持することができる。また、比表面積
は、0.1m/gより小さくなると、高率放電性能が
悪くなり、1.0m/gを越えると寿命が急激に悪く
なる。
When lithium manganese composite oxide particles are used, primary particles having a polygonal appearance are aggregated into spherical secondary particles having a large number of irregularities on the surface. It is more preferable to use one having a particle size of 10 μm to 20 μm, and it is more preferable to use one having a specific surface area of 0.1 m 2 / g or more and 1.0 m 2 / g or less.
By using such a powder, it becomes easy to manufacture the electrode having the wound structure in a favorable state in which peeling or the like does not occur, and the life performance can be favorably maintained. When the specific surface area is smaller than 0.1 m 2 / g, the high rate discharge performance is deteriorated, and when the specific surface area exceeds 1.0 m 2 / g, the life is sharply deteriorated.

【0013】上記のようなリチウムマンガン複合酸化物
粒子は、例えば、リチウム、マンガン及び金属元素を含
有する出発原料を混合後、酸素存在下で焼成・冷却する
ことによって製造することができる。出発原料として用
いるリチウム化合物としては、LiCO、LiNO
、LiOH、LiCl、LiO等があり、出発原料
として用いるマンガン化合物としては、Mn、M
nO等のマンガン酸化物、MnCO、Mn(N
等がある。また、他金属元素の出発原料として
用いる他金属元素の化合物としては、酸化物、水酸化
物、硝酸塩、炭酸塩、ジカルボン酸塩、脂肪酸塩、アン
モニウム塩等が挙げられる。
The above-mentioned lithium-manganese composite oxide particles can be produced, for example, by mixing starting materials containing lithium, manganese and a metal element, followed by firing and cooling in the presence of oxygen. Lithium compounds used as starting materials include Li 2 CO 3 and LiNO
3, LiOH, LiCl, there are Li 2 O, etc., as the manganese compound used as a starting material, Mn 2 O 3, M
manganese oxides such as nO 2 , MnCO 3 , Mn (N
O 3 ) 2 and the like. Examples of the compound of the other metal element used as a starting material of the other metal element include an oxide, a hydroxide, a nitrate, a carbonate, a dicarboxylate, a fatty acid salt, and an ammonium salt.

【0014】本発明で用いられる炭素材料は、C軸方向
の面間隔d(002)が0.337nm以下のもので、
負極はこれを負極活物質の90%以上の割合で含んでい
るものを用いるのがよい。そして、さらに適しているの
は、このような炭素材料として、球状または塊状のもの
と鱗片状のものを含んだものである。
The carbon material used in the present invention has a plane distance d (002) in the C-axis direction of 0.337 nm or less.
It is preferable to use a negative electrode containing this at a ratio of 90% or more of the negative electrode active material. More suitable are such carbon materials including spherical or massive ones and scale-like ones.

【0015】球状炭素材料としては、例えば、メソフェ
ーズピッチ小球体を焼成したもの、塊状炭素材料として
は、例えば、コークスを焼成して粉砕したものを用いる
ことができ、その粒径としては、40μm以下のものを
用いるのが好ましく、平均粒径としては、20〜35μ
mのものを用いるのがよい。これは、大電流、特に5C
以上の大電流での使用を前提とする電池では、負極の炭
素材料層の厚さを片面で80μm以下とするのが好まし
く、上記粒径以下のものを用いることで塗工性を良好に
でき、膜密度も大きくできるからである。また、平均粒
径20μm以下の場合、寿命が悪くなりやすいからであ
る。
As the spherical carbon material, for example, a material obtained by firing mesophase pitch small spheres can be used, and as the massive carbon material, for example, a material obtained by firing and grinding pulverized coke can be used. It is preferable to use those having an average particle size of 20 to 35 μm.
m. This is a large current, especially 5C
In a battery premised on use at a large current as described above, it is preferable that the thickness of the carbon material layer of the negative electrode be 80 μm or less on one side, and that the use of a material having the above particle size or less can improve coating properties. This is because the film density can be increased. If the average particle size is 20 μm or less, the life is likely to be deteriorated.

【0016】鱗片状炭素材料としては、鱗片状天然黒鉛
または鱗片状人造黒鉛を用いるのが好ましい。また、面
方向の大きさは、球状・塊状炭素材料の粒径よりも小さ
い方が容量密度を大きくできるため、その平均粒径とし
て、球状または塊状炭素材料の平均粒径、またはこれら
混合物の平均粒径よりも小さいものを用いるのが好まし
い。なお、平均粒径は、例えば、レーザー回折/散乱式
粒度分布測定装置を用いて測定できる。これは他でも同
様である。
As the flaky carbon material, flaky natural graphite or flaky artificial graphite is preferably used. The size in the plane direction is smaller than the particle diameter of the spherical or massive carbon material, so that the capacity density can be increased. Therefore, the average particle diameter is the average particle diameter of the spherical or massive carbon material, or the average of these mixtures. It is preferable to use one smaller than the particle size. The average particle size can be measured using, for example, a laser diffraction / scattering type particle size distribution analyzer. This is the same in other cases.

【0017】上記鱗片状炭素材料の含有重量は、球状
(または塊状)炭素材料の含有重量よりも少なくするの
が好ましく、より好ましくは、リチウムイオンをドープ
及び脱ドープ可能な炭素材料総重量に対して、重量比で
30%以下、さらに好ましくは、25%以下とするのが
良い。これは、量が多くなると負極をプレスする際に鱗
片状炭素材料が配向して大電流での充放電容量が小さく
なるからである。
The content of the flaky carbon material is preferably smaller than the content of the spherical (or massive) carbon material, and more preferably the total weight of the carbon material capable of being doped and dedoped with lithium ions. Therefore, the weight ratio is preferably 30% or less, more preferably 25% or less. This is because when the amount increases, the flaky carbon material is oriented when the negative electrode is pressed, and the charge / discharge capacity under a large current decreases.

【0018】本発明の電池では、電池電圧が4.1Vの
時の負極活物質炭素材料の充電率(Liと書いた
時のxの値)が0.6以上、0.75以下となるように
するが、正極活物質の使用量と負極活物質の使用量との
割合を調整することでこのような利用率になるように制
御できる。
In the battery of the present invention, when the battery voltage is 4.1 V, the charge rate of the negative electrode active material carbon material (the value of x when written as Li x C 6 ) is 0.6 or more and 0.75 or less. However, by adjusting the ratio between the usage amount of the positive electrode active material and the usage amount of the negative electrode active material, it is possible to control such a usage rate.

【0019】また、電池の体積エネルギー密度を150
wh/l以上200wh/l以下とするのは、電極の多孔
度やセパレータの厚さを調整することで行うのが良く、
発電要素は電池容器内に隙間なく収容された状態になる
ようにして圧迫がかかるようにするのが良い。
The volume energy density of the battery is set to 150
The wh / l or more and 200 wh / l or less are preferably adjusted by adjusting the porosity of the electrode and the thickness of the separator.
It is preferable that the power generating element is housed in the battery container without any gap so that pressure is applied.

【0020】正極および負極は、金属箔の集電体の上に
各活物質合剤を塗布することにより形成し、多孔度は、
塗布重量と合剤層の厚さを制御することで調整できる。
例えば、(1−(塗布重量/(合剤層体積×合剤真密
度)))×100(%)として多孔度を計算し、これに
より制御する。また、電池での多孔度を測定する場合に
は、例えば、放電状態で電極を取り出して水銀ポロシメ
ーターにより測定する。
The positive electrode and the negative electrode are formed by applying each active material mixture on a current collector made of a metal foil.
It can be adjusted by controlling the coating weight and the thickness of the mixture layer.
For example, the porosity is calculated as (1− (application weight / (mixture layer volume × mixture true density))) × 100 (%), and the porosity is controlled by this. When the porosity of a battery is measured, for example, the electrode is taken out in a discharged state and measured by a mercury porosimeter.

【0021】正極の多孔度は、31〜36%、より好ま
しくは、32〜35%とするのが良く、負極の多孔度
は、32〜37%より好ましくは33〜36%とするの
が良い。多孔度は、小さすぎても大きすぎても電池の寿
命が悪くなるからであり、さらに、大きくすると電池の
エネルギー密度が小さくなるからである。また、負極の
多孔度を正極の多孔度より大きくするのが、より長寿命
で高率放電性能の良好な電池とするために好ましく、負
極活物質層の片面厚さは80μm以下とするのが良い。
また、正極と負極の多孔度の差は3%以下であるのが特
に好ましい。これは、液量のバランスがより良好になっ
て寿命が長くなるからである。
The porosity of the positive electrode is preferably 31 to 36%, more preferably 32 to 35%, and the porosity of the negative electrode is preferably 32 to 37%, more preferably 33 to 36%. . This is because, if the porosity is too small or too large, the life of the battery deteriorates, and if the porosity is too large, the energy density of the battery decreases. Further, it is preferable that the porosity of the negative electrode is larger than the porosity of the positive electrode in order to obtain a battery having a longer life and good high-rate discharge performance. The thickness of one side of the negative electrode active material layer is preferably 80 μm or less. good.
It is particularly preferable that the difference in porosity between the positive electrode and the negative electrode is 3% or less. This is because the balance of the liquid amount becomes better and the life is prolonged.

【0022】本発明電池を作製する際に用いるセパレー
タとしては、例えばポリエチレンフィルム、ポリプロピ
レンフィルム等の微孔性ポリオレフィンフィルムを用い
ることができ、好ましくは、上記負極の活物質層の厚さ
(片面)と上記正極の活物質層の厚さ(片面)との和を
aとし、上記セパレータの厚さをbとしたときに、0.
05≦b/(a+b)≦0.25とし、さらにセパレー
タの透気度を300〜700sec/100ccとする
のが良い。このように活物質層とセパレータの厚さの関
係とセパレータの透気度とを規定することにより、電池
の長寿命と良好な高率放電性能が達成される。
As the separator used for producing the battery of the present invention, for example, a microporous polyolefin film such as a polyethylene film or a polypropylene film can be used. Preferably, the thickness (one side) of the negative electrode active material layer When the sum of the thickness of the active material layer of the positive electrode and the thickness (one side) of the positive electrode is defined as a, and the thickness of the separator is defined as b, 0.
It is preferable that the relation of 05 ≦ b / (a + b) ≦ 0.25 is satisfied, and the air permeability of the separator is 300 to 700 sec / 100 cc. By thus defining the relationship between the thickness of the active material layer and the thickness of the separator and the air permeability of the separator, a long life of the battery and good high-rate discharge performance can be achieved.

【0023】非水溶媒としては、例えば、炭酸プロピレ
ン、炭酸エチレン等の環状炭酸エステルや、炭酸ジエチ
ル、炭酸ジメチル等の鎖状炭酸エステル、プロピオン酸
メチルや酪酸メチル等のカルボン酸エステル、γ−ブチ
ルラクトン、スルホラン、2−メチルテトラヒドロフラ
ンやジメトキシエタン等のエーテル類等を使用すること
ができるが、特に本発明電池の場合、炭酸エチレンと鎖
状炭酸エステルとの混合溶媒を用いるのが良く、本願発
明の効果がよく発揮される。さらに、上記非水溶媒に
は、ビニレンカーボネートを添加するのが好ましく、電
解質としては、六フッ化リン酸リチウムを用いたものが
よい。
Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate and ethylene carbonate, chain carbonates such as diethyl carbonate and dimethyl carbonate, carboxylate esters such as methyl propionate and methyl butyrate, and γ-butyl. Lactone, sulfolane, ethers such as 2-methyltetrahydrofuran and dimethoxyethane can be used. In particular, in the case of the battery of the present invention, a mixed solvent of ethylene carbonate and a chain carbonate is preferably used. The effect of is exhibited well. Further, vinylene carbonate is preferably added to the non-aqueous solvent, and an electrolyte using lithium hexafluorophosphate is preferred as the electrolyte.

【0024】電解液の量はAh当たり6g〜8gとする
のが良く、より好ましくはAh当たり6.3g〜7.5
gとするのが寿命を良くできるので良い。
The amount of the electrolyte is preferably 6 g to 8 g per Ah, more preferably 6.3 g to 7.5 per Ah.
It is good to set it to g because the life can be improved.

【0025】図1は、本願発明に係る電池例を示す分解
斜視図である。この非水電解質二次電池は、長円筒形の
巻回型の発電要素1を4個密着して並べ並列接続したも
のである。これらの発電要素1は、両端面部に配置され
た集電接続体2にそれぞれ正負の電極が接続固定されて
並列接続されている。集電接続体2は、正極側の場合に
はアルミニウム板、負極側の場合には銅板からなり、水
平に配置されたほぼ二等辺三角形の、板状の本体の底辺
部から下方に向けて簾状に突出した接続部に、発電要素
1の正極又は負極が接続固定されている。これらの集電
接続体2の、板状の本体は、それぞれ下部絶縁封止板3
を介して蓋板4の裏面の両端部に配置される。蓋板4
は、矩形のステンレス鋼板からなり、発電要素1を収納
するステンレス製の容器である電池筐体5の上端開口部
に嵌め込まれて溶接により固着される。この蓋板4と電
池筐体5は、非水電解質二次電池の電池ケースを構成す
る。
FIG. 1 is an exploded perspective view showing an example of a battery according to the present invention. This non-aqueous electrolyte secondary battery is a battery in which four long cylindrical wound power generating elements 1 are closely arranged and connected in parallel. These power generating elements 1 are connected in parallel with positive and negative electrodes connected and fixed to current collectors 2 arranged at both end faces. The current collecting connector 2 is made of an aluminum plate on the positive electrode side and a copper plate on the negative electrode side, and is a horizontal, approximately isosceles triangle. The positive electrode or the negative electrode of the power generation element 1 is connected and fixed to the connection portion protruding in the shape. The plate-shaped main bodies of these current collectors 2 are respectively provided with lower insulating sealing plates 3.
Are disposed at both ends of the back surface of the cover plate 4. Cover plate 4
Is made of a rectangular stainless steel plate, is fitted into an upper end opening of a battery case 5 which is a stainless steel container for housing the power generating element 1, and is fixed by welding. The cover plate 4 and the battery housing 5 constitute a battery case of the non-aqueous electrolyte secondary battery.

【0026】上記蓋板4の上面の両端部には、それぞれ
上部絶縁封止板6を介して端子が配置されている。端子
は、正極側の場合にはアルミニウム製、負極側の場合に
は銅製の金属材料からなり、それぞれリベット端子7と
端子台8と端子ボルト9とで構成されている。
Terminals are disposed at both ends of the upper surface of the cover plate 4 via upper insulating sealing plates 6 respectively. The terminal is made of a metal material made of aluminum on the positive electrode side and made of copper on the negative electrode side, and is composed of a rivet terminal 7, a terminal block 8 and a terminal bolt 9, respectively.

【0027】[0027]

【実施例】多角形状の1次粒子が集合して球状の二次粒
子を形成したリチウムマンガン複合酸化物Li1.1
1.82Al0.08(比表面積0.7m
g、平均粒径15μm)粉末を用い、アセチレンブラッ
ク及びポリフッ化ビニリデン(PVdF)を重量比で9
0:5:5の割合で混合して合剤を調整し、溶剤となる
N−メチル−2−ピロリドンに分散させてスラリーに
し、これを厚さ20ミクロンのアルミニウム箔両面に塗
布し、乾燥、プレスして多孔度33%で220μm厚さ
の帯状正極を作製した。なお、平均粒径はレーザー回折
散乱法で測定したd50の値であり、比表面積は、吸着
ガスとして窒素ガスを用いたBET法で測定したもので
ある。
EXAMPLE Lithium-manganese composite oxide Li 1.1 M in which polygonal primary particles aggregate to form spherical secondary particles
n 1.82 Al 0.08 O 4 (specific surface area 0.7 m 2 /
g, average particle size 15 μm) powder, and acetylene black and polyvinylidene fluoride (PVdF) in a weight ratio of 9%.
The mixture was mixed at a ratio of 0: 5: 5 to prepare a mixture. The mixture was dispersed in N-methyl-2-pyrrolidone as a solvent to form a slurry. By pressing, a belt-shaped positive electrode having a porosity of 33% and a thickness of 220 μm was produced. The average particle size is a value of d50 measured by a laser diffraction scattering method, and the specific surface area is measured by a BET method using nitrogen gas as an adsorption gas.

【0028】平均粒径26μmの球状人造黒鉛粉末75
重量部(C軸方向の平均面間隔0.335nm)、平均
粒径27μmの鱗片状人造黒鉛粉末15重量部(C軸方
向の平均面間隔0.335nm)、PVdF10重量部
を混合して負極合剤を調整し、溶剤となるN−メチル−
2−ピロリドンに分散させてスラリーにし、これを厚さ
15μmの銅箔両面に塗布し、乾燥させた後、一定圧力
で圧縮成型して多孔度34%で120μm厚さの帯状負
極を作製した。
Spherical artificial graphite powder 75 having an average particle size of 26 μm
Parts (average spacing of 0.335 nm in the C-axis direction), 15 parts by weight of flaky artificial graphite powder (average spacing of 0.335 nm in the C-axis direction) having an average particle diameter of 27 μm, and 10 parts by weight of PVdF were mixed together to form a negative electrode. After adjusting the agent, N-methyl-
The slurry was dispersed in 2-pyrrolidone to form a slurry. The slurry was applied to both sides of a 15-μm-thick copper foil, dried, and then compression-molded at a constant pressure to prepare a strip-shaped negative electrode having a porosity of 34% and a thickness of 120 μm.

【0029】これら電極と40μm厚さのポリプロピレ
ン(PP)/ポリエチレン(PE)/ポリプロピレン
(PP)積層セパレータを用いて長円筒形の巻回型の発
電要素を作製し、これを2個密着して並べ並列接続する
ことで、上記図1に示したのと同様の構造の電池を作製
した。電池の外形は、W170×D47×H115(m
m)であり、容器は1mm厚さのステンレス製である。
Using these electrodes and a 40 μm-thick polypropylene (PP) / polyethylene (PE) / polypropylene (PP) laminated separator, a long cylindrical wound-type power generating element is produced, and two of these are closely adhered. By arranging and connecting in parallel, a battery having the same structure as that shown in FIG. 1 was produced. The outer shape of the battery is W170 × D47 × H115 (m
m), and the container is made of stainless steel having a thickness of 1 mm.

【0030】電解液としては、エチレンカーボネート
(EC)/エチルメチルカーボネート(EMC)/ジエ
チルカーボネート(DEC)の体積比3:4:3の混合
溶媒に、ビニレンカーボネート(VC)を体積比で1%
およびLiPFを1mol/l添加された電解液を3
00g注液した。
As an electrolytic solution, vinylene carbonate (VC) was added to a mixed solvent of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / diethyl carbonate (DEC) in a volume ratio of 3: 4: 3 by 1% by volume.
And an electrolyte solution containing 1 mol / l of LiPF 6
00 g was injected.

【0031】4.1V充電時のこの電池の容量は、46
A放電で46Ahであり、230A放電で43.2Ah
である。また、充電率は0.66で、体積エネルギー密
度は180Wh/lである。なお、充電率は、負極活物
質の総重量と電池容量から、Liの形で挿入され
たリチウムがすべて放出されて得られた電気量が電池容
量として現れているとして計算して求めた。
The capacity of this battery at the time of 4.1 V charging is 46
A discharge is 46 Ah and 230 A discharge is 43.2 Ah
It is. The charging rate is 0.66, and the volume energy density is 180 Wh / l. The charge rate was calculated from the total weight of the negative electrode active material and the battery capacity, assuming that the amount of electricity obtained by discharging all the lithium inserted in the form of Li x C 6 appeared as the battery capacity. Was.

【0032】さらに、正極と負極の厚さを変化させ、そ
の他は同じ構成部材を用いて、充電率は異なるが同じ容
量を有する電池を作製した。これら電池について25℃
で終止電圧を4.1Vとする定電流(46A)・定電圧
(3H)充電を行い、4.1Vのフロート電圧を印可し
た状態でそのまま1年間放置した。そして、この後、終
止電圧を2.7Vとする定電流(46A)放電を行って
放電容量を測定し、放置前の放電容量に対する比率を百
分率で求めこれを容量維持率とした。結果を下記表1に
示す。
Furthermore, the thickness of the positive electrode and the negative electrode were changed, and the other components were the same, and batteries having different charging rates but the same capacity were produced. 25 ° C for these batteries
The battery was charged at a constant current (46 A) and a constant voltage (3 H) with a final voltage of 4.1 V, and left as it was for one year with a float voltage of 4.1 V applied. Then, a constant current (46 A) discharge with a final voltage of 2.7 V was performed to measure the discharge capacity, and the ratio to the discharge capacity before standing was determined as a percentage, which was defined as the capacity retention rate. The results are shown in Table 1 below.

【0033】[0033]

【表1】 [Table 1]

【0034】上記結果より、充電率は0.6から0.7
5の範囲が好ましいことが分かる。また、放置後の電池
の1C放電容量と5C放電容量を比較したところ、いず
れも比率が90%以上であった。さらに、充電率0.6
0から0.75の電池について、25℃にて上記充電放
電条件にてサイクル試験を行ったところ、いずれの電池
も1500サイクルで80%以上の容量を維持してい
た。これに対し、他の電池では、いずれも80%の容量
には満たず、1C放電容量と5C放電容量との比率も9
0%に満たなかった。なお、フロート充電後の電池を解
体したところ、充電率0.87、0.95のものでは負
極表面上の被膜量が多く、電解液の分布のばらつきが目
立ち、負極での劣化が容量維持率低下の原因と思われ
る。また、0.55のものでは、他のものに比べ正極の
劣化が大きく、正極電位が劣化の大きな電位になったも
のと思われる。
According to the above results, the charging rate was from 0.6 to 0.7.
It turns out that the range of 5 is preferable. Further, when the 1C discharge capacity and the 5C discharge capacity of the battery after standing were compared, the ratio was 90% or more in each case. Furthermore, the charging rate is 0.6
When a cycle test was performed on the batteries of 0 to 0.75 under the above-mentioned charge / discharge conditions at 25 ° C., all the batteries maintained 80% or more capacity at 1500 cycles. On the other hand, the other batteries did not reach the capacity of 80%, and the ratio between the 1C discharge capacity and the 5C discharge capacity was 9%.
Less than 0%. When the battery after the float charge was disassembled, when the charge rate was 0.87 or 0.95, the amount of coating on the negative electrode surface was large, the distribution of the electrolyte solution was noticeable, and the deterioration in the negative electrode was the capacity retention rate. Probable cause of the decline. Further, in the case of 0.55, the deterioration of the positive electrode was larger than that of the other samples, and it is considered that the positive electrode potential became a potential with large deterioration.

【0035】[0035]

【発明の効果】本発明によれば、フロート充電寿命性能
が良好で、5Ah以上の容量(1C放電時)と、1C放
電時の容量に対する5C放電時の容量の比率が90%以
上となるレート性能を満たす非水電解質二次電池の製造
が可能となる。
According to the present invention, the float charge life performance is good, and the capacity at the time of 5 Ah or more (at the time of 1 C discharge) and the ratio of the capacity at the time of 5 C discharge to the capacity at the time of 1 C discharge become 90% or more. A non-aqueous electrolyte secondary battery satisfying the performance can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明に係る電池例を示す分解斜視図。FIG. 1 is an exploded perspective view showing an example of a battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 発電要素 2 集電接続体 3 下部絶縁封止板 4 蓋板 5 電池筐体 1 Power generation element 2 Current collector 3 Lower insulating sealing plate 4 lid plate 5 Battery case

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極活物にスピネル型のリチウムマンガ
ン複合酸化物、負極活物質にC軸方向の平均面間隔が
0.337nm以下の炭素材料を用い、4.1V充電時
の放電容量が5Ah以上で、1C放電時の放電容量に対
する5C放電時の放電容量の比率が90%以上である非
水電解質二次電池であって、電池電圧が4.1Vの時の
負極活物質である炭素材料の充電率(Liと書い
た時のxの値)が0.6以上、0.75以下であること
を特徴とする非水電解質二次電池。
1. A positive electrode active material comprising a spinel-type lithium manganese composite oxide, and a carbon material having an average plane spacing of 0.337 nm or less in the C-axis direction being used as a negative electrode active material, having a discharge capacity at the time of 4.1 V charging of 5 Ah. As described above, the nonaqueous electrolyte secondary battery in which the ratio of the discharge capacity at the time of 5C discharge to the discharge capacity at the time of 1C discharge is 90% or more, and the carbon material as the negative electrode active material when the battery voltage is 4.1V A non-aqueous electrolyte secondary battery, wherein the charge rate (value of x when written as Li x C 6 ) is 0.6 or more and 0.75 or less.
【請求項2】 電池の体積エネルギー密度が150wh
/l以上200wh/lであることを特徴とする請求項1
記載の非水電解質二次電池。
2. The battery has a volume energy density of 150 wh.
2. The ratio is not less than / l and 200 wh / l.
The non-aqueous electrolyte secondary battery according to the above.
JP2002154975A 2002-05-29 2002-05-29 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4296591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002154975A JP4296591B2 (en) 2002-05-29 2002-05-29 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002154975A JP4296591B2 (en) 2002-05-29 2002-05-29 Nonaqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2003346904A true JP2003346904A (en) 2003-12-05
JP2003346904A5 JP2003346904A5 (en) 2005-10-06
JP4296591B2 JP4296591B2 (en) 2009-07-15

Family

ID=29771603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002154975A Expired - Fee Related JP4296591B2 (en) 2002-05-29 2002-05-29 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4296591B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243448A (en) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006244832A (en) * 2005-03-02 2006-09-14 Toyota Motor Corp Lithium secondary battery and manufacturing method of the same
JP2006244833A (en) * 2005-03-02 2006-09-14 Toyota Motor Corp Lithium secondary battery and manufacturing method of the same
JP2014517453A (en) * 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. High power lithium secondary battery with improved power density characteristics
CN114497698A (en) * 2022-01-21 2022-05-13 江苏正力新能电池技术有限公司 Lithium ion battery and power utilization device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992285A (en) * 1995-05-26 1997-04-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte lithium secondary battery
JPH11111259A (en) * 1997-09-30 1999-04-23 Shin Kobe Electric Mach Co Ltd Winding type battery
JPH11297361A (en) * 1998-04-08 1999-10-29 Hitachi Ltd Nonaqueous electrolyte secondary battery and electrical device using the same
JP2000067863A (en) * 1998-08-25 2000-03-03 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2000156246A (en) * 1997-11-10 2000-06-06 Ngk Insulators Ltd Lithium secondary battery
JP2000208167A (en) * 1999-01-19 2000-07-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001110456A (en) * 1999-10-14 2001-04-20 Ngk Insulators Ltd Lithium secondary battery and manufacturing method for wound-type electrode body
JP2001118569A (en) * 1999-10-19 2001-04-27 Hitachi Ltd Lithium secondary battery
JP2001243953A (en) * 2000-02-29 2001-09-07 Osaka Gas Co Ltd Non-aqueous secondary battery
JP2002117827A (en) * 2000-10-11 2002-04-19 Teijin Ltd Separator for lithium ion secondary battery, and lithium ion secondary battery
JP2002124241A (en) * 2000-10-13 2002-04-26 Teijin Ltd Separator for lithium ion secondary battery and lithium ion secondary battery
JP2003115328A (en) * 2001-04-11 2003-04-18 Hitachi Maxell Ltd Flat type nonaqueous electrolyte battery

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992285A (en) * 1995-05-26 1997-04-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte lithium secondary battery
JPH11111259A (en) * 1997-09-30 1999-04-23 Shin Kobe Electric Mach Co Ltd Winding type battery
JP2000156246A (en) * 1997-11-10 2000-06-06 Ngk Insulators Ltd Lithium secondary battery
JPH11297361A (en) * 1998-04-08 1999-10-29 Hitachi Ltd Nonaqueous electrolyte secondary battery and electrical device using the same
JP2000067863A (en) * 1998-08-25 2000-03-03 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2000208167A (en) * 1999-01-19 2000-07-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001110456A (en) * 1999-10-14 2001-04-20 Ngk Insulators Ltd Lithium secondary battery and manufacturing method for wound-type electrode body
JP2001118569A (en) * 1999-10-19 2001-04-27 Hitachi Ltd Lithium secondary battery
JP2001243953A (en) * 2000-02-29 2001-09-07 Osaka Gas Co Ltd Non-aqueous secondary battery
JP2002117827A (en) * 2000-10-11 2002-04-19 Teijin Ltd Separator for lithium ion secondary battery, and lithium ion secondary battery
JP2002124241A (en) * 2000-10-13 2002-04-26 Teijin Ltd Separator for lithium ion secondary battery and lithium ion secondary battery
JP2003115328A (en) * 2001-04-11 2003-04-18 Hitachi Maxell Ltd Flat type nonaqueous electrolyte battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243448A (en) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006244832A (en) * 2005-03-02 2006-09-14 Toyota Motor Corp Lithium secondary battery and manufacturing method of the same
JP2006244833A (en) * 2005-03-02 2006-09-14 Toyota Motor Corp Lithium secondary battery and manufacturing method of the same
JP2014517453A (en) * 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. High power lithium secondary battery with improved power density characteristics
CN114497698A (en) * 2022-01-21 2022-05-13 江苏正力新能电池技术有限公司 Lithium ion battery and power utilization device

Also Published As

Publication number Publication date
JP4296591B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP2004227790A (en) Positive electrode active material for nonaqueous electrolyte solution secondary battery
JP2014527267A (en) Bimodal type negative electrode active material and lithium secondary battery including the same
JP5322259B2 (en) Positive electrode for secondary battery and lithium secondary battery using the same
KR20170017751A (en) Lithium ion secondary battery
JP2009212021A (en) Electrode for electrochemical element, nonaqueous secondary battery, and battery system
US11456452B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5263223B2 (en) Nonaqueous electrolyte secondary battery
JP5017010B2 (en) Lithium secondary battery
JP7454796B2 (en) Non-aqueous electrolyte secondary battery and electrolyte used therein
JP7122653B2 (en) Non-aqueous electrolyte secondary battery
JP2996234B1 (en) Non-aqueous electrolyte secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JP2002151154A (en) Lithium secondary battery
JP2004241242A (en) Positive electrode active material for nonaqueous electrolytic solution secondary battery
JP4296591B2 (en) Nonaqueous electrolyte secondary battery
CN115732673A (en) Positive electrode active material and nonaqueous electrolyte secondary battery comprising same
JP7182198B2 (en) Nonaqueous electrolyte secondary battery, electrolyte solution, and method for manufacturing nonaqueous electrolyte secondary battery
WO2020158169A1 (en) Non-aqueous electrolyte secondary cell and electrolytic solution used in same
JP2003346905A (en) Nonaqueous electrolyte secondary battery
JP2003346906A (en) Nonaqueous electrolyte secondary battery
JP2003346784A (en) Non-aqueous electrolyte secondary battery
WO2020158299A1 (en) Non-aqueous electrolyte secondary battery and electrolytic solution used therefor
JP3695365B2 (en) Cathode active material for lithium ion secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090405

R150 Certificate of patent or registration of utility model

Ref document number: 4296591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees