JP2003115328A - Flat type nonaqueous electrolyte battery - Google Patents

Flat type nonaqueous electrolyte battery

Info

Publication number
JP2003115328A
JP2003115328A JP2002106616A JP2002106616A JP2003115328A JP 2003115328 A JP2003115328 A JP 2003115328A JP 2002106616 A JP2002106616 A JP 2002106616A JP 2002106616 A JP2002106616 A JP 2002106616A JP 2003115328 A JP2003115328 A JP 2003115328A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
positive electrode
capacity
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002106616A
Other languages
Japanese (ja)
Other versions
JP3732455B2 (en
Inventor
Tatsuya Shigeno
達也 滋野
Takashi Kimura
孝史 木村
Kenichi Sano
健一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2002106616A priority Critical patent/JP3732455B2/en
Publication of JP2003115328A publication Critical patent/JP2003115328A/en
Application granted granted Critical
Publication of JP3732455B2 publication Critical patent/JP3732455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flat type nonaqueous electrolyte battery having a high capacity, a superior cycle characteristic, and further, a superior anti-leakage property and a high reliability. SOLUTION: This is the flat type nonaqueous electrolyte battery comprised that this is provided with a sealing plate, a metal sheath can and a gasket interposed between them and in which a negative electrode, a positive electrode and a nonaqueous electrolyte are tightly sealed up inside by inwardly tightening an open end part of the metal sheath can, and the flat type nonaqueous electrolyte battery is constituted in such a way that the seal plate serves as the positive electrode terminal in combination, that the metal sheath can serves as the negative electrode terminal in combination and that a circumferential part of the negative electrode is arranged between the inside bottom face of the metal sheath can and the gasket. In the flat type nonaqueous electrolyte battery, it is preferable to use lithium alloy or oxide of an element possible to be alloyed with lithium at the negative electrode, and further preferable to make a capacity ratio of the negative electrode against that of the positive electrode be 1.2 or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ボタン形非水電解
質電池やコイン形非水電解質電池などの扁平形非水電解
質電池に関し、さらに詳しくは、封口板が正極端子を兼
ね、金属外装缶が負極端子を兼ねる構成を有し、高容量
で、かつサイクル特性が優れていて、しかも信頼性の高
い扁平形非水電解質電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat type non-aqueous electrolyte battery such as a button type non-aqueous electrolyte battery and a coin type non-aqueous electrolyte battery. More specifically, the sealing plate also serves as a positive electrode terminal, and a metal outer can is used. The present invention relates to a flat type non-aqueous electrolyte battery having a structure that also serves as a negative electrode terminal, high capacity, excellent cycle characteristics, and high reliability.

【0002】[0002]

【従来の技術】ボタン形やコイン形などの扁平形の非水
電解質電池は、一次電池、二次電池のいずれも、各種電
子機器の主電源やメモリーバックアップ電源として広く
用いられている。
2. Description of the Related Art Non-aqueous electrolyte batteries of flat type such as button type and coin type are widely used as main power sources and memory backup power sources for various electronic devices, both primary batteries and secondary batteries.

【0003】特に、電子機器の小型化に伴って、従来で
は直径が10〜20mm程度の電池が主流であったの
が、最近では直径8mm以下の小型の電池が要求される
ようになってきた。
In particular, with the miniaturization of electronic equipment, batteries having a diameter of about 10 to 20 mm have been mainly used in the past, but recently, a small battery having a diameter of 8 mm or less has been required. .

【0004】この扁平形非水電解質電池では、従来、図
5に示すように、正極端子を兼ねる金属外装缶4の開口
端部を内方に締め付けることにより、金属外装缶4と負
極端子を兼ねる封口板5およびガスケット6とで、負極
1、正極2、リチウム塩を有機溶媒に溶解させた非水電
解液などの発電要素を内部に密閉する構造を採用してお
り、通常は、負極1と正極2はほぼ同面積とするか、あ
るいは負極1を封口板5側に配置する関係から、負極1
の面積を正極2の面積より小さくするのが通例であっ
た。
In this flat type non-aqueous electrolyte battery, conventionally, as shown in FIG. 5, a metal outer can 4 also serves as a negative electrode terminal by tightening the open end of the metal outer can 4 also serving as a positive electrode terminal inward. The sealing plate 5 and the gasket 6 employ a structure in which the negative electrode 1, the positive electrode 2, and a power generation element such as a nonaqueous electrolytic solution in which a lithium salt is dissolved in an organic solvent are sealed inside. The positive electrode 2 has almost the same area, or the negative electrode 1 is arranged on the sealing plate 5 side,
It was customary to make the area of the anode smaller than the area of the positive electrode 2.

【0005】[0005]

【発明が解決しようとする課題】上記扁平形非水電解質
電池では、電池の容量が主として正極の容量に依存する
ように設計されており、一方、電池のサイクル特性は主
として負極の容量に依存するため、正極の容量と負極の
容量とのバランスにより、電池の容量とサイクル特性が
決定される。従来のように直径が10〜20mm程度の
電池では、前記のように負極と正極の面積がほぼ同程度
となる条件で両電極の容量比が決定され、電池の容量と
サイクル特性のどちらもある程度満足できる電池設計と
なっていた。
In the above flat type non-aqueous electrolyte battery, the capacity of the battery is designed to depend mainly on the capacity of the positive electrode, while the cycle characteristics of the battery mainly depend on the capacity of the negative electrode. Therefore, the capacity and cycle characteristics of the battery are determined by the balance between the capacity of the positive electrode and the capacity of the negative electrode. In a conventional battery having a diameter of about 10 to 20 mm, the capacity ratio of both electrodes is determined under the condition that the areas of the negative electrode and the positive electrode are approximately the same as described above, and both the capacity of the battery and the cycle characteristics are to some extent. The battery design was satisfactory.

【0006】しかしながら、従来の比較的直径の大きな
電池においても、良好なサイクル特性を維持しながら、
より一層の高容量化が要求されていた。さらに、小型の
電池に至っては、上記従来構成によって扁平形非水電解
質電池を小型化した場合には、電池全体の体積に比べて
ガスケットなどの発電要素以外のものが占める体積の割
合が増加するため、電池内部の体積の減少割合に比べて
電池内部の有効内容積の減少割合が大きくなり、目的と
する容量の電池を設計できなくなるという問題があっ
た。しかも、電池の小型化に伴い、電解液の含有量が規
制されてしまうため、電池のサイクル特性は、正極と負
極の容量比率に大きく依存するようになり、従来の直径
が10〜20mm程度の電池において採用されていた容
量比率ではサイクル特性が大幅に低下することも判明し
た。
However, even in the conventional battery having a relatively large diameter, while maintaining good cycle characteristics,
There has been a demand for higher capacity. Further, in the case of a small battery, when the flat non-aqueous electrolyte battery is downsized by the above conventional configuration, the ratio of the volume occupied by something other than the power generation element such as a gasket increases compared to the volume of the entire battery. Therefore, the reduction rate of the effective internal volume inside the battery is larger than the reduction rate of the internal volume of the battery, which makes it impossible to design a battery having a target capacity. Moreover, as the size of the battery becomes smaller, the content of the electrolytic solution is regulated, so that the cycle characteristics of the battery largely depend on the capacity ratio of the positive electrode and the negative electrode, and the conventional diameter is about 10 to 20 mm. It was also found that the cycle ratio is significantly reduced at the capacity ratio used in the battery.

【0007】ところが、上記問題を解決するために、正
極の割合を減少させて負極の容量比率を大きくすると、
電池の容量が大幅に減少して実用性を欠く電池になって
しまい、電解液量を増量すると、サイクル特性は改善さ
れるものの電解液の漏液が容易に生じ、また、電池内部
の有効内容積を確保するため、ガスケットの体積割合を
減少させると、ガスケットによる封止能力が低下して密
閉性が悪くなるなどの問題が生じることも判明した。
However, in order to solve the above problem, if the ratio of the positive electrode is decreased and the capacity ratio of the negative electrode is increased,
If the capacity of the battery is greatly reduced and it becomes a battery that is not practical, and if the amount of electrolyte is increased, the cycle characteristics are improved, but electrolyte leakage easily occurs, and the effective contents inside the battery It was also found that if the volume ratio of the gasket is reduced to secure the product, the sealing ability of the gasket is reduced and the sealing performance is deteriorated.

【0008】本発明は、上記のような扁平形非水電解質
電池の問題点を解決し、高容量で、かつサイクル特性が
優れ、しかも耐漏液性が優れていて信頼性の高い扁平形
非水電解質電池を提供することを目的とする。
The present invention solves the problems of the flat type non-aqueous electrolyte battery as described above, and has a high capacity, excellent cycle characteristics, and excellent liquid leakage resistance, and a highly reliable flat type non-aqueous battery. It is intended to provide an electrolyte battery.

【0009】[0009]

【課題を解決するための手段】本発明は、封口板および
金属外装缶とそれらの間に介在させたガスケットとを備
え、前記金属外装缶の開口端部を内方に締め付けること
により、負極、正極および非水電解質を内部に密閉して
なる扁平形非水電解質電池において、前記封口板が正極
端子を兼ね、前記金属外装缶が負極端子を兼ね、金属外
装缶の内側底面とガスケットとの間に負極の外周部を配
置する構成とすることにより、高容量で、かつサイクル
特性が優れ、しかも耐漏液性が優れていて信頼性の高い
扁平形非水電解質電池を提供し、上記課題を解決したも
のである。
The present invention comprises a sealing plate, a metal outer can, and a gasket interposed therebetween, and the opening end of the metal outer can is tightened inward to form a negative electrode. In a flat nonaqueous electrolyte battery in which a positive electrode and a nonaqueous electrolyte are sealed inside, the sealing plate also serves as a positive electrode terminal, the metal outer can also serves as a negative electrode terminal, and the space between the inner bottom surface of the metal outer can and the gasket is By arranging the outer peripheral portion of the negative electrode in a high capacity, and excellent cycle characteristics, further provides a highly reliable flat non-aqueous electrolyte battery having excellent liquid leakage resistance, to solve the above problems It was done.

【0010】本発明の電池構成は、電池の直径が小さく
なるほど効果が大きくなるので、直径が2〜16mmの
電池において好ましく用いられ、特に直径が2〜8mm
の小型の電池において顕著な効果が得られる。
The battery structure of the present invention becomes more effective as the diameter of the battery becomes smaller. Therefore, it is preferably used in a battery having a diameter of 2 to 16 mm, particularly 2 to 8 mm.
The remarkable effect can be obtained in the small-sized battery.

【0011】[0011]

【発明の実施の形態】以下において、本発明の実施の形
態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0012】本発明においては、従来の扁平形非水電解
質電池とは異なり、電池の封口板側に正極を配置し、金
属外装缶側に負極を配置するが、その封口板の材質とし
ては、通常、従来の扁平形非水電解質電池において金属
外装缶に用いられていたものを用いることができ、ま
た、金属外装缶の材質としては、通常、従来の扁平形非
水電解質電池において封口板に用いられていたものを用
いることができる。
In the present invention, unlike the conventional flat type non-aqueous electrolyte battery, the positive electrode is arranged on the side of the sealing plate of the battery and the negative electrode is arranged on the side of the metal outer can. The material of the sealing plate is Usually, the one used for the metal outer can in the conventional flat non-aqueous electrolyte battery can be used, and as the material of the metal outer can, usually, the sealing plate in the conventional flat non-aqueous electrolyte battery. What was used can be used.

【0013】これら封口板や金属外装缶の材質を具体的
に例示すると、例えば、ステンレス鋼、銅、チタン、
鉄、ニッケル、アルミニウム、それらの合金や、前記部
材の表面にメッキを施したもの、あるいは前記部材のク
ラッド板などのように複数の材質が複合化されたものな
どを挙げることができる。また、前記部材は、加工性向
上や耐漏液性向上などの目的により、必要に応じてアニ
ール処理などを施したものであってもよい。
Specific examples of the materials of the sealing plate and the metal outer can include, for example, stainless steel, copper, titanium,
Examples thereof include iron, nickel, aluminum, alloys thereof, those obtained by plating the surface of the member, and those obtained by compounding a plurality of materials such as a clad plate of the member. Further, the member may be subjected to an annealing treatment or the like, if necessary, for the purpose of improving workability and liquid leakage resistance.

【0014】負極には、リチウム、リチウム合金、リチ
ウムと合金化が可能な元素の酸化物、炭素質材料、リチ
ウム含有窒化物などを活物質として用いることができ
る。中でも、リチウム合金またはリチウムと合金化が可
能な元素の酸化物が好ましく用いられ、特にリチウム合
金を用いる場合に顕著な効果が得られる。
For the negative electrode, lithium, a lithium alloy, an oxide of an element capable of alloying with lithium, a carbonaceous material, a lithium-containing nitride, or the like can be used as an active material. Above all, a lithium alloy or an oxide of an element capable of alloying with lithium is preferably used, and particularly when a lithium alloy is used, a remarkable effect can be obtained.

【0015】リチウム合金としては、例えば、アルミニ
ウム、インジウム、鉛、スズ、珪素、マグネシウム、亜
鉛、カドミウム、ビスマス、ホウ素、アンチモンなどの
リチウムと合金化が可能な元素とリチウムとの合金を用
いることができ、前記元素は2種以上を共存させて3元
系以上の合金とすることもできる。中でも、アルミニウ
ム、スズ、珪素より選択される元素を1種以上含有する
合金が好適に用いられる。また、充放電の繰り返しによ
る負極の崩壊を抑制してサイクル特性を向上させるなど
の目的のために、前記リチウム合金中に、例えば、マン
ガン、クロム、鉄、タングステン、モリブデン、コバル
ト、ニッケル、ジルコニウム、チタン、バナジウムなど
の他の元素を含有させてもよい。
As the lithium alloy, for example, an alloy of lithium and an element capable of alloying with lithium, such as aluminum, indium, lead, tin, silicon, magnesium, zinc, cadmium, bismuth, boron and antimony is used. It is possible to coexist two or more kinds of the above elements and form an alloy of ternary system or more. Among them, an alloy containing at least one element selected from aluminum, tin and silicon is preferably used. Further, for the purpose of improving the cycle characteristics by suppressing the collapse of the negative electrode due to repeated charge and discharge, in the lithium alloy, for example, manganese, chromium, iron, tungsten, molybdenum, cobalt, nickel, zirconium, Other elements such as titanium and vanadium may be contained.

【0016】リチウムと合金化が可能な元素の酸化物と
しては、具体的には、例えば、SnO、SnO2などの
スズ酸化物、SiO、SiO2などの珪素酸化物を好適
に用いることができる。もちろん、前記酸化物を構成す
る元素の一部が他の元素で置換された酸化物であっても
よい。
Specific examples of oxides of elements capable of alloying with lithium include tin oxides such as SnO and SnO 2 and silicon oxides such as SiO and SiO 2. . Of course, it may be an oxide in which a part of the elements forming the oxide is replaced with another element.

【0017】また、LixTiyzで表されるリチウム
チタン酸化物などのように、リチウム含有遷移金属酸化
物の中に負極活物質として用いることができるものもあ
る。上記リチウムチタン酸化物の場合には、x=4/
3、y=5/3、z=4で表される酸化物が好適に用い
られ、また、チタンの一部を他の元素で置換した酸化物
も用いることができる。
Some lithium-containing transition metal oxides such as lithium titanium oxide represented by Li x Ti y O z can be used as a negative electrode active material. In the case of the lithium titanium oxide, x = 4 /
An oxide represented by 3, y = 5/3 and z = 4 is preferably used, and an oxide in which a part of titanium is replaced with another element can also be used.

【0018】炭素質材料としては、例えば、天然黒鉛、
人造黒鉛などの黒鉛系材料や、コークス類、炭素繊維、
メソカーボンマイクロビーズ、活性炭など、従来から非
水電解質電池の負極活物質として汎用されている材料を
用いることができる。
As the carbonaceous material, for example, natural graphite,
Graphite-based materials such as artificial graphite, cokes, carbon fiber,
Materials conventionally used as a negative electrode active material for nonaqueous electrolyte batteries such as mesocarbon microbeads and activated carbon can be used.

【0019】リチウム含有窒化物としては、例えば、コ
バルト、ニッケル、マンガン、鉄、バナジウムなどの遷
移金属元素とリチウムとを構成元素とする複合窒化物を
用いることができる。具体的には、Li2.6Co0.4Nな
どのように、コバルトまたはニッケルを含有する窒化物
を好適に用いることができる。また、窒素の一部が酸素
で置換された酸窒化物であってもよい。
As the lithium-containing nitride, for example, a composite nitride containing a transition metal element such as cobalt, nickel, manganese, iron and vanadium and lithium as constituent elements can be used. Specifically, a nitride containing cobalt or nickel such as Li 2.6 Co 0.4 N can be preferably used. Further, it may be an oxynitride in which a part of nitrogen is replaced with oxygen.

【0020】なお、負極の活物質となる上記材料のう
ち、リチウムと合金化が可能な元素の酸化物や、炭素質
材料のようにリチウムを含有していない材料について
は、これと組み合わせて用いる正極活物質材料によって
は、電気化学的または機械的な方法などによりあらかじ
めリチウムを含有させておいてから用いてもよい。ま
た、リチウム合金、リチウム含有窒化物などのようにリ
チウムを含有している材料については、上記とは逆に、
組み合わせる正極活物質材料によっては、あらかじめリ
チウムを放出させておいたり、リチウムを含有しない材
料に電池組立工程で後からリチウムを含有させ、目的と
する化合物を形成させるようにしてもよい。
Among the above-mentioned materials which become the active material of the negative electrode, oxides of elements capable of alloying with lithium and materials containing no lithium such as carbonaceous materials are used in combination with these. Depending on the positive electrode active material, lithium may be contained in advance by an electrochemical or mechanical method before use. For materials containing lithium such as lithium alloys and lithium-containing nitrides, conversely to the above,
Depending on the positive electrode active material to be combined, lithium may be released in advance, or a lithium-free material may be added with lithium later in the battery assembly process to form the desired compound.

【0021】また、上記した負極活物質材料はそのまま
用いてもよいが、複数の材料を混合して用いたり、ある
いは複合化して用いることもできる。さらに、必要に応
じて、金属箔や金属板、金属網などの導電性基体と組み
合わせたり、バインダーや導電助剤などと合剤化して成
形体として用いることもできる。ここで、バインダーと
しては、例えば、ポリテトラフルオロエチレン、ポリフ
ッ化ビニリデン、テトラフルオロエチレン−ヘキサフル
オロプロピレン共重合体などのフッ素系樹脂、スチレン
−ブタジエン共重合体などのスチレン系樹脂、カルボキ
シメチルセルロースなどのセルロース類、N−ビニルア
セトアミドの重合体または共重合体、ポリエチレンテレ
フタレートなどを好適に用いることができる。導電助剤
としては、例えば、鱗片状黒鉛、アセチレンブラック、
カーボンブラック、ケッチェンブラックなどを用いるこ
とができる。
Further, the above-mentioned negative electrode active material may be used as it is, but a plurality of materials may be mixed and used, or a composite may be used. Furthermore, if necessary, it can be used in combination with a conductive substrate such as a metal foil, a metal plate or a metal net, or can be mixed with a binder, a conductive auxiliary agent or the like to be used as a molded body. Here, as the binder, for example, polytetrafluoroethylene, polyvinylidene fluoride, a fluorine-based resin such as tetrafluoroethylene-hexafluoropropylene copolymer, a styrene-based resin such as styrene-butadiene copolymer, carboxymethyl cellulose, etc. Cellulose, a polymer or copolymer of N-vinylacetamide, polyethylene terephthalate and the like can be preferably used. Examples of the conductive aid include, for example, flake graphite, acetylene black,
Carbon black, Ketjen black, etc. can be used.

【0022】負極は、上述したように、上記負極活物質
材料をそのまま用いるか、金属箔や金属板などの導電性
基体上に活物質層を形成するか、あるいは合剤の成形体
とするなどの方法により作製される。金属板上にリチウ
ム合金層を形成したものを負極とする場合は、例えば、
アルミニウムなど、前記したリチウムと合金化が可能な
元素を含有する金属板にリチウムを接触させるか、ある
いは電気化学的にリチウムをドープするなどの方法によ
り、金属板上にリチウム合金層を形成すればよい。この
とき、金属板の正極に対向する側の全面にリチウム合金
層を均一に形成してもよいが、金属板の外周部に形成さ
れるリチウム合金層は、金属外装缶の内側底面とガスケ
ットとの間に配置され、正極とは直接対向しないことに
なるので、中心部に比べて充放電時の利用率が低下す
る。また、リチウム合金層の形成は体積膨張を伴うた
め、金属外装缶の内側底面とガスケットとの間に必要以
上のリチウム合金層が形成された場合は、封止部分を変
形させて密閉性を低下させるおそれがある。そこで、金
属板の外周部でのリチウム合金層の形成を抑制して、そ
の部分でのリチウム合金層の厚さが中心部での厚さより
も薄くなるように負極を構成することにより、充放電時
におけるリチウム合金層の効率的な利用が可能となり、
また、前記のような密閉性の低下が生じるのを防止する
ことができるようになる。なお、必要な負極の容量を確
保できるのであれば、金属板の外周部にリチウム合金層
が形成されていなくてもよい。
As described above, for the negative electrode, the negative electrode active material is used as it is, an active material layer is formed on a conductive substrate such as a metal foil or a metal plate, or a mixture is molded. It is produced by the method of. When the negative electrode is formed by forming a lithium alloy layer on a metal plate, for example,
If a lithium alloy layer is formed on the metal plate by a method such as bringing lithium into contact with a metal plate containing an element capable of alloying with lithium, such as aluminum, or electrochemically doping lithium. Good. At this time, the lithium alloy layer may be uniformly formed on the entire surface of the metal plate on the side facing the positive electrode, but the lithium alloy layer formed on the outer peripheral portion of the metal plate is the inner bottom surface of the metal outer can and the gasket. Since it is arranged between the two, and does not directly face the positive electrode, the utilization factor during charging and discharging is lower than that in the central portion. In addition, since the formation of the lithium alloy layer involves volume expansion, if more lithium alloy layer is formed between the inner bottom surface of the metal outer can and the gasket, the sealing part will be deformed and the hermeticity will be reduced. May cause Therefore, by suppressing the formation of the lithium alloy layer in the outer peripheral portion of the metal plate, and by configuring the negative electrode so that the thickness of the lithium alloy layer in that portion is thinner than the thickness in the central portion, charging / discharging It is possible to use the lithium alloy layer efficiently at
Further, it becomes possible to prevent the above-mentioned deterioration of the hermeticity. Note that the lithium alloy layer may not be formed on the outer peripheral portion of the metal plate as long as the required capacity of the negative electrode can be secured.

【0023】金属板の外周部でのリチウム合金層の形成
を抑制する方法としては、例えば、金属板に接触させる
リチウムの径を金属板の径よりも小さくするなどの方法
を採用することができる。この場合、外周部の厚みより
中央部の厚みを薄くした金属板を用いると、金属板の外
周部へのリチウムの移動が抑制され、金属板の外周部で
のリチウム合金層の形成を効果的に抑制することができ
る。前記金属板としては、例えば、中央部に凹部を有
し、前記凹部の径が金属板の外径の70〜90%である
ような金属板が好適に用いられる。この凹部にリチウム
を接触させてリチウム合金層を形成すれば、凹部での段
差のために、凹部の外側へのリチウムの移動が抑制さ
れ、金属板の外周部にリチウム合金層がほとんど形成さ
れないようにすることもできる。
As a method of suppressing the formation of the lithium alloy layer on the outer peripheral portion of the metal plate, for example, a method of making the diameter of lithium contacting the metal plate smaller than the diameter of the metal plate can be adopted. . In this case, when a metal plate having a central portion thinner than the outer peripheral portion is used, the movement of lithium to the outer peripheral portion of the metal plate is suppressed, which effectively forms the lithium alloy layer on the outer peripheral portion of the metal plate. Can be suppressed. As the metal plate, for example, a metal plate having a recess in the center and the diameter of the recess being 70 to 90% of the outer diameter of the metal plate is preferably used. If lithium is brought into contact with the recess to form a lithium alloy layer, the movement of lithium to the outside of the recess is suppressed due to the step in the recess, and the lithium alloy layer is hardly formed on the outer peripheral portion of the metal plate. You can also

【0024】また、金属板に凹部を設けることにより、
凹部のへこみとリチウム合金層の形成による膨張分とが
相殺され、当初の設計値に近い厚みを有する負極が形成
されるので、電池の設計上からも好ましい結果が得られ
る。なお、上記金属板の凹部での厚みは、特に制限され
るものではないが、形成されるリチウム合金層の組成や
リチウム合金層形成時の膨張分を考慮すれば、外周部で
の厚みの25〜95%であることが好ましい。
Further, by providing the metal plate with a recess,
The depression of the concave portion and the expansion due to the formation of the lithium alloy layer are canceled out to form a negative electrode having a thickness close to the initially designed value, so that a preferable result can be obtained from the standpoint of battery design. The thickness of the concave portion of the metal plate is not particularly limited, but if the composition of the lithium alloy layer to be formed and the amount of expansion when forming the lithium alloy layer are taken into consideration, the thickness of the outer peripheral portion is 25 It is preferably ˜95%.

【0025】なお、上記した金属板は、金属外装缶と一
体化されたものであってもよく、例えば、前記のリチウ
ムと合金化が可能な元素の板が金属外装缶に圧着または
溶接されたものや、金属外装缶を構成する部材とのクラ
ッド材(例えば、ニッケル−ステンレス鋼−アルミニウ
ムのクラッド板)なども用いることができる。
The above-mentioned metal plate may be integrated with the metal outer can, for example, the plate of the element capable of alloying with lithium is pressure-bonded or welded to the metal outer can. It is also possible to use a clad material (for example, a nickel-stainless steel-aluminum clad plate) with a member that constitutes a metal outer can.

【0026】また、金属板の外周部にシール剤を塗布す
るなど、電解液との濡れを防止するための加工を施すこ
とや、後述する台座を配置することによってもリチウム
合金層の形成を抑制することが可能である。
Further, the formation of the lithium alloy layer is suppressed by applying a sealing agent to the outer peripheral portion of the metal plate to prevent it from getting wet with the electrolytic solution or by disposing a pedestal described later. It is possible to

【0027】一方、正極には、金属酸化物、金属カルコ
ゲン化物、有機イオウ化合物、導電性ポリマー、炭素質
材料などを正極活物質として用いることができる。
On the other hand, for the positive electrode, a metal oxide, a metal chalcogenide, an organic sulfur compound, a conductive polymer, a carbonaceous material or the like can be used as a positive electrode active material.

【0028】上記金属酸化物としては、例えば、マンガ
ン酸化物、バナジウム酸化物、ニオブ酸化物などの遷移
金属酸化物や、リチウムコバルト酸化物、リチウムニッ
ケル酸化物、リチウムニオブ酸化物、リチウムマンガン
酸化物(LiMn24、LiMn36、LiMnO2
ど)、リチウムチタン酸化物(Li4/3Ti5/34
ど)などのリチウム含有複合酸化物などを用いることが
できる。また、Li1+xNi1/2-y+zMn1/2-y-zCo2y
2などのように、上記複合酸化物の元素の一部を他の
元素で置換したものも用いることができる。
Examples of the metal oxides include transition metal oxides such as manganese oxide, vanadium oxide and niobium oxide, lithium cobalt oxide, lithium nickel oxide, lithium niobium oxide and lithium manganese oxide. (LiMn 2 O 4 , LiMn 3 O 6 , LiMnO 2 and the like), lithium-containing composite oxides such as lithium titanium oxide (Li 4/3 Ti 5/3 O 4 and the like), and the like can be used. In addition, Li 1 + x Ni 1 / 2-y + z Mn 1 / 2-yz Co 2y
A compound obtained by substituting a part of the elements of the complex oxide with another element such as O 2 can also be used.

【0029】金属カルコゲン化物としては、主として二
硫化チタン、二硫化モリブデン、リチウム硫化物、ニッ
ケル硫化物などの金属硫化物を用いることができる。ま
た、電解液への溶解性を有するリチウム硫化物では、電
解液に溶解した形で用いることもできる。
As the metal chalcogenide, metal sulfides such as titanium disulfide, molybdenum disulfide, lithium sulfide and nickel sulfide can be mainly used. Further, a lithium sulfide having solubility in an electrolytic solution can be used in a form dissolved in the electrolytic solution.

【0030】有機イオウ化合物としては、例えば、CS
tなどの一般式で表される炭素とイオウとを主体とした
ジスルフィド結合を特徴とする化合物を好適に用いるこ
とができる。
Examples of the organic sulfur compound include CS
A compound represented by a general formula such as t and having a disulfide bond mainly composed of carbon and sulfur can be preferably used.

【0031】導電性ポリマーとしては、例えば、ポリア
ニリン、ポリアセチレン、ポリピロールなどを用いるこ
とができる。
As the conductive polymer, for example, polyaniline, polyacetylene, polypyrrole, etc. can be used.

【0032】正極の作製についても、負極と同様に、上
記正極活物質材料をそのまま用いるか、金属箔や金属板
などの導電性基体上に活物質層を形成するか、あるいは
合剤の成形体とするなどの方法を採用することができ
る。また、負極活物質と同様に、リチウムの含有量を適
宜調整してもよい。
Also for the production of the positive electrode, as in the case of the negative electrode, the above positive electrode active material is used as it is, or the active material layer is formed on a conductive substrate such as a metal foil or a metal plate, or a mixture is molded. And the like can be adopted. Further, the content of lithium may be appropriately adjusted as in the case of the negative electrode active material.

【0033】本発明において、負極と正極との容量比
は、負極に用いる活物質と正極に用いる活物質との組み
合わせによって好適な範囲が異なるが、正極に金属酸化
物を用い、負極にリチウム合金またはリチウムと合金化
が可能な元素の酸化物を用いた場合には、正極の容量に
対する負極の容量の比率(負極容量/正極容量)は、お
よそ1.2以上が好ましく、1.39以上がより好まし
く、また、2以下が好ましく、1.73以下がより好ま
しい。すなわち、負極の容量を正極の容量の1.2倍以
上にすることによって、充放電に伴って負極が微粉化し
て導電性が低下することや、電解液が負極に過剰に取り
込まれて放電が困難になるのを防止することができる。
また、負極の容量を正極の容量の2倍以下にすることに
よって、過放電時に正極活物質の結晶構造が変化して充
放電できなくなるのを防止することができる。そして、
この正極の容量に対する負極の容量の比率(負極容量/
正極容量)としては、サイクル特性の確保という点から
は1.39以上が好ましく、また、電池の放電容量の確
保という点からは1.73以下が好ましい。
In the present invention, the capacity ratio of the negative electrode and the positive electrode varies depending on the combination of the active material used for the negative electrode and the active material used for the positive electrode, but a metal oxide is used for the positive electrode and a lithium alloy is used for the negative electrode. Alternatively, when an oxide of an element capable of alloying with lithium is used, the ratio of the capacity of the negative electrode to the capacity of the positive electrode (negative electrode capacity / positive electrode capacity) is preferably about 1.2 or more, and 1.39 or more. More preferably, it is preferably 2 or less, more preferably 1.73 or less. That is, by setting the capacity of the negative electrode to 1.2 times or more the capacity of the positive electrode, the negative electrode is pulverized with charge and discharge to reduce the conductivity, and the electrolyte is excessively taken into the negative electrode to cause discharge. It can be prevented from becoming difficult.
Further, by setting the capacity of the negative electrode to not more than twice the capacity of the positive electrode, it is possible to prevent the crystal structure of the positive electrode active material from changing during overdischarging so that charging and discharging cannot be performed. And
The ratio of the negative electrode capacity to the positive electrode capacity (negative electrode capacity /
The positive electrode capacity) is preferably 1.39 or more from the viewpoint of ensuring the cycle characteristics, and 1.73 or less from the viewpoint of ensuring the discharge capacity of the battery.

【0034】上記した負極および正極を用いて、以下の
ようにして扁平形非水電解質電池が組み立てられる。ま
ず、金属外装缶の内側底面上に負極が配置され、セパレ
ータを介して封口板側に正極が配置される。負極と金属
外装缶との接続や正極と封口板との接続は、圧着または
溶接などによる一体化や、カーボンぺーストなどの導電
剤を介しての接触によって行われる。
A flat nonaqueous electrolyte battery is assembled as follows using the above-mentioned negative electrode and positive electrode. First, the negative electrode is arranged on the inner bottom surface of the metal outer can, and the positive electrode is arranged on the sealing plate side via the separator. The connection between the negative electrode and the metal outer can and the connection between the positive electrode and the sealing plate are made by integration by pressure bonding or welding, or by contact via a conductive agent such as carbon paste.

【0035】本発明においては、従来構成よりもガスケ
ットの体積割合を減少させ、金属外装缶内の内側底面と
ガスケットとの間に負極の外周部が位置するようにして
電池が構成されるが、このような構成を採用することに
より、電池の容量を低下させることなく負極の容量を増
加させ、サイクル特性を大幅に向上させることができ
る。また、ガスケットの体積割合を減少させる場合、一
般にはガスケットの封止性能が低下して密閉性が悪くな
り、電解液の漏出や電池外部への散逸などが生じやすく
なるが、本発明では、金属外装缶の内側底面とガスケッ
トとの間に配置された負極の外周部によりガスケットが
良好に固定され、ガスケットと金属外装缶および封口板
との密着性が向上するので、上記のような問題は生じに
くくなる。
In the present invention, the battery is constructed so that the volume ratio of the gasket is reduced as compared with the conventional configuration, and the outer peripheral portion of the negative electrode is located between the inner bottom surface in the metal outer can and the gasket. By adopting such a configuration, the capacity of the negative electrode can be increased without lowering the capacity of the battery, and the cycle characteristics can be greatly improved. Further, when the volume ratio of the gasket is reduced, generally, the sealing performance of the gasket is deteriorated and the hermeticity is deteriorated, and the leakage of the electrolytic solution or the dissipation to the outside of the battery is likely to occur. Since the gasket is favorably fixed by the outer peripheral portion of the negative electrode disposed between the inner bottom surface of the outer can and the gasket, and the adhesion between the gasket and the metal outer can and the sealing plate is improved, the above problems occur. It gets harder.

【0036】なお、本発明においては、金属外装缶の内
側底面とガスケットとの間に負極の外周部を配置すると
しているが、負極の外周部が直接に金属外装缶の内側底
面とガスケットに接触していることは必ずしも必要では
なく、例えば、負極と金属外装缶またはガスケットとの
間に、セパレータや以下に示すような台座などを配置し
てもよい。
In the present invention, the outer peripheral portion of the negative electrode is arranged between the inner bottom surface of the metal outer can and the gasket, but the outer peripheral portion of the negative electrode directly contacts the inner bottom surface of the metal outer can and the gasket. This is not always necessary, and for example, a separator or a pedestal as shown below may be arranged between the negative electrode and the metal outer can or gasket.

【0037】本発明においては、充放電に伴う負極また
は正極の形状変化を防止したり、負極にリチウム合金を
用いる場合に、負極外周部でのリチウム合金層の形成を
抑制し、サイクル特性や信頼性をより一層向上させるた
めに、負極または正極の外周部に形状保持のための部
材、いわゆる台座を配置してもよい。台座の材質や形状
は特に限定されることはないが、通常、ニッケルやステ
ンレス鋼などの金属製で、例えばワッシャ(座金)状の
ものや断面形状がL字形または逆L字形の環状物などが
好適に用いられる。
In the present invention, the shape change of the negative electrode or the positive electrode due to charge / discharge is prevented, and when a lithium alloy is used for the negative electrode, formation of a lithium alloy layer on the outer peripheral portion of the negative electrode is suppressed to improve cycle characteristics and reliability. In order to further improve the property, a member for maintaining the shape, a so-called pedestal may be arranged on the outer peripheral portion of the negative electrode or the positive electrode. The material and shape of the pedestal are not particularly limited, but usually a metal such as nickel or stainless steel, such as a washer (washer) shape or an L-shaped or L-shaped inverted L-shaped cross section is used. It is preferably used.

【0038】セパレータとしては、微孔性樹脂フィルム
や不織布などが用いられるが、その材質としては、例え
ば、ポリエチレンやポリプロピレンなどのポリオレフィ
ンのほか、耐熱用途として、四フッ化エチレン−パーフ
ルオロアルコキシエチレン共重合体(PFA)などのフ
ッ素樹脂、ポリフェニレンサルファイド(PPS)、ポ
リエーテルエーテルケトン(PEEK)、ポリブチレン
テレフタレート(PBT)などが挙げられる。特に、上
記材質の微孔性フィルムと不織布とを複数積層するか、
あるいは微孔性フィルム同士や不織布同士を複数積層す
ることにより構成される複層構造のセパレータが好適に
用いられる。これは、以下の理由によるものである。す
なわち、本発明においては、後述するように、従来構成
よりも電解液量を低減することが可能になるが、それに
伴って、セパレータの保液性能がより重要となり、ま
た、容量の大きい活物質を用いる場合の安定性を確保す
る必要も生じるが、上記複層構造のセパレータは、それ
らの要求を容易に満足させることができるからである。
As the separator, a microporous resin film, a non-woven fabric, or the like is used. Examples of the material thereof include polyolefin such as polyethylene and polypropylene, and tetrafluoroethylene-perfluoroalkoxyethylene copolymer for heat resistance. A fluororesin such as a polymer (PFA), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polybutylene terephthalate (PBT) and the like can be mentioned. In particular, a plurality of laminated microporous film and non-woven fabric of the above material,
Alternatively, a separator having a multi-layer structure formed by laminating a plurality of microporous films or a plurality of nonwoven fabrics is preferably used. This is due to the following reasons. That is, in the present invention, as will be described later, it is possible to reduce the amount of electrolytic solution compared to the conventional configuration, but with it, the liquid retaining performance of the separator becomes more important, and the active material with a large capacity It is necessary to ensure the stability when using, but the separator having the above-mentioned multilayer structure can easily satisfy those requirements.

【0039】セパレータは、負極と正極との接触を防止
できれば特にその配置に関して限定されることはない
が、ガスケットと負極との間にセパレータの外周縁部が
挿入されるようにすれば、電池の組立時にセパレータの
位置ずれが生じにくくなる。さらに、セパレータの外周
縁部が封口板とガスケットとで固定されていれば、セパ
レータの位置ずれをより効果的に防止することができ
る。
The separator is not particularly limited as to its arrangement as long as it can prevent contact between the negative electrode and the positive electrode, but if the outer peripheral edge portion of the separator is inserted between the gasket and the negative electrode, the battery Positional deviation of the separator is less likely to occur during assembly. Further, if the outer peripheral edge portion of the separator is fixed by the sealing plate and the gasket, it is possible to more effectively prevent the displacement of the separator.

【0040】非水電解質としては、非水系の液状電解
質、ポリマー電解質のいずれも用い得るが、一般に電解
液と呼ばれる液状電解質が多用されるので、以下、この
液状電解質に関して「電解液」という表現で詳しく説明
する。すなわち、非水系の電解液としては、リチウム塩
などの電解質塩を有機溶媒に溶解させることによって調
製された有機溶媒系の電解液を好適に用いることができ
る。そして、その電解液の溶媒として使用される有機溶
媒としては、例えば、プロピレンカーボネート、エチレ
ンカーボネート、ブチレンカーボネートなどの環状カー
ボネート、ジエチルカーボネート、ジメチルカーボネー
ト、エチルメチルカーボネートなどの鎖状カーボネー
ト、フルオロベンゼン、ジフルオロアニソール、トリフ
ルオロトルエンなどの含フッ素有機溶媒、γ−ブチロラ
クトン、1,2−ジメトキシエタン、1,2−ジエトキ
シエタン、テトラヒドロフラン、ジオキソランなどが挙
げられ、これらの溶媒は単独でまたは2種以上混合した
混合溶媒として用いることができる。そして、リチウム
塩などの電解質塩としては、例えば、LiN(CF3
22、LiClO4、LiBF4、LiPF6、LiA
sF6、LiSbF6、LiCF3SO3、LiCF3
2、LiCn2n+1SO3(n≧2)、LiN(CF 3
2SO22などを用いることができる。また、ポリマ
ーの支持体に電解質塩が支持された固体状のポリマー電
解質や電解液をポリマーでゲル化したゲル状のポリマー
電解質も、上記非水電解質として用いることができる。
As the non-aqueous electrolyte, a non-aqueous liquid electrolysis is used.
Quality, polymer electrolytes can be used, but generally electrolysis
Since a liquid electrolyte called a liquid is often used,
Detailed explanation of liquid electrolyte by the expression "electrolyte"
To do. That is, as the non-aqueous electrolyte solution, lithium salt
It is prepared by dissolving an electrolyte salt such as
The prepared organic solvent-based electrolyte can be preferably used.
It Then, the organic solvent used as the solvent of the electrolytic solution
Examples of the medium include propylene carbonate and ethylene.
Cyclic carbonate, butylene carbonate, etc.
Bonate, diethyl carbonate, dimethyl carbonate
Carbonated chains such as gypsum and ethyl methyl carbonate
Toluene, fluorobenzene, difluoroanisole, trif
Fluorine-containing organic solvents such as luorotoluene, γ-butyral
Kuton, 1,2-dimethoxyethane, 1,2-dietoki
Sietane, tetrahydrofuran, dioxolane, etc.
These solvents are used alone or as a mixture of two or more kinds.
It can be used as a mixed solvent. And lithium
Examples of electrolyte salts such as salts include, for example, LiN (CF3S
O2)2, LiClOFour, LiBFFour, LiPF6, LiA
sF6, LiSbF6, LiCF3SO3, LiCF3C
O2, LiCnF2n + 1SO3(N ≧ 2), LiN (CF 3C
F2SO2)2Etc. can be used. Also the polymer
Solid polymer electrolyte in which electrolyte salt is supported on the substrate
Gel-like polymer made by gelling the electrolyte and electrolyte
An electrolyte can also be used as the non-aqueous electrolyte.

【0041】ガスケットとしては、例えば、ポリプロピ
レン、ナイロンのほか、耐熱用途として、四フッ化エチ
レン−パーフルオロアルコキシエチレン共重合体(PF
A)などのフッ素樹脂、ポリフェニレンエーテル(PP
E)、ポリスルフォン(PSF)、ポリアリレート(P
AR)、ポリエーテルスルフォン(PES)、ポリフェ
ニレンサルファイド(PPS)、ポリエーテルエーテル
ケトン(PEEK)などからなるものを用いることがで
きる。
Examples of gaskets include polypropylene and nylon, and tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PF) for heat resistant applications.
Fluororesin such as A), polyphenylene ether (PP
E), polysulfone (PSF), polyarylate (P
AR), polyether sulfone (PES), polyphenylene sulfide (PPS), polyether ether ketone (PEEK) and the like can be used.

【0042】封口は、金属外装缶の開口端部を内方へ締
め付けることによって行われる。このとき、封口板の周
辺部が折り返された構造となっていれば、ガスケットと
封口板との密着性が向上し、耐漏液性が向上するので好
ましい。また、ガスケットの形状は、特に限定されるこ
とはないが、封口時に金属外装缶の開口端からガスケッ
トがはみ出して封止性能が低下するのを防ぐために、金
属外装缶の開口端部の内側面に接するガスケットの外周
面の角部を曲面にするか、あるいは該角部にC面を付け
ること(角部が平坦面となるようにすること)が好まし
い。さらに、ガスケットの負極に対向する側の角部を曲
面にするか、前記角部にC面を付けることにより、金属
外装缶とガスケットとの間にセパレータの外周縁部が挟
まれて切断されるのを防止でき、また、ガスケットの封
口板の周辺部の折り返し部分が当接する部分の上部に、
該封口板の周辺部の折り返し部分の上端部が引っかかる
ことのできる凸部を設けることにより、封口板とガスケ
ットとの固定がより確実になる。
The sealing is performed by tightening the opening end of the metal outer can inward. At this time, a structure in which the peripheral portion of the sealing plate is folded back is preferable because the adhesion between the gasket and the sealing plate is improved and the liquid leakage resistance is improved. In addition, the shape of the gasket is not particularly limited, but in order to prevent the gasket from protruding from the opening end of the metal outer can when sealing and preventing the sealing performance from decreasing, the inner surface of the opening end of the metal outer can is prevented. It is preferable that the corner portion of the outer peripheral surface of the gasket contacting with is formed into a curved surface or the C portion is attached to the corner portion (the corner portion is a flat surface). Further, the outer peripheral edge portion of the separator is sandwiched between the metal outer can and the gasket to be cut by forming the corner portion of the gasket facing the negative electrode into a curved surface or by attaching the C surface to the corner portion. Can be prevented, and in the upper part of the part where the folded part of the peripheral part of the gasket sealing plate comes into contact,
By providing the convex portion with which the upper end of the folded-back portion of the peripheral portion of the sealing plate can be caught, the sealing plate and the gasket can be fixed more securely.

【0043】また、従来構成の扁平形非水電解質電池で
は、負極の対向面の面積(正極と対向する側の面積)に
対する電池設計上必要とされる電解液量は、およそ40
〜50μl/cm2程度であったが、本発明の扁平形非
水電解質電池では、負極の容量比が大きくなることによ
り、充放電サイクルでの負極の充電深度または放電深度
が浅くなり、特にリチウム合金を用いた場合の負極の劣
化が抑制されるので、10〜40μl/cm2程度の少
ない電解液量でも充分に電池を機能させることができ
る。
In the flat type non-aqueous electrolyte battery having the conventional structure, the amount of the electrolytic solution required for the battery design is about 40 with respect to the area of the facing surface of the negative electrode (the area on the side facing the positive electrode).
Although it was about 50 μl / cm 2 , in the flat non-aqueous electrolyte battery of the present invention, the capacity ratio of the negative electrode was increased, so that the charge depth or the discharge depth of the negative electrode in the charge / discharge cycle was reduced, and particularly lithium was used. Since the deterioration of the negative electrode when the alloy is used is suppressed, the battery can sufficiently function even with a small amount of the electrolytic solution of about 10 to 40 μl / cm 2 .

【0044】[0044]

【実施例】次に、実施例を挙げて本発明をより具体的に
説明する。ただし、本発明はそれらの実施例のみに限定
されるものではない。
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only those examples.

【0045】(実施例1)正極を以下のようにして作製
した。まず、LiMn36の粉末100重量部と、導電
助剤としてのカーボンブラック5重量部と、同じく導電
助剤としての鱗片状黒鉛5重量部と、バインダーとして
のポリテトラフルオロエチレン0.7重量部とを混合
し、乾燥後に直径4.8mm、厚さ0.46mmのペレ
ット状に加圧成形し、これを電気乾燥炉にて250℃で
12時間乾燥して脱水処理することにより、容量が4.
0mAhの正極を作製した。
(Example 1) A positive electrode was prepared as follows. First, 100 parts by weight of LiMn 3 O 6 powder, 5 parts by weight of carbon black as a conduction aid, 5 parts by weight of flake graphite as a conduction aid, and 0.7 parts by weight of polytetrafluoroethylene as a binder. After being mixed and dried, the resulting mixture is pressure-molded into pellets having a diameter of 4.8 mm and a thickness of 0.46 mm, and the pellets are dried at 250 ° C. for 12 hours in an electric drying furnace to be dehydrated. 4.
A 0 mAh positive electrode was prepared.

【0046】負極にはリチウム−アルミニウム合金を用
いた。この負極の作製は、集電効率を高めるために集電
網を用いて、以下に示すように行った。まず、ステンレ
ス鋼製の集電網を直径6.1mmの円板状に打ち抜き、
それを外径6.5mmのステンレス鋼製外装缶(材質:
SUS444)の内側底面に抵抗溶接し、この集電網に
直径6.1mm、厚さ0.31mmの円板状に打ち抜い
たアルミニウム板(平板)を圧着した。そして、そのア
ルミニウム板上に直径5.0mm、厚さ0.15mmの
円板状のリチウム板を配置して、容量が6.2mAhの
負極とした。
A lithium-aluminum alloy was used for the negative electrode. The production of this negative electrode was carried out as follows, using a current collecting network in order to improve current collecting efficiency. First, punch out a stainless steel collector net into a disc with a diameter of 6.1 mm,
It is made of stainless steel with an outer diameter of 6.5 mm (material:
The inner bottom surface of SUS444) was resistance-welded, and an aluminum plate (flat plate) punched into a disc shape having a diameter of 6.1 mm and a thickness of 0.31 mm was crimped to the current collecting net. Then, a disc-shaped lithium plate having a diameter of 5.0 mm and a thickness of 0.15 mm was arranged on the aluminum plate to form a negative electrode having a capacity of 6.2 mAh.

【0047】非水電解質としては、プロピレンカーボネ
ートと1,2−ジメトキシエタンとの体積比2:1の混
合溶媒にLiPF6を0.6mol/l溶解した電解液
を用い、電解液量は7μlとした。この電解液量を、負
極の対向面の面積に対する値で表すと、24μl/cm
2であった。また、セパレータとしてはポリプロピレン
不織布−微孔性ポリプロピレンフィルム−ポリプロピレ
ン不織布の三層構造のものを用い、ガスケットとしては
図2にその要部の断面形状を示すポリプロピレン製のも
のを用いた。このガスケット6は、図2では、その一部
しか示していないが、環状体であり、その負極に対向す
る側の外周側角部が曲面6aとなっており、また、金属
外装缶の開口端部の内側面に接する外周面の角部にはC
面6bが付けられ、さらに封口板の周辺部の折り返し部
分が当接する部分の上部には、該折り返し部分の上端部
が引っかかることのできる凸部6cが設けられている。
As the non-aqueous electrolyte, an electrolytic solution prepared by dissolving LiPF 6 at 0.6 mol / l in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 2: 1 was used, and the amount of the electrolytic solution was 7 μl. did. When the amount of this electrolytic solution is expressed as a value relative to the area of the facing surface of the negative electrode, it is 24 μl / cm
Was 2 . A separator having a three-layer structure of polypropylene non-woven fabric-microporous polypropylene film-polypropylene non-woven fabric was used, and a gasket made of polypropylene whose cross-sectional shape of the main part is shown in FIG. 2 was used. Although only a part of the gasket 6 is shown in FIG. 2, the gasket 6 is a ring-shaped body, and the outer peripheral corner on the side facing the negative electrode is a curved surface 6a. C at the corner of the outer peripheral surface that contacts the inner surface of the
A surface 6b is provided, and a convex portion 6c with which the upper end of the folded-back portion can be hooked is provided above the portion of the peripheral portion of the sealing plate with which the folded-back portion abuts.

【0048】上記の正極、負極、セパレータ、ガスケッ
トおよび非水電解質とステンレス鋼製の封口板(材質:
SUS444)とを用いて図1に示す外径6.5mm、
高さ1.4mmの扁平形非水電解質電池を組み立てた。
この電池の正極の容量(以下、「正極容量」という)に
対する負極の容量(以下、「負極容量」という)の比率
(負極容量/正極容量)は1.55であり、また、この
実施例1の電池は、いわゆるボタン形電池と呼ばれるも
のであって、しかも、外径が6.5mm、高さが1.4
mmという小型電池である。
The above positive electrode, negative electrode, separator, gasket, non-aqueous electrolyte and stainless steel sealing plate (material:
SUS444) and an outer diameter of 6.5 mm shown in FIG.
A flat type non-aqueous electrolyte battery having a height of 1.4 mm was assembled.
The ratio of the capacity of the negative electrode (hereinafter referred to as “negative electrode capacity”) to the capacity of the positive electrode (hereinafter referred to as “positive electrode capacity”) of this battery (negative electrode capacity / positive electrode capacity) was 1.55. Is a so-called button type battery, and has an outer diameter of 6.5 mm and a height of 1.4 mm.
It is a small battery of mm.

【0049】この実施例1の電池の構造を図1に基づい
て説明すると、1は前記の負極であり、この負極1は金
属外装缶4内に収容され、金属外装缶4は前記のように
ステンレス鋼製であって、負極端子を兼ねている。な
お、金属外装缶4の内側底面に集電網を溶接している
が、該集電網については図示していない。
The structure of the battery of Example 1 will be described with reference to FIG. 1. Reference numeral 1 is the negative electrode, and the negative electrode 1 is housed in the metal outer can 4, and the metal outer can 4 is as described above. It is made of stainless steel and also serves as the negative electrode terminal. A current collecting net is welded to the inner bottom surface of the metal outer can 4, but the current collecting net is not shown.

【0050】一方、正極2は封口板5内に収容され、こ
の封口板5はステンレス鋼製であって、正極端子を兼ね
ている。なお、正極2と封口板5とは、接触抵抗の低減
を図るため、その間にカーボンぺーストを塗布し、その
カーボンペーストを介して接続されているが、そのカー
ボンペーストは図示していない。
On the other hand, the positive electrode 2 is housed in the sealing plate 5, which is made of stainless steel and also serves as the positive electrode terminal. In order to reduce the contact resistance, the positive electrode 2 and the sealing plate 5 are coated with a carbon paste between them and are connected via the carbon paste, but the carbon paste is not shown.

【0051】そして、負極1と正極2との間にセパレー
タ3が配置され、そのセパレータ3の外周縁部および負
極1の外周部1aは、ともに金属外装缶4の内側底面と
ガスケット6との間に配置され、該ガスケット6は、金
属外装缶4の開口端部の内方への締付けにより、封口板
5の周辺部の折り返し部分5aと金属外装缶4の開口端
部の内側面とに圧接して、電池内部を密閉構造にしてい
る。
A separator 3 is disposed between the negative electrode 1 and the positive electrode 2, and the outer peripheral edge portion of the separator 3 and the outer peripheral portion 1a of the negative electrode 1 are between the inner bottom surface of the metal outer can 4 and the gasket 6. The gasket 6 is disposed in the inner peripheral surface of the sealing plate 5 and the inner side surface of the open end of the metal outer can 4 by pressing the inner end of the open end of the metal outer can 4 inward. Then, the inside of the battery has a sealed structure.

【0052】なお、この図1は電池の構造を概略的に示
すものであって、前述のように必ずしも全構成部材を示
しているわけではなく、もちろん非水電解質(電解液)
も図示されていない。これは、全構成部材を図示する
と、繁雑化して、かえって図の理解が困難になるからで
ある。また、負極1の作製にあたっては、アルミニウム
板とリチウム板とを積層したが、それらは電池組立後に
電解液の存在下で電気化学的に合金化し、アルミニウム
板上には、リチウム−アルミニウム合金層が形成されて
いる。しかし、この図1では、それらを分けることなく
一体のものとして図示している。また、ガスケット6は
金属外装缶4の開口端部の内方への締め付けにより変形
して金属外装缶4の開口端部と封口板5の周辺部の折り
返し部分5aとの間の隙間を封止して電池内部を密閉構
造にしている関係で、この図1ではガスケット6につい
て図2に示したような詳細は図示していない。
It should be noted that FIG. 1 schematically shows the structure of the battery, and does not necessarily show all the constituent members as described above, and of course the non-aqueous electrolyte (electrolyte solution).
Also not shown. This is because, if all the constituent members are illustrated, it becomes complicated and it is rather difficult to understand the drawings. Further, in the production of the negative electrode 1, an aluminum plate and a lithium plate were laminated, but they were electrochemically alloyed in the presence of an electrolytic solution after battery assembly, and a lithium-aluminum alloy layer was formed on the aluminum plate. Has been formed. However, in FIG. 1, they are shown as an integral one without being divided. Further, the gasket 6 is deformed by inward tightening of the opening end of the metal outer can 4 and seals the gap between the opening end of the metal outer can 4 and the folded-back portion 5 a of the periphery of the sealing plate 5. Due to the sealed structure inside the battery, the details of the gasket 6 shown in FIG. 2 are not shown in FIG.

【0053】(実施例2)負極の外周部にステンレス鋼
製で断面が逆L字形で環状の台座を設置し、セパレータ
の外周縁部が封口板とガスケットとで挟まれて固定され
るようにして電池組み立てを行った以外は、実施例1と
同様にして、図3に示す外径6.5mm、高さ1.4m
mの扁平形非水電解質電池を作製した。
(Embodiment 2) A circular pedestal made of stainless steel and having an inverted L-shaped cross section is installed on the outer periphery of the negative electrode so that the outer peripheral edge of the separator is sandwiched between the sealing plate and the gasket and fixed. The battery was assembled in the same manner as in Example 1, except that the outer diameter was 6.5 mm and the height was 1.4 m shown in FIG.
m flat non-aqueous electrolyte battery was produced.

【0054】この実施例2の電池の構造を図3に基づい
て説明すると、負極1の外周部1aとガスケット6との
間に上記の台座7を設置し、セパレータ3の外周縁部3
aはガスケット6と封口板5の周辺部の折り返し部分5
aとの間に挟まれて固定されている。そして、その他の
構成は前記図1に示した実施例1の電池とほぼ同様であ
る。
The structure of the battery of Example 2 will be described with reference to FIG. 3. The pedestal 7 is installed between the outer peripheral portion 1a of the negative electrode 1 and the gasket 6, and the outer peripheral edge portion 3 of the separator 3 is provided.
a is a folded-back portion 5 around the gasket 6 and the sealing plate 5.
It is sandwiched and fixed between a and. The other structure is almost the same as that of the battery of the first embodiment shown in FIG.

【0055】(実施例3)直径4.8mm、厚さ0.4
8mmのペレット状で、容量が4.2mAhになるよう
にした以外は、実施例1と同様に正極を作製した。
(Example 3) Diameter 4.8 mm, thickness 0.4
A positive electrode was produced in the same manner as in Example 1 except that the pellet had a shape of 8 mm and the capacity was 4.2 mAh.

【0056】また、負極の作製は、以下に示すように行
った。まず、ステンレス鋼製の集電網を直径6.25m
mの円板状に打ち抜き、それを外径6.5mmのステン
レス鋼製外装缶(材質:SUS444)の内側底面に抵
抗溶接し、この集電網に図4に示す断面形状のアルミニ
ウム板11を圧着した。すなわち、このアルミニウム板
11は、直径6.4mm、外周部11aの厚さ0.35
mmの円板状であって、中央部に5.2mmの径の凹部
11bが形成されている。このアルミニウム板11の前
記凹部11bでの厚さは0.25mm、すなわち外周部
での厚みの71%であり、凹部11bの径は、アルミニ
ウム板11の外径の81%である。さらに、上記アルミ
ニウム板11の凹部11bに、直径4.7mm、厚さ
0.18mmの円板状のリチウム板を配置して、容量が
6.5mAhの負極とした。
The negative electrode was manufactured as follows. First of all, a stainless steel current collecting network with a diameter of 6.25 m
It is punched into a disk shape of m and resistance-welded to the inner bottom surface of a stainless steel outer can (material: SUS444) having an outer diameter of 6.5 mm, and an aluminum plate 11 having a cross section shown in FIG. did. That is, the aluminum plate 11 has a diameter of 6.4 mm and a thickness of the outer peripheral portion 11a of 0.35.
It has a disk shape of mm and a recess 11b having a diameter of 5.2 mm is formed in the central portion. The thickness of the recess 11b of the aluminum plate 11 is 0.25 mm, that is, 71% of the thickness of the outer peripheral portion, and the diameter of the recess 11b is 81% of the outer diameter of the aluminum plate 11. Further, a disc-shaped lithium plate having a diameter of 4.7 mm and a thickness of 0.18 mm was placed in the recess 11b of the aluminum plate 11 to form a negative electrode having a capacity of 6.5 mAh.

【0057】上記の正極と負極を用い、電解液量を7.
2μlとした以外は、実施例1とほぼ同様の構成で、外
径6.5mm、高さ1.4mmの扁平形非水電解質電池
を作製した。この電池の、負極の対向面の面積に対する
電解液量は22μl/cm2であった。
Using the above positive electrode and negative electrode, the amount of electrolyte was 7.
A flat type non-aqueous electrolyte battery having an outer diameter of 6.5 mm and a height of 1.4 mm was produced in substantially the same configuration as in Example 1 except that the amount was 2 μl. The amount of the electrolytic solution with respect to the area of the facing surface of the negative electrode of this battery was 22 μl / cm 2 .

【0058】(比較例1)ステンレス鋼製の集電網を直
径4.0mmの円板状に打ち抜き、それを実施例1と同
様の封口板の内面に抵抗溶接し、その集電網に直径4.
0mm、厚さ0.24mmの円板状に打ち抜いたアルミ
ニウム板を圧着し、その上に直径4.0mm、厚さ0.
18mmの円板状のリチウム板を配置し、容量が4.7
mAhの負極とした。
(Comparative Example 1) A stainless steel current collector net was punched into a disc shape having a diameter of 4.0 mm, which was resistance-welded to the inner surface of the same sealing plate as in Example 1, and the current collector net had a diameter of 4.
A disc-shaped aluminum plate having a thickness of 0 mm and a thickness of 0.24 mm was press-bonded, and a diameter of 4.0 mm and a thickness of 0.
A 18 mm disc-shaped lithium plate is placed and the capacity is 4.7.
It was used as a negative electrode of mAh.

【0059】ついで、実施例1と同様の金属外装缶の内
側底面上にカーボンぺーストを塗布した後、実施例1と
同様の正極を配置し、6μlの電解液を注入した以外
は、実施例1とほぼ同様の構成で、図5に示す外径6.
5mm、高さ1.4mmの扁平形非水電解質電池を作製
した。この電池の、負極の対向面の面積に対する電解液
量は48μl/cm2であった。
Then, the same procedure as in Example 1 was carried out except that a carbon paste was applied on the inner bottom surface of a metal outer can, the same positive electrode as that in Example 1 was placed, and 6 μl of an electrolytic solution was injected. 1 and an outer diameter of 6.
A flat non-aqueous electrolyte battery having a size of 5 mm and a height of 1.4 mm was produced. The amount of the electrolytic solution with respect to the area of the negative electrode facing surface of this battery was 48 μl / cm 2 .

【0060】この比較例1の電池では、上記のように負
極1を封口板5に収容して作製されている関係上、封口
板5が負極端子を兼ね、また、正極2は金属外装缶4に
収容されているため、金属外装缶4が正極端子を兼ねて
いる。そして、ガスケット6の下部は金属外装缶4の内
側底面にまで達していて、実施例1〜3の電池に比べ
て、ガスケット6の電池内で占める体積が大きく、その
分、電極の占める体積が少なくなっている。また、比較
例1の電池に用いたガスケット6には、図2に示すよう
な外周側角部の曲面6aや、封口板5の周辺部の折り返
し部分5aの上端部が引っかかることのできる凸部6c
などは設けていない。
In the battery of Comparative Example 1, since the negative electrode 1 is housed in the sealing plate 5 as described above, the sealing plate 5 also serves as the negative electrode terminal, and the positive electrode 2 is the metal outer can 4. The metal outer can 4 also serves as the positive electrode terminal. Then, the lower part of the gasket 6 reaches the inner bottom surface of the metal outer can 4, and the volume of the gasket 6 occupied in the battery is larger than that of the batteries of Examples 1 to 3, and the volume occupied by the electrodes is correspondingly increased. It's getting less. Further, the gasket 6 used in the battery of Comparative Example 1 has a convex portion to which the curved surface 6a of the outer peripheral corner portion as shown in FIG. 2 and the upper end of the folded-back portion 5a of the peripheral portion of the sealing plate 5 can be caught. 6c
Are not provided.

【0061】この比較例1の電池は、実施例1と同じ正
極を用いて高容量化を行っているため、正極の充填量の
多い分だけ負極の充填量を減少させねばならず、そのた
め、正極容量に対する負極容量の比率(負極容量/正極
容量)は1.18と小さな値になった。
In the battery of Comparative Example 1, the same positive electrode as in Example 1 was used to increase the capacity. Therefore, the filling amount of the negative electrode had to be reduced by the amount of the filling amount of the positive electrode, and therefore, The ratio of the negative electrode capacity to the positive electrode capacity (negative electrode capacity / positive electrode capacity) was a small value of 1.18.

【0062】(比較例2)直径4.8mm、厚さ0.3
9mmのペレット状に加圧成形し、容量を3.4mAh
にした正極、および直径4.0mm、厚さ0.28mm
の円板状に打ち抜いたアルミニウム板に直径4.0m
m、厚さ0.2mmの円板状のリチウム板を配置した、
容量が5.2mAhの負極を用いた以外は、比較例1と
同様にして、外径6.5mm、高さ1.4mmの扁平形
非水電解質電池を作製した。この比較例2の電池の正極
容量に対する負極容量の比率(負極容量/正極容量)は
1.53であった。
Comparative Example 2 Diameter 4.8 mm, Thickness 0.3
Pressure molded into 9 mm pellets with a capacity of 3.4 mAh
Positive electrode, diameter 4.0 mm, thickness 0.28 mm
The diameter is 4.0m on the aluminum plate punched in the shape of
m, and a 0.2 mm thick disc-shaped lithium plate was placed,
A flat non-aqueous electrolyte battery having an outer diameter of 6.5 mm and a height of 1.4 mm was produced in the same manner as in Comparative Example 1 except that a negative electrode having a capacity of 5.2 mAh was used. The ratio of the negative electrode capacity to the positive electrode capacity of the battery of Comparative Example 2 (negative electrode capacity / positive electrode capacity) was 1.53.

【0063】この比較例2の電池は、正極容量に対する
負極容量の比率(負極容量/正極容量)が実施例1〜3
の電池と同程度になるように、正極および負極の充填量
を調整したものである。
The battery of Comparative Example 2 had a ratio of the negative electrode capacity to the positive electrode capacity (negative electrode capacity / positive electrode capacity) of Examples 1 to 3.
The filling amount of the positive electrode and the negative electrode is adjusted so as to be approximately the same as that of the battery.

【0064】上記実施例1〜3および比較例1〜2の電
池に対し、270kΩの負荷抵抗を接続して、電池電圧
が2.0Vに低下するまでの放電容量を測定した。ま
た、以下の条件で充放電サイクル試験を行い、充放電可
能なサイクル数を調べた。すなわち、充電は2.4kΩ
の電流制限抵抗を接続し、3.25Vの電源電圧を印加
して15時間行い、放電は27kΩの負荷抵抗を接続し
て16時間行った。そして、放電開始から11時間後の
電池電圧でサイクル寿命を判断し、この電圧が2Vより
低くなったときをその電池の寿命とした。そして、その
ときのサイクル数を充放電可能なサイクル数とした。そ
れらの測定結果を表1に正極容量に対する負極容量の比
率、負極の対向面の面積に対する電解液量と共に示す。
ただし、表1には、正極容量に対する負極容量の比率を
容量比(負極容量/正極容量)で示している。
A load resistance of 270 kΩ was connected to the batteries of Examples 1 to 3 and Comparative Examples 1 and 2, and the discharge capacity until the battery voltage dropped to 2.0 V was measured. In addition, a charge / discharge cycle test was performed under the following conditions to check the number of cycles that can be charged / discharged. That is, charging is 2.4 kΩ
Was connected for 15 hours, and a power supply voltage of 3.25V was applied, and discharging was performed for 15 hours. A discharging resistance of 27 kΩ was connected for 16 hours. Then, the cycle life was judged from the battery voltage 11 hours after the start of discharge, and the life of the battery was determined when this voltage became lower than 2V. Then, the number of cycles at that time was defined as the number of cycles capable of charging and discharging. The measurement results are shown in Table 1 together with the ratio of the negative electrode capacity to the positive electrode capacity and the amount of the electrolytic solution with respect to the area of the facing surface of the negative electrode.
However, in Table 1, the ratio of the negative electrode capacity to the positive electrode capacity is shown by the capacity ratio (negative electrode capacity / positive electrode capacity).

【0065】[0065]

【表1】 [Table 1]

【0066】表1に示すように、実施例1〜3の電池
は、放電容量が大きく、かつ充放電可能なサイクル数が
多く、サイクル特性が優れていた。すなわち、本発明の
実施例1〜3の電池では、封口板側に正極を配置し、金
属外装缶側に負極を配置し、かつ金属外装缶の内側底面
とガスケットとの間に負極の外周部を配置したことによ
り、正極の容量を減少させることなく負極の容量を増加
させることができ、充放電サイクルに伴う負極の劣化を
抑制して、小型でも高容量で、かつサイクル特性が優れ
た扁平形非水電解質電池を得ることができた。また、実
施例1〜3の電池は、比較例1〜2の電池よりも電池内
でのガスケットの体積割合が少なくなっているが、充放
電を繰り返しても漏液の発生は認められなかった。
As shown in Table 1, the batteries of Examples 1 to 3 had a large discharge capacity, a large number of chargeable and dischargeable cycles, and excellent cycle characteristics. That is, in the batteries of Examples 1 to 3 of the present invention, the positive electrode was arranged on the side of the sealing plate, the negative electrode was arranged on the side of the metal outer can, and the outer peripheral portion of the negative electrode was placed between the inner bottom surface of the metal outer can and the gasket. By arranging, it is possible to increase the capacity of the negative electrode without decreasing the capacity of the positive electrode, suppress the deterioration of the negative electrode due to charge / discharge cycles, and even with a small size, high capacity, and a flat surface with excellent cycle characteristics. A non-aqueous electrolyte battery could be obtained. Further, in the batteries of Examples 1 to 3, the volume ratio of the gasket in the battery was smaller than that of the batteries of Comparative Examples 1 and 2, but no liquid leakage was observed even after repeated charging and discharging. .

【0067】これに対して、従来構成で高容量化を行っ
た比較例1の電池では、充放電サイクルでの負極の急激
な劣化により、充放電可能なサイクル数が極端に少なく
なった。また、正極および負極の充填量を調整して、容
量比(負極容量/正極容量)を実施例1〜3の電池と同
程度にした比較例2の電池では、放電容量が低下してし
まい、また、それに伴って実施例1〜3の電池よりも充
放電サイクルでの放電深度が深くなったため、充放電可
能なサイクル数も少なくなった。
On the other hand, in the battery of Comparative Example 1 in which the capacity was increased by the conventional structure, the number of cycles that can be charged and discharged was extremely reduced due to the rapid deterioration of the negative electrode during the charge and discharge cycles. In addition, in the battery of Comparative Example 2 in which the capacity ratio (negative electrode capacity / positive electrode capacity) was adjusted to the same level as the batteries of Examples 1 to 3 by adjusting the filling amounts of the positive electrode and the negative electrode, the discharge capacity was reduced, In addition, since the discharge depth in the charge / discharge cycle became deeper than that of the batteries of Examples 1 to 3, the number of chargeable / dischargeable cycles also decreased.

【0068】次に、負極の外周部に台座を配置すること
や、外周部よりも中央部の方が厚みが薄い金属板を負極
に用いることにより、電池の密閉性能がどのように変化
するかを調べた。すなわち、実施例1〜3の扁平形非水
電解質電池をそれぞれ100個ずつ用い、85℃で湿度
が90%の環境下に20日間放置し、高温、高湿下での
耐漏液性試験を行った。その結果を、漏液が認められた
電池の個数としてまとめ、表2に示した。
Next, by arranging a pedestal on the outer peripheral portion of the negative electrode and using a metal plate whose central portion is thinner than the outer peripheral portion for the negative electrode, how the battery sealing performance changes. I checked. That is, 100 flat non-aqueous electrolyte batteries of each of Examples 1 to 3 were used, left for 20 days in an environment of 85 ° C. and a humidity of 90%, and subjected to a liquid leakage resistance test under high temperature and high humidity. It was The results are summarized in Table 2 as the number of batteries in which leakage was observed.

【0069】[0069]

【表2】 [Table 2]

【0070】表2に示すように、負極の外周部に台座を
配置した実施例2の電池や、中央部に凹部を有するアル
ミニウム板を用いた実施例3の電池では、試験に供した
100個の電池のいずれにも漏液が認められなかった
が、アルミニウムの平板上にリチウムを置いただけの実
施例1の電池では、試験に供した100個の電池のうち
の15個の電池に漏液が認められた。上記漏液が生じた
原因について調べるため、実施例1〜3の電池を上記耐
漏液性試験後に分解して電池の断面の観察を行ったとこ
ろ、漏液が生じた電池では、アルミニウム板の外周部の
一部に、リチウム合金層が他の部分より分厚く形成され
ているところがあり、その部分でガスケットが変形して
電解液が漏出していたことが判明した。このアルミニウ
ム板の外周部でのリチウム合金層の不均一な形成は、ア
ルミニウム板上にリチウム板を配置する工程で、アルミ
ニウム板の中心とリチウム板の中心とが完全には一致せ
ず、アルミニウム板の中心から若干ずれた位置にリチウ
ム板が配置されてしまったために生じたものと考えられ
る。しかるに、実施例2の電池や実施例3の電池では、
上記のようなリチウム合金層の不均一な形成は認められ
ず、アルミニウム板の外周部でのリチウム合金層の形成
が効果的に抑制されていたことから、金属板の外周部で
のリチウム合金層の形成を抑制することによって、電池
の組立工程でばらつきが生じたとしても、電池の耐漏液
性能を良好に維持し、信頼性の高い扁平形非水電解質電
池を提供することができる。
As shown in Table 2, the battery of Example 2 in which a pedestal was arranged on the outer peripheral portion of the negative electrode and the battery of Example 3 in which an aluminum plate having a recessed portion in the central portion was used were 100 pieces tested. No leakage was observed in any of the batteries of Example 1, but in the battery of Example 1 in which lithium was only placed on a flat plate of aluminum, leakage was observed in 15 of 100 batteries used in the test. Was recognized. In order to investigate the cause of the leakage, the batteries of Examples 1 to 3 were disassembled after the leakage resistance test and the cross section of the battery was observed. It was found that the lithium alloy layer was formed thicker in some parts than in other parts, and the gasket was deformed at that part and the electrolytic solution leaked out. The uneven formation of the lithium alloy layer on the outer peripheral portion of the aluminum plate is caused by the step of disposing the lithium plate on the aluminum plate and the center of the aluminum plate does not completely coincide with the center of the lithium plate. It is considered that this occurred because the lithium plate was placed at a position slightly deviated from the center of. However, in the battery of Example 2 and the battery of Example 3,
The non-uniform formation of the lithium alloy layer as described above was not recognized, and the formation of the lithium alloy layer on the outer peripheral portion of the aluminum plate was effectively suppressed. By suppressing the formation of the above, even if variations occur in the process of assembling the battery, it is possible to maintain the liquid leakage resistance of the battery in a good condition and provide a highly reliable flat non-aqueous electrolyte battery.

【0071】(実施例4)直径9.3mm、厚さ0.6
4mmのペレット状で、容量が18.3mAhになるよ
うにした以外は、実施例1と同様に正極を作製した。
(Example 4) Diameter 9.3 mm, thickness 0.6
A positive electrode was produced in the same manner as in Example 1 except that it was in the form of pellets of 4 mm and had a capacity of 18.3 mAh.

【0072】また、外装缶の外径を12.0mmとし、
直径10.5mmの集電網、直径11.7mmで厚さ
0.35mmのアルミニウム板、および、直径9.5m
mで厚さ0.19mmのリチウム板をそれぞれ用い、容
量が27.8mAhになるようにした以外は、実施例1
と同様に負極を作製した。
The outer diameter of the outer can is 12.0 mm,
10.5 mm diameter collector net, 11.7 mm diameter and 0.35 mm thick aluminum plate, and 9.5 m diameter
Example 1 except that lithium plates each having a thickness of 0.19 mm and a thickness of 0.19 mm were used and the capacity was set to 27.8 mAh.
A negative electrode was prepared in the same manner as in.

【0073】上記正極と負極とを組み合わせ、実施例1
と同様にして、外径12.0mm、高さ2.0mmの扁
平形非水電解質電池を組み立てた。この電池の負極容量
/正極容量は1.52であった。
Example 1 was obtained by combining the above positive electrode and negative electrode.
Similarly to the above, a flat non-aqueous electrolyte battery having an outer diameter of 12.0 mm and a height of 2.0 mm was assembled. The negative electrode capacity / positive electrode capacity of this battery was 1.52.

【0074】(実施例5)直径16.1mm、厚さ0.
98mmのペレット状で、容量が78.6mAhになる
ようにした以外は、実施例1と同様に正極を作製した。
Example 5 Diameter 16.1 mm, thickness 0.
A positive electrode was produced in the same manner as in Example 1 except that the pellet had a shape of 98 mm and the capacity was 78.6 mAh.

【0075】また、外装缶の外径を20.0mmとし、
直径18.8mmの集電網、直径19.0mmで厚さ
0.7mmのアルミニウム板、および、直径16.0m
mで厚さ0.29mmのリチウム板をそれぞれ用い、容
量が120.3mAhになるようにした以外は、実施例
1と同様に負極を作製した。
The outer diameter of the outer can is 20.0 mm,
18.8 mm diameter collector net, 19.0 mm diameter and 0.7 mm thick aluminum plate, and 16.0 m diameter
A negative electrode was produced in the same manner as in Example 1 except that lithium plates each having a thickness of 0.29 mm and a thickness of 120.3 mAh were used.

【0076】上記正極と負極とを組み合わせ、実施例1
と同様にして、外径20.0mm、高さ3.2mmの扁
平形非水電解質電池を組み立てた。この電池の負極容量
/正極容量は1.53であった。
Example 1 was prepared by combining the above positive electrode and negative electrode.
Similarly to the above, a flat non-aqueous electrolyte battery having an outer diameter of 20.0 mm and a height of 3.2 mm was assembled. The negative electrode capacity / positive electrode capacity of this battery was 1.53.

【0077】(比較例3)直径8.9mm、厚さ0.6
3mmのペレット状で、容量が16.1mAhになるよ
うにした以外は、比較例2と同様に正極を作製した。
(Comparative Example 3) Diameter 8.9 mm, thickness 0.6
A positive electrode was produced in the same manner as in Comparative Example 2 except that it was in the form of pellets of 3 mm and had a capacity of 16.1 mAh.

【0078】また、直径8.6mmの集電網、直径9.
0mmで厚さ0.35mmのアルミニウム板、および、
直径8.7mmで厚さ0.2mmのリチウム板をそれぞ
れ用い、容量が24.5mAhになるようにした以外
は、比較例2と同様に負極を作製した。
A current collecting network having a diameter of 8.6 mm and a diameter of 9.
An aluminum plate having a thickness of 0 mm and a thickness of 0.35 mm, and
A negative electrode was produced in the same manner as in Comparative Example 2 except that lithium plates each having a diameter of 8.7 mm and a thickness of 0.2 mm were used and the capacity was set to 24.5 mAh.

【0079】上記正極と負極とを組み合わせ、外径が1
2.0mmの外装缶を用いて、比較例2と同様にして、
外径12.0mm、高さ2.0mmの扁平形非水電解質
電池を組み立てた。この電池の負極容量/正極容量は
1.52であった。
The positive electrode and the negative electrode are combined to have an outer diameter of 1
Using an outer can of 2.0 mm, in the same manner as in Comparative Example 2,
A flat non-aqueous electrolyte battery having an outer diameter of 12.0 mm and a height of 2.0 mm was assembled. The negative electrode capacity / positive electrode capacity of this battery was 1.52.

【0080】(比較例4)直径15.2mm、厚さ0.
95mmのペレット状で、容量が71.0mAhになる
ようにした以外は、比較例2と同様に正極を作製した。
(Comparative Example 4) Diameter 15.2 mm, thickness 0.
A positive electrode was produced in the same manner as in Comparative Example 2 except that it was in the form of pellets of 95 mm and had a capacity of 71.0 mAh.

【0081】また、直径14.9mmの集電網、直径1
5.0mmで厚さ0.7mmのアルミニウム板、およ
び、直径14.5mmで厚さ0.32mmのリチウム板
をそれぞれ用い、容量が109.0mAhになるように
した以外は、比較例2と同様に負極を作製した。
A current collecting network having a diameter of 14.9 mm and a diameter of 1
Same as Comparative Example 2 except that an aluminum plate having a thickness of 5.0 mm and a thickness of 0.7 mm and a lithium plate having a diameter of 14.5 mm and a thickness of 0.32 mm were used, respectively, so that the capacity was 109.0 mAh. A negative electrode was produced.

【0082】上記正極と負極とを組み合わせ、外径が2
0.0mmの外装缶を用いて、比較例2と同様にして、
外径20.0mm、高さ3.2mmの扁平形非水電解質
電池を組み立てた。この電池の負極容量/正極容量は
1.54であった。
The positive electrode and the negative electrode are combined to have an outer diameter of 2
Using a 0.0 mm outer can, in the same manner as in Comparative Example 2,
A flat non-aqueous electrolyte battery having an outer diameter of 20.0 mm and a height of 3.2 mm was assembled. The negative electrode capacity / positive electrode capacity of this battery was 1.54.

【0083】上記実施例4および実施例5の電池は、実
施例1と同様の電池構成で、直径をそれぞれ12.0m
mおよび20.0mmとした扁平形非水電解質電池であ
る。
The batteries of Examples 4 and 5 had the same battery configuration as that of Example 1 and had a diameter of 12.0 m.
It is a flat type non-aqueous electrolyte battery with m and 20.0 mm.

【0084】また、上記比較例3および比較例4の電池
は、比較例2と同様の電池構成で、直径をそれぞれ1
2.0mmおよび20.0mmとした扁平形非水電解質
電池である。
The batteries of Comparative Example 3 and Comparative Example 4 had the same battery configuration as that of Comparative Example 2 and each had a diameter of 1
A flat non-aqueous electrolyte battery having a size of 2.0 mm and 20.0 mm.

【0085】上記実施例4および比較例3の電池につい
て、70kΩの負荷抵抗を接続して、電池電圧が2.0
Vに低下するまでの放電容量を測定した。また、上記実
施例5および比較例4の電池について、20kΩの負荷
抵抗を接続して、電池電圧が2.0Vに低下するまでの
放電容量を測定した。それらの測定結果を、実施例1お
よび比較例2の電池の放電容量と共に表3に示す。ま
た、表3には、実施例1、実施例4および実施例5の電
池の放電容量と、それに対応する比較例の電池(比較例
2、比較例3および比較例4)の放電容量とを比較し、
その増加の比率〔(実施例の放電容量−比較例の放電容
量)×100/比較例の放電容量〕(%)を、放電容量
の増加率として示している。
With respect to the batteries of Example 4 and Comparative Example 3, a load voltage of 70 kΩ was connected and the battery voltage was 2.0.
The discharge capacity until it decreased to V was measured. Further, with respect to the batteries of Example 5 and Comparative Example 4 described above, a load resistance of 20 kΩ was connected and the discharge capacity until the battery voltage dropped to 2.0 V was measured. The measurement results are shown in Table 3 together with the discharge capacities of the batteries of Example 1 and Comparative Example 2. Table 3 shows the discharge capacities of the batteries of Examples 1, 4 and 5 and the corresponding discharge capacities of the batteries of Comparative Examples (Comparative Example 2, Comparative Example 3 and Comparative Example 4). Compare
The rate of increase [(discharge capacity of the example−discharge capacity of the comparative example) × 100 / discharge capacity of the comparative example] (%) is shown as the rate of increase of the discharge capacity.

【0086】[0086]

【表3】 [Table 3]

【0087】表3に示すように、実施例1、実施例4、
実施例5および比較例2〜4の電池は、負極容量/正極
容量がほぼ同じ値となるよう設計されているが、実施例
1、実施例4および実施例5の電池は、それと対応する
比較例の電池に比べて放電容量を大きくすることができ
た。また、電池の直径が小さくなるほど放電容量の増加
率が大きくなり、直径が16mm以下で本発明の効果が
大きくなり、特に直径が8mm以下の小型電池で顕著な
効果が得られた。
As shown in Table 3, Example 1, Example 4,
The batteries of Example 5 and Comparative Examples 2 to 4 are designed so that the negative electrode capacity / the positive electrode capacity have substantially the same value, but the batteries of Example 1, Example 4 and Example 5 have the same comparison. The discharge capacity could be increased compared to the example battery. Further, the smaller the diameter of the battery, the greater the rate of increase in discharge capacity, and the greater the effect of the present invention when the diameter is 16 mm or less, the remarkable effect was obtained especially in the small battery having the diameter of 8 mm or less.

【0088】なお、本発明においては、電池の直径の下
限値は特に制限はされないが、製造の容易性を考慮すれ
ば、直径2mmまでが実用的である。
In the present invention, the lower limit of the diameter of the battery is not particularly limited, but a diameter of up to 2 mm is practical considering the ease of manufacturing.

【0089】(比較例5)直径6.1mm、厚さ0.3
5mmのペレット状で、容量が4.9mAhになるよう
にした以外は、実施例1と同様に正極を作製した。つい
で、実施例1と同様の金属外装缶の内側底面上にカーボ
ンペーストを塗布した後、ここに上記正極を配置した。
Comparative Example 5 Diameter 6.1 mm, Thickness 0.3
A positive electrode was produced in the same manner as in Example 1 except that the pellet had a shape of 5 mm and the capacity was 4.9 mAh. Then, after applying a carbon paste onto the inner bottom surface of the same metal outer can as in Example 1, the positive electrode was placed there.

【0090】この金属外装缶内に配置された正極と、封
口板に取り付けられた比較例1と同様の負極とを組み合
わせ、実施例1と同様にして、外径6.5mm、高さ
1.4mmの扁平形非水電解質電池を組み立てた。すな
わち、この比較例5の電池は、金属外装缶の内側底面と
ガスケットとの間に正極の外周部を配置した電池であ
り、本発明の実施例1の電池とは、正極と負極の配置が
逆転したものである。
A positive electrode placed in this metal outer can and a negative electrode similar to Comparative Example 1 attached to the sealing plate were combined, and the outer diameter was 6.5 mm and the height was 1. A 4 mm flat non-aqueous electrolyte battery was assembled. That is, the battery of Comparative Example 5 is a battery in which the outer peripheral portion of the positive electrode is arranged between the inner bottom surface of the metal outer can and the gasket, and the battery of Example 1 of the present invention has the arrangement of the positive electrode and the negative electrode. It is the reverse.

【0091】この電池の負極容量/正極容量は0.96
であり、負極の容量が正極の容量よりも小さくなってし
まった。このため、比較例5の電池は、前記実施例1の
電池と同様の条件で放電容量を測定すると、実施例1の
電池よりも大きな容量(4.0mAh)を示したが、負
極の放電深度が深くなりすぎて負極が劣化してしまうた
め、充放電サイクル特性は比較例1の電池よりもさらに
劣る結果となった。
The negative electrode capacity / positive electrode capacity of this battery was 0.96.
Therefore, the capacity of the negative electrode became smaller than the capacity of the positive electrode. Therefore, the battery of Comparative Example 5 showed a larger capacity (4.0 mAh) than the battery of Example 1 when the discharge capacity was measured under the same conditions as the battery of Example 1, but the discharge depth of the negative electrode was Becomes too deep and the negative electrode deteriorates, so that the charge / discharge cycle characteristics were inferior to those of the battery of Comparative Example 1.

【0092】[0092]

【発明の効果】以上説明したように、本発明では、封口
板が正極端子を兼ね、金属外装缶が負極端子を兼ね、金
属外装缶の内側底面とガスケットとの間に負極の外周部
を配置する構成とすることにより、高容量で、かつサイ
クル特性が優れた扁平形非水電解質電池を提供すること
ができた。特に、金属板上にリチウム合金層を形成した
ものを負極とする場合には、金属板の外周部でのリチウ
ム合金層の形成を抑制することにより、耐漏液性が優れ
た信頼性の高い電池とすることができる。
As described above, in the present invention, the sealing plate also serves as the positive electrode terminal, the metal outer can also serves as the negative electrode terminal, and the outer peripheral portion of the negative electrode is arranged between the inner bottom surface of the metal outer can and the gasket. With such a structure, it was possible to provide a flat non-aqueous electrolyte battery having a high capacity and excellent cycle characteristics. Particularly, when the negative electrode is formed by forming a lithium alloy layer on a metal plate, by suppressing the formation of the lithium alloy layer on the outer peripheral portion of the metal plate, a highly reliable battery with excellent liquid leakage resistance can be obtained. Can be

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の扁平形非水電解質電池を模
式的に示す部分断面図である。
FIG. 1 is a partial cross-sectional view schematically showing a flat non-aqueous electrolyte battery of Example 1 of the present invention.

【図2】実施例1の電池に用いるガスケットの要部を模
式的に示す断面図である。
FIG. 2 is a cross-sectional view schematically showing a main part of a gasket used in the battery of Example 1.

【図3】本発明の実施例2の扁平形非水電解質電池を模
式的に示す部分断面図である。
FIG. 3 is a partial cross-sectional view schematically showing a flat non-aqueous electrolyte battery of Example 2 of the present invention.

【図4】本発明の実施例3の扁平形非水電解質電池の負
極に用いたアルミニウム板を模式的に示す断面図であ
る。
FIG. 4 is a cross-sectional view schematically showing an aluminum plate used as a negative electrode of the flat type nonaqueous electrolyte battery of Example 3 of the present invention.

【図5】従来電池に相当する比較例1の扁平形非水電解
質電池を模式的に示す部分断面図である。
FIG. 5 is a partial cross-sectional view schematically showing a flat non-aqueous electrolyte battery of Comparative Example 1 corresponding to a conventional battery.

【符号の説明】[Explanation of symbols]

1 負極 1a 外周部 2 正極 3 セパレータ 3a 外周縁部 4 金属外装缶 5 封口板 5a 折り返し部分 6 ガスケット 6a 曲面 6b C面 6c 凸部 7 台座 11 アルミニウム板 11a 外周部 11b 凹部 1 negative electrode 1a outer peripheral part 2 positive electrode 3 separator 3a outer peripheral portion 4 metal exterior cans 5 Seal plate 5a Folded part 6 gasket 6a curved surface 6b C surface 6c convex part 7 pedestal 11 Aluminum plate 11a outer peripheral part 11b recess

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐野 健一 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H011 AA03 AA17 BB04 CC06 DD06 KK01 KK02 5H021 AA06 CC02 CC04 5H029 AJ03 AJ05 AJ15 AK03 AL12 AM03 AM05 AM07 BJ03 DJ02 DJ04 DJ15 EJ01 EJ12 HJ04 HJ19    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kenichi Sano             Hitachi Ma, 1-88, Torora, Ibaraki City, Osaka Prefecture             Within Kucsel Co., Ltd. F-term (reference) 5H011 AA03 AA17 BB04 CC06 DD06                       KK01 KK02                 5H021 AA06 CC02 CC04                 5H029 AJ03 AJ05 AJ15 AK03 AL12                       AM03 AM05 AM07 BJ03 DJ02                       DJ04 DJ15 EJ01 EJ12 HJ04                       HJ19

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 封口板および金属外装缶とそれらの間に
介在させたガスケットとを備え、前記金属外装缶の開口
端部を内方に締め付けることにより、負極、正極および
非水電解質を内部に密閉してなる扁平形非水電解質電池
であって、前記封口板が正極端子を兼ね、前記金属外装
缶が負極端子を兼ね、金属外装缶の内側底面とガスケッ
トとの間に負極の外周部を配置したことを特徴とする扁
平形非水電解質電池。
1. A negative electrode, a positive electrode and a non-aqueous electrolyte are provided inside by providing a sealing plate, a metal outer can and a gasket interposed therebetween, and tightening an opening end portion of the metal outer can inward. A flat non-aqueous electrolyte battery which is hermetically sealed, wherein the sealing plate also serves as a positive electrode terminal, the metal outer can also serves as a negative electrode terminal, and the outer peripheral portion of the negative electrode is provided between the inner bottom surface of the metal outer can and the gasket. A flat non-aqueous electrolyte battery characterized by being arranged.
【請求項2】 前記金属外装缶の直径が2〜16mmで
ある請求項1に記載の扁平形非水電解質電池。
2. The flat non-aqueous electrolyte battery according to claim 1, wherein the metal outer can has a diameter of 2 to 16 mm.
【請求項3】 前記金属外装缶の直径が2〜8mmであ
る請求項1に記載の扁平形非水電解質電池。
3. The flat non-aqueous electrolyte battery according to claim 1, wherein the metal outer can has a diameter of 2 to 8 mm.
【請求項4】 前記負極にリチウム合金またはリチウム
と合金化が可能な元素の酸化物を用いた請求項1に記載
の扁平形非水電解質電池。
4. The flat non-aqueous electrolyte battery according to claim 1, wherein a lithium alloy or an oxide of an element capable of alloying with lithium is used for the negative electrode.
【請求項5】 前記負極が、金属板上にリチウム合金層
が形成されたものであって、前記リチウム合金層の形成
にあたり、外周部より中央部の厚みが薄い金属板を用い
た請求項1に記載の扁平形非水電解質電池。
5. The negative electrode is one in which a lithium alloy layer is formed on a metal plate, and in forming the lithium alloy layer, a metal plate having a central portion thinner than an outer peripheral portion is used. The flat non-aqueous electrolyte battery described in.
【請求項6】 前記金属板が、中央部に凹部を有する金
属板であり、前記凹部の径が金属板の外径の70〜90
%であって、前記金属板の凹部にリチウムを接触させる
ことによりリチウム合金層を形成した請求項5に記載の
扁平形非水電解質電池。
6. The metal plate is a metal plate having a recess in the center, and the diameter of the recess is 70 to 90 of the outer diameter of the metal plate.
%, And the flat nonaqueous electrolyte battery according to claim 5, wherein a lithium alloy layer is formed by bringing lithium into contact with the concave portion of the metal plate.
【請求項7】 前記金属板の凹部の厚みが、外周部の厚
みの25〜95%である請求項6に記載の扁平形非水電
解質電池。
7. The flat non-aqueous electrolyte battery according to claim 6, wherein the thickness of the recess of the metal plate is 25 to 95% of the thickness of the outer peripheral portion.
【請求項8】 前記正極の容量に対する負極の容量の比
率を1.2以上とした請求項1に記載の扁平形非水電解
質電池。
8. The flat type non-aqueous electrolyte battery according to claim 1, wherein the ratio of the capacity of the negative electrode to the capacity of the positive electrode is 1.2 or more.
【請求項9】 前記負極と前記正極との間に複層構造の
セパレータを介在させた請求項1に記載の扁平形非水電
解質電池。
9. The flat non-aqueous electrolyte battery according to claim 1, wherein a separator having a multilayer structure is interposed between the negative electrode and the positive electrode.
JP2002106616A 2001-04-11 2002-04-09 Flat non-aqueous electrolyte secondary battery Expired - Fee Related JP3732455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002106616A JP3732455B2 (en) 2001-04-11 2002-04-09 Flat non-aqueous electrolyte secondary battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001112136 2001-04-11
JP2001-112136 2001-04-11
JP2001229661 2001-07-30
JP2001-229661 2001-07-30
JP2002106616A JP3732455B2 (en) 2001-04-11 2002-04-09 Flat non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003115328A true JP2003115328A (en) 2003-04-18
JP3732455B2 JP3732455B2 (en) 2006-01-05

Family

ID=27346510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002106616A Expired - Fee Related JP3732455B2 (en) 2001-04-11 2002-04-09 Flat non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3732455B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323885A (en) * 2002-05-02 2003-11-14 Varta Microbattery Gmbh Method for manufacturing rechargeable electrical element
JP2003346904A (en) * 2002-05-29 2003-12-05 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005129913A (en) * 2003-09-30 2005-05-19 Tdk Corp Electrochemical device
JP2005135603A (en) * 2003-10-28 2005-05-26 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2005317309A (en) * 2004-04-28 2005-11-10 Sanyo Electric Co Ltd Lithium secondary battery
JP2007242262A (en) * 2006-03-06 2007-09-20 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2007294142A (en) * 2006-04-21 2007-11-08 Toyota Motor Corp Coin type lithium secondary battery
JP2008071612A (en) * 2006-09-14 2008-03-27 Hitachi Maxell Ltd Flat nonaqueous electrolyte secondary battery
US7927740B2 (en) 2005-03-24 2011-04-19 Kabushiki Kaisha Toshiba Battery pack and vehicle
JP2011187266A (en) * 2010-03-08 2011-09-22 Hitachi Maxell Energy Ltd Flat nonaqueous secondary battery
JP2014235941A (en) * 2013-06-04 2014-12-15 日立マクセル株式会社 Flat battery
KR20160110131A (en) * 2015-03-09 2016-09-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power storage device and electronic device
JP2017143071A (en) * 2017-03-30 2017-08-17 日立マクセル株式会社 Flat battery
WO2017213149A1 (en) * 2016-06-08 2017-12-14 株式会社カネカ Lithium-ion secondary battery and assembled battery
CN107658396A (en) * 2017-10-31 2018-02-02 宁波必霸能源有限公司 Sealing ring of alkaline button type battery and alkaline button cell
JP2018147907A (en) * 2014-01-21 2018-09-20 セイコーインスツル株式会社 Nonaqueous electrolyte secondary battery
WO2024079993A1 (en) * 2022-10-11 2024-04-18 パナソニックIpマネジメント株式会社 Multifunctional tire and production method therefor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323885A (en) * 2002-05-02 2003-11-14 Varta Microbattery Gmbh Method for manufacturing rechargeable electrical element
JP4709476B2 (en) * 2002-05-02 2011-06-22 ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for manufacturing a rechargeable electrical element
JP2003346904A (en) * 2002-05-29 2003-12-05 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005129913A (en) * 2003-09-30 2005-05-19 Tdk Corp Electrochemical device
JP4595465B2 (en) * 2003-09-30 2010-12-08 Tdk株式会社 Electrochemical devices
JP2005135603A (en) * 2003-10-28 2005-05-26 Hitachi Maxell Ltd Nonaqueous secondary battery
JP4582684B2 (en) * 2003-10-28 2010-11-17 日立マクセル株式会社 Non-aqueous secondary battery
JP2005317309A (en) * 2004-04-28 2005-11-10 Sanyo Electric Co Ltd Lithium secondary battery
US7927740B2 (en) 2005-03-24 2011-04-19 Kabushiki Kaisha Toshiba Battery pack and vehicle
JP2007242262A (en) * 2006-03-06 2007-09-20 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2007294142A (en) * 2006-04-21 2007-11-08 Toyota Motor Corp Coin type lithium secondary battery
JP2008071612A (en) * 2006-09-14 2008-03-27 Hitachi Maxell Ltd Flat nonaqueous electrolyte secondary battery
JP2011187266A (en) * 2010-03-08 2011-09-22 Hitachi Maxell Energy Ltd Flat nonaqueous secondary battery
JP2014235941A (en) * 2013-06-04 2014-12-15 日立マクセル株式会社 Flat battery
JP2018147907A (en) * 2014-01-21 2018-09-20 セイコーインスツル株式会社 Nonaqueous electrolyte secondary battery
KR20160110131A (en) * 2015-03-09 2016-09-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power storage device and electronic device
KR102530983B1 (en) 2015-03-09 2023-05-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power storage device and electronic device
WO2017213149A1 (en) * 2016-06-08 2017-12-14 株式会社カネカ Lithium-ion secondary battery and assembled battery
JPWO2017213149A1 (en) * 2016-06-08 2019-02-14 株式会社カネカ Lithium ion secondary battery and battery pack
US11108079B2 (en) 2016-06-08 2021-08-31 Kaneka Corporation Lithium-ion secondary battery and assembled battery
JP2017143071A (en) * 2017-03-30 2017-08-17 日立マクセル株式会社 Flat battery
CN107658396A (en) * 2017-10-31 2018-02-02 宁波必霸能源有限公司 Sealing ring of alkaline button type battery and alkaline button cell
CN107658396B (en) * 2017-10-31 2023-05-02 宁波必霸能源有限公司 Alkaline button cell sealing ring and alkaline button cell
WO2024079993A1 (en) * 2022-10-11 2024-04-18 パナソニックIpマネジメント株式会社 Multifunctional tire and production method therefor

Also Published As

Publication number Publication date
JP3732455B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
US6689512B2 (en) Flat-shaped nonaqueous electrolyte battery
KR100814560B1 (en) Secondary battery with terminal for surface mounting
JP3732455B2 (en) Flat non-aqueous electrolyte secondary battery
EP1030398A1 (en) Gel electrolyte and gel electrolyte battery
US20140370379A1 (en) Secondary battery and manufacturing method thereof
WO2018079291A1 (en) Electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4453882B2 (en) Flat non-aqueous electrolyte secondary battery
JP4563002B2 (en) Flat non-aqueous electrolyte secondary battery
JP6178183B2 (en) Nonaqueous electrolyte battery, assembled battery and storage battery device
JP2003100278A (en) Nonaqueous electrolyte secondary battery
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
JP2001068143A (en) Flat nonaqueous electrolyte secondary battery
JP4836479B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2002289260A (en) Flat nonaqueous electrolyte secondary battery
US20200350634A1 (en) Cylindrical secondary battery
JP4951923B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP4827112B2 (en) Flat non-aqueous electrolyte secondary battery
JP2003142161A (en) Flat non-aqueous electrolyte secondary battery
WO2019065871A1 (en) Cylindrical secondary battery
JP4827111B2 (en) Flat non-aqueous electrolyte secondary battery
JP2002134072A (en) Flattened non-aqueous electrolytic secondary battery
JP2002359003A (en) Nonaqueous electrolyte secondary battery
JP2002324584A (en) Flat nonaqueous electrolyte secondary battery with lead terminal
JP2019121500A (en) Cylindrical secondary cell
JP7466112B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees