JP2003344359A - Method and apparatus for magnetic particle inspection - Google Patents

Method and apparatus for magnetic particle inspection

Info

Publication number
JP2003344359A
JP2003344359A JP2002154471A JP2002154471A JP2003344359A JP 2003344359 A JP2003344359 A JP 2003344359A JP 2002154471 A JP2002154471 A JP 2002154471A JP 2002154471 A JP2002154471 A JP 2002154471A JP 2003344359 A JP2003344359 A JP 2003344359A
Authority
JP
Japan
Prior art keywords
inspected
current
magnetic particle
magnetic
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002154471A
Other languages
Japanese (ja)
Other versions
JP3841020B2 (en
Inventor
Atsushi Fukui
敦之 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002154471A priority Critical patent/JP3841020B2/en
Publication of JP2003344359A publication Critical patent/JP2003344359A/en
Application granted granted Critical
Publication of JP3841020B2 publication Critical patent/JP3841020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quickly detect defects on the entire surface of a material to be inspected and furthermore defects in any direction in a magnetic particle inspection. <P>SOLUTION: The magnetic particle inspection method mainly includes: a process for inserting a current penetration electrode into a hole that is in the thickness direction and is formed in the material to be inspected for energizing a DC current and energizing an AC current to magnetization coils arranged on both the sides of the material to be inspected; a process for spraying a magnetic particle liquid onto the surface of the material to be inspected; and a process for demagnetizing the material to be inspected. The magnetic particle inspection apparatus is provided with the current penetration electrode that is inserted in the shaft hole of an annular body and energizes the DC current; the magnetization coils that are oppositely arranged on both the sides of the annular body and energizes the AC current; and a nozzle for spraying the magnetic particle liquid to the annular body. As a result, the defects in any direction on the entire surface of the material to be inspected can be quickly detected. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁性体である被検
査材例えば鉄鋼製品の品質保証に適用される磁粉探傷方
法および磁粉探傷装置に関し、詳しくは、厚さ方向に貫
通する孔が形成された磁性体からなる被検査材の全表面
の欠陥、しかも、いずれの方向の欠陥をも探傷すること
のできる磁粉探傷方法および磁粉探傷装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic particle flaw detection method and a magnetic particle flaw detector which are applied for quality assurance of a material to be inspected, which is a magnetic material, such as a steel product, and more specifically, a hole penetrating in the thickness direction is formed. Further, the present invention relates to a magnetic particle flaw detection method and a magnetic particle flaw detector which can detect defects on the entire surface of a material to be inspected made of a magnetic material and defects in any direction.

【0002】[0002]

【従来の技術】従来より、磁気を利用した磁粉探傷試験
や漏洩磁束探傷試験は、例えば鉄鋼製品の品質保証技術
として定着し種々の製品に対し広く採用されている。
2. Description of the Related Art Conventionally, a magnetic particle flaw detection test and a magnetic flux leakage flaw detection test using magnetism have been established as quality assurance technology for steel products, and have been widely adopted for various products.

【0003】しかし、このうち磁粉探傷試験は、欠陥部
で生じる漏洩磁束に磁着した磁粉が集まる現象を利用し
た方法であるため、欠陥の長さ方向と直交する方向に磁
場をかけないと漏洩磁束が生じず欠陥検出が困難とな
る。このため、多方向に欠陥が生じる可能性のある場合
は、磁場の方向を多方向にしなければ全方向の欠陥を検
出することができない。
However, among them, the magnetic particle flaw detection test is a method utilizing the phenomenon that magnetic particles magnetically attracted to the leakage magnetic flux generated at the defect portion are collected, and therefore the magnetic field is leaked unless a magnetic field is applied in a direction orthogonal to the length direction of the defect. No magnetic flux is generated, making it difficult to detect defects. For this reason, when defects may occur in multiple directions, defects in all directions cannot be detected unless the directions of the magnetic field are set in multiple directions.

【0004】多方向の欠陥を検出する装置として特開昭
60-242363号では、断面がE型形状の磁極に回転ローラ
ーを設けて回転させることにより均一な磁界を得る装置
が提案されている。また、特開平 9-80026号では、閉磁
界を作る磁芯に矩形状に配置された4個の磁極を設け、
磁芯の2辺に設けた2個のコイルに通電して平行磁界を
加える動作と、直交磁芯に設けた2個のコイルに通電し
て直交磁界を加える動作とを切り替える装置が提案され
ている。
As an apparatus for detecting defects in multiple directions
No. 60-242363 proposes an apparatus for obtaining a uniform magnetic field by providing a rotating roller on a magnetic pole having an E-shaped cross section and rotating the magnetic roller. Further, in Japanese Patent Laid-Open No. 9-80026, four magnetic poles arranged in a rectangular shape are provided on a magnetic core that creates a closed magnetic field.
A device has been proposed which switches between an operation of energizing two coils provided on two sides of a magnetic core to apply a parallel magnetic field and an operation of energizing two coils provided on an orthogonal magnetic core to apply a orthogonal magnetic field. There is.

【0005】また、特開昭51-29987号では、断面がE型
形状の円筒形磁極を用いて歯車や車輪等環状品の側面に
円周方向磁界を、端部には軸方向の磁界を加える方法が
提案されている。
In Japanese Patent Laid-Open No. 51-29987, a cylindrical magnetic pole having an E-shaped cross section is used to generate a magnetic field in the circumferential direction on the side surface of an annular product such as a gear or wheel and a magnetic field in the axial direction at the end. A method of adding is proposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開昭
60-242363号や特開平 9-80026号で提案された技術で
は、磁極の回転や切り替えによって磁界の方向を変更す
るため、被検査材が流れ作業等で動く場合は、切り替え
時間が問題となり、同一部位に対して多方向の磁場を加
えることができない。従って、製造過程での品質保証に
は、時間がかかり過ぎ適用することが困難である。ま
た、特開昭51-29987号は、側面の円周方向磁場と、端部
の厚み方向磁場を同時に与える方法であるが、側面の縦
割れや端部の厚み方向の割れが検出できないという問題
がある。
SUMMARY OF THE INVENTION
In the technology proposed in 60-242363 and Japanese Patent Laid-Open No. 9-80026, since the direction of the magnetic field is changed by rotating and switching the magnetic poles, the switching time becomes a problem when the material to be inspected moves in a line work, Multidirectional magnetic fields cannot be applied to the same site. Therefore, quality assurance in the manufacturing process is too time-consuming and difficult to apply. Further, JP-A-51-29987 is a method of simultaneously applying a magnetic field in the circumferential direction of the side surface and a magnetic field in the thickness direction of the end portion, but the problem that vertical cracks on the side surface and cracks in the thickness direction of the end portion cannot be detected. There is.

【0007】本発明は、上記したような問題を解決せん
としてなされたものであり、製造過程での品質保証に適
し、短時間に被検査材の全表面のいずれの方向の欠陥を
も探傷することのできる磁粉探傷方法および磁粉探傷装
置を提供することを目的としている。
The present invention has been made to solve the above problems, is suitable for quality assurance in the manufacturing process, and detects defects in any direction on the entire surface of the material to be inspected in a short time. It is an object of the present invention to provide a magnetic particle flaw detection method and a magnetic particle flaw detector capable of performing the magnetic particle flaw detection.

【0008】[0008]

【課題を解決するための手段】上記した目的を達成する
ために、本発明に係る磁粉探傷方法は、前記被検査材に
形成された厚さ方向の孔に電流貫通極を挿入して直流電
流を通電すると共に、被検査材の両側面に配置された磁
化コイルに交流電流を通電する工程と、被検査材の表面
に磁粉液を散布する工程、を主構成としている。
In order to achieve the above-mentioned object, a magnetic particle flaw detection method according to the present invention is a direct current by inserting a current through electrode into a hole formed in the material to be inspected in the thickness direction. And the step of applying an alternating current to the magnetizing coils arranged on both sides of the material to be inspected, and the step of spraying the magnetic powder on the surface of the material to be inspected.

【0009】また、磁粉探傷装置は、孔を形成した被検
査材の該孔に挿入され直流電流を通電される電流貫通極
と、前記被検査材の両側面それぞれに対向して配置され
交流電流を通電される磁化コイルを主構成としている。
そしてこのようにすることで、短時間に被検査材の全表
面のいずれの方向の欠陥をも捉えることができる。
In the magnetic particle flaw detector, a current penetrating electrode, which is inserted into the hole of a material to be inspected having a hole and is supplied with a direct current, and an alternating current, which is arranged so as to face each side surface of the material to be inspected. The main structure is a magnetizing coil that is energized.
By doing so, it is possible to catch defects in any direction on the entire surface of the material to be inspected in a short time.

【0010】[0010]

【発明の実施の形態】以下、本発明者が品質保証に取り
組んできた鉄道車輪(以下、単に車輪と称す)の検査を
例にして、本発明について詳細に説明する。本発明者
は、長年に亘り、その中心部に軸孔を形成した環状体で
ある鉄道車輪の品質保証に取り組んできた。鉄道は昼夜
を問わず運行され、多量の商品や、多数の乗客を乗せ、
しかも高速で運行することから、とりわけその車輪の安
全確保については、注意を払い過ぎるということはな
く、何重にも検査が行われている。車輪の素材は超音波
探傷に合格した鋼片であり、この鋼片から鍛造、圧延等
を経て車輪となる。製品となる車輪は、最終工程で磁粉
探傷と共に目視検査にかけられる。特に車輪の品質は、
そのリム部から踏面にかけて大事であり、この部分での
欠陥検出精度の向上は極めて重要である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below, taking as an example the inspection of railway wheels (hereinafter simply referred to as wheels) that the inventor has been working on for quality assurance. The inventor of the present invention has been working for many years on quality assurance of a railway wheel which is an annular body having a shaft hole formed in the center thereof. The railway operates day and night, carrying a large number of products and many passengers,
Moreover, because it operates at high speed, we do not pay too much attention to ensuring the safety of the wheels, and many inspections are conducted. The material of the wheel is a steel slab that has passed ultrasonic flaw detection, and the steel slab is subjected to forging, rolling, etc. to form a wheel. The product wheels are subjected to visual inspection along with magnetic particle flaw detection in the final process. Especially the quality of the wheels
It is important from the rim portion to the tread surface, and it is extremely important to improve the defect detection accuracy in this portion.

【0011】ところが、前記した最終工程の検査で10,0
00個に対し1〜2個程度の割合で、磁粉探傷に合格した
車輪の中に目視検査でそのリム部に微小欠陥が発見され
ることがあった。発明者は、この原因を明確にするため
に、磁粉探傷について、その欠陥検出特性を調査するこ
とにした。表1はその検査条件であり、表2はその検査
結果を示したものである。また、図2は車輪の軸孔を通
る断面図でその上半分を示し、表2の車輪検査部位を示
したものであり、この部位に表1に示すJIS G0565で規
定のA型の試験片を貼り付けて観察した。
However, in the inspection of the final process described above, 10,0
There was a case where a minute defect was found on the rim portion by visual inspection in a wheel that passed the magnetic particle flaw detection at a rate of about 1 to 2 with respect to 00 pieces. The inventor decided to investigate the defect detection characteristics of the magnetic particle flaw detection in order to clarify the cause. Table 1 shows the inspection conditions, and Table 2 shows the inspection results. FIG. 2 is a cross-sectional view through the shaft hole of the wheel, showing the upper half thereof, and showing the wheel inspection portion of Table 2, where the A type test piece specified in JIS G0565 shown in Table 1 is shown. Was pasted and observed.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】表2中の○印は欠陥の検出ができたもの、
×印は欠陥の検出ができなかったものを表し、この結
果、表リム、踏面、裏リムにおける放射状欠陥の欠陥検
出が悪いことを示している。なお、表2における円周欠
陥とは、被検査材1(車輪)とその発生した欠陥の状態
を模式的示す図1において、側面12の孔11(軸孔)
に同心状の欠陥(エ)や端部の孔11に同心状の欠陥
(ウ)を指し、放射状欠陥とは側面12の孔11方向に
向かう欠陥(イ)や端部の孔11に平行の欠陥(ア)を
指す。
The circles in Table 2 indicate that defects could be detected,
The cross mark indicates that the defect could not be detected, and as a result, the defect detection of the radial defect on the front rim, the tread, and the back rim is bad. The circumferential defect in Table 2 is a hole 11 (axial hole) on the side surface 12 in FIG. 1, which schematically shows the state of the inspected material 1 (wheel) and the defect that has occurred.
Indicates a concentric defect (d) or a concentric defect (c) in the hole 11 at the end, and the radial defect means a defect (a) directed toward the hole 11 on the side surface 12 or a hole 11 at the end. Indicates a defect (a).

【0015】この結果、原因、対策として下記2点が考
えられる。 、「外側磁化の強度不足」が原因とすれば、対策とし
て「外周磁化棒の追加」 、「交流による表皮作用」が原因とすれば、対策とし
て「直流化」。
As a result, the following two points can be considered as causes and countermeasures. , "Insufficient strength of the outer magnetization" causes "addition of outer circumference magnetized rod" as a countermeasure, and "Causes skin action by alternating current" as a cause, "DC conversion" as a countermeasure.

【0016】そこで、さらに図3に示す車輪への磁場強
度解析を進め、その結果を図4に示した。図3(a)
は、車輪2の軸孔21に電流貫通極3と車輪外周部に外
周磁化棒31を設けたもの、図3(b)は、前記解析と
同じ電流貫通極3のみを設けたものである。この電流貫
通極3および外周磁化棒31に通電する電流を交流と直
流とで解析した結果のうち、図4(a)は、直流磁化に
よる磁場解析を行った場合、図4(b)は、交流磁化に
よる磁場解析を行った場合である。
Therefore, the magnetic field strength analysis for the wheel shown in FIG. 3 was further advanced, and the result is shown in FIG. Figure 3 (a)
Shows the current through electrode 3 provided in the shaft hole 21 of the wheel 2 and the outer peripheral magnetized rod 31 at the outer periphery of the wheel. FIG. 3B shows the same current through electrode 3 as in the above analysis. Of the results of analyzing the currents flowing through the current penetrating pole 3 and the outer peripheral magnetizing rod 31 by alternating current and direct current, FIG. 4 (a) shows a magnetic field analysis by direct current magnetization, and FIG. 4 (b) shows This is the case where magnetic field analysis by alternating-current magnetization was performed.

【0017】図4は、横軸に車輪の軸心からの距離(m
m)を、縦軸に磁束密度(T)をとり、◆記号は図3
(a)の場合、■記号は図3(b)の場合をそれぞれ示
している。図4(b)から、電流貫通極および外周磁化
棒に交流を通電する限りにおいて、表皮効果の影響で電
流貫通極および外周磁化棒の近傍のみしか磁化されない
ことが判る。また、電流貫通極および外周磁化棒に直流
を通電すると、交流と違い表皮効果がないので車輪内部
およびその端部まで磁化されることが、図4(a)から
判る。しかし、この場合、外周磁化棒の効果がほとんど
ないことも判る。
In FIG. 4, the horizontal axis indicates the distance (m from the axis of the wheel).
m) and the magnetic flux density (T) on the vertical axis.
In the case of (a), the solid symbols indicate the case of FIG. 3 (b). From FIG. 4B, it is understood that as long as an alternating current is applied to the current penetrating pole and the outer peripheral magnetizing rod, only the vicinity of the current penetrating pole and the outer peripheral magnetizing rod are magnetized due to the effect of the skin effect. Further, it can be seen from FIG. 4 (a) that when a direct current is applied to the current penetrating pole and the outer peripheral magnetizing rod, there is no skin effect unlike AC, and the interior of the wheel and its end are magnetized. However, in this case, it is also understood that the effect of the outer peripheral magnetizing bar is almost absent.

【0018】さらに、前記外周磁化棒31の効果を検証
するために示したのが、図5である。図5(a)は、外
周磁化棒31と車輪2までの距離を、外周磁化棒31と
車輪2との最短距離Lと、その角度θの関係で表した
図、(b)は、前記角度θの値とその位置での磁場強度
の関係を示した図である。B0 は(μ0 Ι)/(2πL)の
値で距離Lにおける磁場強度を示し、Bθは同じくθに
おける距離の磁場強度を示している。なお、μ0 は透磁
率、Ιは電流である。
Further, FIG. 5 is shown to verify the effect of the outer peripheral magnetizing rod 31. FIG. 5A is a diagram showing the distance between the outer circumference magnetized rod 31 and the wheel 2 by the relationship between the shortest distance L between the outer circumference magnetized rod 31 and the wheel 2 and its angle θ, and FIG. FIG. 6 is a diagram showing the relationship between the value of θ and the magnetic field strength at that position. B 0 is the value of (μ 0 Ι) / (2πL) and indicates the magnetic field strength at the distance L, and B θ is also the magnetic field strength at the distance at θ. Note that μ 0 is the magnetic permeability and I is the current.

【0019】図5(b)より、外周磁化棒と車輪間の少
しの距離変化で磁場強度が大きく低下する(例えば、角
度θが45°の場所では磁場強度は約70%(−3dB)
である。)ことが判る。従って、磁場強度の安定化のた
めに車輪形状に応じた外周磁化棒を採用することも得策
とは言えないし、図4(a)からも外周磁化棒の採用は
効果のあるものとは言えないことが判る。
As shown in FIG. 5 (b), the magnetic field strength greatly decreases with a slight change in the distance between the outer circumference magnetized rod and the wheel (for example, the magnetic field strength is about 70% (-3 dB) at a position where the angle θ is 45 °).
Is. ) I understand. Therefore, it cannot be said that it is a good idea to adopt the outer peripheral magnetizing rod according to the shape of the wheel in order to stabilize the magnetic field strength, and it cannot be said that the use of the outer peripheral magnetizing rod is effective from FIG. 4 (a). I understand.

【0020】それ故に、再度電流貫通極だけを使用して
直流と交流の違いによる効果確認を実施した。表3にそ
の結果を示す。表3に示すように、同じ電流値でも直流
の方が検出能が高く、さらに電流値を高めることによ
り、踏面までの探傷が可能であることが確認された。
Therefore, the effect of the difference between the direct current and the alternating current was confirmed again using only the current through electrode. The results are shown in Table 3. As shown in Table 3, it was confirmed that even with the same current value, direct current has higher detectability, and by further increasing the current value, flaw detection up to the tread surface is possible.

【0021】[0021]

【表3】 [Table 3]

【0022】第1の本発明に係る磁粉探傷方法は、上記
の知見によりなされたものであり、厚さ方向に貫通する
孔が形成された磁性体からなる被検査材の孔に電流貫通
極を挿入して該電流貫通極に直流電流を通電すると共
に、被検査材の両側面に対向して配置された磁化コイル
に交流電流を通電して前記被検査材を磁化する工程と、
前記被検査材の表面に磁粉液を散布する工程と、前記被
検査材に付着する磁粉の有無を観察する工程と、前記被
検査材を脱磁する工程と、からなる磁粉探傷方法であ
る。
The magnetic particle flaw detection method according to the first aspect of the present invention has been made based on the above findings, and a current penetrating electrode is provided in a hole of a material to be inspected made of a magnetic material having a hole penetrating in the thickness direction. Inserting and applying a direct current to the current through electrode, and applying an alternating current to a magnetizing coil arranged to face both sides of the inspected material to magnetize the inspected material,
A magnetic particle flaw detection method comprising: a step of spraying a magnetic powder solution on the surface of the inspection material; a step of observing the presence or absence of magnetic powder adhering to the inspection material; and a step of demagnetizing the inspection material.

【0023】本発明において、被検査材の孔に電流貫通
極を挿入し該電流貫通極に直流電流を通電するのは、被
検査材の内部およびその端部にも磁場が浸透するため、
前記孔を軸心とした放射状欠陥の検出に優れるからであ
る。また、被検査材の両側面に対向して配置された磁化
コイルに交流電流を通電して前記被検査材を磁化するの
は、表皮効果により被検査材の両側面全体に磁場が浸透
し、特に前記孔を軸心とした円周欠陥の検出に優れるか
らである。このように電流貫通極と磁化コイルを併用
し、電流貫通極に直流電流を、磁化コイルに交流電流を
通電することによって、いかなる方向のいかなる位置の
欠陥も検知することができる。
In the present invention, the current penetrating electrode is inserted into the hole of the material to be inspected and a direct current is passed through the current penetrating electrode, because the magnetic field penetrates into the material to be inspected and its end portions.
This is because it is excellent in detecting radial defects with the hole as the axis. Further, to magnetize the material to be inspected by passing an alternating current through a magnetizing coil arranged on both sides of the material to be inspected, a magnetic field permeates all over both sides of the material to be inspected by a skin effect, This is because it is particularly excellent in detecting a circumferential defect centered on the hole. As described above, by using the current penetrating pole and the magnetizing coil together and supplying a direct current to the current penetrating pole and an alternating current to the magnetizing coil, a defect at any position in any direction can be detected.

【0024】前記電流貫通極の作用は、直流電流を被検
査材の孔内を貫通させるためのものであり、したがって
1本の電流貫通極を被検査材の孔内を貫通させる方法で
も、また、2本の電流貫通極を被検査材の両側面から挿
入し、電流貫通極の端部同士を突合わせ接続し、通電す
るものでもよい。後者の場合は、電流貫通極が1本のも
のに比べると長さが半分となるから、探傷装置の作動時
間が短縮できるのと共に電流貫通極の突出し量が少なく
なり装置自体が小さくなる利点がある。よって、被検査
材の孔に電流貫通極を挿入とは、必ずしも被検査材の孔
に1本の電流貫通極を貫通させることを意味するもので
ない。
The function of the current through electrode is to allow a direct current to pass through the hole of the material to be inspected. Therefore, a method of penetrating one current through electrode into the hole of the material to be inspected, Alternatively, two current penetrating electrodes may be inserted from both side surfaces of the material to be inspected, the ends of the current penetrating electrodes may be butt-connected to each other, and electricity may be applied. In the latter case, since the length is half that of a single current through electrode, the operating time of the flaw detection device can be shortened, and the amount of protrusion of the current through electrode can be reduced, which reduces the size of the device itself. is there. Therefore, inserting the current through electrode into the hole of the material to be inspected does not necessarily mean that one current through electrode is inserted into the hole of the material to be inspected.

【0025】また、付着磁粉の有無確認前後に前記被検
査材を脱磁処理するのは、磁粉探傷時の磁場による強い
磁気が残存した状態のままでは、被検査材近傍での電気
的な処理例えばアーク溶接等の不具合、電磁弁の誤作動
等の可能性、さらに、周辺機器への磁性体粉の吸引によ
る不具合、しかも、被検査材自身の電気腐食等さまざま
な懸念があるためである。
Further, the demagnetization treatment of the material to be inspected before and after the presence / absence of the adhered magnetic powder is carried out by an electric treatment in the vicinity of the material to be inspected in the state where the strong magnetism due to the magnetic field at the time of flaw detection of the magnetic powder remains. This is because, for example, there are various concerns such as a defect such as arc welding, a possibility of malfunction of a solenoid valve, a defect due to suction of magnetic powder to peripheral equipment, and an electric corrosion of a material to be inspected.

【0026】脱磁方法については、本発明では被検査材
の内部や端部まで磁場を浸透させるために電流貫通極に
直流電流を採用しているので、交流磁化に比較して磁束
が残存しやすく、かつ残留磁束が表面に出にくいため、
効果的に脱磁できるものであればどのような構成のもの
を使用しもよい。
Regarding the demagnetization method, in the present invention, since a direct current is adopted as the current through electrode in order to permeate the magnetic field into the inside and the end of the material to be inspected, the magnetic flux remains as compared with the alternating magnetization. It is easy and the residual magnetic flux is hard to appear on the surface,
Any structure may be used as long as it can be effectively demagnetized.

【0027】本発明者の実験によると、別途脱磁機を設
置して脱磁処理を施した後であっても、少しの磁気の残
存と、欠陥部に付着した磁粉がそのまま残存しているこ
とが判明している。したがって、別途脱磁機を設置する
ことなく、例えば、前記電流貫通極に、図6に示す電流
波形のように直流反転電流を付与して脱磁した場合で
も、新規脱磁機による脱磁と同等の効果を確認してい
る。この場合には、反転する直流電流であるため被検査
材の内部、端部まで脱磁作用が働き、かつ、通電電流の
切替えのみであることから磁化、脱磁のサイクル時間が
極めて短くなり、別途新規に脱磁機を設置する場合に比
較し、設置場所も設置費用も不要となる。
According to the experiment conducted by the present inventor, even after a demagnetizing machine is separately installed and subjected to demagnetizing treatment, a small amount of magnetism remains and the magnetic powder attached to the defect remains. It turns out. Therefore, even if demagnetization is performed by providing a direct current reversal current to the current through pole as shown in the current waveform in FIG. We have confirmed equivalent effects. In this case, since it is a reversing direct current, the demagnetizing action works to the inside and the end of the material to be inspected, and since only the switching of the energizing current is performed, the cycle time of magnetization and demagnetization becomes extremely short, Compared to the case of installing a new demagnetizer separately, the installation place and installation cost are unnecessary.

【0028】よって、第1の本発明では、付着する磁粉
の有無の観察を脱磁工程前に行うことも、脱磁後に行う
ことも可能である。また、磁粉液の散布は、磁化を開始
する前から始めてもよいし、磁化を開始した後に始めて
もよい。ただし、磁化を終了する前に散布を終了しなけ
ればならない。これは、散布された磁粉液が被検査材の
表面を流れる間も磁化し続け、かつ、欠陥部での磁着を
磁粉液の流れで流れ落とすことを防止するためである。
また、付着する磁粉の有無の観察は通常脱磁工程の前に
行われる。しかし、前記本発明者の実験によると脱磁後
でもある程度磁化は残存していること、および欠陥部に
付着した磁粉がそのまま残るため、脱磁の後に観察して
もよい。
Therefore, in the first aspect of the present invention, it is possible to observe the presence or absence of the adhered magnetic powder before the demagnetization step or after the demagnetization step. Further, the dispersion of the magnetic powder liquid may be started before the magnetization is started or after the magnetization is started. However, the spreading must be finished before the magnetization is finished. This is because the sprinkled magnetic powder liquid continues to be magnetized while flowing on the surface of the material to be inspected, and the magnetic sticking at the defective portion is prevented from flowing off by the flow of the magnetic powder liquid.
Further, the observation of the presence or absence of magnetic particles attached is usually performed before the demagnetization step. However, according to the experiments of the present inventor, the magnetization remains to some extent even after demagnetization, and the magnetic powder attached to the defect remains as it is, so it may be observed after demagnetization.

【0029】さらに、本発明においては、被検査材がそ
の中心に軸孔を形成した環状体である場合には、軸孔を
軸心として回転させながら、その表面に磁粉液を散布す
ると、少ないノズルでしかも短時間で均一に散布でき
る。この場合の回転数は1回転以上、例えば1.5 回転で
も効果が発揮される。また、軸孔を中心とした対称形と
なるから外周部のどの位置でも一定の磁場強度となっ
て、欠陥検出にムラが無くなり望ましい。これが第2、
3の本発明である。
Further, in the present invention, when the material to be inspected is an annular body having a shaft hole formed in the center thereof, it is less likely to sprinkle the magnetic powder liquid on the surface while rotating the shaft hole around the shaft center. It can be sprayed evenly with a nozzle in a short time. In this case, the effect is exhibited even if the rotation speed is 1 rotation or more, for example, 1.5 rotations. Further, since the shape is symmetrical with respect to the shaft hole, the magnetic field strength is constant at any position on the outer peripheral portion, which is desirable because there is no unevenness in defect detection. This is the second,
3 of the present invention.

【0030】本発明に係る磁粉探傷装置は、軸孔を形成
した被検査材の軸孔に挿入され直流電流が通電される電
流貫通極と、前記被検査材の両側面それぞれに対向して
配置され交流電流が通電される磁化コイルと、前記被検
査材に磁粉液を散布するノズルを備えている。望ましく
は、被検査材の軸孔を軸心として回転させる回転機構を
備えたものである。このような構成により、本発明の磁
粉探傷方法が実施可能となる。特に、本発明の磁粉探傷
装置で車輪を検査すれば、車輪のリム部、踏面部等の全
ての欠陥が完全に検出され、検査後の品質の信頼性が非
常に高くなる。これが第4、5の本発明である。
In the magnetic particle flaw detector according to the present invention, a current penetrating electrode which is inserted into a shaft hole of a material to be inspected having a shaft hole and through which a direct current is applied, and both side surfaces of the material to be inspected are arranged to face each other. And a magnetizing coil to which an alternating current is applied, and a nozzle for spraying a magnetic powder liquid on the material to be inspected. Desirably, it is provided with a rotation mechanism that rotates the shaft hole of the material to be inspected around the shaft center. With such a configuration, the magnetic particle flaw detection method of the present invention can be implemented. In particular, when the wheel is inspected by the magnetic particle flaw detector of the present invention, all the defects such as the rim portion and the tread portion of the wheel are completely detected, and the reliability of the quality after the inspection becomes very high. This is the fourth and fifth aspects of the present invention.

【0031】[0031]

【実施例】(実施例1)以下、本発明に係る磁粉探傷方
法を実施例に基づいて説明する。外径910mm の車輪の図
2に示す〜の位置にJIS G0565で規定のA型の試験
片を貼り付け、電流貫通極から貫通電流を車輪の軸孔に
通電し、同時に車輪の両側面に対向配置した磁化コイル
にも通電し、目視観察にて評価した。
Embodiments (Embodiment 1) The magnetic particle flaw detection method according to the present invention will be described below with reference to embodiments. A test piece of type A specified by JIS G0565 is attached to the positions of ~ shown in Fig. 2 of a wheel with an outer diameter of 910 mm, and a through current is passed from the current through electrode to the shaft hole of the wheel, and at the same time, it faces both sides of the wheel. The magnetizing coil placed was also energized and evaluated by visual observation.

【0032】実施手順は、図7に示すように車輪を回転
しながら磁粉液散布に15秒、磁粉液散布の終了前から磁
化を始めその磁化に10秒、表4の電流値で実施した。表
4中、○印は吸着磁粉模様が明瞭に見え、△印は薄らと
見え、×印は見えなかった状態を示す。
As shown in FIG. 7, the procedure was as follows: the magnetic powder was sprayed for 15 seconds while the wheel was rotated, the magnetization was started before the end of the magnetic powder spraying, and the magnetization was performed for 10 seconds at the current values shown in Table 4. In Table 4, the mark ◯ indicates that the attracted magnetic powder pattern is clearly visible, the mark Δ indicates that it is faint, and the mark x indicates that it cannot be seen.

【0033】[0033]

【表4】 [Table 4]

【0034】この表4より、比較例では、リム部、踏面
では全く検出不可であった。これに対し、本発明例の方
法ではボス部、リム部とも良好な検出能力が得られ、さ
らに、踏面においても何の問題もなく良好に検出でき
た。
From Table 4, in the comparative example, the rim portion and the tread surface could not be detected at all. On the other hand, in the method of the present invention, good detection ability was obtained for both the boss portion and the rim portion, and furthermore, good detection was possible on the tread surface without any problems.

【0035】次いで、表4における本発明例で示した磁
粉探傷検査後の車輪の脱磁処理についての結果を表5に
示す。脱磁処理は、電流貫通極による最大電流7000Aか
らの図6に示す直流反転脱磁で図7に示すように15秒間
行った。図6の直流反転脱磁は、波長とサイクルを次第
に小さくして最後に共に0とした。表5は残留磁束密度
(mT)の出現容易なエッジ部を含め測定し、その検出
数値は最大値で示した。なお、表5中の加工孔とは、車
輪の最終機械加工における給油孔等であり、切粉とは軸
孔の仕上げ加工や給油孔加工時に発生する切粉である。
Next, Table 5 shows the results of the demagnetization treatment of the wheels after the magnetic particle flaw detection test shown in Table 4 of the present invention. The demagnetization treatment was performed for 15 seconds as shown in FIG. 7 by the direct current inversion demagnetization shown in FIG. In the DC reversal demagnetization of FIG. 6, the wavelength and the cycle were gradually reduced and finally set to 0. In Table 5, the residual magnetic flux density (mT) was measured including the edge portion where it is easy to appear, and the detected value is shown as the maximum value. The machining holes in Table 5 are, for example, the oil supply holes in the final machining of the wheel, and the chips are the chips generated during the finishing of the shaft holes and the oil supply holes.

【0036】[0036]

【表5】 [Table 5]

【0037】この表5より、残留磁束の少ない部分の脱
磁効果は現れていないが、残留磁束の多い部分、例えば
加工孔内部や加工孔エッジについては、1/2 以下に低減
していることが判る。
According to Table 5, the demagnetizing effect is not exhibited in the portion having a small residual magnetic flux, but the portion having a large residual magnetic flux, for example, inside the machined hole or the machined hole edge, should be reduced to 1/2 or less. I understand.

【0038】(実施例2)次いで、本発明の磁粉探傷装
置を図8〜12に示す実施例に基づいて説明する。図8
は、本発明の磁粉探傷装置全体の正面図を示し、図9は
電流貫通極、磁化コイルを取り付けた台車の正面図、図
10は図9の平面図、図11は電流貫通極、磁化コイル
の昇降機構の内部拡大図、図12は電流貫通極、磁化コ
イルの取り付け部分の側面図を示したものである。
(Embodiment 2) Next, a magnetic particle flaw detector of the present invention will be described based on an embodiment shown in FIGS. Figure 8
Shows a front view of the whole magnetic particle flaw detector of the present invention, FIG. 9 is a front view of a dolly to which a current through pole and a magnetizing coil are attached, FIG. 10 is a plan view of FIG. 9, and FIG. 11 is a current through pole and a magnetizing coil. FIG. 12 is an enlarged view of the inside of the elevating mechanism of FIG.

【0039】図8は、中央にその軸孔21を水平にして
厚さ方向を正面に向けた被検査材である車輪2が、回転
機構6を構成するローラ61上に載置され、その車輪2
の左右側には台車7上に搭載された電流貫通極3、磁化
コイル4が互いに向き合う形で配置されている。前記台
車7の下方に位置する枠体9に前記ローラ61を回転さ
せる減速器付きモータ62が取り付けられ、このモータ
62とローラ61間にはベルトを介在させていることに
よってローラ61を回転させている。前記ローラ61は
2個一対になって所定の間隔を保ち、そのローラ61間
に車輪2を起立させる形で載置し、車輪2の搬入出は、
別途設けているコンベア式と片方のローラ61の下降に
より行っている。
In FIG. 8, the wheel 2 which is the material to be inspected with the shaft hole 21 horizontal in the center and the thickness direction facing the front is placed on the roller 61 constituting the rotating mechanism 6, and the wheel is Two
On the left and right sides of the current-carrying pole 3, a current through pole 3 and a magnetizing coil 4 mounted on a carriage 7 are arranged so as to face each other. A motor 62 with a speed reducer for rotating the roller 61 is attached to the frame 9 located below the carriage 7, and a belt is interposed between the motor 62 and the roller 61 to rotate the roller 61. There is. The two rollers 61 are paired and kept at a predetermined distance, and the wheels 2 are placed between the rollers 61 in a standing manner.
It is carried out by a separately provided conveyor type and by lowering one roller 61.

【0040】前記モータ62の向かい側には、磁粉液を
供給するためのポンプ81がモータ82に接続され、ポ
ンプ81から汲み上げられた磁粉液は、供給配管83を
介して多数のノズル84に供給されている。前記ノズル
84からの磁粉液は、図面視で車輪2の上端である車輪
踏面まで十分に散布する必要があるために、多数配置し
ている前記ノズル84の1つは車輪踏面上方に位置させ
ている。なお、この図面で省略しているが、供給配管8
3はその一部分をフレキシブルにしていると共に、供給
配管83およびノズル84を合わせて、前記台車7に固
定されている。
A pump 81 for supplying magnetic powder liquid is connected to the motor 82 on the opposite side of the motor 62, and the magnetic powder liquid pumped up from the pump 81 is supplied to a large number of nozzles 84 via a supply pipe 83. ing. Since the magnetic powder from the nozzle 84 needs to be sufficiently dispersed to the wheel tread, which is the upper end of the wheel 2 in the view of the drawing, one of the nozzles 84 arranged in large numbers should be located above the wheel tread. There is. Although not shown in this drawing, the supply pipe 8
3 has a part thereof made flexible, and is fixed to the carriage 7 together with the supply pipe 83 and the nozzle 84.

【0041】前記台車7は、枠体9に固定されたエアー
シリンダ71のロッドの出退で前記車輪2に対し接離移
動するように構成されている。車輪2を磁化する場合に
は、車輪2を挟んで両側の台車7が互いに等距離を前進
し、車輪2の表裏面側に近接すると共に、電流貫通極3
が軸孔21内に挿入され、軸孔21内で電流貫通極3が
互いに突き合わせ接続され直流電流を流すことができ
る。
The dolly 7 is constructed so as to move toward and away from the wheel 2 when the rod of the air cylinder 71 fixed to the frame 9 moves in and out. When magnetizing the wheel 2, the bogies 7 on both sides of the wheel 2 move forward equidistantly from each other, approach the front and back sides of the wheel 2, and the current penetrating electrode 3
Are inserted into the shaft hole 21, and the current through electrodes 3 are butt-connected to each other in the shaft hole 21 so that a direct current can flow.

【0042】被検査材である車輪2と台車7の位置関係
は、車輪2のローラ61への載置位置を一定位置とし、
2台の台車7の前進量も常に一定として定めることによ
り、被検査材である車輪2と、電流貫通極3および磁化
コイル4間の相対的なばらつきを無くし、電流貫通極3
および磁化コイル4に規定の電流を通電すれば、車輪2
には規定の磁場が与えられるようになっている。なお、
車輪2のサイズ変動に伴う車輪2の厚さ変動は少なく、
磁粉探傷にはその影響をほとんど与えない。
As for the positional relationship between the wheel 2 which is the material to be inspected and the carriage 7, the mounting position of the wheel 2 on the roller 61 is fixed,
By setting the amount of forward movement of the two carts 7 to be constant at all times, relative variations between the wheel 2 as the material to be inspected, the current through pole 3 and the magnetizing coil 4 are eliminated, and the current through pole 3 is eliminated.
If a specified current is applied to the magnetizing coil 4, the wheel 2
The specified magnetic field is applied to. In addition,
The thickness variation of the wheel 2 due to the size variation of the wheel 2 is small,
It has almost no effect on magnetic particle flaw detection.

【0043】前記台車7に搭載された電流貫通極3と磁
化コイル4の位置関係は、その各々を取付けた取付基体
72に一定に固定されている。しかし、この取付基体7
2が車輪2の大きさ(車輪径の変更)に合わせて位置調
整可能なように上下方向に移動させることができる。車
輪2のサイズは、製造過程ではまとまったロット生産で
あり、頻繁に変わるものではないから、本実施例では、
前記取付基体72の上下方向の調整を手動で行わせるべ
くハンドル73を設けている。このハンドル73を正逆
に回転させることにより、電流貫通極3と磁化コイル4
を台車枠体74に対して上下動させることができる。
The positional relationship between the current through pole 3 and the magnetizing coil 4 mounted on the carriage 7 is fixed to the mounting base 72 to which each of them is mounted. However, this mounting base 7
2 can be moved in the vertical direction so that the position of the wheel 2 can be adjusted according to the size of the wheel 2 (change of wheel diameter). Since the size of the wheel 2 is a lot production that is integrated in the manufacturing process and does not change frequently, in the present embodiment,
A handle 73 is provided for manually adjusting the mounting base 72 in the vertical direction. By rotating the handle 73 in the forward and reverse directions, the current through pole 3 and the magnetizing coil 4 are
Can be moved up and down with respect to the bogie frame 74.

【0044】図11はその昇降機構の拡大図であり、ハ
ンドル73を回すと、ハンドル73を取り付けた軸73
a、その軸73aに取り付けたウォーム73bとこれに
噛み合うウォームホィール73cを介して伝達軸73d
に回転を伝達し、伝達軸73dの回転で第二のウォーム
73eと、それに噛み合うウォームホィール73fが回
転され、このウォームホィール73fがラック73gを
上下動させる構成となっている。ラック73gと取付基
体72とは、ねじで固定されているために、ラック73
gの上下動は取付基体72の上下動となる。従って、前
記取付基体72に固定された電流貫通極3、磁化コイル
4は、前記ラック73gの上下動と一体になって、2本
のガイドロッド73hに案内されスムーズに上下動する
ことになる。なお、75は台車7の車輪を示す。また、
電流貫通極3、磁化コイル4への通電は、別途電源より
供給されることになる。
FIG. 11 is an enlarged view of the lifting mechanism. When the handle 73 is turned, the shaft 73 to which the handle 73 is attached is attached.
a, a transmission shaft 73d through a worm 73b attached to the shaft 73a and a worm wheel 73c meshing with the worm 73b.
The second worm 73e and the worm wheel 73f meshed with the second worm 73e are rotated by the rotation of the transmission shaft 73d, and the worm wheel 73f moves the rack 73g up and down. Since the rack 73g and the mounting base 72 are fixed with screws, the rack 73g
The vertical movement of g is the vertical movement of the mounting base 72. Therefore, the current through pole 3 and the magnetizing coil 4 fixed to the mounting base 72 are integrated with the vertical movement of the rack 73g, and are smoothly moved up and down by being guided by the two guide rods 73h. The reference numeral 75 indicates the wheels of the carriage 7. Also,
The power supply to the current through pole 3 and the magnetizing coil 4 is separately supplied from a power source.

【0045】上記構成の本発明の磁粉探傷装置は、別途
設けた制御機器にその作動手順を記憶させておけば、そ
の指示にしたがい本発明方法が実行される。特に、磁粉
液の散布と被検査材の回転と台車7の前進との同時作
動、磁粉液の散布と磁化の同時作動、磁化と脱磁の連続
電流切り替え等、効率的な処理も可能である。勿論制御
機器を備えなくても磁粉探傷を行うことは可能である。
In the magnetic particle flaw detector of the present invention having the above-described structure, if the operating procedure is stored in a separately provided control device, the method of the present invention is executed according to the instruction. In particular, efficient processing such as simultaneous operation of spraying the magnetic powder liquid, rotation of the material to be inspected and forward movement of the carriage 7, simultaneous operation of spraying the magnetic powder liquid and magnetization, continuous switching of magnetization and demagnetization is possible. . Of course, it is possible to perform magnetic particle flaw detection without providing a control device.

【0046】[0046]

【発明の効果】以上説明したように、本発明によれば、
車輪に限らず厚さ方向に貫通する孔が形成された磁性体
からなる被検査材の全表面の欠陥、しかも、いずれの方
向の欠陥をも探傷することができ、従来技術に比べ短時
間に磁粉探傷を行うことができる。特に被検査材が環状
体の鉄道車輪である場合、その端面である踏面まで完全
な検査ができる。
As described above, according to the present invention,
Not only the wheel but also defects on the entire surface of the material to be inspected made of a magnetic material in which a hole penetrating in the thickness direction is formed, and also defects in any direction can be detected, and in a shorter time than the conventional technology Magnetic particle flaw detection can be performed. In particular, when the material to be inspected is a circular railway wheel, it is possible to perform a complete inspection up to the end surface, which is the tread surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】被検査材とその発生欠陥の状態を模式的に示し
た図である。
FIG. 1 is a diagram schematically showing a state of a material to be inspected and defects generated therein.

【図2】車輪の検査部位を示した図である。FIG. 2 is a diagram showing an inspection portion of a wheel.

【図3】車輪への磁場解析を示す図であり、(a)は、
車輪軸心に電流貫通極を、車輪外周部に外側磁化棒を設
けた図、(b)は、車輪軸心に電流貫通極のみを設けた
図である。
FIG. 3 is a diagram showing a magnetic field analysis on wheels, where (a) is
FIG. 7B is a diagram in which a current penetrating pole is provided on the wheel shaft center and an outer magnetizing rod is provided on the wheel outer peripheral portion, and FIG.

【図4】図3に示す配置において、電流貫通極および外
側磁化棒に通電する電流を交流と直流に使い分けた場合
の結果を示した図で、(a)は、図3(a)(b)のい
ずれにも直流を通電した場合、(b)は、図3(a)
(b)のいずれにも交流を通電した場合の図である。
FIG. 4 is a diagram showing the results when the current passing through the current penetrating pole and the outer magnetizing rod is selectively used for alternating current and direct current in the arrangement shown in FIG. 3, and FIG. 3) when a direct current is applied to any of
It is a figure at the time of supplying an alternating current to both of (b).

【図5】(a)は、外側磁化棒と車輪との距離の関係を
示した図、(b)は、距離の変化に伴う磁場強度の変動
関係を示した図である。
FIG. 5 (a) is a diagram showing the relationship between the distance between the outer magnetized rod and the wheel, and FIG. 5 (b) is a diagram showing the relationship of variation of the magnetic field strength with a change in the distance.

【図6】脱磁通電における電流波形を示す図である。FIG. 6 is a diagram showing a current waveform during demagnetization conduction.

【図7】実施例における本発明方法の実施手順を示す図
である。
FIG. 7 is a diagram showing a procedure for carrying out the method of the present invention in Examples.

【図8】本発明の磁粉探傷装置全体を示す正面図であ
る。
FIG. 8 is a front view showing the entire magnetic particle flaw detector of the present invention.

【図9】電流貫通極、磁化コイルを取り付けた台車の正
面図である。
FIG. 9 is a front view of a dolly to which a current through electrode and a magnetizing coil are attached.

【図10】図9の平面図である。FIG. 10 is a plan view of FIG.

【図11】電流貫通極、磁化コイルの昇降機構の内部を
示す拡大図である。
FIG. 11 is an enlarged view showing the inside of a lifting mechanism for a current through pole and a magnetizing coil.

【図12】電流貫通極、磁化コイルの取り付け部分を示
す側面図である。
FIG. 12 is a side view showing an attachment portion of a current through electrode and a magnetizing coil.

【符号の説明】[Explanation of symbols]

1 被検査材 2 車輪 21 軸孔 3 電流貫通極 31 外周磁化棒 4 磁化コイル 6 回転機構 61 ローラ 62 モータ 7 台車 71 エアーシリンダ 72 取付基体 73 ハンドル 74 台車枠体 75 台車の車輪 81 ポンプ 82 モータ 83 供給配管 84 ノズル 9 枠体 1 Inspected material Two wheels 21 shaft hole 3 Current penetration pole 31 Peripheral magnetized rod 4 magnetizing coil 6 rotation mechanism 61 Laura 62 motor 7 dolly 71 Air cylinder 72 Mounting base 73 handle 74 bogie frame 75 dolly wheels 81 pumps 82 motor 83 Supply piping 84 nozzles 9 frame

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 厚さ方向に貫通する孔が形成された磁性
体からなる被検査材の孔に電流貫通極を挿入し該電流貫
通極に直流電流を通電すると共に、被検査材の両側面に
対向して配置された磁化コイルに交流電流を通電して前
記被検査材を磁化する工程と、前記被検査材の表面に磁
粉液を散布する工程と、前記被検査材に付着する磁粉の
有無を観察する工程と、前記被検査材を脱磁する工程
と、からなることを特徴とする磁粉探傷方法。
1. A current penetrating electrode is inserted into a hole of a material to be inspected, which is made of a magnetic material and has a hole penetrating in the thickness direction, and a direct current is applied to the current penetrating pole, and both side surfaces of the material to be inspected are provided. A step of magnetizing the material to be inspected by applying an alternating current to a magnetizing coil arranged to face, a step of spraying a magnetic powder liquid on the surface of the material to be inspected, and a step of applying magnetic powder to the material to be inspected. A magnetic particle flaw detection method comprising a step of observing the presence or absence and a step of demagnetizing the material to be inspected.
【請求項2】 被検査材が軸孔を形成した環状体である
ことを特徴とする請求項1記載の磁粉探傷方法。
2. The magnetic particle flaw detection method according to claim 1, wherein the material to be inspected is an annular body having a shaft hole.
【請求項3】 被検査材を孔を軸心として回転させなが
ら、その表面に磁粉液を散布することを特徴とする請求
項1または2記載の磁粉探傷方法。
3. The magnetic particle flaw detection method according to claim 1, wherein the magnetic powder liquid is sprayed on the surface of the material to be inspected while the material to be inspected is rotated about the hole.
【請求項4】 請求項1または2記載の磁粉探傷方法を
実施する装置であって、被検査材の孔に挿入され直流電
流を通電される電流貫通極と、前記被検査材の両側面そ
れぞれに対向して配置され交流電流を通電される磁化コ
イルと、前記被検査材に磁粉液を散布するノズルを備え
たことを特徴とする磁粉探傷装置。
4. An apparatus for performing the magnetic particle flaw detection method according to claim 1 or 2, wherein a current through electrode inserted into a hole of a material to be inspected and supplied with a direct current, and both side surfaces of the material to be inspected, respectively. A magnetic particle flaw detector, comprising: a magnetizing coil, which is disposed so as to face the magnet, and which is supplied with an alternating current; and a nozzle for spraying a magnetic particle liquid onto the material to be inspected.
【請求項5】 被検査材を孔を軸心として回転させる回
転機構を備えたことを特徴とする請求項3記載の磁粉探
傷方法を実施する請求項4記載の磁粉探傷装置。
5. The magnetic particle flaw detector according to claim 4, further comprising a rotating mechanism for rotating the material to be inspected around a hole as an axis.
JP2002154471A 2002-05-28 2002-05-28 Railway wheel magnetic particle inspection method and magnetic particle inspection device Expired - Fee Related JP3841020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002154471A JP3841020B2 (en) 2002-05-28 2002-05-28 Railway wheel magnetic particle inspection method and magnetic particle inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002154471A JP3841020B2 (en) 2002-05-28 2002-05-28 Railway wheel magnetic particle inspection method and magnetic particle inspection device

Publications (2)

Publication Number Publication Date
JP2003344359A true JP2003344359A (en) 2003-12-03
JP3841020B2 JP3841020B2 (en) 2006-11-01

Family

ID=29771270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002154471A Expired - Fee Related JP3841020B2 (en) 2002-05-28 2002-05-28 Railway wheel magnetic particle inspection method and magnetic particle inspection device

Country Status (1)

Country Link
JP (1) JP3841020B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100410660C (en) * 2003-12-20 2008-08-13 孙劲楼 Double row comb electrode folding coil wheel pair magnaflux
EP2455752A1 (en) * 2010-11-19 2012-05-23 Stanislav Starman Equipment for detection of defects in rotary metal bodies by a magnetic powder method
CN103018322A (en) * 2012-12-11 2013-04-03 南车长江车辆有限公司 Flaw detection device of buffer spring
WO2013046944A1 (en) 2011-09-26 2013-04-04 新日鐵住金株式会社 Magnetizing device for magnetic particle inspection of wheel
CN103163213A (en) * 2013-04-02 2013-06-19 盐城东车科技有限公司 Rotating device of magnetic powder flaw detector with large ring gear
CN103207233A (en) * 2013-04-02 2013-07-17 盐城东车科技有限公司 Magnetizer of large gear ring workpiece magnetic particle flaw detector
CN103454341A (en) * 2013-09-15 2013-12-18 射阳县无损检测技术研究所 Automatic wheel set magnetic particle flaw detector alignment device
CN103543197A (en) * 2013-10-10 2014-01-29 厉伟 Method and device for magnetic powder inspection on annular workpiece
CN104330463A (en) * 2013-07-22 2015-02-04 李俊生 Four-way magnetizing magnetic powder inspection apparatus
CN105929021A (en) * 2016-06-21 2016-09-07 上海电气核电设备有限公司 Small connecting pipe inner wall magnetic powder detecting device
CN103959054B (en) * 2011-09-26 2016-11-30 新日铁住金株式会社 The magnetic powder inspection magnetizing assembly of wheel
KR101726067B1 (en) 2015-08-19 2017-04-26 강수동 Magnetic particle testing apparatus
CN112505137A (en) * 2020-10-30 2021-03-16 哈尔滨飞机工业集团有限责任公司 Magnetic particle detection method and tool for small-diameter through hole steel part

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305801B (en) * 2011-05-27 2013-04-24 丹东市无损检测设备有限公司 Train wheel disc detection device
CN103323521B (en) * 2013-05-31 2016-09-21 中国一拖集团有限公司 A kind of collocation method possessing alternating current-direct current longitudinally closed circuit magnetizing function and defectoscope

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100410660C (en) * 2003-12-20 2008-08-13 孙劲楼 Double row comb electrode folding coil wheel pair magnaflux
EP2455752A1 (en) * 2010-11-19 2012-05-23 Stanislav Starman Equipment for detection of defects in rotary metal bodies by a magnetic powder method
KR101584464B1 (en) * 2011-09-26 2016-01-11 신닛테츠스미킨 카부시키카이샤 Magnetizing device for magnetic particle inspection of wheel
AU2012318222B2 (en) * 2011-09-26 2015-05-28 Nippon Steel Corporation Magnetizing apparatus for magnetic particle testing of wheel
JP2013068564A (en) * 2011-09-26 2013-04-18 Nippon Steel & Sumitomo Metal Magnetization device for inspecting magnetic particle of wheel
CN103959054B (en) * 2011-09-26 2016-11-30 新日铁住金株式会社 The magnetic powder inspection magnetizing assembly of wheel
RU2579431C2 (en) * 2011-09-26 2016-04-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Magnetiser for magnetic-particle inspection of wheel
US9304109B2 (en) 2011-09-26 2016-04-05 Nippon Steel & Sumitomo Metal Corporation Magnetizing apparatus for magnetic particle testing of a wheel using a conductor and auxiliary conductors for magnetization
WO2013046944A1 (en) 2011-09-26 2013-04-04 新日鐵住金株式会社 Magnetizing device for magnetic particle inspection of wheel
KR20140056353A (en) 2011-09-26 2014-05-09 신닛테츠스미킨 카부시키카이샤 Magnetizing device for magnetic particle inspection of wheel
CN103959054A (en) * 2011-09-26 2014-07-30 新日铁住金株式会社 Magnetizing device for magnetic particle inspection of wheel
EP2762874A1 (en) * 2011-09-26 2014-08-06 Nippon Steel & Sumitomo Metal Corporation Magnetizing device for magnetic particle inspection of wheel
EP2762874A4 (en) * 2011-09-26 2015-01-21 Nippon Steel & Sumitomo Metal Corp Magnetizing device for magnetic particle inspection of wheel
CN103018322A (en) * 2012-12-11 2013-04-03 南车长江车辆有限公司 Flaw detection device of buffer spring
CN103207233A (en) * 2013-04-02 2013-07-17 盐城东车科技有限公司 Magnetizer of large gear ring workpiece magnetic particle flaw detector
CN103163213A (en) * 2013-04-02 2013-06-19 盐城东车科技有限公司 Rotating device of magnetic powder flaw detector with large ring gear
CN104330463A (en) * 2013-07-22 2015-02-04 李俊生 Four-way magnetizing magnetic powder inspection apparatus
CN103454341A (en) * 2013-09-15 2013-12-18 射阳县无损检测技术研究所 Automatic wheel set magnetic particle flaw detector alignment device
CN103543197A (en) * 2013-10-10 2014-01-29 厉伟 Method and device for magnetic powder inspection on annular workpiece
KR101726067B1 (en) 2015-08-19 2017-04-26 강수동 Magnetic particle testing apparatus
CN105929021A (en) * 2016-06-21 2016-09-07 上海电气核电设备有限公司 Small connecting pipe inner wall magnetic powder detecting device
CN112505137A (en) * 2020-10-30 2021-03-16 哈尔滨飞机工业集团有限责任公司 Magnetic particle detection method and tool for small-diameter through hole steel part

Also Published As

Publication number Publication date
JP3841020B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
JP3841020B2 (en) Railway wheel magnetic particle inspection method and magnetic particle inspection device
KR101377452B1 (en) Automatic magnetic particle testing apparatus
KR200492382Y1 (en) Dual Type Magnetic Particle Detection Inspection System
CN2924531Y (en) Magnetic flux leakage defect detector
KR20150138751A (en) Method and Magnetic Particle Inspection Equipment
JP4749223B2 (en) Magnetic particle flaw detector for steel pipes
JP2011069654A (en) Barkhausen noise inspection system and barkhausen noise inspection method
CN103424467A (en) Automatic magnetic flaw detection method and device for steel pipe
JP2014106087A (en) Magnetic powder flaw inspection device
KR20150001310A (en) Detecting device for defect of material
JPH0648262B2 (en) Magnetic particle flaw detector
KR100806829B1 (en) Method and system for examining defect of auto steel rim
US8314611B2 (en) Magnetic particle inspection apparatus and method
JPH0592712U (en) Magnetizing device for magnetic particle inspection of rolling rolls
RU2335819C2 (en) Method of demagnetisation of large-size soft-magnetic products and device to this effect
US3763423A (en) Magnetic particle flaw detector including shield means to protect previously tested surfaces
JPH1030994A (en) Magnetic flaw detecting method and apparatus therefor
CN215005118U (en) Vertical two-in-one magnetic powder inspection equipment for large bearing ring
CN202994724U (en) Magnetic particle flaw detector
CN109884173B (en) Magnetic powder inspection method for connection products
CN208224471U (en) A kind of online remanent magnetism detection device of round steel
KR101584464B1 (en) Magnetizing device for magnetic particle inspection of wheel
KR101726067B1 (en) Magnetic particle testing apparatus
CN116794157B (en) Pipe end flaw detector and flaw detection method for pipe end flaw detector
CN216051526U (en) Vertical ferrule fluorescent magnetic powder flaw detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

R150 Certificate of patent or registration of utility model

Ref document number: 3841020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees