JP2003343938A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine

Info

Publication number
JP2003343938A
JP2003343938A JP2002156104A JP2002156104A JP2003343938A JP 2003343938 A JP2003343938 A JP 2003343938A JP 2002156104 A JP2002156104 A JP 2002156104A JP 2002156104 A JP2002156104 A JP 2002156104A JP 2003343938 A JP2003343938 A JP 2003343938A
Authority
JP
Japan
Prior art keywords
temperature
heat
refrigerant
low
temperature regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002156104A
Other languages
Japanese (ja)
Other versions
JP3857955B2 (en
Inventor
Haruki Nishimoto
春樹 西本
Masahiro Furukawa
雅裕 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Electric Air Conditioning Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002156104A priority Critical patent/JP3857955B2/en
Publication of JP2003343938A publication Critical patent/JP2003343938A/en
Application granted granted Critical
Publication of JP3857955B2 publication Critical patent/JP3857955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorption refrigerating machine which can efficiently recover the remaining heat of the coolant after radiating the heat to heat the absorption liquid and which has the structure reduced in the number of branch and junction of piping to facilitate the flow control during the operation. <P>SOLUTION: This absorption refrigerating machine is provided with a middle- temperature drain heat recovery unit 10 for recovering the remaining heat of the coolant which radiated the heat in a middle-temperature regenerator 2 by exchanging the heat between the refrigerant, which radiated the heat to heat the absorption liquid in the middle-temperature regenerator 2, and the suction liquid discharged from an absorber 6 to a middle-temperature heat exchanger 8, while bypassing a low-temperature heat exchanger 7, and a low- temperature drain heat recovery unit 11 for recovering the remaining heat of the refrigerant which radiated the heat in a low-temperature regenerator 3 by exchanging the heat between the refrigerant, which radiated the heat to heat the absorption liquid in the low-temperature regenerator 3, and the absorption liquid discharged from the absorber 6 to the low-temperature heat exchanger 7. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、空調などに使用さ
れる吸収冷凍機(吸収冷温水機を含む)に関するもので
あり、特に詳しくは吸収液を加熱して吸収液に吸収され
ている冷媒を蒸発分離する再生器として高温再生器、中
温再生器、低温再生器の三つを備えた三重効用吸収冷凍
機に関するものである。 【0002】 【従来の技術】三重効用吸収冷凍機においては、中温再
生器は高温再生器で吸収液から蒸発分離した冷媒蒸気を
熱源とし、低温再生器は中温再生器で吸収液から蒸発分
離した冷媒蒸気を熱源として、それぞれ吸収液を加熱し
て冷媒を蒸発分離している。 【0003】そして、中温再生器で吸収液を加熱して放
熱した冷媒と、低温再生器で吸収液を加熱して放熱した
冷媒は共に凝縮器に送られ、そこで冷却水により冷却さ
れ、すなわち冷媒の余熱はさらに凝縮器で冷却水に廃棄
され、完全に凝縮して蒸発器に送られている。 【0004】しかし、吸収冷凍機のさらなる高効率化を
図るためには、従来は凝縮器で冷却水に廃棄していた冷
媒が保有する余熱をさらに回収する必要がある。 【0005】それを実現するため、例えば特開2001
−227838においては中温再生器で吸収液を加熱し
た冷媒と、低温再生器で吸収液を加熱した冷媒とが保有
する熱を回収するためのドレン熱回収器を設置する考案
が提案されている。 【0006】なお、臭化リチウム水溶液などの吸収液の
比熱は冷媒である水の比熱より可なり小さいため、冷媒
が保有する熱を熱交換器により冷凍サイクル内に回収す
る(吸収器を吐出して高温再生器に至るまでの吸収液に
熱を与えて吸収液の温度を上昇させる)ときには、冷媒
の温度を極力下げることを検討した方が装置の効率を改
善する上では効果が大きい。 【0007】また、サイクル内で最も温度が低いのは吸
収器出口の吸収液であるため、冷媒の余熱を回収する場
所としては吸収器吐出直後が好ましく、前記特開200
1−227838においてもそのような装置の構成例が
提案されている。しかし、それらの配管には分岐・合流
部が多く、実用化する際には吸収液や冷媒の流量の制御
が困難になり易いと云った問題点があった。 【0008】また、中温再生器で吸収液を加熱した冷媒
から熱を回収する中温ドレン熱回収器と、低温再生器で
吸収液を加熱した冷媒から熱を回収する低温ドレン熱回
収器とを直列に配置したときには、熱交換器の設計・製
造が難しい。 【0009】すなわち、ドレン熱回収器の内側を流れる
冷媒ドレンは実際には気液2相の混合流であることが多
いため、ドレン合流部の実際の温度は設計値と異なる場
合が多く(冷媒フラッシュがあると、熱量的には変化は
なくても温度は低下する)、そのため熱交換する相手と
の温度差が計算値より縮小し、その後の熱交換量が減少
すると云う問題点があり、熱交換器を設計し製造する上
で困難を伴う。 【0010】 【発明が解決しようとする課題】したがって、中温再生
器で吸収液を加熱して放熱した冷媒と、低温再生器で吸
収液を加熱して放熱した冷媒の余熱が効率良く回収で
き、且つ、配管の分岐・合流が少なく、運転時の流量調
節が容易な吸収冷凍機を提供する必要があり、それが解
決すべき課題となっていた。 【0011】 【課題を解決するための手段】本発明は上記従来技術の
課題を解決するための具体的手段として、吸収液を加熱
して吸収液に含まれる冷媒を蒸発分離し、冷媒が吸収で
きるように吸収液を濃縮再生する高温再生器、高温再生
器で吸収液から蒸発分離した冷媒蒸気を熱源として高温
再生器と同様に動作する中温再生器、中温再生器で吸収
液から蒸発分離した冷媒蒸気を熱源として高温再生器・
中温再生器と同様に動作する低温再生器を備えると共
に、異なる温度の吸収液同士が熱交換する熱交換器とし
て高温熱交換器、中温熱交換器、低温熱交換器を備えた
三重効用吸収冷凍機において、中温再生器で吸収液を加
熱して放熱した冷媒と吸収器を吐出し低温熱交換器を迂
回して中温熱交換器に至る吸収液とが熱交換して中温再
生器で放熱した冷媒の余熱を回収する中温ドレン熱回収
器と、低温再生器で吸収液を加熱して放熱した冷媒と吸
収器を吐出して低温熱交換器に至る吸収液とが熱交換し
て低温再生器で放熱した冷媒の余熱を回収する低温ドレ
ン熱回収器とを設けるようにした吸収冷凍機を提供する
ことにより、前記した従来技術の課題を解決するもので
ある。 【0012】 【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。本発明の一実施形態を図1に
基づいて詳細に説明する。図中1は高温再生器、2は中
温再生器、3は低温再生器、4は凝縮器、5は蒸発器、
6は吸収器、7は低温熱交換器、8は中温熱交換器、9
は高温熱交換器、10は中温ドレン熱回収器、11は低
温ドレン熱回収器、12、13は吸収液ポンプ、14は
冷媒ポンプであり、それぞれ図示したように実線で示し
た吸収液管と破線で示した冷媒管とで接続され、冷媒と
それを吸収した吸収液とがそれぞれ循環可能に構成され
ている。 【0013】なお、高温再生器1には、器内の吸収液を
加熱して吸収液に吸収されている冷媒を蒸発分離するた
めの図示しない適宜の加熱手段が設置されている。ま
た、蒸発器5には冷水管15が通され、吸収器6と凝縮
器4には冷却水管16が直列に通されている。 【0014】したがって、上記構成になる吸収冷凍機に
おいては、冷却水管16に冷却水を流しながら吸収液ポ
ンプ12、13および冷媒ポンプ14を運転し、高温再
生器1に設けた図示しない加熱手段により高温再生器1
で吸収液を加熱沸騰させると、高温再生器1において吸
収液から蒸発分離した冷媒蒸気と、冷媒蒸気を分離して
吸収液の濃度が高くなった吸収液とが得られる。 【0015】高温再生器1で生成された高温の冷媒蒸気
は、中温再生器2に入り、高温再生器1で冷媒を蒸発分
離して濃縮され、高温熱交換器9を経由して中温再生器
2に入った吸収液を加熱して放熱凝縮し、中温ドレン熱
回収器10に入る。 【0016】中温再生器2で冷媒蒸気により加熱されて
生成された冷媒蒸気は、低温再生器3に入り、中温再生
器2で冷媒を蒸発分離して濃縮され、中温熱交換器8を
経由して低温再生器3に入った吸収液を加熱して放熱凝
縮し、低温ドレン熱回収器11に入る。 【0017】また、低温再生器3で加熱されて中間吸収
液から蒸発分離した冷媒は凝縮器4に入り、冷却水管1
6内を流れる冷却水と熱交換して凝縮液化し、中温ドレ
ン熱回収器10、低温ドレン熱回収器11を経由して流
入する冷媒と一緒になって蒸発器5に入る。 【0018】蒸発器5の冷媒溜まりに溜まった冷媒液
は、冷水管15に接続された伝熱管15Aの上に冷媒ポ
ンプ14によって散布され、冷水管15を介して供給さ
れる水と熱交換して蒸発し、伝熱管15Aの内部を流れ
る水を冷却する。 【0019】蒸発器5で蒸発した冷媒は吸収器6に入
り、低温再生器3で加熱されて冷媒を蒸発分離し、吸収
液の濃度が一層高まった吸収液、すなわち吸収液ポンプ
13により低温熱交換器7を経由して供給され、上方か
ら散布される吸収液に吸収される。 【0020】そして、吸収器6で冷媒を吸収して吸収液
濃度の薄くなった吸収液は吸収液ポンプ12の運転によ
り高温再生器1に戻される。 【0021】上記のように吸収冷凍機が運転されると、
冷水管15の内部を流れて蒸発器5に入った冷水は、蒸
発器5内の伝熱管15Aにおいて冷媒の気化熱により冷
却され、その冷却された冷水が冷水管15を介して図示
しない冷却負荷に循環供給できるので、冷房などの冷却
運転が行える。 【0022】そして、本発明の吸収冷凍機においては、
前記したように吸収器6で冷媒を吸収して吸収液濃度が
低下した吸収液の一部は低温ドレン熱回収器11、低温
熱交換器7、中温熱交換器8、高温熱交換器9を経由し
て高温再生器1に戻され、残余の吸収液は中温ドレン熱
回収器10、中温熱交換器8、高温熱交換器9を経由し
て高温再生器1に戻される。 【0023】しかも、中温ドレン熱回収器10には前記
したように中温再生器2で吸収液を加熱して放熱した冷
媒が供給され、低温ドレン熱回収器11には低温再生器
3で吸収液を加熱して放熱した冷媒が供給されるので、
吸収器6を吐出して高温再生器1に流入する吸収液は効
率良く、且つ、操作性に優れた状態で加熱される。 【0024】すなわち、中温再生器2で吸収液を加熱し
て放熱した冷媒と、低温再生器3で吸収液を加熱して放
熱した冷媒は、冷凍サイクル内で温度が最も低い吸収器
6吐出側の吸収液と熱交換するので、凝縮冷媒の温度が
相当低くなっていても、冷媒の余熱は効率良く吸収液に
回収され、高温再生器1に設ける加熱手段で消費する燃
料費などが効果的に削減できる。 【0025】そして、中温ドレン熱回収器10と低温ド
レン熱回収器11とは直列ではなく並列に配置されてい
るので、各熱回収器内で冷媒が気液2相流となって流れ
ても、その後は熱交換することなく凝縮器4に入って放
熱・凝縮するだけであるので、熱制御上問題となること
はない。 【0026】また、吸収器6から高温再生器1に搬送さ
れる吸収液は、低温熱交換器7に流入する前に低温ドレ
ン熱回収器11で既に加熱されて温度上昇しているた
め、この吸収液と低温熱交換器7で熱交換して放熱し、
低温再生器3から吸収器6に搬送される吸収液を結晶ラ
インから遠ざけ、結晶化し難くすることもできる。 【0027】なお、本発明は上記実施形態に限定される
ものではないので、特許請求の範囲に記載の趣旨から逸
脱しない範囲で各種の変形実施が可能である。 【0028】例えば、例えば吸収器6で冷媒を吸収して
吸収液濃度が低下した吸収液は、中温再生器2または低
温再生器3に供給した後、高温再生器1に供給するよう
に構成しても良いし、複数の再生器にパレラルに供給す
るように構成することも可能である。 【0029】また、中温ドレン熱回収器10の設置部位
と低温ドレン熱回収器11の設置部位とを交換すること
なども可能である。 【0030】 【発明の効果】以上説明したように、本発明によれば中
温再生器で吸収液を加熱して放熱した冷媒と、低温再生
器で吸収液を加熱して放熱した冷媒の余熱を効率良く回
収することができる吸収冷凍機の提供が可能となる。ま
た、配管の分岐・合流が少なく、且つ、運転時の流量制
御も容易な吸収冷凍機を提供することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator (including an absorption chiller / heater) used for air conditioning or the like, and more particularly to heating an absorption liquid. The present invention relates to a triple effect absorption refrigerator including three high temperature regenerators, medium temperature regenerators and low temperature regenerators as regenerators for evaporating and separating the refrigerant absorbed in the absorbing liquid. In a triple effect absorption refrigerator, a medium temperature regenerator uses a refrigerant vapor evaporated and separated from an absorbent in a high temperature regenerator as a heat source, and a low temperature regenerator evaporates and separates from the absorbent in a medium temperature regenerator. Using the refrigerant vapor as a heat source, the absorption liquid is heated to evaporate and separate the refrigerant. [0003] The refrigerant that has heated the absorbent and radiated heat in the medium-temperature regenerator and the refrigerant that has heated and radiated the absorbent in the low-temperature regenerator are both sent to the condenser, where they are cooled by the cooling water. The residual heat is further discarded in a condenser in cooling water, completely condensed and sent to an evaporator. However, in order to further increase the efficiency of the absorption refrigerator, it is necessary to further recover the residual heat of the refrigerant conventionally discarded in the cooling water in the condenser. [0005] To achieve this, for example,
In -227838, a device has been proposed in which a drain heat recovery device for recovering heat retained by the refrigerant heated to the absorption liquid by the medium temperature regenerator and the refrigerant heated to the absorption liquid by the low temperature regenerator is proposed. Since the specific heat of the absorbing liquid such as an aqueous solution of lithium bromide is considerably smaller than the specific heat of water as the refrigerant, the heat of the refrigerant is recovered into the refrigeration cycle by the heat exchanger (the refrigerant is discharged from the absorber). When the temperature of the absorbing solution is increased by applying heat to the absorbing solution up to the high-temperature regenerator, it is more effective to consider reducing the temperature of the refrigerant as much as possible in improving the efficiency of the apparatus. Further, since the lowest temperature in the cycle is the absorbing liquid at the outlet of the absorber, the place where the residual heat of the refrigerant is recovered is preferably immediately after the discharge of the absorber.
1-227838 also proposes a configuration example of such a device. However, these pipes have many branching and merging portions, and there has been a problem that it is difficult to control the flow rates of the absorbing liquid and the refrigerant in practical use. In addition, a medium-temperature drain heat recovery unit that recovers heat from the refrigerant whose absorption liquid has been heated by the medium-temperature regenerator and a low-temperature drain heat recovery unit that recovers heat from the refrigerant whose absorption liquid has been heated by the low-temperature regenerator are connected in series. When it is arranged in a heat exchanger, it is difficult to design and manufacture the heat exchanger. That is, since the refrigerant drain flowing inside the drain heat recovery unit is actually a mixed flow of two phases of gas and liquid, the actual temperature of the drain junction often differs from the design value (refrigerant). If there is a flash, the temperature drops even if there is no change in calorific value), so the temperature difference with the partner to exchange heat becomes smaller than the calculated value, and there is a problem that the amount of heat exchange after that decreases. There are difficulties in designing and manufacturing heat exchangers. Therefore, it is possible to efficiently recover the residual heat of the refrigerant radiated by heating the absorbing liquid in the medium temperature regenerator and the refrigerant radiated by heating the absorbing liquid in the low temperature regenerator. In addition, it is necessary to provide an absorption refrigerator having a small number of pipe branches and confluences and easy flow rate adjustment during operation, which has been a problem to be solved. According to the present invention, as a specific means for solving the above-mentioned problems of the prior art, the absorption liquid is heated to evaporate and separate the refrigerant contained in the absorption liquid. A high-temperature regenerator that concentrates and regenerates the absorbent so that it can be used, a medium-temperature regenerator that operates in the same manner as the high-temperature regenerator using the refrigerant vapor evaporated and separated from the absorbent by the high-temperature regenerator as a heat source, and is evaporated and separated from the absorbent by the medium-temperature regenerator. High-temperature regenerator using refrigerant vapor as heat source
A triple-effect absorption refrigeration system equipped with a low-temperature regenerator that operates in the same way as a medium-temperature regenerator, and also includes a high-temperature heat exchanger, a medium-temperature heat exchanger, and a low-temperature heat exchanger as heat exchangers for exchanging heat between absorption liquids at different temperatures. In the machine, the refrigerant that has heated and radiated the absorbing liquid in the medium-temperature regenerator and the absorbent that discharged the absorber and bypassed the low-temperature heat exchanger and reached the medium-temperature heat exchanger exchanged heat and radiated heat in the medium-temperature regenerator. A medium-temperature drain heat recovery unit that recovers the residual heat of the refrigerant, and a low-temperature regenerator that exchanges heat between the refrigerant that has heated the absorbing liquid in the low-temperature regenerator and radiated heat and the absorbing liquid that discharges the absorber and reaches the low-temperature heat exchanger The present invention solves the above-mentioned problems of the related art by providing an absorption refrigerator having a low-temperature drain heat recovery device for recovering residual heat of a refrigerant radiated in the above. Embodiments of the present invention will be described below in detail with reference to the drawings. One embodiment of the present invention will be described in detail with reference to FIG. In the figure, 1 is a high temperature regenerator, 2 is a medium temperature regenerator, 3 is a low temperature regenerator, 4 is a condenser, 5 is an evaporator,
6 is an absorber, 7 is a low-temperature heat exchanger, 8 is a medium-temperature heat exchanger, 9
Is a high-temperature heat exchanger, 10 is a medium-temperature drain heat recovery unit, 11 is a low-temperature drain heat recovery unit, 12 and 13 are absorption liquid pumps, and 14 is a refrigerant pump. The refrigerant pipes are connected by refrigerant pipes shown by broken lines, and are configured to be able to circulate the refrigerant and the absorbing liquid that has absorbed the refrigerant. The high-temperature regenerator 1 is provided with an appropriate heating means (not shown) for heating the absorbing liquid in the apparatus and evaporating and separating the refrigerant absorbed in the absorbing liquid. A cooling water pipe 15 is passed through the evaporator 5, and a cooling water pipe 16 is passed through the absorber 6 and the condenser 4 in series. Therefore, in the absorption refrigerator having the above structure, the absorption pumps 12 and 13 and the refrigerant pump 14 are operated while flowing the cooling water through the cooling water pipe 16, and the heating means (not shown) provided in the high temperature regenerator 1 is used. High temperature regenerator 1
When the absorption liquid is heated and boiled, the refrigerant vapor evaporated and separated from the absorption liquid in the high-temperature regenerator 1 and the absorption liquid in which the concentration of the absorption liquid is increased by separating the refrigerant vapor are obtained. The high-temperature refrigerant vapor generated by the high-temperature regenerator 1 enters the intermediate-temperature regenerator 2, evaporates and separates the refrigerant in the high-temperature regenerator 1, concentrates, and passes through the high-temperature heat exchanger 9. The absorption liquid entered in 2 is condensed by radiating heat and enters the medium-temperature drain heat recovery unit 10. The refrigerant vapor generated by being heated by the refrigerant vapor in the intermediate-temperature regenerator 2 enters the low-temperature regenerator 3, evaporates and separates the refrigerant in the intermediate-temperature regenerator 2, and passes through the intermediate-temperature heat exchanger 8. Then, the absorption liquid entering the low-temperature regenerator 3 is heated and condensed by radiation, and enters the low-temperature drain heat recovery unit 11. The refrigerant heated by the low-temperature regenerator 3 and evaporated and separated from the intermediate absorbing liquid enters the condenser 4 and enters the cooling water pipe 1.
It condenses and liquefies by exchanging heat with the cooling water flowing through the inside 6, and enters the evaporator 5 together with the refrigerant flowing through the medium-temperature drain heat recovery unit 10 and the low-temperature drain heat recovery unit 11. The refrigerant liquid accumulated in the refrigerant reservoir of the evaporator 5 is sprayed by a refrigerant pump 14 on a heat transfer pipe 15A connected to the chilled water pipe 15, and exchanges heat with water supplied through the chilled water pipe 15. Evaporates and cools the water flowing inside the heat transfer tube 15A. The refrigerant evaporated by the evaporator 5 enters the absorber 6 and is heated by the low-temperature regenerator 3 to evaporate and separate the refrigerant. It is supplied via the exchanger 7 and is absorbed by the absorbing liquid sprayed from above. The absorption liquid whose absorption liquid concentration has been reduced by absorbing the refrigerant in the absorber 6 is returned to the high-temperature regenerator 1 by operating the absorption liquid pump 12. When the absorption refrigerator is operated as described above,
The cold water flowing inside the cold water pipe 15 and entering the evaporator 5 is cooled by the heat of vaporization of the refrigerant in the heat transfer pipe 15 </ b> A in the evaporator 5, and the cooled cold water passes through the cold water pipe 15 to a cooling load (not shown). The cooling operation such as cooling can be performed. And in the absorption refrigerator of the present invention,
As described above, a part of the absorption liquid whose absorption liquid concentration has been reduced by absorbing the refrigerant in the absorber 6 is supplied to the low-temperature drain heat recovery unit 11, the low-temperature heat exchanger 7, the medium-temperature heat exchanger 8, and the high-temperature heat exchanger 9, The remaining absorbent is returned to the high-temperature regenerator 1 via the intermediate-temperature drain heat recovery unit 10, the medium-temperature heat exchanger 8, and the high-temperature heat exchanger 9 Further, the medium-temperature drain heat recovery unit 10 is supplied with the refrigerant that has heated and radiated the absorption liquid in the medium-temperature regenerator 2 as described above, and the low-temperature drain heat recovery unit 11 has the absorption liquid in the low-temperature regeneration unit 3. Is supplied by the refrigerant that heats and radiates heat.
The absorbing liquid discharged from the absorber 6 and flowing into the high-temperature regenerator 1 is heated in an efficient and excellent operability state. That is, the refrigerant radiated by heating the absorbent in the medium-temperature regenerator 2 and the refrigerant radiated by heating the absorbent in the low-temperature regenerator 3 have the lowest temperature in the refrigeration cycle. Since the heat exchange with the absorbing liquid is performed, even if the temperature of the condensed refrigerant is considerably low, the residual heat of the refrigerant is efficiently recovered by the absorbing liquid, and the fuel cost and the like consumed by the heating means provided in the high-temperature regenerator 1 are effective. Can be reduced. Since the medium-temperature drain heat recovery unit 10 and the low-temperature drain heat recovery unit 11 are arranged in parallel instead of in series, even if the refrigerant flows as a gas-liquid two-phase flow in each heat recovery unit. After that, since it only enters the condenser 4 and radiates and condenses without heat exchange, there is no problem in heat control. The absorption liquid conveyed from the absorber 6 to the high-temperature regenerator 1 has already been heated by the low-temperature drain heat recovery unit 11 before flowing into the low-temperature heat exchanger 7, and its temperature has risen. Heat is exchanged with the absorbent and the low-temperature heat exchanger 7 to radiate heat,
The absorption liquid conveyed from the low-temperature regenerator 3 to the absorber 6 can be kept away from the crystal line to make it difficult to crystallize. Since the present invention is not limited to the above embodiment, various modifications can be made without departing from the spirit of the appended claims. For example, the absorption liquid whose absorption liquid concentration is reduced by absorbing the refrigerant in the absorber 6 is supplied to the medium-temperature regenerator 2 or the low-temperature regenerator 3 and then to the high-temperature regenerator 1. Alternatively, it may be configured to supply the information to a plurality of regenerators in a parallel manner. It is also possible to exchange the installation site of the intermediate-temperature drain heat recovery unit 10 with the installation site of the low-temperature drain heat recovery unit 11. As described above, according to the present invention, the residual heat of the refrigerant radiated by heating the absorbing liquid in the medium temperature regenerator and the refrigerant radiated by heating the absorbing liquid in the low temperature regenerator are reduced. It becomes possible to provide an absorption refrigerator capable of efficiently collecting. Further, it is possible to provide an absorption refrigerator in which branching and merging of pipes are small and flow rate control during operation is easy.

【図面の簡単な説明】 【図1】本発明の実施形態を示す説明図である。 【符号の説明】 1 高温再生器 2 中温再生器 3 低温再生器 4 凝縮器 5 蒸発器 6 吸収器 7 低温熱交換器 8 中温熱交換器 9 高温熱交換器 10 中温ドレン熱回収器 11 低温ドレン熱回収器 12〜13 吸収液ポンプ 14 冷媒ポンプ 15 冷水管 16 冷却水管[Brief description of the drawings] FIG. 1 is an explanatory diagram showing an embodiment of the present invention. [Explanation of symbols] 1 High temperature regenerator 2 Medium temperature regenerator 3 Low temperature regenerator 4 Condenser 5 Evaporator 6 absorber 7 Low-temperature heat exchanger 8 Medium temperature heat exchanger 9 High-temperature heat exchanger 10 Medium temperature drain heat recovery unit 11 Low temperature drain heat recovery unit 12-13 Absorbent pump 14 Refrigerant pump 15 Cold water pipe 16 Cooling water pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古川 雅裕 栃木県足利市大月町1番地 三洋電機空調 株式会社内 Fターム(参考) 3L093 BB16 BB29 BB37    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Masahiro Furukawa             1 Otsukicho, Ashikaga-shi, Tochigi Sanyo Electric Air Conditioning             Inside the company F term (reference) 3L093 BB16 BB29 BB37

Claims (1)

【特許請求の範囲】 【請求項1】 吸収液を加熱して吸収液に含まれる冷媒
を蒸発分離し、冷媒が吸収できるように吸収液を濃縮再
生する高温再生器、高温再生器で吸収液から蒸発分離し
た冷媒蒸気を熱源として高温再生器と同様に動作する中
温再生器、中温再生器で吸収液から蒸発分離した冷媒蒸
気を熱源として高温再生器・中温再生器と同様に動作す
る低温再生器を備えると共に、異なる温度の吸収液同士
が熱交換する熱交換器として高温熱交換器、中温熱交換
器、低温熱交換器を備えた三重効用吸収冷凍機におい
て、中温再生器で吸収液を加熱して放熱した冷媒と吸収
器を吐出し低温熱交換器を迂回して中温熱交換器に至る
吸収液とが熱交換して中温再生器で放熱した冷媒の余熱
を回収する中温ドレン熱回収器と、低温再生器で吸収液
を加熱して放熱した冷媒と吸収器を吐出して低温熱交換
器に至る吸収液とが熱交換して低温再生器で放熱した冷
媒の余熱を回収する低温ドレン熱回収器とを設けたこと
を特徴とする吸収冷凍機。
Claims 1. A high-temperature regenerator that heats an absorption liquid to evaporate and separate a refrigerant contained in the absorption liquid, and concentrates and regenerates the absorption liquid so that the refrigerant can be absorbed. Medium-temperature regenerator that operates in the same manner as a high-temperature regenerator using the refrigerant vapor evaporated and separated from the heat source, and low-temperature regeneration that operates in the same manner as the high-temperature and medium-temperature regenerators using the refrigerant vapor evaporated and separated from the absorbent by the medium-temperature regenerator as a heat source A triple-effect absorption refrigerator equipped with a high-temperature heat exchanger, a medium-temperature heat exchanger, and a low-temperature heat exchanger as a heat exchanger for exchanging heat between absorption liquids at different temperatures. Medium-temperature drain heat recovery that recovers the residual heat of the refrigerant that heats and radiates heat and exchanges heat with the absorbent that discharges the absorber and bypasses the low-temperature heat exchanger and reaches the medium-temperature heat exchanger. Liquid in the vessel and low-temperature regenerator A low-temperature drain heat recovery unit that exchanges heat between the refrigerant that has radiated heat and discharged to the low-temperature heat exchanger by discharging the absorber and recovers residual heat of the refrigerant that has radiated by the low-temperature regenerator; Characteristic absorption refrigerator.
JP2002156104A 2002-05-29 2002-05-29 Absorption refrigerator Expired - Fee Related JP3857955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002156104A JP3857955B2 (en) 2002-05-29 2002-05-29 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002156104A JP3857955B2 (en) 2002-05-29 2002-05-29 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2003343938A true JP2003343938A (en) 2003-12-03
JP3857955B2 JP3857955B2 (en) 2006-12-13

Family

ID=29772456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002156104A Expired - Fee Related JP3857955B2 (en) 2002-05-29 2002-05-29 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3857955B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115435582A (en) * 2022-08-31 2022-12-06 青岛海信日立空调系统有限公司 Multistage waste heat recovery drying system and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115435582A (en) * 2022-08-31 2022-12-06 青岛海信日立空调系统有限公司 Multistage waste heat recovery drying system and control method thereof
CN115435582B (en) * 2022-08-31 2023-09-05 青岛海信日立空调系统有限公司 Multistage waste heat recovery drying system and control method thereof

Also Published As

Publication number Publication date
JP3857955B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP2002147885A (en) Absorption refrigerating machine
JP2004324977A (en) Absorption type refrigerating machine
JP2000509479A (en) Generator-absorber-heat exchange heat transfer device and method and its use in heat pump
JP4148830B2 (en) Single double effect absorption refrigerator
JP3857955B2 (en) Absorption refrigerator
JP3883894B2 (en) Absorption refrigerator
JP2008020094A (en) Absorption type heat pump device
JP3889655B2 (en) Absorption refrigerator
JP4090262B2 (en) Absorption refrigerator
JP3401546B2 (en) Absorption refrigerator
JP2006064346A (en) Single and double effect absorption refrigerating machine and its operation control method
JP4282225B2 (en) Absorption refrigerator
JPS6122225B2 (en)
JP3851136B2 (en) Absorption refrigerator
JP4322997B2 (en) Absorption refrigerator
JP3469144B2 (en) Absorption refrigerator
JP2004011928A (en) Absorption refrigerator
JP4557468B2 (en) Absorption refrigerator
JPS6024901B2 (en) Waste heat heating and cooling equipment
JPS6122224B2 (en)
JP2005300126A (en) Absorption type refrigerating machine
JP5233716B2 (en) Absorption refrigeration system
JP3593052B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees