JP2003336975A - Heat exchanger - Google Patents
Heat exchangerInfo
- Publication number
- JP2003336975A JP2003336975A JP2002139607A JP2002139607A JP2003336975A JP 2003336975 A JP2003336975 A JP 2003336975A JP 2002139607 A JP2002139607 A JP 2002139607A JP 2002139607 A JP2002139607 A JP 2002139607A JP 2003336975 A JP2003336975 A JP 2003336975A
- Authority
- JP
- Japan
- Prior art keywords
- flow path
- heat exchanger
- flow
- flow passages
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は熱交換器に関し、特
に、ヒートポンプを用いて温水を生成する給湯機や冷温
水を生成する冷暖房機などに利用される冷媒対水熱交換
器のような、異種媒体間の熱移動を行う熱交換器に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger, and more particularly, to a heat exchanger for refrigerant and water used for a water heater for generating hot water using a heat pump, an air conditioner for producing cold / hot water, and the like. The present invention relates to a heat exchanger that transfers heat between different media.
【0002】[0002]
【従来の技術】従来、この種の熱交換器としては、実公
昭62−5587号公報や特開2002−22268号
公報に開示されているような熱交換器が提案されてい
る。その構成について、図6を参照しながら説明する。2. Description of the Related Art Conventionally, as this type of heat exchanger, heat exchangers such as those disclosed in Japanese Utility Model Publication No. 62-5587 and Japanese Patent Application Laid-Open No. 2002-22268 have been proposed. The configuration will be described with reference to FIG.
【0003】熱交換器70は、例えば、冷媒の凝縮熱等
を利用して水の加熱を行ういわゆるヒートポンプ給湯機
に利用されるものであり、給湯水を加熱する給湯用熱交
換器50と、浴槽水を加熱する浴槽用熱交換器60とを
略直上に配置し、ユニット化したものである。給湯用熱
交換器50は、第1の冷媒管51および給湯水管52を
それぞれ偏平化して密着させ、螺旋状に巻回した構成と
なっている。第1の冷媒管51に高温高圧の冷媒を、給
湯水管52に低温低圧の水を流入させることにより、冷
媒の凝縮熱等により水を加熱する給湯用の熱交換器とし
て機能することになる。一方、浴槽用熱交換器60は、
同様に、第2の冷媒管61および浴槽水管62をそれぞ
れ偏平化して密着させ、螺旋状に巻回した構成となって
いる。第2の伝熱管51に高温高圧の冷媒を、浴槽水管
52に浴槽からの低温低圧の水を流入させることによ
り、冷媒の凝縮熱等により浴槽の湯を加熱し追い焚きを
行う浴槽用熱交換器として機能することになる。The heat exchanger 70 is used, for example, in a so-called heat pump water heater that heats water by utilizing heat of condensation of a refrigerant, and a hot water heat exchanger 50 that heats hot water. The bath heat exchanger 60 for heating the bath water is arranged substantially directly above and unitized. The hot water supply heat exchanger 50 has a configuration in which the first refrigerant pipe 51 and the hot water supply water pipe 52 are flattened and brought into close contact with each other, and are spirally wound. By flowing a high-temperature high-pressure refrigerant into the first refrigerant pipe 51 and a low-temperature low-pressure water into the hot water supply water pipe 52, the refrigerant functions as a hot water heat exchanger that heats the water by heat of condensation of the refrigerant or the like. On the other hand, the bath heat exchanger 60 is
Similarly, the second refrigerant pipe 61 and the bath water pipe 62 are flattened and brought into close contact with each other, and spirally wound. A high-temperature high-pressure refrigerant is introduced into the second heat transfer pipe 51, and a low-temperature low-pressure water from the bath is introduced into the bath water pipe 52 to heat the hot water in the bath by the heat of condensation of the refrigerant, etc. It will function as a container.
【0004】なお、従来例では、伝熱用の管として肉厚
が薄く比較的強度の小さい管体を使用することにより偏
平化を容易にするとともに、この偏平化により管同士が
密着する面積すなわち伝熱面積の拡大を図ることによ
り、熱交換性能を向上させている。In the prior art example, the flatness is facilitated by using a tube body having a small wall thickness and a relatively small strength as a heat transfer tube. The heat exchange performance is improved by expanding the heat transfer area.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、前記従
来の構成では、次のような課題がある。例えば、熱交換
器70を、動作圧力が非常に高い二酸化炭素冷媒と水と
の熱交換器として利用する場合、高圧冷媒の流れる第1
の冷媒管51または第2の冷媒管61の内部に加わる圧
力が非常に高くなるため、管体をあらかじめ機械的に偏
平化する従来のような構成では、変形に供しやすく、十
分な耐圧性を確保することが困難となる。また、熱交換
器70は、図6に示すように、第1の冷媒管51と給湯
用水管52、第2の冷媒管61と浴槽用水管62を互い
に密着させて螺旋状に巻回した構成であり、円筒形状と
なる熱交換器70の内側にデッドスペースが形成される
ため、伝熱面積に比して熱交換器の占有体積が大きくな
り、装置内部に収納するスペースが多く必要となるとい
う課題があった。However, the above conventional structure has the following problems. For example, when the heat exchanger 70 is used as a heat exchanger of carbon dioxide refrigerant and water having a very high operating pressure, the first high pressure refrigerant flows through the heat exchanger 70.
Since the pressure applied to the inside of the second refrigerant pipe 51 or the second refrigerant pipe 61 becomes extremely high, the conventional structure in which the pipe body is mechanically flattened in advance is easily deformed and has sufficient pressure resistance. It will be difficult to secure. Further, as shown in FIG. 6, the heat exchanger 70 has a configuration in which a first refrigerant pipe 51 and a hot water supply water pipe 52, and a second refrigerant pipe 61 and a bath water pipe 62 are closely attached to each other and spirally wound. Since a dead space is formed inside the heat exchanger 70 having a cylindrical shape, the volume occupied by the heat exchanger is larger than the heat transfer area, and a large amount of space needs to be stored inside the device. There was a problem.
【0006】本発明は、前記従来の課題を解決するもの
で、耐圧性に優れ、コンパクトな熱交換器を提供するも
のである。The present invention solves the above-mentioned conventional problems and provides a compact heat exchanger having excellent pressure resistance.
【0007】[0007]
【課題を解決するための手段】前記従来の課題を解決す
るために、本発明の熱交換器は、複数の流路を同一平面
上に並列配置してなる第1の流路と、前記第1の流路が
形成する少なくとも一方の面に対向して第2の流路およ
び第3の流路を有するものである。In order to solve the above-mentioned conventional problems, a heat exchanger according to the present invention comprises: a first flow path in which a plurality of flow paths are arranged in parallel on the same plane; It has a second flow path and a third flow path facing at least one surface formed by the first flow path.
【0008】これによって、耐圧性向上のために、第1
の流路として断面積の小さい微細な流路を使用するよう
な場合も、これを複数本同一平面上で並列に密着配置し
た構成とすることにより、平坦で広い伝熱面を形成し、
薄型でコンパクトな熱交換器を構成することが可能とな
る。さらに、この平坦な第1の流路の少なくとも一方の
面に、第2の流路および第3の流路を設けることによ
り、第1の流路を流れる流体と、第2の流路および第3
の流路を流れる流体との間で、単独あるいは同時に熱交
換を行うことができる。例えば、一つの冷媒流路を加熱
源に用いて、給湯用の水加熱と浴槽の追い焚き用の水加
熱とを単独あるいは同時に行うような複数機能を兼ね備
えることができる。よって、耐圧性に優れ、多機能展開
が容易でありながら、デッドスペースの少ないコンパク
トな熱交換器を提供できる。As a result, in order to improve the pressure resistance, the first
Even when using a minute flow path having a small cross-sectional area as the flow path of, by forming a plurality of these in parallel closely arranged on the same plane, to form a flat and wide heat transfer surface,
It becomes possible to construct a thin and compact heat exchanger. Further, by providing the second flow path and the third flow path on at least one surface of the flat first flow path, the fluid flowing through the first flow path and the second flow path and the third flow path are provided. Three
It is possible to perform heat exchange with the fluid flowing through the flow passages singly or simultaneously. For example, by using one refrigerant flow path as a heating source, it is possible to combine a plurality of functions such as performing water heating for hot water supply and water heating for reheating the bathtub independently or simultaneously. Therefore, it is possible to provide a compact heat exchanger that has excellent pressure resistance, is easy to deploy multiple functions, and has a small dead space.
【0009】[0009]
【発明の実施の形態】請求項1に記載の発明は、複数の
流路を同一平面上に並列配置してなる第1の流路と、前
記第1の流路が形成する少なくとも一方の面に対向して
第2の流路および第3の流路を有するものであり、耐圧
性向上のために、第1の流路として断面積の小さい微細
な流路を使用するような場合も、これを複数本同一平面
上で並列に密着配置した構成とすることにより、平坦で
広い伝熱面を形成し、薄型でコンパクトな熱交換器を構
成することが可能となる。また、この平坦な第1の流路
の少なくとも一方の面に、第2の流路および第3の流路
を設けることにより、第1の流路を流れる流体と、第2
および第3の流路を流れる流体との間で、単独あるいは
同時に熱交換を行うことができる。例えば、一つの冷媒
流路を加熱源に用いて、給湯用の水加熱と浴槽の追い焚
き用の水加熱とを、単独あるいは同時に行うような複数
機能を兼ね備えることができる。よって、耐圧性に優
れ、多機能展開が容易でありながら、デッドスペースの
少ないコンパクトな熱交換器を提供できる。BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 is a first flow path in which a plurality of flow paths are arranged in parallel on the same plane, and at least one surface formed by the first flow path. Also has a second flow path and a third flow path facing each other, and in the case of using a fine flow path having a small cross-sectional area as the first flow path in order to improve the pressure resistance, By arranging a plurality of these in close contact with each other in parallel on the same plane, it is possible to form a flat and wide heat transfer surface and configure a thin and compact heat exchanger. Further, by providing the second flow path and the third flow path on at least one surface of the flat first flow path, the fluid flowing through the first flow path and the second flow path
And heat exchange can be performed with the fluid flowing through the third flow path alone or simultaneously. For example, one refrigerant channel can be used as a heating source to have a plurality of functions such that the heating of water for hot water supply and the heating of water for reheating the bathtub are performed individually or simultaneously. Therefore, it is possible to provide a compact heat exchanger that has excellent pressure resistance, is easy to deploy multiple functions, and has a small dead space.
【0010】請求項2に記載の発明は、複数の流路を同
一平面上に並列配置してなる第1の流路と、前記第1の
流路が形成する一方の面に対向して第2の流路と、前記
第1の流路が形成する他方の面に対向して第3の流路を
有するものであり、請求項1記載の発明と同様に、第1
の流路を複数本同一平面上で並列配置して広い伝熱面を
形成し、薄型の熱交換器を構成することが可能となる。
また、この平坦な第1の流路に対して、一方の面に第2
の流路を、その他方の面に第3の流路をそれぞれ設ける
ことにより、第1の流路を流れる流体と、第2および第
3の流路を流れる流体との間で、単独あるいは同時に熱
交換を行うことができる。さらに、第1の流路の上下両
面を用いて熱交換器を構成するため、一方の面だけの構
成に比べて、十分広い伝熱面積を確保することができ
る。よって、耐圧性に優れ、多機能展開が容易でありな
がら、熱交換性能に優れ、より一層コンパクトな熱交換
器を提供できる。According to a second aspect of the present invention, there is provided a first flow path formed by arranging a plurality of flow paths in parallel on the same plane, and a first flow path facing one surface formed by the first flow path. The second flow path and the third flow path facing the other surface formed by the first flow path have the third flow path, and the first flow path has the first flow path.
It becomes possible to form a thin heat exchanger by arranging a plurality of the channels in parallel on the same plane to form a wide heat transfer surface.
In addition, with respect to this flat first channel, a second channel is formed on one surface.
By providing the third flow path on the other side, the fluid flowing through the first flow path and the fluid flowing through the second and third flow paths may be used independently or simultaneously. Heat exchange can be performed. Further, since the heat exchanger is configured by using the upper and lower surfaces of the first flow path, it is possible to secure a sufficiently large heat transfer area as compared with the configuration of only one surface. Therefore, it is possible to provide a more compact heat exchanger having excellent pressure resistance and easy multi-functional deployment, excellent heat exchange performance.
【0011】請求項3に記載の発明は、請求項1または
2の構成に対して、特に第2の流路または第3の流路の
どちらか一方に対して、第1の流路と同一の流体を流通
させてなるものである。これによれば、例えば、ヒート
ポンプサイクルにおいて冷凍効果向上のために用いられ
る冷媒間の熱交換器(例えば、凝縮器出口の冷媒と蒸発
器出口の冷媒との内部熱交換器)と、冷媒と給湯水との
熱交換器との一体化を容易に実現することができる。よ
って、同様に、多機能展開が容易でありながら、コンパ
クトな熱交換器を提供できる。The invention according to claim 3 is the same as the first flow path with respect to the configuration according to claim 1 or 2, and particularly for either one of the second flow path and the third flow path. It is made by circulating the above fluid. According to this, for example, a heat exchanger between refrigerants (for example, an internal heat exchanger between a refrigerant at a condenser outlet and a refrigerant at an evaporator outlet) used for improving a refrigerating effect in a heat pump cycle, a refrigerant and a hot water supply. The integration with water and the heat exchanger can be easily realized. Therefore, similarly, it is possible to provide a compact heat exchanger which is easy to be expanded in multiple functions.
【0012】請求項4に記載の発明は、請求項1または
2の構成に対して、特に第2の流路と 第3の流路とが
互いに連通し、同一流体を流通させてなるものであり、
第1の流路を流れる流体と、その両面に配した第2およ
び第3の流路を流れる流体との単独の熱交換器として、
格段に広い伝熱面積を確保することができ、熱交換性能
がきわめて高い熱交換器を提供できる。According to a fourth aspect of the present invention, in addition to the structure of the first or second aspect, the second flow passage and the third flow passage are communicated with each other and the same fluid is circulated. Yes,
As a single heat exchanger for the fluid flowing through the first flow path and the fluid flowing through the second and third flow paths arranged on both sides thereof,
It is possible to secure a remarkably large heat transfer area and provide a heat exchanger having extremely high heat exchange performance.
【0013】請求項5に記載の発明は、請求項1〜4の
構成に対して、特に第1の流路に対して一方の面にの
み、前記第1の流路、第2の流路および第3の流路のそ
れぞれと連通する配管部を植立させたものであり、熱交
換器の片面への集中配管により、装置内での配管組立性
が向上する一方、熱交換器の背面に平坦な面が形成可能
となり、装置内への設置自由度が向上し、デッドスペー
スも低減する。According to a fifth aspect of the present invention, in addition to the configurations of the first to fourth aspects, the first flow passage and the second flow passage are formed only on one surface of the first flow passage. The piping part communicating with each of the third and third flow paths is planted, and the centralized piping on one side of the heat exchanger improves the pipe assembling ability in the device, while the rear surface of the heat exchanger is improved. A flat surface can be formed, the degree of freedom of installation in the device is improved, and the dead space is reduced.
【0014】請求項6に記載の発明は、請求項1〜5の
構成に対して、特に第1の流路に高圧側流体、第2の流
路および第3の流路の少なくとも一方に低圧側流体が流
通するものであり、流路の微細化による耐圧性向上が容
易な第1の流路に、選択的に高圧側の流体を流入させる
ことにより、熱交換器の信頼性を向上させることができ
る。According to a sixth aspect of the present invention, in addition to the configurations of the first to fifth aspects, particularly, the high pressure side fluid is provided in the first flow path, and the low pressure is provided in at least one of the second flow path and the third flow path. The side fluid circulates, and the reliability of the heat exchanger is improved by selectively allowing the high-pressure side fluid to flow into the first channel, which is easy to improve the pressure resistance due to the miniaturization of the channel. be able to.
【0015】[0015]
【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0016】(実施例1)図1は本発明の実施例1の熱
交換器10の構成図、図2および図3はその断面図であ
る。図1において、熱交換器10は、複数の流路を同一
平面上に並列配置してなる第1の流路1を備え、この第
1の流路1が形成する平面の一方に対向する位置に、第
2の流路2と第3の流路3とを配したものである。第1
の流路1には点線矢印で示したように流体Aが流通する
一方、第2の流路2には一点鎖線矢印で示したように流
体Bが、第3の流路3には実線矢印で示したように流体
Cがそれぞれ流通する。(Embodiment 1) FIG. 1 is a block diagram of a heat exchanger 10 according to Embodiment 1 of the present invention, and FIGS. 2 and 3 are sectional views thereof. In FIG. 1, the heat exchanger 10 is provided with a first flow path 1 formed by arranging a plurality of flow paths in parallel on the same plane, and a position facing one of the planes formed by the first flow path 1. The second flow path 2 and the third flow path 3 are arranged in the above. First
The fluid A flows through the flow passage 1 as indicated by the dotted arrow, while the fluid B flows through the second flow passage 2 as indicated by the alternate long and short dash arrow, and the solid arrow in the third flow passage 3. The fluid C flows as shown in FIG.
【0017】具体的な流路構成としては、第1の流路1
は、例えば、図2に示すように、金属の押し出し加工に
より、略同一平面上に複数の流路を並列に形成したもの
である。一方、第2の流路2は、例えば、プレス機によ
る絞り加工等により金属プレートに流路溝を形成し、隔
壁となるプレートと重ねてできる空間で構成され、第3
の流路3もこれと同様に構成される。なお、熱交換器1
0の各流路を構成する材質としては、熱伝導性および成
形性の良い金属、例えば銅やアルミニウム、ステンレス
等が挙げられる。また、各流路を熱密的に一体化する熱
交換器10の製造方法としては、一般的なロウ付けや拡
散溶接による接合が挙げられる。As a concrete flow path configuration, the first flow path 1
For example, as shown in FIG. 2, a plurality of channels are formed in parallel on substantially the same plane by metal extrusion processing. On the other hand, the second flow path 2 is formed by a space formed by forming a flow path groove on a metal plate by, for example, drawing by a pressing machine and overlapping the plate serving as a partition wall.
The flow path 3 is also configured in the same manner. The heat exchanger 1
Examples of the material forming each of the 0 flow paths include metals having good thermal conductivity and formability, such as copper, aluminum, and stainless steel. Further, as a method for manufacturing the heat exchanger 10 in which the respective flow paths are integrated in a heat-tight manner, general brazing or joining by diffusion welding can be mentioned.
【0018】なお、第1の流路1と、第2の流路2およ
び第3の流路3とは、図1に示すように、その長手方向
の略全体にわたって対向する位置にあり、第1の流路1
を流れる流体Aと、第2の流路2および第3の流路3を
流れる流体BおよびCとが、互いに対向流となるような
構成を有している。As shown in FIG. 1, the first flow path 1, the second flow path 2 and the third flow path 3 are located at positions facing each other over substantially the entire length thereof, and Channel 1
The fluid A flowing through and the fluids B and C flowing through the second flow path 2 and the third flow path 3 have a configuration in which they are opposed to each other.
【0019】また、各流路の入出口部の構成としては、
例えば、図3に示したように、第1の流路1と連通する
配管31aと31b、第2の流路2と連通する配管32
aと32b、第3の流路3と連通する配管33aと33
bをそれぞれ植立させている。これらの配管はすべて、
第1の流路1に対して上側の面、つまり熱交換器10に
対して片方の面に対してのみ植立させたものである。The structure of the inlet / outlet portion of each flow path is as follows.
For example, as shown in FIG. 3, the pipes 31 a and 31 b communicating with the first flow passage 1 and the pipe 32 communicating with the second flow passage 2
a and 32b, and pipes 33a and 33 communicating with the third flow path 3
b are planted respectively. All of these pipes
The upper surface of the first flow path 1, that is, one surface of the heat exchanger 10 is planted.
【0020】以上のように構成された熱交換器につい
て、以下その作用を説明する。例えば、熱交換器10
が、冷媒の凝縮熱等を利用して給湯水を加熱する給湯用
熱交換器と、同じく浴槽水を加熱する浴槽用熱交換器と
を備えたヒートポンプ給湯機に展開利用されるものとす
る。このとき、第1の流路1を流れる流体Aは高温高圧
の冷媒、第2の流路2を流れる流体Bは貯湯タンク等か
らの低温低圧の給湯水、第3の流路3を流れる流体Cは
浴槽からの低温低圧の浴槽水となる。高温高圧の冷媒
は、第1の流路1を流れる間に、これに対向する第2の
流路2を流れる低温低圧の給湯水あるいは第3の流路3
を流れる浴槽水を、それぞれ単独あるいは同時に加熱す
ることになる。The operation of the heat exchanger configured as described above will be described below. For example, the heat exchanger 10
However, it is assumed that the heat pump water heater is provided with a heat exchanger for hot water supply that heats hot water using condensation heat of the refrigerant, and a heat exchanger for bathtub that also heats bath water. At this time, the fluid A flowing through the first flow passage 1 is a high-temperature high-pressure refrigerant, the fluid B flowing through the second flow passage 2 is a low-temperature low-pressure hot water supplied from a hot water storage tank, etc., and the fluid flowing through the third flow passage 3. C becomes low temperature low pressure bath water from the bath. While the high-temperature and high-pressure refrigerant flows through the first flow path 1, the low-temperature low-pressure hot water or the third flow path 3 that flows through the second flow path 2 that faces the first flow path 1
The water in the bathtub flowing through the water is heated individually or simultaneously.
【0021】ここで、本実施例によれば、耐圧性向上の
ために、第1の流路1として断面積の小さい微細な流路
を使用するような場合も、これを複数本同一平面上で並
列に密着配置した構成とすることにより、平坦で広い伝
熱面を形成し、薄型でコンパクトな熱交換器を構成する
ことが可能となる。Here, according to the present embodiment, even in the case where a fine channel having a small cross-sectional area is used as the first channel 1 in order to improve the pressure resistance, a plurality of such channels are formed on the same plane. By arranging them in close contact in parallel with each other, it is possible to form a flat and wide heat transfer surface and to configure a thin and compact heat exchanger.
【0022】また、この平坦な第1の流路1の一方の面
に、第2の流路2および第3の流路3を設けることによ
り、第1の流路1を流れる流体と、第2の流路2および
第3の流路3を流れる流体との間で、単独あるいは同時
に熱交換を行うことができる。特に第1の流路1を流れ
る流体が冷媒、第2の流路2を流れる流体が給湯水、第
3の流路3を流れる流体が浴槽水である場合には、一つ
の冷媒流路を用いて、給湯用の水加熱と浴槽の追い焚き
用の水加熱とを、単独あるいは同時に行うような複数機
能を兼ね備えることができる。Further, by providing the second flow path 2 and the third flow path 3 on one surface of the flat first flow path 1, the fluid flowing through the first flow path 1 Heat exchange can be performed independently or simultaneously with the fluid flowing through the second flow passage 2 and the third flow passage 3. In particular, when the fluid flowing through the first flow path 1 is a coolant, the fluid flowing through the second flow path 2 is hot water, and the fluid flowing through the third flow path 3 is bath water, one refrigerant flow path is selected. By using the same, it is possible to have a plurality of functions such that the water heating for hot water supply and the water heating for reheating the bathtub are performed individually or simultaneously.
【0023】さらに、本実施例は、第1の流路1に対し
て一方の面側にのみ、第1の流路1、第2の流路2およ
び第3の流路3のそれぞれと連通する配管を植立させた
ものであるため、熱交換器10の片面への集中配管によ
り、装置内での配管組立性が向上する一方、熱交換器1
0の背面に平坦な面が形成可能となり、装置内への設置
自由度が向上し、デッドスペースも低減する。Further, in this embodiment, the first flow path 1, the second flow path 2 and the third flow path 3 are communicated with each other only on one surface side of the first flow path 1. Since the piping to be installed is planted, the concentrated piping on one side of the heat exchanger 10 improves the pipe assembling property in the apparatus, while the heat exchanger 1
A flat surface can be formed on the back surface of 0, the degree of freedom of installation in the device is improved, and the dead space is also reduced.
【0024】したがって、耐圧性に優れ、多機能展開が
容易でありながら、デッドスペースの少ないコンパクト
な熱交換器を提供できる。Therefore, it is possible to provide a compact heat exchanger having excellent pressure resistance and easy multi-functional expansion, and a small dead space.
【0025】(実施例2)本発明の実施例2は、実施例
1と同様な構成に対して、特に第2の流路2に対して、
第1の流路1と同一の流体を流通させてなるものであ
る。例えば、蒸気圧縮式のヒートポンプサイクルにおい
ては、冷凍効果を高めるために、凝縮器出口の冷媒と蒸
発器出口の冷媒との熱交換を行う内部熱交換器を用いる
ことがある。(Embodiment 2) The embodiment 2 of the present invention is the same as that of the embodiment 1, especially for the second flow path 2.
The same fluid as that of the first channel 1 is circulated. For example, in a vapor compression heat pump cycle, an internal heat exchanger that exchanges heat between the refrigerant at the outlet of the condenser and the refrigerant at the outlet of the evaporator may be used in order to enhance the refrigerating effect.
【0026】本実施例の熱交換器10を、このようなヒ
ートポンプ回路の凝縮器(特に二酸化炭素冷媒を用いる
ような超臨界サイクルの場合はガスクーラ)に用いると
する。第1の流路1を流れる流体Aとして、圧縮機(図
示せず)から吐出した高温高圧の冷媒が流通するものと
し、第2の流路2を流れる流体Bとして、同じヒートポ
ンプ回路の蒸発器(図示せず)からの低温低圧の冷媒、
第3の流路3を流れる流体Cとして、貯湯タンク等から
の低温低圧の給湯水が流通するとする。The heat exchanger 10 of this embodiment is used as a condenser of such a heat pump circuit (particularly a gas cooler in the case of a supercritical cycle using a carbon dioxide refrigerant). As the fluid A flowing through the first flow path 1, a high-temperature high-pressure refrigerant discharged from a compressor (not shown) flows, and as the fluid B flowing through the second flow path 2, an evaporator of the same heat pump circuit. Low temperature low pressure refrigerant from (not shown),
As the fluid C flowing through the third flow path 3, it is assumed that low-temperature low-pressure hot water supplied from a hot water storage tank or the like flows.
【0027】このとき、高温高圧の冷媒は、第1の流路
1を流れる間に、これに対向する第3の流路3を流れる
低温低圧の給湯水に対して放熱するとともに、さらに、
第2の流路2を流れる蒸発器からの低温低圧の冷媒によ
り冷却され、適度に過冷却の状態で次の蒸発器に供され
る。図示しないこの蒸発器を、家や建物等の室内におけ
る大気との熱交換器とすれば、室内の冷房に用いること
ができる。このような内部熱交換器を配することによ
り、一般にヒートポンプ回路の冷凍効果は増大する。し
たがって、本実施例によれば、多機能展開が容易であり
ながら、コンパクトな熱交換器を提供できる。At this time, the high-temperature high-pressure refrigerant radiates heat to the low-temperature low-pressure hot-water supply flowing in the third flow path 3 facing the first flow path 1 while flowing, and further,
It is cooled by the low-temperature low-pressure refrigerant from the evaporator flowing through the second flow path 2 and is appropriately supercooled to be supplied to the next evaporator. If this evaporator (not shown) is used as a heat exchanger with the atmosphere in the room such as a house or a building, it can be used for cooling the room. By arranging such an internal heat exchanger, the refrigerating effect of the heat pump circuit is generally increased. Therefore, according to the present embodiment, it is possible to provide a compact heat exchanger, which is easy to develop in multiple functions.
【0028】(実施例3)図4は本発明の実施例3の熱
交換器20の構成図、図5はその断面図である。図4に
おいて、熱交換器20は、複数の流路を同一平面上に並
列配置してなる第1の流路11を備え、この第1の流路
11が形成する平面の一方に対向して第2の流路12
と、第1の流路11が形成する平面の他の一方に対向し
て第3の流路13を配したものである。第1の流路11
には点線矢印で示したように流体Aが流通する一方、第
2の流路12には一点鎖線矢印で示したように流体B
が、第3の流路13には実線矢印で示したように流体C
がそれぞれ流通する。(Embodiment 3) FIG. 4 is a structural view of a heat exchanger 20 of Embodiment 3 of the present invention, and FIG. 5 is a sectional view thereof. In FIG. 4, the heat exchanger 20 is provided with a first flow passage 11 in which a plurality of flow passages are arranged in parallel on the same plane, and faces one of the planes formed by the first flow passage 11. Second channel 12
And the third flow path 13 is arranged so as to face the other side of the plane formed by the first flow path 11. First channel 11
While the fluid A flows through the second flow path 12 as indicated by the dotted arrow, the fluid B flows through the second flow path 12 as indicated by the dashed-dotted arrow.
However, as shown by the solid arrow in the third flow path 13, the fluid C
Are distributed respectively.
【0029】具体的な流路構成としては、第1の流路1
1は、例えば、実施例1と同様に、金属の押し出し加工
により、略同一平面上に複数の流路を並列に形成したも
のである。一方、第2の流路12は、例えば、プレス機
による絞り加工等により金属プレートに流路溝を形成
し、隔壁となるプレートと重ねてできる空間で構成さ
れ、第3の流路3もこれと同様に構成される。なお、熱
交換器20の各流路を構成する材質としては、熱伝導性
および成形性の良い金属、例えば銅やアルミニウム、ス
テンレス等が挙げられる。また、各流路を熱密的に一体
化する熱交換器20の製造方法としては、一般的なロウ
付けや拡散溶接による接合が挙げられる。As a concrete flow path configuration, the first flow path 1
1 is, for example, similar to the first embodiment, in which a plurality of flow paths are formed in parallel on the substantially same plane by metal extrusion processing. On the other hand, the second flow path 12 is formed by a space formed by forming a flow path groove on a metal plate by drawing, for example, by a pressing machine and overlapping with a plate that serves as a partition wall. It is constructed in the same way as. The material forming each flow path of the heat exchanger 20 may be a metal having good thermal conductivity and formability, such as copper, aluminum, or stainless steel. Further, as a method of manufacturing the heat exchanger 20 in which the respective flow paths are integrated in a heat-tight manner, general brazing or diffusion welding may be used.
【0030】なお、第1の流路11と、第2の流路12
および第3の流路13とは、図4に示すように、その長
手方向の略全体にわたって対向する位置にあり、第1の
流路11を流れる流体Aと、第2の流路12および第3
の流路13を流れる流体BおよびCとが、互いに対向流
となるような構成を有している。The first channel 11 and the second channel 12
As shown in FIG. 4, the third flow path 13 and the third flow path 13 are located at positions facing each other over substantially the entire length thereof, and the fluid A flowing through the first flow path 11 and the second flow path 12 and the third flow path 13 are provided. Three
The fluids B and C flowing in the flow path 13 of FIG.
【0031】また、各流路の入出口部の構成としては、
例えば、図5に示したように、第1の流路11と連通す
る配管41aと41b、第2の流路12と連通する配管
42aと42b、第3の流路13と連通する配管43a
と43bをそれぞれ植立させている。これらの配管はす
べて、第1の流路11に対して上側の面、つまり熱交換
器20に対して片方の面に対してのみ植立させたもので
ある。The configuration of the inlet / outlet portion of each flow path is as follows.
For example, as shown in FIG. 5, pipes 41a and 41b communicating with the first flow passage 11, pipes 42a and 42b communicating with the second flow passage 12, and a pipe 43a communicating with the third flow passage 13.
And 43b are planted respectively. All of these pipes are erected only on the upper surface of the first flow path 11, that is, on one surface of the heat exchanger 20.
【0032】以上のように構成された熱交換器につい
て、以下その作用を説明する。例えば、実施例1と同様
に、第1の流路11を流れる流体Aとして、蒸気圧縮式
等のヒートポンプ回路からの高温高圧の冷媒が流通する
とする。また、第2の流路12を流れる流体Bとして、
貯湯タンク等からの低温低圧の給湯水、第3の流路13
を流れる流体Cとして、浴槽からの低温低圧の浴槽水が
流通するとする。このとき、高温高圧の冷媒は、第1の
流路11を流れる間に、これに対向する第2の流路12
を流れる低温低圧の給湯水あるいは第3の流路13を流
れる浴槽水を単独あるいは同時に加熱する。The operation of the heat exchanger configured as described above will be described below. For example, as in the first embodiment, it is assumed that a high-temperature, high-pressure refrigerant from a heat pump circuit of a vapor compression type flows as the fluid A flowing in the first flow path 11. Further, as the fluid B flowing through the second flow path 12,
Low-temperature low-pressure hot water from a hot water storage tank, the third flow path 13
As the fluid C flowing through, bath water of low temperature and low pressure flows from the bath. At this time, the high-temperature and high-pressure refrigerant flows through the first flow passage 11 while facing the second flow passage 12 facing the first flow passage 11.
The low-temperature and low-pressure hot-water supply water flowing through or the bath water flowing through the third flow path 13 is heated alone or simultaneously.
【0033】ここで、本実施例によれば、耐圧性向上の
ために、第1の流路11として断面積の小さい微細な流
路を使用するような場合も、これを複数本同一平面上で
並列に密着配置した構成とすることにより、平坦で広い
伝熱面を形成し、薄型でコンパクトな熱交換器を構成す
ることが可能となる。Here, according to the present embodiment, even in the case where a fine channel having a small cross-sectional area is used as the first channel 11 in order to improve the pressure resistance, a plurality of channels are formed on the same plane. By arranging them in close contact in parallel with each other, it is possible to form a flat and wide heat transfer surface and to configure a thin and compact heat exchanger.
【0034】また、この平坦な第1の流路11に対し
て、一方の面に第2の流路12を、その他方の面に第3
の流路13をそれぞれ設けることにより、第1の流路1
1を流れる流体と、第2の流路12および第3の流路1
3を流れる流体との間で、単独あるいは同時に熱交換を
行うことができる。特に第1の流路11を流れる流体が
冷媒、第2の流路12を流れる流体が給湯水、第3の流
路13を流れる流体が浴槽水である場合には、一つの冷
媒流路を用いて、給湯用の水加熱と浴槽の追い焚き用の
水加熱とを、単独あるいは同時に行うような複数機能を
兼ね備えることができる。With respect to the flat first flow passage 11, the second flow passage 12 is provided on one surface and the third flow passage is provided on the other surface.
By providing the respective flow paths 13 of the first flow path 1
Fluid flowing through the first flow path 1, the second flow path 12 and the third flow path 1
Heat exchange with the fluid flowing through 3 can be performed alone or simultaneously. In particular, when the fluid flowing through the first flow path 11 is a refrigerant, the fluid flowing through the second flow path 12 is hot water, and the fluid flowing through the third flow path 13 is bath water, one refrigerant flow path is selected. By using the same, it is possible to have a plurality of functions such that the water heating for hot water supply and the water heating for reheating the bathtub are performed individually or simultaneously.
【0035】さらに、第1の流路11の上下両面を用い
て熱交換器20を構成するため、片面だけの構成に比べ
て、十分広い伝熱面積を確保することができる。また、
第2の流路12および第3の流路13に低温側の流体を
流通させてやれば、熱交換器をとりまく大気等との温度
差が小さくなり、熱交換器の断熱性の向上すなわち放熱
ロスの低減が図れ、熱交換性能が向上する。Furthermore, since the heat exchanger 20 is constructed by using the upper and lower surfaces of the first flow path 11, a sufficiently large heat transfer area can be secured as compared with the configuration having only one surface. Also,
When the low temperature side fluid is circulated in the second flow path 12 and the third flow path 13, the temperature difference between the heat exchanger and the atmosphere surrounding the heat exchanger becomes small, and the heat insulating property of the heat exchanger is improved, that is, the heat is radiated. Loss can be reduced and heat exchange performance can be improved.
【0036】また、本実施例は、第1の流路11に対し
て一方の面側にのみ、第1の流路11、第2の流路12
および第3の流路13のそれぞれと連通する配管を植立
させたものであるため、熱交換器の片面への集中配管に
より、装置内での配管組立性が向上する一方、熱交換器
の背面に平坦な面が形成可能となり、装置内への設置自
由度が向上し、デッドスペースも低減する。したがっ
て、耐圧性に優れ、多機能展開が容易でありながら、よ
り一層コンパクトな熱交換器を提供できる。Further, in this embodiment, the first flow passage 11 and the second flow passage 12 are provided only on one surface side with respect to the first flow passage 11.
Since the pipes communicating with the third flow path 13 and the third flow path 13 are erected, the concentrated piping on one side of the heat exchanger improves the pipe assembling ability in the apparatus, while A flat surface can be formed on the back surface, which improves the degree of freedom of installation in the device and reduces dead space. Therefore, it is possible to provide a more compact heat exchanger with excellent pressure resistance and easy multi-functional deployment.
【0037】(実施例4)本発明の実施例4は、実施例
3と同様な構成に対して、特に第2の流路12と第3の
流路13とを互いに連通させ、同一流体を流通させてな
るものであり、例えば、第1の流路11を流れる流体が
高温高圧の冷媒であり、第2の流路12および第3の流
路13を流れる流体が低温低圧の給湯水とするものであ
る。(Fourth Embodiment) In the fourth embodiment of the present invention, in addition to the same structure as the third embodiment, the second flow passage 12 and the third flow passage 13 are communicated with each other, and the same fluid is supplied. For example, the fluid flowing through the first flow passage 11 is a high-temperature high-pressure refrigerant, and the fluid flowing through the second flow passage 12 and the third flow passage 13 is low-temperature low-pressure hot water. To do.
【0038】これによれば、第1の流路11の両面に第
2の流路12および第3の流路13を配した単独の熱交
換器として、格段に広い伝熱面積を確保することがで
き、熱交換性能がきわめて高く、コンパクトな熱交換器
を提供できる。また、流路の微細化による耐圧性向上が
容易な第1の流路11に、選択的に高圧側の流体を流入
させることにより、熱交換器の信頼性を向上させること
ができる。According to this, as a single heat exchanger in which the second flow passage 12 and the third flow passage 13 are arranged on both surfaces of the first flow passage 11, a remarkably wide heat transfer area can be secured. It is possible to provide a compact heat exchanger with excellent heat exchange performance. Further, the reliability of the heat exchanger can be improved by selectively allowing the high-pressure side fluid to flow into the first flow path 11 where it is easy to improve the pressure resistance due to the miniaturization of the flow path.
【0039】なお、以上の実施例では、第1の流路1に
冷媒、第2の流路および第3の流路3に給湯水や浴槽水
が流通するとしたが、必ずしもこれにとらわれるもので
はなく、冷暖房用のブラインを流通させたり、水単独で
用いるなど、いかなる流体に利用しても構わない。In the above embodiment, the coolant is circulated in the first flow passage 1 and the hot water and the bath water are circulated in the second flow passage 3 and the third flow passage 3, respectively. However, this is not always the case. Instead, it may be used for any fluid such as circulating brine for cooling and heating or using water alone.
【0040】また、実施例1および3では、各流路が一
直線形状を有するように図示するとともに、第1の流路
を流れる流体と、第2および第3の流路を流れる流体と
が、互いに対向流となるような流路構成を有するとした
が、必ずしもこれに限定されるものではなく、必要に応
じて流路を蛇行形状としたり、熱交換を行う流体同士が
並行流や直交流となるような流路形状としても構わな
い。Further, in the first and third embodiments, each flow path is illustrated as having a straight line shape, and the fluid flowing through the first flow path and the fluid flowing through the second and third flow paths are Although the flow paths are configured so as to be opposed to each other, the flow paths are not necessarily limited to this, and the flow paths may be formed in a meandering shape, or fluids for heat exchange may be in parallel flow or cross flow. The flow channel shape may be such that
【0041】[0041]
【発明の効果】以上のように、請求項1から6に記載の
発明によれば、複数の流路を同一平面上に並列配置して
なる第1の流路と、前記第1の流路が形成する少なくと
も一方の面に対向して第2の流路および第3の流路を有
するものであり、耐圧性向上のために、第1の流路とし
て断面積の小さい微細な流路を使用するような場合も、
これを複数本同一平面上で並列に密着配置した構成とす
ることにより、平坦で広い伝熱面を形成し、薄型でコン
パクトな熱交換器を構成することが可能となる。また、
この平坦な第1の流路の少なくとも一方の面に、第2の
流路および第3の流路を設けることにより、第1の流路
を流れる流体と、第2および第3の流路を流れる流体と
の間で、単独あるいは同時に熱交換を行うことができ
る。よって、耐圧性に優れ、多機能展開が容易でありな
がら、コンパクトな熱交換器を提供できる。As described above, according to the first to sixth aspects of the present invention, the first flow path in which a plurality of flow paths are arranged in parallel on the same plane, and the first flow path are provided. Has a second flow path and a third flow path facing at least one surface formed by, and in order to improve pressure resistance, a fine flow path having a small cross-sectional area is used as the first flow path. When you use it,
By arranging a plurality of these in close contact with each other in parallel on the same plane, it is possible to form a flat and wide heat transfer surface and configure a thin and compact heat exchanger. Also,
By providing the second flow path and the third flow path on at least one surface of the flat first flow path, the fluid flowing through the first flow path and the second and third flow paths are separated from each other. Heat exchange with the flowing fluid can be performed independently or simultaneously. Therefore, it is possible to provide a compact heat exchanger that has excellent pressure resistance and is easy to deploy multiple functions.
【図1】本発明の実施例1および2の熱交換器の構成を
示す斜視図FIG. 1 is a perspective view showing a configuration of a heat exchanger according to first and second embodiments of the present invention.
【図2】同熱交換器の断面図FIG. 2 is a sectional view of the heat exchanger.
【図3】同熱交換器の断面図FIG. 3 is a sectional view of the heat exchanger.
【図4】本発明の実施例3および4の熱交換器の構成を
示す断面図FIG. 4 is a sectional view showing the configuration of heat exchangers of Examples 3 and 4 of the present invention.
【図5】同熱交換器の断面図FIG. 5 is a sectional view of the heat exchanger.
【図6】従来の熱交換器の断面図FIG. 6 is a cross-sectional view of a conventional heat exchanger.
【符号の説明】 1、11 第1の流路 2、12 第2の流路 3、13 第3の流路[Explanation of symbols] 1, 11 First channel 2, 12 Second channel 3, 13 Third channel
───────────────────────────────────────────────────── フロントページの続き (72)発明者 國本 啓次郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 近藤 龍太 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 今林 敏 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 岡 浩二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3L103 AA05 BB43 CC02 DD52 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Keijiro Kunimoto 1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric Sangyo Co., Ltd. (72) Inventor Ryuta Kondo 1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric Sangyo Co., Ltd. (72) Inventor Satoshi Imabayashi 1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric Sangyo Co., Ltd. (72) Inventor Koji Oka 1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric Sangyo Co., Ltd. F term (reference) 3L103 AA05 BB43 CC02 DD52
Claims (6)
なる第1の流路と、前記第1の流路が形成されている少
なくとも一方の面に対向して第2の流路および第3の流
路を有する熱交換器。1. A first flow path formed by arranging a plurality of flow paths in parallel on the same plane, and a second flow path facing at least one surface on which the first flow path is formed. And a heat exchanger having a third flow path.
なる第1の流路と、前記第1の流路が形成されている一
方の面に対向して設けられた第2の流路と、前記第1の
流路が形成されている他方の面に対向して設けられた第
3の流路を有する熱交換器。2. A first channel formed by arranging a plurality of channels in parallel on the same plane, and a second channel provided so as to face one surface on which the first channel is formed. A heat exchanger having a flow passage and a third flow passage provided so as to face the other surface on which the first flow passage is formed.
一方に対して、第1の流路と同一の流体を流通させてな
る請求項1または2記載の熱交換器。3. The heat exchanger according to claim 1, wherein the same fluid as the first flow path is made to flow through either one of the second flow path and the third flow path.
し、同一流体を流通させてなる請求項1または2記載の
熱交換器。4. The heat exchanger according to claim 1, wherein the second flow path and the third flow path are in communication with each other and the same fluid is circulated.
記第1の流路、第2の流路および第3の流路のそれぞれ
と連通する配管部を植立させた請求項1〜4のいずれか
1項に記載の熱交換器。5. A pipe part communicating with each of the first flow path, the second flow path and the third flow path is planted on only one surface of the first flow path. Item 5. The heat exchanger according to any one of items 1 to 4.
よび第3の流路の少なくとも一方に低圧側流体が流通す
る請求項1〜5のいずれか1項に記載の熱交換器。6. The heat according to claim 1, wherein the high-pressure side fluid flows through the first flow passage, and the low-pressure side fluid flows through at least one of the second flow passage and the third flow passage. Exchanger.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002139607A JP2003336975A (en) | 2002-05-15 | 2002-05-15 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002139607A JP2003336975A (en) | 2002-05-15 | 2002-05-15 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003336975A true JP2003336975A (en) | 2003-11-28 |
Family
ID=29700706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002139607A Pending JP2003336975A (en) | 2002-05-15 | 2002-05-15 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003336975A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009174753A (en) * | 2008-01-23 | 2009-08-06 | Mitsubishi Electric Corp | Heat exchanger and heat pump water heater |
JP2009250535A (en) * | 2008-04-07 | 2009-10-29 | Mitsubishi Electric Corp | Heat pump water heater |
JP2010091129A (en) * | 2008-10-03 | 2010-04-22 | Daikin Ind Ltd | Heat exchanger and water heating system |
-
2002
- 2002-05-15 JP JP2002139607A patent/JP2003336975A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009174753A (en) * | 2008-01-23 | 2009-08-06 | Mitsubishi Electric Corp | Heat exchanger and heat pump water heater |
JP2009250535A (en) * | 2008-04-07 | 2009-10-29 | Mitsubishi Electric Corp | Heat pump water heater |
JP2010091129A (en) * | 2008-10-03 | 2010-04-22 | Daikin Ind Ltd | Heat exchanger and water heating system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2706318B1 (en) | Heat exchanger and refrigeration cycle device provided with same | |
JP6305574B2 (en) | Plate heat exchanger and heat pump outdoor unit | |
JP2006234254A (en) | Heat exchanger and heat pump type hot water supply device using the same | |
CN104315757A (en) | Miniature heat exchanger integrating condensing, throttling and evaporation | |
JP2003028582A (en) | Heat exchanger | |
JP5241432B2 (en) | Four-way switching valve and refrigeration cycle device | |
JP5744316B2 (en) | Heat exchanger and heat pump system equipped with the heat exchanger | |
JP3658677B2 (en) | Plate heat exchanger and refrigeration system | |
JP2003336975A (en) | Heat exchanger | |
JP2001227840A (en) | Hybrid type heat pump device | |
JP2004347258A (en) | Heat exchanger | |
JP5257102B2 (en) | Heat exchanger and refrigeration air conditioner | |
JP2004125340A (en) | Heat exchanger | |
JP2004183960A (en) | Heat exchanger | |
JP5413594B2 (en) | Heat pump type water heater | |
JP2004218945A (en) | Heat exchanger and method of manufacturing the same | |
JP4766800B2 (en) | Pulse tube refrigerator | |
JP2003336990A (en) | Heat exchanger | |
JP2019100565A (en) | Heat exchanger and refrigeration system using the same | |
JP3948265B2 (en) | Heat exchanger | |
WO2013114435A1 (en) | Heat exchanger and heat pump system | |
JP2005030659A (en) | Heat pump type water heater | |
JP2003172588A (en) | Heat exchanger | |
CN118168203A (en) | Regenerator, refrigerating system and refrigerating equipment | |
JP2004108712A (en) | Heat exchanger for heat pump type hot-water supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041015 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050706 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070605 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071009 |