JP2003336924A - Defrosting device of absorption refrigerating machine and absorption heat pump - Google Patents

Defrosting device of absorption refrigerating machine and absorption heat pump

Info

Publication number
JP2003336924A
JP2003336924A JP2002144150A JP2002144150A JP2003336924A JP 2003336924 A JP2003336924 A JP 2003336924A JP 2002144150 A JP2002144150 A JP 2002144150A JP 2002144150 A JP2002144150 A JP 2002144150A JP 2003336924 A JP2003336924 A JP 2003336924A
Authority
JP
Japan
Prior art keywords
defrosting
evaporator
absorption
heat pump
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002144150A
Other languages
Japanese (ja)
Inventor
Michio Nishino
民智夫 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2002144150A priority Critical patent/JP2003336924A/en
Publication of JP2003336924A publication Critical patent/JP2003336924A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a coefficient of performance from being deteriorated by preventing a heat exchange from being obstructed by frosting. <P>SOLUTION: In a defrosting operation, an expansion valve 21 for defrosting is installed between an evaporator 6 and an absorber 5, and a refrigerant bypass route 26 is installed between a generator 8 and the evaporator 6. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、吸収冷凍機・吸
収ヒートポンプの霜取装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defroster for an absorption refrigerator / heat pump.

【0002】[0002]

【従来の技術】一般に、地域冷暖房などに吸収冷凍機が
使用されている。吸収冷凍機は、コージェネレーション
の一種として、ガスタービンの廃熱等で駆動されるた
め、システム全体としてのエネルギー効率が比較的高
い。又、吸収冷凍機はヒートポンプとして利用すること
も可能であり、地域冷暖房としては、下水、河川水等か
ら吸収した熱を暖房等に利用している。
2. Description of the Related Art Absorption refrigerators are generally used for district heating and cooling. The absorption chiller is a type of cogeneration and is driven by waste heat of a gas turbine or the like, so that the energy efficiency of the entire system is relatively high. The absorption refrigerator can also be used as a heat pump, and for district cooling and heating, heat absorbed from sewage, river water, etc. is used for heating and the like.

【0003】図2は従来の吸収冷凍機・吸収ヒートポン
プの構成を示し、1はガスタービン発電機であり、ガス
タービン2に発電機3を接続して構成されている。ガス
タービン2は、圧縮機2aで気体(空気)を圧縮し、こ
の気体を燃焼器2bで加熱し、生じた高温高圧ガスをタ
ービン2cに供給してタービン2cを回転させるもので
ある。ガスタービン2の排気は熱交換器4を介して排出
される。
FIG. 2 shows the structure of a conventional absorption refrigerating machine / absorption heat pump. Reference numeral 1 denotes a gas turbine generator, which is constituted by connecting a generator 3 to a gas turbine 2. The gas turbine 2 compresses gas (air) with the compressor 2a, heats this gas with the combustor 2b, supplies the produced | generated high temperature high pressure gas to the turbine 2c, and rotates the turbine 2c. The exhaust gas of the gas turbine 2 is exhausted via the heat exchanger 4.

【0004】一方、吸収器5は蒸発器6から出てくる低
温低圧の冷媒蒸気を吸収剤により吸収し、この吸収の際
に熱を出すので、この熱を利用して温水1を得る。吸収
によって冷媒濃度が高くなった吸収剤をポンプ7によっ
て発生器8に送入し、発生器8においては蒸気等の駆動
熱源によって加熱されて冷媒蒸気が発生し、この蒸気は
凝縮器9へ出て行く。発生器8で冷媒濃度が薄くなった
吸収剤は熱交換器10において吸収器5からの低温の吸
収剤を加熱した後、減圧弁11で減圧され、吸収器5に
戻される。
On the other hand, the absorber 5 absorbs the low-temperature and low-pressure refrigerant vapor discharged from the evaporator 6 by the absorbent, and produces heat during the absorption, so the hot water 1 is obtained by utilizing this heat. The absorbent whose concentration of the refrigerant has increased due to absorption is sent to the generator 8 by the pump 7, and is heated by the driving heat source such as steam in the generator 8 to generate the refrigerant vapor, which is output to the condenser 9. Go. The absorbent whose refrigerant concentration has become thin in the generator 8 heats the low-temperature absorbent from the absorber 5 in the heat exchanger 10, and then is decompressed by the pressure reducing valve 11 and returned to the absorber 5.

【0005】凝縮器9においては、冷媒蒸気は放熱凝縮
し、温水2が得られる。液体冷媒は膨張弁12によって
減圧され、蒸発器6に送入される。蒸発器6では、周囲
から吸熱して蒸発し、これによって得られた低温のブラ
インはポンプ13によって屋外機14に運ばれ、ファン
15によって風が送られる。蒸発器6から出た低温低圧
の冷媒は吸収器5に吸収される。又、駆動熱源である蒸
気等はポンプ16により循環され、熱交換器4において
タービン2cの排気によって加熱され、再び発生器8に
戻される。
In the condenser 9, the refrigerant vapor is radiatively condensed and the hot water 2 is obtained. The liquid refrigerant is decompressed by the expansion valve 12 and fed into the evaporator 6. In the evaporator 6, the low temperature brine obtained by absorbing heat from the surroundings and evaporating, is carried by the pump 13 to the outdoor unit 14 and blown by the fan 15. The low-temperature low-pressure refrigerant discharged from the evaporator 6 is absorbed by the absorber 5. Further, steam or the like as a driving heat source is circulated by the pump 16, heated in the heat exchanger 4 by the exhaust gas of the turbine 2c, and returned to the generator 8 again.

【0006】[0006]

【発明が解決しようとする課題】ところで、図3は吸収
冷凍機/吸収ヒートポンプの冷凍サイクルを示し、図中
の実線はそのT−s線図である。二重線の矢印は、T−
s線図に対応する駆動熱源、温水1、温水2、空気の温
度である。気温が0℃から5℃程度の場合、蒸発器6で
ヒートポンプ運転により大気から吸熱すると、屋外機1
4の熱交換器では表面温度が氷点下に達し、霜が発生し
易い。該熱交換器の表面が霜で被われると、熱交換が阻
害され、ヒートポンプ運転の動作係数が悪化する。又、
冷凍機として運転する場合、同様の現象が冷凍庫内等の
熱交換器で起きる。
By the way, FIG. 3 shows a refrigeration cycle of an absorption refrigerator / absorption heat pump, and the solid line in the figure is its Ts diagram. The double-lined arrow is T-
The temperatures of the driving heat source, hot water 1, hot water 2, and air corresponding to the s diagram. When the temperature is around 0 ° C to 5 ° C, the evaporator 6 absorbs heat from the atmosphere by operating the heat pump.
In the heat exchanger of No. 4, the surface temperature reaches below the freezing point and frost is easily generated. When the surface of the heat exchanger is covered with frost, heat exchange is hindered and the coefficient of operation of the heat pump operation deteriorates. or,
When operating as a refrigerator, the same phenomenon occurs in a heat exchanger such as in a freezer.

【0007】この発明は上記のような課題を解決するた
めに成されたものであり、霜による熱交換の阻害を防止
し、動作係数の悪化を防止することができる吸収冷凍機
・吸収ヒートポンプの霜取装置を得ることを目的とす
る。
The present invention has been made in order to solve the above-mentioned problems, and it is an absorption refrigerating machine / absorption heat pump which can prevent the heat exchange from being hindered by frost and can prevent the deterioration of the coefficient of operation. The purpose is to obtain a defroster.

【0008】[0008]

【課題を解決するための手段】この発明の請求項1に係
る吸収冷凍機・吸収ヒートポンプの霜取装置は、蒸発器
から出た冷媒を吸収剤により吸収する吸収器と、吸収器
からの吸収剤を駆動熱源により加熱して冷媒蒸気を発生
させる発生器と、発生器からの冷媒蒸気を凝縮させる凝
縮器と、凝縮器からの冷媒を蒸発させる蒸発器とを備
え,通常運転を行う吸収冷凍機・吸収ヒートポンプにお
いて、霜取り運転時に、蒸発器を凝縮器として動作させ
るものである。
A defroster for an absorption refrigerating machine / absorption heat pump according to claim 1 of the present invention is an absorber that absorbs a refrigerant discharged from an evaporator with an absorbent, and an absorption from the absorber. An absorption refrigeration system that includes a generator that heats the agent with a driving heat source to generate refrigerant vapor, a condenser that condenses the refrigerant vapor from the generator, and an evaporator that evaporates the refrigerant from the condenser In a machine / absorption heat pump, the evaporator is operated as a condenser during defrosting operation.

【0009】請求項2に係る吸収冷凍機・吸収ヒートポ
ンプの霜取装置は、霜取り運転時に、蒸発器と吸収器の
間に霜取用膨張弁を設けるとともに、発生器と蒸発器の
間に冷媒のバイパス経路を設けたものである。熱サイク
ルへの悪影響を回避するために、凝縮器の冷媒入口、冷
媒出口に閉切弁を設け、少なくとも一方の閉切弁を閉じ
る。
In the defroster for an absorption refrigerating machine / absorption heat pump according to a second aspect, a defrosting expansion valve is provided between the evaporator and the absorber during the defrosting operation, and a refrigerant is provided between the generator and the evaporator. The bypass route is provided. In order to avoid an adverse effect on the heat cycle, a closing valve is provided at the refrigerant inlet and the refrigerant outlet of the condenser, and at least one closing valve is closed.

【0010】請求項3に係る吸収冷凍機・吸収ヒートポ
ンプの霜取装置は、霜取り運転時に、霜取用膨張弁と吸
収器の間に逆流防止用の霜取弁を設けたものである。
The defroster for an absorption refrigerating machine / absorption heat pump according to the third aspect is provided with a defrosting valve for preventing backflow between the expansion valve for defrosting and the absorber during defrosting operation.

【0011】請求項4に係る吸収冷凍機・吸収ヒートポ
ンプの霜取装置は、霜取り運転時に、霜取用膨張弁又は
霜取弁と吸収器との間に霜取用蒸発器を設けたものであ
る。霜取り運転時に、吸収器の凍結を防止し、吸収器に
おける温水の供給も可能とする。霜取用蒸発器を通常運
転時に用いると、ヒートポンプ運転により得られる熱量
が増加する。
The defroster for an absorption refrigerating machine / absorption heat pump according to a fourth aspect is provided with a defrosting evaporator between the defrosting expansion valve or defrosting valve and the absorber during defrosting operation. is there. During defrosting operation, the absorber is prevented from freezing and hot water can be supplied to the absorber. When the defrosting evaporator is used during normal operation, the amount of heat obtained by operating the heat pump increases.

【0012】請求項5に係る吸収冷凍機・吸収ヒートポ
ンプの霜取装置は、霜取用蒸発器の熱源として、発生器
の駆動熱源の余熱、空気、冷却水の何れかを用いたもの
である。
The defroster for an absorption refrigerating machine / absorption heat pump according to a fifth aspect uses, as the heat source of the defrosting evaporator, any of the residual heat of the driving heat source of the generator, air and cooling water. .

【0013】請求項6に係る吸収冷凍機・吸収ヒートポ
ンプの霜取装置は、通常運転時に、霜取用蒸発器を蒸発
器と吸収器との間に接続するとともに、発生器の駆動熱
源として、排気から圧縮空気に熱を回収する再生サイク
ルガスタービンの排気を用いたものである。再生サイク
ルガスタービンの排気を駆動熱源とした場合、霜取用蒸
発器との組み合わせにより、ヒートポンプ運転時に得ら
れる熱量が増加し、霜取り運転中の温水も得られる。
又、特別な熱源は不要となる。
In a defroster for an absorption refrigerating machine / absorption heat pump according to a sixth aspect, during normal operation, the defrosting evaporator is connected between the evaporator and the absorber, and as a driving heat source for the generator, The exhaust of a regeneration cycle gas turbine that recovers heat from the exhaust to compressed air is used. When the exhaust of the regeneration cycle gas turbine is used as the driving heat source, the amount of heat obtained during the operation of the heat pump is increased by combining with the evaporator for defrosting, and hot water during defrosting operation is also obtained.
Also, no special heat source is required.

【0014】請求項7に係る吸収冷凍機・吸収ヒートポ
ンプの霜取装置は、通常運転時に、霜取用蒸発器を蒸発
器と吸収器との間に設け、霜取用蒸発器に発生器に供給
すべき駆動熱源の一部又は全部を供給するようにしたも
のである。
In the defroster for an absorption refrigerating machine / absorption heat pump according to a seventh aspect, the defrosting evaporator is provided between the evaporator and the absorber during normal operation, and the defrosting evaporator is provided as a generator. A part or all of the driving heat source to be supplied is supplied.

【0015】[0015]

【発明の実施の形態】実施形態1 以下、この発明の実施の形態を図面とともに説明する。
図1はこの発明の実施形態1による霜取装置を備えた吸
収冷凍機・吸収ヒートポンプの構成を示し、ガスタービ
ン発電機1においては、ガスタービン2は圧縮機2aで
気体を圧縮し、この高圧の気体は熱交換器4においてタ
ービン2cの排気と熱交換されて加熱されるとともに、
燃焼器2bで加熱され、高温高圧のガスとなってタービ
ン2cに供給され、タービン2cは回転する。従って、
ガスタービン2は、排気から圧縮空気に熱を回収する再
生サイクルガスタービンとなる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1 Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows the configuration of an absorption refrigerator / heat pump equipped with a defroster according to Embodiment 1 of the present invention. In a gas turbine generator 1, a gas turbine 2 compresses gas with a compressor 2a, Is heated by exchanging heat with the exhaust gas of the turbine 2c in the heat exchanger 4, and
The gas is heated by the combustor 2b, becomes high-temperature and high-pressure gas and is supplied to the turbine 2c, and the turbine 2c rotates. Therefore,
The gas turbine 2 is a regeneration cycle gas turbine that recovers heat from exhaust gas to compressed air.

【0016】タービン2cの排気は熱交換の後、排気弁
17を介して霜取用蒸発器19に供給され、または排気
弁18を介して発生器8に駆動熱源として供給された後
霜取用蒸発器19に供給され、煙突へ排出される。
After heat exchange, the exhaust gas of the turbine 2c is supplied to the defrosting evaporator 19 via the exhaust valve 17 or is supplied to the generator 8 as a driving heat source via the exhaust valve 18 for post-defrosting. It is supplied to the evaporator 19 and discharged to the chimney.

【0017】一方、蒸発器6から出た冷媒は閉切弁2
0、又は霜取用膨張弁21及び霜取弁22を介して、霜
取用蒸発器19に送られた後、吸収器5に送られる。吸
収器5からは従来同様にポンプ7により吸収剤が熱交換
器10を介して発生器8に送入され、発生器8からの冷
媒蒸気は閉切弁23を介して凝縮器9に送入されるとと
もに、バイパス経路26に設けられたバイパス弁24を
介して蒸発器6に供給される。又、凝縮器9からの液体
冷媒は、閉切弁25及び膨張弁12を介して蒸発器6に
送入される。
On the other hand, the refrigerant discharged from the evaporator 6 is shut off by the shutoff valve 2.
0, or after being sent to the defrosting evaporator 19 via the defrosting expansion valve 21 and the defrosting valve 22, it is sent to the absorber 5. From the absorber 5, as in the conventional case, the absorbent is sent to the generator 8 via the heat exchanger 10 by the pump 7, and the refrigerant vapor from the generator 8 is sent to the condenser 9 via the shutoff valve 23. At the same time, it is supplied to the evaporator 6 via the bypass valve 24 provided in the bypass path 26. Further, the liquid refrigerant from the condenser 9 is sent to the evaporator 6 via the shutoff valve 25 and the expansion valve 12.

【0018】上記構成において、閉切弁20を開き、霜
取弁22を閉じ、排気弁18を開いて排気弁17を閉
じ、閉切弁23,25を開いてバイパス弁24を閉じる
と、通常運転が行われ、冷媒を吸収した吸収剤は発生器
8に送られ、再生サイクルガスタービン2の排気を駆動
熱源として加熱される。従って、発生器8から冷媒蒸気
が発生し、この冷媒蒸気は閉切弁23を介して凝縮器9
に送られ、凝縮して液体冷媒となり、この液体冷媒は閉
切弁25及び膨張弁12を介して蒸発器6に送入され、
蒸発する。この低温低圧の冷媒は閉切弁20を介して霜
取用蒸発器19に送られ、発生器8を通過した再生サイ
クルガスタービン2の排気によって加熱された後、吸収
器5に吸収される。
In the above structure, when the shutoff valve 20 is opened, the defrost valve 22 is closed, the exhaust valve 18 is opened and the exhaust valve 17 is closed, and the shutoff valves 23 and 25 are opened and the bypass valve 24 is closed. The operation is performed, the absorbent that has absorbed the refrigerant is sent to the generator 8, and is heated by using the exhaust gas of the regeneration cycle gas turbine 2 as a driving heat source. Therefore, the refrigerant vapor is generated from the generator 8, and this refrigerant vapor is passed through the shutoff valve 23 to the condenser 9
And is condensed into a liquid refrigerant, and this liquid refrigerant is sent to the evaporator 6 through the shutoff valve 25 and the expansion valve 12,
Evaporate. The low-temperature low-pressure refrigerant is sent to the defrosting evaporator 19 via the shutoff valve 20, heated by the exhaust gas of the regeneration cycle gas turbine 2 that has passed through the generator 8, and then absorbed by the absorber 5.

【0019】ここで、屋外機14の熱交換器の表面が霜
で被われた場合、バイパス弁24、霜取弁22を開き、
閉切弁20,23,25を閉じると、通常運転から霜取
り運転に切り換えられ、発生器8から出た高温高圧の冷
媒はバイパス経路26を通って蒸発器6に入り、霜取用
膨張弁21を設けたことにより、蒸発器6内の圧力が上
昇し、蒸発器6は凝縮器として動作するようになる。例
えば、冷媒にアンモニア、吸収剤に水を用いた場合、蒸
発器6の温度は最高50℃に達する。このため、蒸発器
6から屋外機14に導出されるブラインの温度が上昇
し、屋外機14の熱交換器の温度も上昇してその霜取り
が行われる。このような霜取り運転時には、ファン15
は停止される。
When the surface of the heat exchanger of the outdoor unit 14 is covered with frost, the bypass valve 24 and the defrost valve 22 are opened,
When the shutoff valves 20, 23, 25 are closed, the normal operation is switched to the defrosting operation, and the high-temperature and high-pressure refrigerant discharged from the generator 8 enters the evaporator 6 through the bypass path 26 and the defrosting expansion valve 21. By providing, the pressure in the evaporator 6 rises, and the evaporator 6 operates as a condenser. For example, when ammonia is used as the refrigerant and water is used as the absorbent, the temperature of the evaporator 6 reaches a maximum of 50 ° C. Therefore, the temperature of the brine discharged from the evaporator 6 to the outdoor unit 14 rises, the temperature of the heat exchanger of the outdoor unit 14 also rises, and the defrosting is performed. During such a defrosting operation, the fan 15
Is stopped.

【0020】又、ガスタービン発電機1においては、タ
ービン2cの排気から圧縮空気に熱を回収しており、再
生サイクルガスタービンとなっている。再生サイクルガ
スタービンは、排気温度が低いために、図3のΔT1が
小さく、発生器8の駆動熱源には適さないとされている
が、通常運転時も霜取用蒸発器21が用いられるので、
ヒートポンプ運転時に得られる熱量を増やすことがで
き、また△T2が△T1の割に大きいので、霜取り運転
中に温水1を供給することができる。
Further, in the gas turbine generator 1, heat is recovered from the exhaust gas of the turbine 2c to the compressed air, which is a regenerative cycle gas turbine. Since the regeneration cycle gas turbine has a low exhaust temperature, ΔT1 in FIG. 3 is small and is not suitable as a drive heat source for the generator 8. However, the defrosting evaporator 21 is used during normal operation as well. ,
The amount of heat obtained during the heat pump operation can be increased, and since ΔT2 is large relative to ΔT1, hot water 1 can be supplied during the defrosting operation.

【0021】なお、蒸発器6と屋外機14との間にブラ
インを循環させているが、冷媒を直接屋外機14に供給
するようにしても良い。又、ヒートポンプ運転ではな
く、冷凍機として運転する場合、屋外器14の熱交換器
は冷凍庫内の熱交換器となる。霜取弁22は、吸収剤が
逆流することにより、霜取用膨張弁21の凍結等の不都
合が生じるのを避けるために設けてあるが、構造上必要
がなければ省略してもよい。又、閉切弁23,25を設
けたことにより、霜取り時に凝縮器9内に冷媒が凝縮し
て滞り、熱サイクルを乱すことを避けることができる
が、閉切弁23,25は必要がなければ、省略してもよ
い。
Although the brine is circulated between the evaporator 6 and the outdoor unit 14, the refrigerant may be directly supplied to the outdoor unit 14. When operating as a refrigerator instead of the heat pump operation, the heat exchanger of the outdoor unit 14 becomes the heat exchanger in the freezer. The defrost valve 22 is provided in order to avoid inconvenience such as freezing of the defrost expansion valve 21 due to the reverse flow of the absorbent, but it may be omitted if it is not necessary in the structure. In addition, by providing the shutoff valves 23 and 25, it is possible to avoid the refrigerant from condensing and stagnating in the condenser 9 during defrosting and disturbing the heat cycle, but the shutoff valves 23 and 25 are not necessary. However, it may be omitted.

【0022】上記したように、蒸発器6を凝縮器として
動作させることにより、蒸発器6における霜取りを行う
ことができ、霜による熱交換の阻害を防止し、動作係数
の悪化を防止することができる。
As described above, by operating the evaporator 6 as a condenser, it is possible to defrost the evaporator 6, prevent heat exchange from being hindered by frost, and prevent deterioration of the coefficient of operation. it can.

【0023】又、上記したように、蒸発器6を凝縮器と
して動作させた場合、蒸発器6において凝縮した冷媒が
霜取用膨張弁21を介して吸収器5に流入するため、吸
収液が凍結する場合がある。そこで、このことを回避す
るために、霜取用蒸発器19を設け、冷媒を加熱蒸発さ
せるようにしている。霜取用蒸発器19の熱源として
は、空気等何を用いてもよいが、実施例1では発生器8
の駆動熱源であるガスタービン2の排気の余熱を用いて
いる。図3のΔT2で示すように、駆動熱源の余熱は発
生器8の温度を上回る。理解し易くするために、図3の
駆動熱源、空気、温水1、温水2の横軸は、対応する冷
媒あるいは吸収液の比エントロピsで示している。この
ように霜取用蒸発器19を設けたことにより、霜取運転
中でも場合によっては温水1の供給が可能となる。さら
に、霜取用蒸発器19は通常運転時にも用いられ、これ
によって駆動熱源の余熱△T2を氷点下まで回収するこ
とができ、ヒートポンプ運転時に得られる熱量を増加さ
せることができる。その場合、霜取用蒸発器19自身の
霜取りが必要となり、吸収冷凍機・吸収ヒートポンプの
能力を低下させ、あるいは停止させるとともに、霜取用
蒸発器19に熱を供給することにより、霜取りを行うこ
とができる。具体的には、排気弁18を絞り、あるいは
閉じ、排気弁17を少し開き、あるいは全開とする。こ
れにより、吸収ヒートポンプは能力が下がり、あるいは
停止する。その結果、霜取用蒸発器19が冷却されなく
なり、駆動熱源により霜がとれる。
Further, as described above, when the evaporator 6 is operated as a condenser, the refrigerant condensed in the evaporator 6 flows into the absorber 5 through the defrosting expansion valve 21, so that the absorbing liquid is generated. It may freeze. Therefore, in order to avoid this, the defrosting evaporator 19 is provided to heat and evaporate the refrigerant. As the heat source of the defrosting evaporator 19, any air or the like may be used, but in the first embodiment, the generator 8 is used.
The residual heat of the exhaust gas of the gas turbine 2 which is the driving heat source of the above is used. As shown by ΔT2 in FIG. 3, the residual heat of the driving heat source exceeds the temperature of the generator 8. For easy understanding, the horizontal axes of the driving heat source, air, warm water 1 and warm water 2 in FIG. 3 are indicated by the specific entropy s of the corresponding refrigerant or absorbing liquid. By providing the defrosting evaporator 19 in this way, the hot water 1 can be supplied in some cases even during the defrosting operation. Further, the defrosting evaporator 19 is also used during the normal operation, whereby the residual heat ΔT2 of the driving heat source can be recovered to below the freezing point, and the amount of heat obtained during the operation of the heat pump can be increased. In that case, defrosting of the defrosting evaporator 19 itself is necessary, and the defrosting is performed by supplying heat to the defrosting evaporator 19 while reducing or stopping the capacity of the absorption refrigerator / absorption heat pump. be able to. Specifically, the exhaust valve 18 is throttled or closed, and the exhaust valve 17 is slightly opened or fully opened. This reduces or shuts down the absorption heat pump. As a result, the defrosting evaporator 19 is no longer cooled and frost is removed by the driving heat source.

【0024】実施形態2 実施形態2においては、吸収冷凍機として運転する場
合、クーリングタワー等から供給される吸収器5、凝縮
器9の冷却水を、霜取用蒸発器19の熱源として用いる
ことができる。これによって、霜取り時に特に熱源を設
ける必要がなくなる。クーリングタワー等の放熱器の多
くは、吸熱も可能である。
Embodiment 2 In Embodiment 2, when operating as an absorption refrigerator, the cooling water of the absorber 5 and the condenser 9 supplied from a cooling tower or the like is used as the heat source of the defrosting evaporator 19. it can. As a result, it is not necessary to provide a heat source during defrosting. Many radiators such as cooling towers can also absorb heat.

【0025】実施形態3 吸収冷凍機として運転する場合、条件によっては霜取用
蒸発器19がなくても霜取り運転が可能である。クーリ
ングタワー等から供給される冷却水が、吸収器5に熱を
供給するためである。
Embodiment 3 When operating as an absorption refrigerator, depending on conditions, defrosting operation is possible without the defrosting evaporator 19. This is because the cooling water supplied from the cooling tower or the like supplies heat to the absorber 5.

【0026】[0026]

【発明の効果】以上のようにこの発明の請求項1,2に
よれば、霜取り運転時に、蒸発器と吸収器との間に霜取
用膨張弁を設けるとともに、発生器と蒸発器との間に冷
媒のバイパス経路を設けたので、蒸発器が凝縮器として
動作し、蒸発器の温度が高まり、霜取りが行われる。こ
のため、蒸発器における熱交換が円滑に行われ、動作係
数が向上する。
As described above, according to claims 1 and 2 of the present invention, during the defrosting operation, the expansion valve for defrosting is provided between the evaporator and the absorber, and the generator and the evaporator are connected. Since the refrigerant bypass path is provided therebetween, the evaporator operates as a condenser, the temperature of the evaporator rises, and defrosting is performed. Therefore, the heat exchange in the evaporator is smoothly performed and the coefficient of operation is improved.

【0027】請求項3においては、霜取り運転時に霜取
用膨張弁と吸収器との間に霜取弁を設けており、吸収剤
の逆流を防止し、霜取用膨張弁の凍結等を防止すること
ができる。
In the third aspect, the defrosting valve is provided between the defrosting expansion valve and the absorber during defrosting operation to prevent backflow of the absorbent and to prevent freezing of the defrosting expansion valve. can do.

【0028】請求項4においては、霜取り運転時に霜取
用膨張弁又は霜取弁と吸収器との間に霜取用蒸発器を設
けており、吸収器の凍結を防止するとともに、霜取り運
転時においても吸収器において温水の供給が可能とな
る。
According to the present invention, the defrosting evaporator is provided between the defrosting expansion valve or the defrosting valve and the absorber during the defrosting operation to prevent the absorber from freezing and during the defrosting operation. Also in this case, hot water can be supplied to the absorber.

【0029】請求項5においては、霜取用蒸発器の熱源
として、発生器の駆動熱源の余熱、空気、冷却水を用い
ており、特別な熱源が不要となる。
In the fifth aspect, the residual heat of the driving heat source of the generator, air, and cooling water are used as the heat source of the defrosting evaporator, so that no special heat source is required.

【0030】請求項6においては、通常運転時に、霜取
用蒸発器を蒸発器と吸収器との間に接続するとともに、
発生器の駆動熱源に再生サイクルガスタービンの排気を
用いており、ヒートポンプ運転時の熱量を増やすことが
できる。
In the sixth aspect, the defrosting evaporator is connected between the evaporator and the absorber during normal operation, and
The exhaust gas of the regeneration cycle gas turbine is used as the drive heat source of the generator, and the amount of heat during operation of the heat pump can be increased.

【0031】請求項7においては、通常運転時に、霜取
用蒸発器を蒸発器と吸収器との間に設け、霜取用蒸発器
に発生器に供給すべき駆動熱源の一部又は全部を供給す
るようにしており、これにより吸収ヒートポンプの能力
が低下して霜取用蒸発器が冷却されなくなり、また霜取
用蒸発器は駆動熱源により加熱され、霜取用蒸発器の霜
を除去することができる。
According to a seventh aspect of the present invention, during normal operation, the defrosting evaporator is provided between the evaporator and the absorber, and a part or all of the driving heat source to be supplied to the generator is supplied to the defrosting evaporator. The defrosting evaporator is no longer cooled due to the reduced capacity of the absorption heat pump, and the defrosting evaporator is heated by the driving heat source to remove frost from the defrosting evaporator. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施形態1による吸収冷凍機・吸収
ヒートポンプの構成図である。
FIG. 1 is a configuration diagram of an absorption refrigerator / absorption heat pump according to a first embodiment of the present invention.

【図2】従来の吸収冷凍機・吸収ヒートポンプの構成図
である。
FIG. 2 is a configuration diagram of a conventional absorption refrigerator / absorption heat pump.

【図3】吸収冷凍機・吸収ヒートポンプの冷凍サイクル
図である。
FIG. 3 is a refrigeration cycle diagram of an absorption refrigerator / absorption heat pump.

【符号の説明】[Explanation of symbols]

1…ガスタービン発電機 2…ガスタービン 5…吸収器 6…蒸発器 8…発生器 9…凝縮器 14…屋外機 17,18…排気弁 19…霜取用蒸発器 20,23,25…閉切弁 21…霜取用膨張弁 22…霜取弁 24…バイパス弁 26…バイパス経路 1 ... Gas turbine generator 2 ... Gas turbine 5 ... Absorber 6 ... Evaporator 8 ... Generator 9 ... Condenser 14 ... Outdoor unit 17, 18 ... Exhaust valve 19 ... Evaporator for defrosting 20, 23, 25 ... Closed valve 21 ... Defrosting expansion valve 22 ... Defrost valve 24 ... Bypass valve 26 ... Bypass route

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器から出た冷媒を吸収剤により吸収
する吸収器と、吸収器からの吸収剤を駆動熱源により加
熱して冷媒蒸気を発生させる発生器と、発生器からの冷
媒蒸気を凝縮させる凝縮器と、凝縮器からの冷媒を蒸発
させる蒸発器とを備え、通常運転を行う吸収冷凍機・吸
収ヒートポンプにおいて、霜取り運転時に、蒸発器を凝
縮器として動作させることを特徴とする吸収冷凍機・吸
収ヒートポンプの霜取装置。
1. An absorber that absorbs refrigerant discharged from an evaporator with an absorbent, a generator that heats the absorbent from the absorber with a driving heat source to generate refrigerant vapor, and a refrigerant vapor from the generator. An absorption refrigerating machine / absorption heat pump that includes a condenser for condensing and an evaporator for evaporating the refrigerant from the condenser, and in the absorption chiller / absorption heat pump that normally operates, the absorption characterized by operating the evaporator as a condenser during defrosting operation. Defroster for refrigerators and absorption heat pumps.
【請求項2】 霜取り運転時に、蒸発器と吸収器の間に
霜取用膨張弁を設けるとともに、発生器と蒸発器の間に
冷媒のバイパス経路を設けたことを特徴とする請求項1
記載の吸収冷凍機・吸収ヒートポンプの霜取装置。
2. A defrosting expansion valve is provided between the evaporator and the absorber during defrosting operation, and a refrigerant bypass path is provided between the generator and the evaporator.
Defrosting device for the absorption refrigerator / heat pump described.
【請求項3】 霜取り運転時に、霜取用膨張弁と吸収器
の間に逆流防止用の霜取弁を設けたことを特徴とする請
求項2記載の吸収冷凍機・吸収ヒートポンプの霜取装
置。
3. A defroster for an absorption refrigerating machine / absorption heat pump according to claim 2, wherein a defrosting valve for preventing backflow is provided between the expansion valve for defrosting and the absorber during defrosting operation. .
【請求項4】 霜取り運転時に、霜取用膨張弁又は霜取
弁と吸収器との間に霜取用蒸発器を設けたことを特徴と
する請求項2又は3記載の吸収冷凍機・吸収ヒートポン
プの霜取装置。
4. The absorption refrigerator / absorber according to claim 2, wherein a defrosting evaporator is provided between the defrosting expansion valve or defrosting valve and the absorber during the defrosting operation. Defroster for heat pump.
【請求項5】 霜取用蒸発器の熱源として、発生器の駆
動熱源の余熱、空気、冷却水の何れかを用いたことを特
徴とする請求項4記載の吸収冷凍機・吸収ヒートポンプ
の霜取装置。
5. The frost for an absorption refrigerating machine / absorption heat pump according to claim 4, wherein any one of residual heat of a driving heat source of a generator, air and cooling water is used as a heat source of the defrosting evaporator. Device.
【請求項6】 通常運転時に、霜取用蒸発器を蒸発器と
吸収器との間に接続するとともに、発生器の駆動熱源と
して、排気から圧縮空気に熱を回収する再生サイクルガ
スタービンの排気を用いたことを特徴とする請求項4又
は5記載の吸収冷凍機・吸収ヒートポンプの霜取装置。
6. An exhaust of a regenerative cycle gas turbine, wherein a defrosting evaporator is connected between the evaporator and the absorber during normal operation, and heat is recovered from the exhaust into compressed air as a driving heat source of the generator. The defroster for an absorption refrigerator / absorption heat pump according to claim 4 or 5, characterized in that.
【請求項7】 通常運転時に、霜取用蒸発器を蒸発器と
吸収器との間に接続し、霜取用蒸発器に発生器に供給す
べき駆動熱源の一部又は全部を供給するようにしたこと
を特徴とする請求項4〜6の何れかに記載の吸収冷凍機
・吸収ヒートポンプの霜取装置。
7. The defrosting evaporator is connected between the evaporator and the absorber during normal operation so that the defrosting evaporator is supplied with a part or all of the driving heat source to be supplied to the generator. The defroster for an absorption refrigerating machine / absorption heat pump according to any one of claims 4-6.
JP2002144150A 2002-05-20 2002-05-20 Defrosting device of absorption refrigerating machine and absorption heat pump Pending JP2003336924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002144150A JP2003336924A (en) 2002-05-20 2002-05-20 Defrosting device of absorption refrigerating machine and absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002144150A JP2003336924A (en) 2002-05-20 2002-05-20 Defrosting device of absorption refrigerating machine and absorption heat pump

Publications (1)

Publication Number Publication Date
JP2003336924A true JP2003336924A (en) 2003-11-28

Family

ID=29703902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002144150A Pending JP2003336924A (en) 2002-05-20 2002-05-20 Defrosting device of absorption refrigerating machine and absorption heat pump

Country Status (1)

Country Link
JP (1) JP2003336924A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180078039A (en) * 2016-12-29 2018-07-09 포스코에너지 주식회사 Waste heat recovery system using absorption heat pump
DE102017219228A1 (en) * 2017-10-26 2019-05-02 Robert Bosch Gmbh Combined boiler operating and defrosting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180078039A (en) * 2016-12-29 2018-07-09 포스코에너지 주식회사 Waste heat recovery system using absorption heat pump
DE102017219228A1 (en) * 2017-10-26 2019-05-02 Robert Bosch Gmbh Combined boiler operating and defrosting device

Similar Documents

Publication Publication Date Title
JP5030344B2 (en) Gas heat pump type air conditioner, engine cooling water heating device, and operation method of gas heat pump type air conditioner
US20060123819A1 (en) Cogeneration system
JP4317793B2 (en) Cooling system
KR100756240B1 (en) Air cooling and heating system
KR20100027353A (en) Refrigerating and freezing apparatus
JPH0953864A (en) Engine type cooling device
KR200431243Y1 (en) air cooling and heating system
JP2003329330A (en) Absorption refrigerating machine
JP5808105B2 (en) Heat source system and control method thereof
JP2003336924A (en) Defrosting device of absorption refrigerating machine and absorption heat pump
JP3871207B2 (en) Refrigeration system combining absorption and compression
JP2004020143A (en) Heat pump equipment using wind force
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP2003343937A (en) Defroster for absorption refrigerating machine and absorption heat pump
JP2002061983A (en) Absorption refrigerating machine
JP3370501B2 (en) Cooling system
JP6613404B2 (en) Refrigeration system
JP2003004330A (en) Exhaust heat recovery air conditioner
KR100818544B1 (en) Regenerative Heat Pump Air Conditioning System
JP4100462B2 (en) Heat utilization system
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
JPH0754211B2 (en) Co-generation system using absorption heat pump cycle
KR20020068807A (en) Heat pump system
JPH04251170A (en) Refrigerating device and operation method thereof in cogeneration system
JP2003336929A (en) Absorbing and compression type refrigerator and method of operating the refrigerator