JP2003336216A - Composite suspension floor slab and method for construction thereof - Google Patents

Composite suspension floor slab and method for construction thereof

Info

Publication number
JP2003336216A
JP2003336216A JP2002143129A JP2002143129A JP2003336216A JP 2003336216 A JP2003336216 A JP 2003336216A JP 2002143129 A JP2002143129 A JP 2002143129A JP 2002143129 A JP2002143129 A JP 2002143129A JP 2003336216 A JP2003336216 A JP 2003336216A
Authority
JP
Japan
Prior art keywords
floor slab
composite
steel
steel pipe
toughness cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002143129A
Other languages
Japanese (ja)
Inventor
Yasuhiro Fujimoto
安宏 藤元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS Mitsubishi Construction Co Ltd
Original Assignee
PS Mitsubishi Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS Mitsubishi Construction Co Ltd filed Critical PS Mitsubishi Construction Co Ltd
Priority to JP2002143129A priority Critical patent/JP2003336216A/en
Publication of JP2003336216A publication Critical patent/JP2003336216A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide technique in which high flexural rigidity and high torsional rigidity are imparted to the structure of the lower floor slab of a deck type prestressed-concrete suspension bridge. <P>SOLUTION: In a composite suspension floor slab 10, composite steel pipes 20 in which steel pipes 21 for a general structure are covered with a high toughness cement composite material 22 are used as left-right suspension main cables, and the composite suspension floor slab has composite floor slabs 30 composed of steel plates 31 covered with the high toughness cement composite materials 32 of upper-lower two layers horizontally connecting the composite steel pipes 20. PC steel materials are inserted into inserting holes 23, and used as the lower floor slab of the suspension bridge. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複合吊床版及びそ
の構築方法に関する。さらに詳しくは、下床版が懸垂線
状のプレストレスト主ケーブルでその上方に垂直部材を
介して水平な上路デッキを備えた上路式PC吊橋の下床
版の構成材であって、高い曲げ剛性と高い捩り剛性とを
有する複合吊床版及びその構築方法に関する。
TECHNICAL FIELD The present invention relates to a composite hanging floor slab and a method for constructing the same. More specifically, the lower floor slab is a prestressed main cable with a catenary wire, and is a constituent material of the lower floor slab of an upper road type PC suspension bridge having a horizontal upper deck via a vertical member above the cable. The present invention relates to a composite hanging floor slab having high torsional rigidity and a method for constructing the same.

【0002】[0002]

【従来の技術】上路式PC吊橋については、本出願人が
特開昭54−160027号公報に基本的な技術を開示
している。これは、例えば、アバットメント又は橋脚間
に架け渡された下床版と、下床版に立てられた間隔配置
の圧縮材としての多数の垂直部材と、アバットメント又
は橋脚間において上記一連の垂直部材上に取り付けられ
た上路デッキとからなるもので、下床版が主ケーブルを
内蔵したプレストレストコンクリートからなる上路式プ
レストレストコンクリート吊橋である。
2. Description of the Related Art Regarding the upper road type PC suspension bridge, the present applicant has disclosed a basic technique in Japanese Patent Laid-Open No. 54-160027. This is, for example, a lower floor slab spanned between abutments or bridge piers, a number of vertical members as compression members arranged at intervals on the lower floor slab, and a series of above-mentioned vertical members between abutments or piers. It is an upper road type prestressed concrete suspension bridge consisting of an upper deck mounted on a member and a lower deck made of prestressed concrete with a built-in main cable.

【0003】また、高靭性セメント複合材料と鋼部材と
を組み合わせた基本構造について、本発明者らは特願2
001−228404号出願にて鋼材と短繊維補強コン
クリートとの2層一体構造の部材を提供した。
The inventors of the present invention applied for a basic structure in which a high-toughness cement composite material and a steel member are combined.
In the 001-228404 application, a member having a two-layer integrated structure of steel and short fiber reinforced concrete was provided.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記上路式
プレストレストコンクリート吊橋の改善に係るものであ
って、その下床版の構造に高い曲げ剛性と高い捩り剛性
とを付与した技術を提供することを目的とする。すなわ
ち、上記鋼材と短繊維補強コンクリートとの2層一体構
造部材の優れた特性を最もよく利用した構造として、高
い曲げ剛性と高い捩り剛性とを有する複合吊床版を開発
し、これを用いた構築方法を提供することを目的とする
ものである。
SUMMARY OF THE INVENTION The present invention relates to an improvement of the above-mentioned upper road type prestressed concrete suspension bridge, and provides a technique for imparting high bending rigidity and high torsional rigidity to the structure of the lower floor slab. The purpose is to That is, a composite hanging floor slab having high bending rigidity and high torsional rigidity has been developed as a structure that makes the best use of the excellent characteristics of the two-layer integrated structural member of the above steel material and short fiber reinforced concrete, and construction using this It is intended to provide a method.

【0005】[0005]

【課題を解決するための手段】本発明は、次の技術手段
を講じたことを特徴とする複合吊床版構造である。すな
わち、本発明は、一般構造用鋼管を高靭性セメント複合
材料にて被覆した剛性構造要素を左右の吊り主索とし、
前記左右の吊り主索の鋼管を連結する上下2層の連結部
材を備え、該連結部材は、高靭性セメント複合材料にて
被覆した鋼板からなることを特徴とする複合吊床版であ
る。ここで高靭性セメント複合材料とは、例えば、短繊
維補強コンクリートなどのような強度及び靭性の大きい
セメント複合材料である。
SUMMARY OF THE INVENTION The present invention is a composite hanging floor slab structure characterized by taking the following technical means. That is, the present invention, the rigid structural element covering the general structural steel pipe with a high toughness cement composite material as the left and right suspension main ropes,
A composite suspended floor slab, comprising upper and lower two-layer connecting members for connecting the steel pipes of the left and right suspension main ropes, the connecting members being made of a steel plate coated with a high-toughness cement composite material. Here, the high-toughness cement composite material is a cement composite material having high strength and toughness such as short fiber reinforced concrete.

【0006】次に、本発明の複合吊床版の構築方法は、
単位長さの左右2本の鋼管を上下2層の鋼板で連結して
なり、鋼管及び鋼板を高靭性セメント複合材料にて被覆
した複合吊床版ユニットを製造し、該鋼管の端部にPC
ケーブルの挿通位置を保持するスペーサを取付け、多数
の該複合吊床版ユニットを鋼管軸方向に連設してPCケ
ーブルを挿通し、該PCケーブルを支承部間に架設し、
橋体の自重作用後に前記鋼管内にグラウンチングを施す
ことを特徴とする複合吊床版の構築方法である。
Next, the method for constructing the composite hanging floor slab of the present invention is as follows.
A left and right steel pipe of unit length is connected by two upper and lower steel plates, and a steel pipe and steel plate are coated with a high-toughness cement composite material to manufacture a composite hanging floor slab unit, and a PC is attached to the end of the steel pipe.
A spacer for holding the insertion position of the cable is attached, a large number of the composite hanging floor slab units are connected in the axial direction of the steel pipe to insert the PC cable, and the PC cable is installed between the supporting portions.
This is a method for constructing a composite suspension floor slab, characterized in that the steel pipe is grounded after the action of the weight of the bridge body.

【0007】[0007]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0008】図7にプレストレス吊橋50の側面図を示
した。吊橋50はプレストレスを導入して懸垂線状に支
承部54に両端を支持した下床版51上に上下連結部材
53を介して上路デッキ52を架設した橋である。谷5
6の上に設けた吊橋であるが、一般の吊橋のように両岸
に主塔を設ける必要がない。支承部54は控え55によ
って固定されている。本発明の複合吊床版10はこの下
床版51を形成するものである。
FIG. 7 shows a side view of the prestressed suspension bridge 50. The suspension bridge 50 is a bridge in which an upper deck 52 is erected via a vertical connecting member 53 on a lower floor slab 51 having both ends supported by supporting portions 54 in a catenary manner by introducing prestress. Valley 5
It is a suspension bridge installed on top of No. 6, but it is not necessary to install a main tower on both banks like ordinary suspension bridges. The support portion 54 is fixed by a retainer 55. The composite hanging floor slab 10 of the present invention forms the lower floor slab 51.

【0009】図1は本発明の実施例の複合吊床版10を
示す図である。本発明の複合吊床版10は、一般構造用
鋼管21を高靭性セメント複合材料22にて被覆した左
右の複合鋼管(合成構造要素)20及びこれを連結する
複合床版(連結部材)30を用いる。
FIG. 1 is a diagram showing a composite hanging floor slab 10 according to an embodiment of the present invention. The composite suspension floor slab 10 of the present invention uses left and right composite steel pipes (synthetic structural elements) 20 in which a general structural steel pipe 21 is coated with a high-toughness cement composite material 22 and a composite floor slab (connecting member) 30 for connecting the same. .

【0010】一般構造用鋼管21と高靭性セメント複合
材料22を組み合わせた複合鋼管20では図2に示すよ
うに鋼管21の外側に溶接による螺旋形の連続ビード2
5を設けることにより、ずれ剪断に対処するよう設計し
た。ビード25の高さは2〜3mmとし、その間隔は3
0〜40mmとした。高靭性セメント複合材料22の被
覆厚さは15〜25mm程度である。
In the composite steel pipe 20 in which the general structural steel pipe 21 and the high-toughness cement composite material 22 are combined, as shown in FIG.
Designed to address shear shear by providing 5. The height of the beads 25 is 2 to 3 mm, and the distance between them is 3
It was set to 0 to 40 mm. The coating thickness of the high-toughness cement composite material 22 is about 15 to 25 mm.

【0011】本発明の複合吊床版構造は、鋼管21と高
靭性セメント複合材料22との合成効果により曲げ剛
性、捩り剛性が向上している。鋼管端部にPC鋼材のス
ペーサ24を設ける。鋼管21内には橋体の自重作用後
セメントミルクを充填する。
The composite hanging floor slab structure of the present invention has improved bending rigidity and torsional rigidity due to the combined effect of the steel pipe 21 and the high-toughness cement composite material 22. A spacer 24 of PC steel is provided at the end of the steel pipe. The steel pipe 21 is filled with cement milk after the action of the weight of the bridge body.

【0012】吊床版の連結部材には、複合床版30を用
いる。複合床版30は、図3に示すように、鋼板31の
表面にジベル37を植設し、高靱性セメント複合材料3
2を被着させたものである。複合床版30を上下二層と
し、主索部である高靭性セメント複合材料被覆鋼管20
と接合する。接合には鋼材又は鉄筋コンクリートもしく
は高靭性セメント複合材料などの連結材41を用いる。
複合床版30の鋼板31表面には予め連続ビード又はス
タッドジベル37が設けられている。高靱性セメント複
合材料被覆鋼管20とこの複合床版30とは工場であら
かじめ取付けて一体の複合吊床版ユニットに構成してお
く。この複合吊床版ユニットを現場に搬入し、現場にて
多数の複合吊床版ユニットを長手方向に連接する。複合
吊床版ユニットの目地部は高靱性セメント複合材料又は
鉄筋コンクリートで施工する。
A composite floor slab 30 is used as a connecting member of the hanging floor slab. As shown in FIG. 3, the composite floor slab 30 comprises a high-toughness cement composite material 3 in which a dowel 37 is planted on the surface of a steel plate 31.
2 is attached. The composite floor slab 30 is composed of upper and lower two layers, and a high toughness cement composite material coated steel pipe 20 which is the main rope
Join with. For joining, a connecting material 41 such as steel, reinforced concrete or high toughness cement composite material is used.
Continuous beads or stud dowels 37 are provided on the surface of the steel plate 31 of the composite floor slab 30 in advance. The high-toughness cement composite material-coated steel pipe 20 and the composite floor slab 30 are attached in advance at the factory to form an integrated composite floor slab unit. This composite hanging floor slab unit is carried into the site, and a large number of composite hanging floor slab units are connected in the longitudinal direction at the site. The joints of the composite suspended floor slab unit will be constructed with high toughness cement composite material or reinforced concrete.

【0013】本発明によれば、全断面コンクリートを使
用する場合に比べて複合吊床版の曲げや、捩り剛性が高
いので、スパン−サグ比の大きな吊床版橋に適用するこ
とができる。スパン−サグ比はスパン長を中央の垂下高
さ(sag)で徐した値で、通常は40前後であるが、
本発明の複合吊床版を用いると60〜70とすることが
できる。このような大きいスパン−サグ比となるので変
形量が小さい。従ってこの橋を道路用として使用可能で
ある。また、下床版51上に上路デッキ52を設ける。
構造簡素化の目的で上路デッキと吊床版は分離構造とす
る。
According to the present invention, since the bending and torsional rigidity of the composite hanging floor slab are higher than those in the case of using the concrete having the entire cross section, the composite hanging floor slab can be applied to the hanging slab bridge having a large span-sag ratio. The span-sag ratio is a value obtained by dividing the span length by the central hanging height (sag), which is usually around 40,
It can be set to 60 to 70 by using the composite hanging floor slab of the present invention. Since such a large span-sag ratio is obtained, the amount of deformation is small. Therefore, this bridge can be used for roads. Further, an upper deck 52 is provided on the lower floor slab 51.
For the purpose of structural simplification, the upper deck and the suspension deck will be separated structures.

【0014】鋼管にコンクリートを充填した構造要素に
比べ鋼管の外側に高靭性セメント複合材料を被覆した本
発明の構造要素の曲げ剛性・捩り剛性は、管径200m
m〜300mmφ程度のもので約1.5倍になる。この
複合鋼管は高靭性セメント複合材料の曲げ剛性の低さを
鋼部材により補い、たわみ剛性を向上させているところ
に特徴がある。
The bending and torsional rigidity of the structural element of the present invention in which the outside of the steel pipe is coated with a high-toughness cement composite material is 200 m in diameter as compared with the structural element in which the steel pipe is filled with concrete.
It is about 1.5 times as large as about m-300 mmφ. This composite steel pipe is characterized in that the bending rigidity of the high-toughness cement composite material is compensated by a steel member to improve the flexural rigidity.

【0015】以上の複合鋼管及び複合床版について載荷
試験を行った結果及び設計荷重について説明すると次の
通りである。
The result of the load test and the design load of the above composite steel pipe and composite floor slab will be described as follows.

【0016】鋼管と高靭性セメント複合材料の合成構造
は、鋼管のみによる設計領域より、より高い設計領域を
有する構造部材とすることができる。この複合鋼管では
連続ビード部の剪断伝達能力が高いことが繰り返し終局
荷重載荷試験により、確認されている。
The composite structure of the steel pipe and the high-toughness cement composite material can be a structural member having a higher design area than that of the steel tube alone. It has been confirmed by repeated ultimate load loading tests that this composite steel pipe has a high shear transmission capacity in the continuous bead portion.

【0017】また、鋼板と高靭性セメント複合材料の合
成構造である複合床版は、例えば厚さ6mmの鋼板に2
5mmの高靭性セメント複合材料を施工した鋼板高靭性
セメント複合床版は、高い弾性領域を有するとともに高
い破壊耐力を有している。
A composite floor slab, which is a composite structure of a steel plate and a high-toughness cement composite material, has a thickness of 6 mm.
The steel plate high-toughness cement composite floor slab on which a 5-mm high-toughness cement composite material is applied has a high elastic region and high fracture strength.

【0018】次に本発明に係る複合吊床版の架設方法に
ついて説明する。図4に示すように本発明の複合吊床版
ユニット10a、10b、…を鋼管軸方向に連設してP
C鋼材42を挿通する。PC鋼材42は鋼管端部に設け
たスペーサ24により、管断面の定位置に配設される。
図5は鋼管21の接続部を示す縦断面図で複合吊床版ユ
ニット10a、10bを突合わせて鋼管21の端面を対
向させ、スペーサ24を通ってPC鋼材42を鋼管長手
方向に挿通し鋼管21の端部にカラー27を嵌めて溶接
28に接合し、その後被覆材29を施す。
Next, a method of erection of the composite hanging floor slab according to the present invention will be described. As shown in FIG. 4, the composite hanging floor slab units 10a, 10b, ...
The C steel material 42 is inserted. The PC steel material 42 is arranged at a fixed position on the pipe cross section by the spacer 24 provided at the end of the steel pipe.
FIG. 5 is a vertical cross-sectional view showing a connection portion of the steel pipe 21, where the composite hanging floor slab units 10a and 10b are butted to face the end faces of the steel pipe 21, and the PC steel material 42 is inserted through the spacer 24 in the longitudinal direction of the steel pipe 21. The collar 27 is fitted to the end of the welded joint 28 and joined to the weld 28, and then the covering material 29 is applied.

【0019】図6は複合床版30の鋼板31の接合部を
示すもので、鋼板31の端部にフランジ34を設けてお
き、このフランジ34をボルトナット35で連結し、そ
の上に被覆材36を施して被覆する。
FIG. 6 shows a joint portion of the steel plate 31 of the composite floor slab 30. A flange 34 is provided at an end of the steel plate 31, the flange 34 is connected by a bolt nut 35, and a covering material is provided thereon. 36 is applied and coated.

【0020】次いで、PC鋼材42の両端を支承部に固
定して複合吊床版ユニットの連接体を支承部間に架設す
る。
Next, both ends of the PC steel material 42 are fixed to the support portions, and the connecting body of the composite hanging floor slab unit is installed between the support portions.

【0021】[0021]

【発明の効果】本発明の複合吊床版構造は以上のように
構成されているので、自重の低減を図ることができ、曲
げ、捩り剛性が高くなる。また、高靭性セメント複合材
料の効果により耐久性に優れる。さらに、変形によるひ
び割れが微細マイクロクラックとなって分散するので吊
床版特有のコンクリートのひび割れが局所化することは
なくなり、経済的である。既製鋼管や鋼板を使用してい
るので、片面の型枠が不要である。また、加工し易い。
組み立て時に部材が軽いので作業が容易である。自重を
低減することができるので、主索、アンカー、橋台を小
さくすることができ、経済性がでるという優れた効果を
奏する。
Since the composite hanging floor slab structure of the present invention is constructed as described above, it is possible to reduce its own weight and increase bending and torsional rigidity. Further, due to the effect of the high toughness cement composite material, it has excellent durability. Furthermore, since the cracks due to deformation are dispersed as fine microcracks, the cracks in the concrete peculiar to the suspension floor slab are not localized, which is economical. Since a ready-made steel pipe or steel plate is used, a single-sided mold is unnecessary. It is also easy to process.
Since the members are light when assembled, the work is easy. Since the self-weight can be reduced, the main ropes, anchors, and abutments can be made small, and the excellent effect of economic efficiency is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の吊床版の断面図である。FIG. 1 is a cross-sectional view of a suspended floor slab of an example.

【図2】(a)鋼管の斜視図、(b)その断面図であ
る。
2A is a perspective view of a steel pipe, and FIG. 2B is a sectional view thereof.

【図3】鋼板と高靭性セメント複合材料との合成構造を
示す断面図である。
FIG. 3 is a sectional view showing a composite structure of a steel plate and a high-toughness cement composite material.

【図4】架設工程の説明図である。FIG. 4 is an explanatory diagram of an erection process.

【図5】鋼管の継ぎ手部の構造を示す断面図である。FIG. 5 is a sectional view showing a structure of a joint portion of a steel pipe.

【図6】鋼板の継ぎ手部の構造を示す断面図である。FIG. 6 is a sectional view showing a structure of a joint portion of a steel plate.

【図7】プレストレスト吊橋の説明図である。FIG. 7 is an explanatory diagram of a prestressed suspension bridge.

【符号の説明】[Explanation of symbols]

10 吊床版 20 複合鋼管(合成構造要素) 21 鋼管 22 高靭性セメント複合材料 23 孔 24 スペーサ 25 ビード 26 スペーサ 27 カラー 28 溶接 29 被覆材 30 複合床版(連結部材) 31 鋼板 32 高靭性セメント複合材料 33 ジベル 34 フランジ 35 ボルトナット 36 被覆材 41 連結材 42 PCケーブル 50 プレストレスト吊橋 51 下床版 52 上路デッキ 53 上下連結部材 54 支承部 55 控え 56 谷 10 Suspended floor version 20 Composite steel pipe (synthetic structural element) 21 steel pipe 22 High toughness cement composite material 23 holes 24 spacer 25 beads 26 Spacer 27 colors 28 Welding 29 coating 30 Composite floor slab (connecting member) 31 steel plate 32 High toughness cement composite material 33 Gibel 34 flange 35 bolt nut 36 coating material 41 Connecting material 42 PC cable 50 prestressed suspension bridge 51 Underfloor 52 Upper deck 53 Vertical connection member 54 Support Department 55 copy 56 valley

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般構造用鋼管を高靭性セメント複合材
料にて被覆した剛性構造要素を左右の吊り主索とし、前
記左右の吊り主索の鋼管を連結する上下2層の連結部材
を備え、該連結部材は、高靭性セメント複合材料にて被
覆した鋼板からなることを特徴とする複合吊床版。
1. A rigid structural element obtained by coating a general structural steel pipe with a high-toughness cement composite material as left and right suspension main ropes, and comprising upper and lower two-layer connecting members for connecting the steel pipes of the left and right suspension main ropes, The composite hanging floor slab, wherein the connecting member is made of a steel plate coated with a high-toughness cement composite material.
【請求項2】 単位長さの左右2本の鋼管を上下2層の
鋼板で連結してなり、鋼管及び鋼板を高靭性セメント複
合材料にて被覆した複合吊床版ユニットを製造し、該鋼
管の端部にPCケーブルの挿通位置を保持するスペーサ
を取付け、多数の該複合吊床版ユニットを鋼管軸方向に
連設してPCケーブルを挿通し、該PCケーブルを支承
部間に架設し、橋体の自重作用後に前記鋼管内にグラウ
ンチングを施すことを特徴とする複合吊床版の構築方
法。
2. A composite suspension floor slab unit in which two right and left steel pipes having a unit length are connected by upper and lower two-layer steel plates, and the steel pipes and the steel plates are coated with a high-toughness cement composite material. A spacer that holds the insertion position of the PC cable is attached to the end, a large number of the composite hanging floor slab units are connected in the axial direction of the steel pipe, the PC cable is inserted, and the PC cable is erected between the support parts to form a bridge. A method for constructing a composite suspended floor slab, comprising: grounding the steel pipe after the self-weighting of the steel pipe.
JP2002143129A 2002-05-17 2002-05-17 Composite suspension floor slab and method for construction thereof Withdrawn JP2003336216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002143129A JP2003336216A (en) 2002-05-17 2002-05-17 Composite suspension floor slab and method for construction thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002143129A JP2003336216A (en) 2002-05-17 2002-05-17 Composite suspension floor slab and method for construction thereof

Publications (1)

Publication Number Publication Date
JP2003336216A true JP2003336216A (en) 2003-11-28

Family

ID=29703229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002143129A Withdrawn JP2003336216A (en) 2002-05-17 2002-05-17 Composite suspension floor slab and method for construction thereof

Country Status (1)

Country Link
JP (1) JP2003336216A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047962A (en) * 2008-08-21 2010-03-04 Sumitomo Mitsui Construction Co Ltd Construction method for pc bridge
CN102505632A (en) * 2011-10-18 2012-06-20 中铁大桥勘测设计院集团有限公司 Suspender anchoring structure of double-deck arch bridge
CN105155415A (en) * 2015-07-13 2015-12-16 庞震 Unbonded polyurea coating adding device for epoxy-steel-strand stay cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047962A (en) * 2008-08-21 2010-03-04 Sumitomo Mitsui Construction Co Ltd Construction method for pc bridge
CN102505632A (en) * 2011-10-18 2012-06-20 中铁大桥勘测设计院集团有限公司 Suspender anchoring structure of double-deck arch bridge
CN105155415A (en) * 2015-07-13 2015-12-16 庞震 Unbonded polyurea coating adding device for epoxy-steel-strand stay cable

Similar Documents

Publication Publication Date Title
US11149390B2 (en) Prefabricated, prestressed bridge module
TW512192B (en) Bridge deck panels, methods of fabricating the same and bridges comprising the same
CN104988844B (en) Two times tensioning prestressing force assembled Wavelike steel webplate combination beam
CN203475598U (en) Shock-proof prefabricated building of steel bar truss shearing wall composite structure
CN108661221A (en) A kind of precast floor slab and its connection structure and its construction method
JP5314356B2 (en) Composite beam, composite beam construction method, and fireproof building
CN103397696A (en) Building adopting aseismatic precasted reinforcing steel truss shear wall composite structure
CN103388357A (en) Shock-proof prefabricated steel tube shear wall mixed structural building
JP3844743B2 (en) Box girder bridge structure and its construction method
KR102107191B1 (en) Rahmen bridge using girder joint casing and construction method of the same
JP2015025330A (en) Lightweight floor slab, lightweight floor slab construction method, and lightweight floor slab connection structure
KR101713188B1 (en) the construction method of steel-concrete hybrid precast concrete pipe rack structure
JP3410368B2 (en) Connection method of corrugated steel web girder
JP2001342612A (en) Joining device for floor slab and web steel plate
KR100939970B1 (en) A method of constructing a complex girder and its structure
JP5399133B2 (en) Main girder, bridge and bridge construction method
JP2523447B2 (en) Floor slab installation structure in bridge
JP2003336216A (en) Composite suspension floor slab and method for construction thereof
KR101159675B1 (en) Bridge deck for girder using acs-beam and method thereof
KR101591808B1 (en) the deep composite precast beam, the connection structure between composite precast column and the deep composite precast beam
KR101548215B1 (en) the deep composite precast beam, the connection structure between composite precast column and the deep composite precast beam
CN203475599U (en) Shock-proof prefabricated building of steel tube shearing wall composite structure
CN210976053U (en) Prestressed bridge
KR102033052B1 (en) Method for constructing truss bridge support with infilled tube using src girder
JPH0338245Y2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802