JP2015025330A - Lightweight floor slab, lightweight floor slab construction method, and lightweight floor slab connection structure - Google Patents

Lightweight floor slab, lightweight floor slab construction method, and lightweight floor slab connection structure Download PDF

Info

Publication number
JP2015025330A
JP2015025330A JP2013156796A JP2013156796A JP2015025330A JP 2015025330 A JP2015025330 A JP 2015025330A JP 2013156796 A JP2013156796 A JP 2013156796A JP 2013156796 A JP2013156796 A JP 2013156796A JP 2015025330 A JP2015025330 A JP 2015025330A
Authority
JP
Japan
Prior art keywords
floor slab
lightweight
lightweight floor
slabs
floor slabs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013156796A
Other languages
Japanese (ja)
Inventor
晃生 白水
Akio Shiromizu
晃生 白水
明洋 山浦
Akihiro Yamaura
明洋 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Construction Co Ltd
Original Assignee
Yokogawa Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Construction Co Ltd filed Critical Yokogawa Construction Co Ltd
Priority to JP2013156796A priority Critical patent/JP2015025330A/en
Publication of JP2015025330A publication Critical patent/JP2015025330A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a floor slab which is more lightweight than a conventional floor slab and construction using the lightweight floor slab, to improve work efficiency, and to solve problems of conventional floor slab construction.SOLUTION: A lightweight floor slab has a plurality of pipes arranged in concrete of the floor slab in a connection direction of floor slabs, and the pipes are arranged at intervals in a direction crossing the connection direction of the floor slabs, and united with the concrete in the presence of a design load. A pipe has, at its axial end, a connection part which can be connected to a pipe of another floor slab which is arrayed in the connection direction. In a lightweight floor slab construction method, two or more lightweight floor slabs are arranged side by side in the connection direction of the lightweight floor slab such that pipes of the lightweight floor slabs communicate with each other, pipes of adjacent lightweight floor slabs are connected to each other so as to connect the two or more lightweight floor slabs to each other. Here, two or more floor slab units which have two or more lightweight floor slabs connected together in the connection direction can be arranged and connected to each other.

Description

本発明は、橋梁や高速道路といった各種構造物の床版として使用可能なプレキャストコンクリート床版(PC床版)と、当該PC床版の施工方法及び連結構造に関する。   The present invention relates to a precast concrete floor slab (PC floor slab) that can be used as a floor slab of various structures such as bridges and highways, a construction method of the PC floor slab, and a connecting structure.

従来、橋梁、高速道路等に用いられる床版として、コンクリート床版や鋼製床版、コンクリートと鋼部材とを合成した合成床版等が知られている。   Conventionally, concrete floor slabs, steel floor slabs, composite floor slabs obtained by synthesizing concrete and steel members, and the like are known as floor slabs used for bridges, highways and the like.

いずれの床版も、次のような理由から軽量化が望まれていた。
(1)橋梁や高速道路等の幅員が狭いために、大雪などの災害時に救出作業や復旧作業が遅れるという事態が生じることがあり、前記幅員の拡大が求められていた。しかし、従来の床版は重いため、幅員を拡大すると更に重くなり、橋桁やそれを支える橋脚に掛る荷重が増大して橋脚や橋桁に無理な負担がかかる。
(2)阪神淡路大震災や東日本大震災をはじめとする巨大地震の地震力は、従前想定していた以上に大きなものであり、巨大地震時でも落橋などの損傷の危険を回避できるようにするためにも橋桁に掛る荷重を可能な限り軽減するのが望ましい。
Both floor slabs have been desired to be lightweight for the following reasons.
(1) Since the width of bridges, highways, and the like is narrow, there are cases where rescue work and restoration work are delayed in the event of a disaster such as heavy snow, and the expansion of the width has been required. However, since the conventional floor slab is heavy, it becomes heavier when the width is increased, and the load applied to the bridge girder and the bridge pier supporting it increases, and an unreasonable burden is imposed on the bridge pier and the bridge girder.
(2) Large earthquakes such as the Great Hanshin-Awaji Earthquake and the Great East Japan Earthquake have a greater seismic force than previously anticipated, so that the risk of damage such as falling bridges can be avoided even during a major earthquake. It is desirable to reduce the load on the bridge girder as much as possible.

床版の軽量化を実現するため、床版の底鋼板の上にリブを設け、そのリブ上に鋼管を固定し、その鋼管の上に鉄筋を配置し、その鉄筋の上からコンクリートを打設した中空合成床版が提案されている(特許文献1)。この他にも図9に示すような施工方法があった。   In order to reduce the weight of the floor slab, a rib is provided on the bottom steel plate of the floor slab, a steel pipe is fixed on the rib, a reinforcing bar is placed on the steel pipe, and concrete is placed on the reinforcing bar. A hollow composite floor slab has been proposed (Patent Document 1). In addition, there was a construction method as shown in FIG.

図9(a)〜(d)に示す施工方法は、橋桁(図示しない)の上に多数枚の床版Aを配置し、配置した二枚以上の床版AにPC鋼材(通常、撚線)Bを挿通し、当該床版A間にモルタル(充填材)Cを充填し、当該モルタルCを養生して所要の強度を発現させた後PC鋼材Bに支圧板Dを取付け、当該撚線Bを緊張して床版Aにプレストレスを加えて連結する工法である。   9 (a) to 9 (d), a large number of floor slabs A are arranged on a bridge girder (not shown), and a PC steel material (usually stranded wire) is placed on the two or more floor slabs A arranged. ) B is inserted, mortar (filler) C is filled between the floor slabs A, the mortar C is cured to develop the required strength, and then the bearing plate D is attached to the PC steel B, and the stranded wire This is a construction method in which B is tensioned and prestressed to the floor slab A for connection.

特開2004−211367号公報Japanese Patent Laid-Open No. 2004-212367

前記特許文献1記載の中空合成床版は、工場で底鋼板に鋼管とリブを取り付け(プレキャスト製造し)、この構造体を現場に搬送し、それ以降の作業を現場施工で行うため、作業に時間がかかり、作業効率が悪いという難点があった。図9(a)〜(d)に示す施工方法でも、床版継手部に充填する材料強度の出現を確認した後PC緊張するといった難点があった。   The hollow composite floor slab described in Patent Document 1 has a steel pipe and a rib attached to a bottom steel plate at a factory (prepared and manufactured), and this structure is transported to the site. It took time and there was a problem that work efficiency was bad. Even in the construction method shown in FIGS. 9A to 9D, there is a problem that the PC is tensioned after confirming the appearance of the material strength to be filled in the floor slab joint.

本発明の解決課題は、従来の床版よりも軽量な床版と、その軽量床版を使用した施工であって、作業効率の向上がよく、従来の床版施工の前記問題を解決できる床版施工方法及び床版連結構造を提供することにある。   The problem to be solved by the present invention is a floor slab that is lighter than a conventional floor slab and a construction that uses the lightweight floor slab, and has improved work efficiency and can solve the above-mentioned problems of conventional floor slab construction. It is in providing a plate construction method and a floor slab connection structure.

[軽量床版]
本発明の軽量床版は、複数枚が配置連結して使用されるコンクリート製のプレキャスト床版において、床版のコンクリート内に床版の連結方向に長く剛性のある管が複数本配置され、前記管は床版の連結方向に交差する方向に間隔をあけて配置され、且つ設計荷重作用下ではコンクリートと一体化されたものである。剛性のある管(例えば、鋼管やアルミ管、FRP管等)を用いることで従来の鉄筋に代用でき、省力化施工につながる。また、コンクリートの材料として軽量骨材を用いても良いし、繊維補強されたコンクリートを用いても良い。
[Lightweight floor slab]
The lightweight floor slab of the present invention is a concrete precast floor slab that is used with a plurality of pieces arranged and connected.In the concrete of the floor slab, a plurality of long and rigid pipes are arranged in the connecting direction of the floor slab, The pipes are arranged at intervals in a direction crossing the connecting direction of the floor slabs, and are integrated with the concrete under the design load. By using rigid pipes (for example, steel pipes, aluminum pipes, FRP pipes, etc.), conventional steel bars can be substituted, leading to labor-saving construction. Moreover, a lightweight aggregate may be used as the concrete material, or fiber reinforced concrete may be used.

前記軽量床版は、管の軸方向端部に、床版の連結方向に配列された他の床版の管と連結できる連結部を備えたものであってもよい。管とコンクリートが設計荷重作用下で一体化するには管のコンクリートと接する面を粗面にしたり、あるいは接着剤を塗布したりして付着力を高める。   The lightweight floor slab may include a connecting portion that can be connected to a pipe of another floor slab arranged in the connecting direction of the floor slab at an end portion in the axial direction of the pipe. In order for the pipe and concrete to be integrated under the design load, the surface of the pipe contacting the concrete is roughened or an adhesive is applied to increase the adhesion.

[軽量床版施工方法]
本発明の軽量床版施工方法は、床版を連結方向に二枚以上配置して連結する床版施工方法であり、前記軽量床版を軽量床版の連結方向に二枚以上並べ配置して、管同士を連通させ、前記軽量床版のうち隣接する軽量床版の管の軸方向端部の連結部同士を、直接又は連結治具を介して連結することによって、前記二枚以上の軽量床版を連結する施工方法である。
[Lightweight slab construction method]
The lightweight floor slab construction method of the present invention is a floor slab construction method in which two or more floor slabs are arranged and connected in the connecting direction, and the two or more lightweight floor slabs are arranged in the connecting direction of the lightweight floor slabs. The two or more lightweight pieces are connected by connecting the connecting portions at the axial ends of the adjacent lightweight floor slab pipes directly or via a connecting jig. It is a construction method that connects floor slabs.

前記軽量床版施工方法は、二枚以上の軽量床版がプレ加工により連結された床版ユニットを、その連結方向に二以上配置し、配置された二以上の床版ユニットを連結する施工方法であってもよい。   The lightweight floor slab construction method is a construction method in which two or more floor slab units in which two or more lightweight floor slabs are connected by pre-processing are arranged in the connecting direction, and the two or more floor slab units are connected. It may be.

前記軽量床版施工方法は、一回の施工により、二枚以上の軽量床版をその連結方向に連結して床版ユニットを設け、前記連結の繰返しにより床版ユニットを二以上設け、前記二以上の床版ユニットをその連結方向に連結する施工方法とすることもできる。   The lightweight floor slab construction method includes providing a floor slab unit by connecting two or more lightweight floor slabs in the connection direction by one construction, and providing two or more floor slab units by repeating the connection. It can also be set as the construction method which connects the above floor slab unit in the connection direction.

前記軽量床版施工方法は、管を一列に揃えて配置した二枚以上の軽量床版の管内にPC鋼材を挿通し、前記PC鋼材を緊張することによって軽量床版にプレストレスを与えて連結することもできる。   The lightweight floor slab construction method is such that PC steel is inserted into the pipes of two or more lightweight floor slabs in which the tubes are arranged in a line, and the PC steel is tensioned to give a prestress to the lightweight floor slab. You can also

前記軽量床版施工方法では、隣接する軽量床版を緊張連結すると共に、軽量床版の接合面に接着剤を塗布し、その接着剤で接着することで接続部の耐久性を高めることもできる。また、接着剤を塗布することで接合部からの水分等の浸入を防ぎ耐久性向上に寄与する。   In the lightweight floor slab construction method, the adjacent lightweight floor slabs are tension-connected, and an adhesive is applied to the joint surface of the lightweight floor slabs, and the durability of the connection portion can be increased by bonding with the adhesive. . In addition, the application of an adhesive prevents moisture and the like from entering the joint and contributes to improved durability.

[軽量床版連結構造]
本発明の軽量床版連結構造は、床版が二枚以上配置されて連結された床版連結構造であって、前記軽量床版が二枚以上並べて配置され、その軽量床版はその管同士が軽量床版の連結方向に連通して管列が形成されるように配置され、配置された軽量床版のうち隣接する軽量床版の管の軸方向端部の連結部同士が直接又は連結治具を介して連結された連結構造である。
[Lightweight slab connection structure]
The lightweight floor slab connection structure of the present invention is a floor slab connection structure in which two or more floor slabs are arranged and connected, and the two or more lightweight floor slabs are arranged side by side. Are arranged in such a way that a tube row is formed in communication with the connection direction of the lightweight floor slabs, and among the arranged lightweight floor slabs, the connecting portions at the axial ends of the adjacent lightweight floor slab tubes are directly or connected to each other It is the connection structure connected via the jig | tool.

本発明の軽量床版連結構造は、前記軽量床版が二枚以上その連結方向に配置連結された床版ユニットが、その連結方向に二以上並べて配置され、その床版ユニットは軽量床版の管同士が軽量床版の連結方向に連通して管列が形成されるように配置され、配置された床版ユニットのうち隣接する床版ユニットの管の軸方向端部の連結部同士が直接又は連結治具を介して連結されたものであってもよい。   In the lightweight floor slab connection structure of the present invention, two or more floor slab units in which the lightweight floor slabs are arranged and connected in the connecting direction are arranged side by side in the connecting direction, and the floor slab unit is a lightweight floor slab. The pipes are arranged to communicate with each other in the connecting direction of the lightweight floor slab so as to form a tube row, and among the arranged floor slab units, the connecting portions at the axial ends of the adjacent floor slab units are directly connected to each other. Or it may be connected via a connecting jig.

前記軽量床版連結構造は、二枚以上の軽量床版の複数の管列のいずれか一又は二以上にPC鋼材が挿通され、PC鋼材が緊張されて二枚以上の軽量床版にプレストレスが付与されて連結された連結構造であってもよい。また、連結構造の管の内側にPC鋼材を挿通しても良い。   In the lightweight floor slab connection structure, PC steel is inserted into one or more of a plurality of tube rows of two or more lightweight floor slabs, and the PC steel is tensioned to prestress the two or more lightweight floor slabs. It may be a connecting structure in which is connected. Moreover, you may insert PC steel materials inside the pipe | tube of a connection structure.

本発明の軽量床版は、次の効果を有する。
(1)床版内部に中空の管があるため、従来の中実コンクリート床版に比べて軽量である。このため橋梁や高速道路等の幅員の拡大をしても、橋桁に掛る荷重は従来と同等又はそれ以下とすることができ、橋脚や橋桁にかかる負担が軽減される。
(2)床版内部に配設されている管が補強材としても機能するため、少なくとも従来のコンクリート床版と同程度の強度を確保することができる。
(3)軽量化のための管が補強用鉄筋と同様の機能を有するので、コンクリートだけの場合よりも強度も向上する。このため、従来使用していた補強用鉄筋の本数を減らすことができ、管を使用してもコストアップを抑制でき、配筋作業の省力化も実現できる。
(4)床版内に内空があるため断熱機能もあり、凍結しにくい路面となる。
(5)管が床版の連結方向に沿って配設され、管の軸方向端部に連結部があるため、隣接する床版同士を前記連結部で手軽に連結することができる。
The lightweight floor slab of the present invention has the following effects.
(1) Since there is a hollow tube inside the slab, it is lighter than conventional solid concrete slabs. For this reason, even if the width of a bridge, an expressway, or the like is increased, the load applied to the bridge girder can be equal to or less than the conventional one, and the load on the bridge pier or the bridge girder is reduced.
(2) Since the pipe disposed inside the floor slab also functions as a reinforcing material, at least the same strength as that of a conventional concrete floor slab can be secured.
(3) Since the pipe for weight reduction has the same function as a reinforcing steel bar, the strength is improved as compared with the case of concrete alone. For this reason, the number of reinforcing bars that have been used in the past can be reduced, and even if pipes are used, the cost increase can be suppressed, and labor saving of the bar arrangement work can be realized.
(4) Since there is an inner space in the floor slab, it also has a heat insulating function and becomes a road surface that is difficult to freeze.
(5) Since the pipe is disposed along the connecting direction of the floor slabs and the connecting part is provided at the axial end of the pipe, adjacent floor slabs can be easily connected to each other by the connecting part.

本発明の軽量床版施工方法は、次の効果を有する。
(1)隣接する軽量床版の管の連結部同士を直接又は連結治具を介して連結するので、連結作業が容易になり、床版間に充填される充填材(モルタル等)の硬化を待つ時間もなくなり、迅速施工が可能となる。
(2)隣接する軽量床版の接合面を接着剤で接着する場合は、接合面間にコンクリート充填材を充填する必要がなくコストを削減でき、強度発現のためのコンクリート等の養生を待つ必要もないため、迅速施工が可能となる。
(3)床版ユニットを施工する場合は、軽量床版を一枚ずつ施工する場合よりも施工作業効率が向上する。
The lightweight floor slab construction method of the present invention has the following effects.
(1) Since the connecting portions of the adjacent lightweight floor slab pipes are connected directly or via a connecting jig, the connecting work is facilitated, and the filler (mortar, etc.) filled between the floor slabs is cured. There is no waiting time and quick construction is possible.
(2) When adhering the joint surfaces of adjacent lightweight floor slabs with an adhesive, it is not necessary to fill the concrete filler between the joint surfaces, reducing costs, and waiting for curing concrete for strength development. Therefore, quick construction is possible.
(3) When the floor slab unit is constructed, the construction work efficiency is improved as compared with the case where the lightweight floor slabs are constructed one by one.

本発明の軽量床版連結構造は、次の効果を有する。
(1)隣接する軽量床版が、管の連結部で連結されているので、連結の確実な床版構造になる。床版間の継手を連結することでせん断力を確実に伝達できる。また連結構造によって継手部の曲げモーメントも伝達できる。
(2)床版内に管で空間が確保されているため、断熱性があり、路面凍結しにくい橋梁、高速道路となる。
The lightweight floor slab connection structure of the present invention has the following effects.
(1) Since the adjacent lightweight floor slabs are connected by the connecting portion of the pipe, the floor slab structure is surely connected. By connecting the joints between floor slabs, shear force can be transmitted reliably. Moreover, the bending moment of a joint part can also be transmitted with a connection structure.
(2) Since the space is secured with pipes in the floor slab, it becomes a heat-insulating bridge and a highway that is difficult to freeze.

(a)は本発明の軽量床版の一例を示す斜視図、(b)は本発明の軽量床版の他例を示す斜視図。(A) is a perspective view which shows an example of the lightweight floor slab of this invention, (b) is a perspective view which shows the other example of the lightweight floor slab of this invention. 本発明の軽量床版連結構造の一例を示すものであって、(a)は鋼管に当該鋼管とは別部材を溶接固定して嵌合突部とした場合の断面図、(b)は鋼管の一部を嵌合突部とした場合の断面図。BRIEF DESCRIPTION OF THE DRAWINGS It shows an example of the lightweight floor slab connection structure of this invention, Comprising: (a) is sectional drawing at the time of welding and fixing a member different from the said steel pipe to a steel pipe as a fitting protrusion, (b) is a steel pipe Sectional drawing at the time of using one part as a fitting protrusion. 本発明の軽量床版連結構造の一例を示すものであって、(a)は鋼管の連結に、外螺子を備えた連結治具を用いた場合の断面図、(b)は鋼管の連結に、鋼管内に圧入可能な太さの連結治具を用いた場合の断面図。An example of the lightweight floor slab connection structure of this invention is shown, Comprising: (a) is sectional drawing at the time of using the connection jig provided with the external screw for connection of a steel pipe, (b) is for connection of a steel pipe Sectional drawing at the time of using the connecting jig of the thickness which can be press-fitted in a steel pipe. (a)〜(e)は本発明の軽量床版施工方法及び軽量床版連結構造の一例を示す作業手順説明図。(A)-(e) is work procedure explanatory drawing which shows an example of the lightweight floor slab construction method and lightweight floor slab connection structure of this invention. 図2(a)のX部拡大図。The X section enlarged view of Fig.2 (a). (a)〜(e)は本発明の軽量床版施工方法及び軽量床版連結構造の他例を示す作業手順説明図。(A)-(e) is work procedure explanatory drawing which shows the other example of the lightweight floor slab construction method and lightweight floor slab connection structure of this invention. 本発明の軽量床版の連結箇所の説明図であって、(a)は図4(e)に示す軽量床版連結構造の平面説明図、(b)は図6(e)に示す軽量床版連結構造の平面説明図。It is explanatory drawing of the connection location of the lightweight floor slab of this invention, Comprising: (a) is plane explanatory drawing of the lightweight floor slab connection structure shown in FIG.4 (e), (b) is the lightweight floor shown in FIG.6 (e). Plane explanatory drawing of plate connection structure. 図4(e)に示す軽量床版連結構造の説明図であって、(a)は平面図、(b)は(a)のs−s断面図、(c)は(a)のt−t断面図。It is explanatory drawing of the lightweight floor slab connection structure shown in FIG.4 (e), Comprising: (a) is a top view, (b) is ss sectional drawing of (a), (c) is t- of (a). t sectional drawing. (a)〜(d)は従来の床版施工方法の一例を示す作業手順説明図。(A)-(d) is work procedure explanatory drawing which shows an example of the conventional floor slab construction method.

(軽量床版の実施形態1)
本発明の軽量床版1の一例を、図面を参照して説明する。本発明の軽量床版1はプレキャストコンクリート床版(PC床版)であり、橋梁床版や道路床版などとして利用されるものである。
(Embodiment 1 of lightweight floor slab)
An example of the lightweight floor slab 1 of the present invention will be described with reference to the drawings. The lightweight floor slab 1 of the present invention is a precast concrete slab (PC floor slab) and is used as a bridge slab or a road slab.

一例として図1(a)に示す軽量床版1は、縦1000mm×横1000mm×厚さ200mm程度のコンクリート床版であり、その内部に複数本(図1の例では七本)の鋼管2が配置されている。夫々の鋼管2は軽量床版1の連結方向(二枚以上を連結する場合の連結方向)に沿って配置され、複数本の鋼管2が軽量床版1の幅方向に所定間隔で平行に配置されている。   As an example, a lightweight floor slab 1 shown in FIG. 1 (a) is a concrete floor slab having a length of about 1000 mm × width of 1000 mm × thickness of about 200 mm, and a plurality of (seven in the example of FIG. 1) steel pipes 2 are contained therein. Has been placed. Each steel pipe 2 is arranged along the connecting direction of the lightweight floor slab 1 (connecting direction when two or more sheets are connected), and a plurality of steel pipes 2 are arranged in parallel in the width direction of the lightweight floor slab 1 at a predetermined interval. Has been.

図1(a)に示す例では、鋼管2の間隔(図1(a)の符号C1とC2間の間隔L)が142.8mm程度にしてある。図1に示す軽量床版1の空隙率φ(床版体積に対する七本の鋼管2の体積の合計)は、(7×90×90×1000)/(1000×1000×200)=0.283(約28%)である。鋼管2の本数や配置間隔は軽量床版1のサイズによって変えることができる。また、鋼管2の寸法(サイズ)や形状も軽量床版1の形状やサイズに合わせて変えることができる。 In the example shown in FIG. 1A, the distance between the steel pipes 2 (the distance L between the symbols C 1 and C 2 in FIG. 1A) is about 142.8 mm. The porosity φ of the lightweight floor slab 1 shown in FIG. 1 (the total volume of the seven steel pipes 2 relative to the floor slab volume) is (7 × 90 × 90 × 1000) / (1000 × 1000 × 200) = 0.283 (about 28%). The number and arrangement interval of the steel pipes 2 can be changed according to the size of the lightweight floor slab 1. Moreover, the dimension (size) and shape of the steel pipe 2 can also be changed according to the shape and size of the lightweight floor slab 1.

図1(a)に示す鋼管2は、内径90mm角、肉厚3.2mmの角形鋼管であり、その重量は8.51kg/mである。鋼管2は角形以外のものであってもよく、例えば、丸形管や異形管などを用いることもできる。鋼管2には、外周面に粗面加工を施したものを用いることもできる。異形管や粗面加工を施した鋼管2を用いることによって、コンクリートとの接触面積が広くなり、鋼管2とコンクリートとの一体性が強固になる。また、鋼管2の外周に接着剤を塗布しコンクリートとの一体化を図っても良い。   The steel pipe 2 shown in FIG. 1 (a) is a square steel pipe having an inner diameter of 90 mm square and a wall thickness of 3.2 mm, and its weight is 8.51 kg / m. The steel pipe 2 may be other than a square, and for example, a round pipe or a deformed pipe may be used. As the steel pipe 2, a steel pipe having a roughened surface can be used. By using the deformed pipe or the steel pipe 2 subjected to roughening, the contact area with the concrete is widened, and the integrity between the steel pipe 2 and the concrete is strengthened. Alternatively, an adhesive may be applied to the outer periphery of the steel pipe 2 so as to be integrated with the concrete.

鋼管2の軸方向端部には連結部3が設けられており、隣接配置される軽量床版1の鋼管2同士を連結できるようにしてある。例えば図2(a)及び図5に示すように、軽量床版1の鋼管2の軸方向一端側に、軽量床版1の端面(接合面)4よりも外側に突出する嵌合突部5を形成し、鋼管2の軸方向他端側に、軽量床版1の他方の端面(接合面)4よりも外側に突出する嵌合凹部6を形成しておき、隣接する一方の軽量床版1の嵌合突部5を隣接する他方の軽量床版1の嵌合凹部6に嵌入することによって両鋼管2を連結して、隣接する軽量床版1同士を連結することができる。前記嵌合突部5及び嵌合凹部6は、図2(a)のように鋼管2よりも径の細い管を鋼管2の内周面に溶接するなどして設けることができる。隣接する軽量床版1の連結部分の段差部分には、平滑性を図るためにモルタル等の充填材15を充填することができる。   The connection part 3 is provided in the axial direction edge part of the steel pipe 2, and the steel pipes 2 of the lightweight floor slab 1 arrange | positioned adjacently can be connected now. For example, as shown in FIGS. 2 (a) and 5, a fitting protrusion 5 that protrudes outward from an end face (joint surface) 4 of the lightweight floor slab 1 on one end side in the axial direction of the steel pipe 2 of the lightweight floor slab 1. And a fitting recess 6 protruding outward from the other end surface (joint surface) 4 of the lightweight floor slab 1 is formed on the other axial end of the steel pipe 2, and one adjacent lightweight floor slab is formed. By fitting one fitting protrusion 5 into the fitting recess 6 of the other adjacent lightweight floor slab 1, both the steel pipes 2 can be connected and adjacent lightweight floor slabs 1 can be connected. The fitting protrusion 5 and the fitting recess 6 can be provided by welding a pipe having a diameter smaller than that of the steel pipe 2 to the inner peripheral surface of the steel pipe 2 as shown in FIG. In order to achieve smoothness, the step portion of the connecting portion of the adjacent lightweight floor slabs 1 can be filled with a filler 15 such as mortar.

嵌合突部5及び嵌合凹部6は、図2(b)に示すように、一方の軽量床版1の鋼管2の一端を軽量床版1の接合面4よりも外側に突出させ、当該突出部分を嵌合突部5とし、他方の軽量床版1の鋼管2の一端側を薄肉にして嵌合凹部6とすることもできる。この場合、一方の鋼管2の嵌合突部5を、他方の軽量床版1の鋼管2の嵌合凹部6に圧入することで両鋼管2を連結し、軽量床版1を連結することができる。   As shown in FIG. 2 (b), the fitting projection 5 and the fitting recess 6 project one end of the steel pipe 2 of one lightweight floor slab 1 to the outside of the joint surface 4 of the lightweight floor slab 1, The protruding portion may be the fitting protrusion 5, and the one end side of the steel pipe 2 of the other lightweight floor slab 1 may be thin to form the fitting recess 6. In this case, both the steel pipes 2 can be connected and the lightweight floor slab 1 can be connected by press-fitting the fitting protrusion 5 of one steel pipe 2 into the fitting recess 6 of the steel pipe 2 of the other lightweight floor slab 1. it can.

前記実施形態は、軽量床版1に配設された鋼管2が角形鋼管の場合であるが、鋼管2が丸形鋼管である場合は、図3(a)に示すような連結治具7を用いて鋼管2同士を連結することもできる。この連結治具7は、中央部に鍔8を備えた丸パイプであり、鍔8の両外側の外周面に外螺子9が形成されている。外螺子9は、鋼管2の端部に形成された内螺子10に螺合できるようにしてあり、この連結治具7を回すことによって、連結治具7の外螺子9が両軽量床版1の鋼管2にねじ込まれて、鋼管2同士が連結されるようにしてある。   In the above embodiment, the steel pipe 2 disposed on the lightweight floor slab 1 is a square steel pipe. However, when the steel pipe 2 is a round steel pipe, a connecting jig 7 as shown in FIG. It is also possible to connect the steel pipes 2 together. The connecting jig 7 is a round pipe provided with a flange 8 at the center, and external screws 9 are formed on the outer peripheral surfaces on both outer sides of the flange 8. The external screw 9 can be screwed into an internal screw 10 formed at the end of the steel pipe 2, and by rotating the connecting jig 7, the external screw 9 of the connecting jig 7 can be connected to the two lightweight floor slabs 1. The steel pipes 2 are connected to each other by being screwed into the steel pipe 2.

鋼管2は、図3(a)に示すような連結治具7に代えて、図3(b)に示すような連結治具7を用いて連結することもできる。図3(b)に示す連結治具7は、鋼管2の内径と同程度の外径のパイプ材である。この連結治具7の半分を一方の軽量床版1の鋼管2内に、残りの半分を他方の軽量床版1の鋼管2内に圧入することによって、隣接する軽量床版1の鋼管2同士を連結することができる。   The steel pipe 2 can be connected using a connecting jig 7 as shown in FIG. 3B instead of the connecting jig 7 as shown in FIG. The connecting jig 7 shown in FIG. 3B is a pipe material having an outer diameter that is the same as the inner diameter of the steel pipe 2. One half of the connecting jig 7 is press-fitted into the steel pipe 2 of one lightweight floor slab 1 and the other half is press-fitted into the steel pipe 2 of the other lightweight floor slab 1 so Can be connected.

前記した鋼管2の連結手段は一例であり、これら以外の手段で連結することもできる。可能であれば鋼管2の端面に接着剤を塗布して連結することができる。   The connection means of the steel pipe 2 described above is an example, and it can be connected by means other than these. If possible, an adhesive can be applied to the end face of the steel pipe 2 for connection.

(軽量床版の実施形態2)
本発明の軽量床版1の他例を図1(b)に示す。この軽量床版1の基本構造は、前記実施形態の軽量床版1と同様である。異なるのは、軽量床版1の連結方向一端側に凹陥状の収容空間11が設けられたことである。収容空間11は支圧板(支承板)12やカップラー13(いずれも図7(b))を収容配置するためのものである。
(Embodiment 2 of lightweight floor slab)
Another example of the lightweight floor slab 1 of the present invention is shown in FIG. The basic structure of the lightweight floor slab 1 is the same as that of the lightweight floor slab 1 of the above embodiment. The difference is that a recessed housing space 11 is provided at one end of the lightweight floor slab 1 in the connecting direction. The accommodation space 11 is for accommodating and arranging a bearing plate (support plate) 12 and a coupler 13 (both of which are shown in FIG. 7B).

図1(b)に示す例では、前記収容空間11は、鋼管2の軸方向延長線上に設けられている。収容空間11は、全ての鋼管2の延長線上に設けることもできるが、緊張用のPC鋼材14を挿通する部分にのみ設ければよく、図1(b)のようにPC鋼材14を一本おきに挿通する例では、収容空間11も鋼管2の一本おきに形成してある。収容空間11の数は、緊張用のPC鋼材14の本数に応じて適宜変更することができる。   In the example shown in FIG. 1B, the accommodation space 11 is provided on the axial extension line of the steel pipe 2. The accommodation space 11 can be provided on the extension line of all the steel pipes 2, but it is only necessary to provide it in a portion through which the tensioning PC steel material 14 is inserted. One PC steel material 14 is provided as shown in FIG. In the example of inserting every other, the accommodation space 11 is also formed every other steel pipe 2. The number of the accommodation spaces 11 can be appropriately changed according to the number of PC steel materials 14 for tension.

前記両実施形態は一例であり、鋼管2の本数や形状、軽量床版1の形状、寸法等は、本発明の所期の目的を達成しうる範囲内で適宜設計することができる。また、本発明の軽量床版1には、鋼管2の代わりに、アルミ管やFRP管等の管を用いることもできる。   Both the above embodiments are merely examples, and the number and shape of the steel pipes 2 and the shape and dimensions of the lightweight floor slab 1 can be appropriately designed within a range in which the intended purpose of the present invention can be achieved. Moreover, instead of the steel pipe 2, a pipe such as an aluminum pipe or an FRP pipe can be used for the lightweight floor slab 1 of the present invention.

(軽量床版施工方法の実施形態1)
本発明の軽量床版施工方法の一例を、図4(a)〜(e)を参照して説明する。この実施形態は、図1(a)の軽量床版1を橋梁の床版として用いる場合の例であり、その施工手順を次に説明する。
(1)図4(a)に示すように、複数枚の軽量床版1a、1b、1c、1dを主桁(図示しない)の上に並べて敷設する。それら軽量床版1は鋼管2同士が連通して鋼管列が形成されるように配置してある。図示した軽量床版1には七本の鋼管2が配設されているので、この場合は鋼管列が七列形成される。軽量床版1の敷設はクレーンなどの重機で吊下げて行うことができる。
(2)図4(b)に示すように、主桁上に敷設した軽量床版1のうち、隣接する軽量床版1(例えば、軽量床版1aと1b、1bと1c、1cと1d)の鋼管2(例えば、鋼管2aと2b、2bと2c、2cと2d)を連結する。鋼管2は、例えば、図2(a)(b)や図3(a)(b)に示すような方法で連結することができる。隣接する軽量床版1の接合面4(又は鋼管2の端面)には接着剤を塗布しておくのが望ましい。
(3)図4(c)に示すように、連続敷設した軽量床版1(軽量床版1a〜1d)の鋼管2a〜2d内にPC鋼材14を挿通する。PC鋼材14には、既存のPC鋼より線やPC鋼棒を用いることができる。PC鋼材14は全ての鋼管列(図示した例では七本の鋼管列)に挿通することもできるが、この実施形態では、一本おきの鋼管列にPC鋼材14を挿通してある。PC鋼材14を一本おきに挿通することにより、PC鋼材14で連結後の橋梁床版の軽量化と、PC鋼材14の本数低減によるコストの低減化を図ることができる。
(4)図4(d)に示すように、多数枚配列された軽量床版1のうち、配列方向両端の軽量床版1a、1dの端面より外側に突出するPC鋼材14の両端に支圧板12を取り付け、鋼管列に挿通したPC鋼材14を緊張して、軽量床版1にプレストレスを与えて連結する。緊張は従来の緊張装置を用いて従来の緊張方法で行うことができる。
(5)図4(e)に示すように、隣接する軽量床版1の連結部分の段差部分に、平滑性を図るためにモルタル等の充填材15を充填し、当該充填材15を養生して所要の強度を発現させた後施工作業を終了する。なお、軽量床版1をあらかじめ仮組みし、平滑性を前もって確認した場合には、図5に示す切り欠き構造を無くし充填材15の充填作業を省くことができる。
(Embodiment 1 of lightweight floor slab construction method)
An example of the lightweight floor slab construction method of this invention is demonstrated with reference to Fig.4 (a)-(e). This embodiment is an example in which the lightweight floor slab 1 of FIG. 1A is used as a bridge floor slab, and the construction procedure will be described next.
(1) As shown in FIG. 4A, a plurality of lightweight floor slabs 1a, 1b, 1c, 1d are laid side by side on a main beam (not shown). These lightweight floor slabs 1 are arranged so that steel pipes 2 communicate with each other to form a steel pipe row. Since the illustrated lightweight floor slab 1 is provided with seven steel pipes 2, in this case, seven steel pipe rows are formed. The lightweight floor slab 1 can be laid by hanging it with a heavy machine such as a crane.
(2) As shown in FIG.4 (b), among the lightweight floor slabs 1 laid on the main girder, adjacent lightweight floor slabs 1 (for example, lightweight floor slabs 1a and 1b, 1b and 1c, 1c and 1d) Steel pipes 2 (for example, steel pipes 2a and 2b, 2b and 2c, 2c and 2d) are connected. The steel pipe 2 can be connected by a method as shown in FIGS. 2 (a) and 2 (b) and FIGS. 3 (a) and 3 (b), for example. It is desirable to apply an adhesive to the joint surface 4 of the adjacent lightweight floor slab 1 (or the end surface of the steel pipe 2).
(3) As shown in FIG.4 (c), PC steel material 14 is penetrated in the steel pipes 2a-2d of the lightweight floor slab 1 (lightweight floor slab 1a-1d) laid continuously. For the PC steel material 14, a wire or a PC steel bar can be used from the existing PC steel. The PC steel material 14 can be inserted into all the steel pipe rows (seven steel pipe rows in the illustrated example), but in this embodiment, the PC steel material 14 is inserted into every other steel pipe row. By inserting every other PC steel material 14, it is possible to reduce the weight of the bridge slab after being connected by the PC steel material 14 and to reduce the cost by reducing the number of PC steel materials 14.
(4) As shown in FIG. 4 (d), among the lightweight floor slabs 1 arranged in large numbers, bearing plates at both ends of the PC steel material 14 projecting outward from the end surfaces of the lightweight floor slabs 1a and 1d at both ends in the arrangement direction. 12 is attached, the PC steel material 14 inserted through the steel pipe row is tensioned, and the lightweight floor slab 1 is prestressed and connected. Tensioning can be done with conventional tensioning methods using conventional tensioning devices.
(5) As shown in FIG. 4 (e), the stepped portion of the connecting portion of the adjacent lightweight floor slabs 1 is filled with a filler 15 such as mortar for smoothness, and the filler 15 is cured. After the required strength is developed, the construction work is finished. When the lightweight floor slab 1 is temporarily assembled and the smoothness is confirmed in advance, the notch structure shown in FIG. 5 can be eliminated and the filling work of the filler 15 can be omitted.

(軽量床版施工方法の実施形態2)
本発明の軽量床版施工方法の他例を、図6(a)〜(e)を参照して説明する。この実施形態は、橋梁床版として図1(a)の軽量床版1と図1(b)の軽量床版1を用いる場合の例である。この実施形態は、例えば、一夜間の施工で三枚敷設し、翌日に新たに三枚敷設するような場合に、一夜間に施工した軽量床版1ごとに逐一緊張する場合の例である。説明の便宜上、以下の説明では、一夜間に施工した床版を「床版ユニット」という。
(1)図6(a)に示すように、橋梁床版を構成する複数枚の軽量床版1a、1b、1cを主桁(図示しない)の上に並べて敷設する。複数枚の軽量床版1a〜1cは、鋼管2a〜2c同士が連通して複数の鋼管列が形成されるように、鋼管2a〜2cの軸方向に沿って並べて配列する。隣接する軽量床版1のうち、鋼管2同士が対向する部分は、図2(a)(b)や図3(a)(b)に示す手段で連結する。敷設したこれらの軽量床版1a〜1cの鋼管列にPC鋼材14xを挿通し、両端の軽量床版1a、1cの端面より外側に突出するPC鋼材14xの両端に支圧板12を取り付けてPC鋼材14xを緊張し、軽量床版1a〜1cにプレストレスを与えて連結する。緊張は従来の緊張装置を用いて従来の緊張方法で行うことができる。
(2)図6(b)に示すように、前日に敷設して緊張した床版ユニットの外側に新たに軽量床版1d、1e、1fを配設し、これら新たに敷設した三枚の軽量床版1d〜1fの鋼管2d、2e、2fが連通する鋼管列にPC鋼材14yを挿通する。
(3)図6(c)に示すように、前記(1)の工程で敷設した軽量床版1aの端面よりも外側に突出するPC鋼材14xと、前記(2)の工程で敷設した軽量床版1dの端面よりも外側に突出するPC鋼材14yをカップラー13で連結する。また、PC鋼材14を通さない鋼管同士を図2(a)(b)や図3(a)(b)に示す手段で連結する。
(4)図6(d)に示すように、前記(3)の工程で軽量床版1d〜1fの鋼管列に挿通されたPC鋼材14yの端部に支圧板12を取り付けて、当該PC鋼材14yを緊張し、これら軽量床版1d〜1fにプレストレスを与えて連結する。
(5)図6(e)に示すように、各軽量床版1a〜1fの連結部分の段差部に、モルタル等の充填材15を充填し、当該充填材15を養生して所要の強度を発現させた後、施工を終了する。
(Embodiment 2 of lightweight floor slab construction method)
Another example of the lightweight floor slab construction method of the present invention will be described with reference to FIGS. This embodiment is an example in which the lightweight floor slab 1 of FIG. 1A and the lightweight floor slab 1 of FIG. 1B are used as a bridge floor slab. This embodiment is an example in which, for example, when three sheets are laid for overnight construction and three new sheets are laid on the next day, tension is applied to each lightweight floor slab 1 constructed overnight. For convenience of explanation, in the following explanation, a floor slab constructed overnight is referred to as a “floor slab unit”.
(1) As shown in FIG. 6A, a plurality of lightweight floor slabs 1a, 1b, 1c constituting a bridge floor slab are laid side by side on a main girder (not shown). The plurality of lightweight floor slabs 1a to 1c are arranged side by side along the axial direction of the steel pipes 2a to 2c so that the steel pipes 2a to 2c communicate with each other to form a plurality of steel pipe rows. Of the adjacent lightweight floor slabs 1, the portions where the steel pipes 2 face each other are connected by means shown in FIGS. 2A and 2B and FIGS. 3A and 3B. The PC steel material 14x is inserted into the steel pipe rows of the layed floor slabs 1a to 1c, and the supporting plate 12 is attached to both ends of the PC steel material 14x protruding outward from the end surfaces of the light weight slabs 1a and 1c at both ends. 14x is tensioned and prestressed and connected to the lightweight floor slabs 1a to 1c. Tensioning can be done with conventional tensioning methods using conventional tensioning devices.
(2) As shown in FIG. 6B, new lightweight floor slabs 1d, 1e, and 1f are disposed outside the floor slab unit laid and tensioned on the previous day, and these three newly laid lightweight The PC steel material 14y is inserted into the steel pipe row in which the steel pipes 2d, 2e, and 2f of the floor slabs 1d to 1f communicate.
(3) As shown in FIG. 6 (c), the PC steel material 14x projecting outward from the end face of the lightweight floor slab 1a laid in the step (1), and the lightweight floor laid in the step (2). A PC steel material 14 y protruding outward from the end face of the plate 1 d is connected by a coupler 13. Moreover, the steel pipe which does not let PC steel material 14 pass is connected by the means shown to Fig.2 (a) (b) and Fig.3 (a) (b).
(4) As shown in FIG. 6 (d), the support plate 12 is attached to the end of the PC steel material 14y inserted into the steel pipe row of the lightweight floor slabs 1d to 1f in the step (3), and the PC steel material 14y is tensioned and connected to these lightweight floor slabs 1d to 1f by applying prestress.
(5) As shown in FIG. 6 (e), the stepped portions of the connecting portions of the respective lightweight floor slabs 1a to 1f are filled with a filler 15 such as mortar, and the filler 15 is cured to obtain a required strength. After the expression, the construction is finished.

前記いずれの実施形態も、充填材15の充填量が従来の施工方法に比して少量で済むため養生に時間がかからず、急速(迅速)施工を実現することができる。   In any of the above-described embodiments, since the filling amount of the filler 15 is smaller than that of the conventional construction method, the curing does not take time and rapid (rapid) construction can be realized.

(軽量床版連結構造の実施形態1)
本発明の軽量床版連結構造(以下、単に「連結構造」という)の一例を、図面を参照して説明する。この連結構造は、橋梁床版として図1(a)に示す軽量床版1を用いた場合の例である。
(Embodiment 1 of lightweight floor slab connection structure)
An example of the lightweight floor slab connection structure of the present invention (hereinafter simply referred to as “connection structure”) will be described with reference to the drawings. This connection structure is an example when the lightweight floor slab 1 shown in FIG. 1A is used as a bridge floor slab.

図7(a)に示す例は、図1(a)に示す四枚の軽量床版1a、1b、1c、1dが橋軸方向に沿って配設された場合の例である。複数枚の軽量床版1a〜1dは、鋼管2a〜2d同士が連通して複数の鋼管列が形成されるように、鋼管2a〜2dの軸方向に並べて配列してある。隣接する軽量床版1同士(例えば、軽量床版1aと1b、1bと1c、1cと1d)の鋼管2(例えば、鋼管2aと2b、2bと2c、2cと2d)は、図2(a)(b)や図3(a)(b)のような手段で連結することができる。鋼管2同士の連結部分に段差が生じるときは、当該段差部分にモルタル等の充填材15を充填して、軽量床版1の表面が平滑にするのが好ましい。   The example shown to Fig.7 (a) is an example when the four lightweight floor slabs 1a, 1b, 1c, and 1d shown to Fig.1 (a) are arrange | positioned along the bridge-axis direction. The plurality of lightweight floor slabs 1a to 1d are arranged side by side in the axial direction of the steel pipes 2a to 2d so that the steel pipes 2a to 2d communicate with each other to form a plurality of steel pipe rows. The steel pipes 2 (for example, steel pipes 2a and 2b, 2b and 2c, 2c and 2d) of adjacent lightweight floor slabs 1 (for example, lightweight floor slabs 1a and 1b, 1b and 1c, 1c and 1d) are shown in FIG. ) (B) and the means as shown in FIGS. 3 (a) and 3 (b). When a level difference occurs in the connecting portion between the steel pipes 2, it is preferable to fill the level difference portion with a filler 15 such as mortar so that the surface of the lightweight floor slab 1 is smooth.

図7(a)の例では、上から偶数番目の鋼管列(図中、上から二番目、四番目、六番目)に、PC鋼材14を挿通してある。夫々のPC鋼材14の軸方向端部であって、軽量床版1a、1dの接合端面よりも外側に突出する部分には、支圧板12が取り付けられており、PC鋼材14が緊張されることによって、軽量床版1a〜1dはプレストレスが加えられて連結される。   In the example of FIG. 7A, the PC steel material 14 is inserted into the even-numbered steel pipe rows from the top (second, fourth, sixth from the top in the figure). The supporting plate 12 is attached to the axial direction end of each PC steel material 14 and protrudes outward from the joint end surface of the lightweight floor slabs 1a and 1d, and the PC steel material 14 is tensioned. Thus, the lightweight floor slabs 1a to 1d are connected by applying prestress.

図7(a)では図示を省略してあるが、鋼管2の上下には、図8(a)〜(c)に示すように鉄筋やPC鋼材といった補強材16が配設されている。具体的には、補強材16が鋼管2の上下に、橋軸方向に交差する方向(直交又は略直交する方向)に向けて配設されている。図8(a)(b)に示す例では、鋼管2の上側及び下側の夫々に、五本ずつの鉄筋が配設してあるが、補強材16の本数はこれ以上であってもこれ以下であってもよい。   Although not shown in FIG. 7A, reinforcing members 16 such as reinforcing bars and PC steel are provided above and below the steel pipe 2 as shown in FIGS. 8A to 8C. Specifically, the reinforcing material 16 is disposed above and below the steel pipe 2 in a direction intersecting the bridge axis direction (a direction orthogonal or substantially orthogonal). In the example shown in FIGS. 8 (a) and 8 (b), five reinforcing bars are arranged on each of the upper side and the lower side of the steel pipe 2, but even if the number of reinforcing members 16 is more than this, It may be the following.

(軽量床版連結構造の実施形態2)
本発明の連結構造の他例を、図面を参照して説明する。この連結構造は、橋梁床版として図1(a)に示す軽量床版1と図1(b)に示す軽量床版1を用いた場合の例である。
(Embodiment 2 of lightweight floor slab connection structure)
Another example of the connection structure of the present invention will be described with reference to the drawings. This connection structure is an example in which a lightweight floor slab 1 shown in FIG. 1A and a lightweight floor slab 1 shown in FIG. 1B are used as a bridge floor slab.

一例として図7(b)に示す連結構造は、図1(a)に示す軽量床版1bの両外側に図1(b)に示す軽量床版1a、1cを配設した場合の例である。実際の施工現場では、例えば、一夜間でこれら三枚の軽量床版1a〜1cを施工して床版ユニットを完成させ、翌日にあらたに三枚の軽量床版1d〜1fを施工して床版ユニットを完成させる。軽量床版1は一夜間工事分を逐一連結し、翌日以降分はそれら床版ユニットを、カップラー13を用いて連結している。   As an example, the connection structure shown in FIG. 7 (b) is an example in which the lightweight floor slabs 1a and 1c shown in FIG. 1 (b) are arranged on both outer sides of the lightweight floor slab 1b shown in FIG. 1 (a). . At the actual construction site, for example, these three lightweight floor slabs 1a to 1c are constructed overnight to complete the floor slab unit, and the next day the three lightweight floor slabs 1d to 1f are newly constructed. Complete the plate unit. The lightweight floor slab 1 is connected to the nightly construction one by one, and the floor slab unit is connected using a coupler 13 for the next day and after.

図7(b)に示す例では、複数枚の軽量床版1a〜1cが配列され、鋼管2a〜2c同士が連通して鋼管2a〜2cの長手方向に複数の鋼管列が形成されている。これら軽量床版1a〜1cのうち隣接する軽量床版1(例えば、軽量床版1aと1b、1bと1c)の鋼管2(例えば、鋼管2aと2b、2bと2c)のうち、奇数番目の鋼管2(図中、上から一番目、三番目、五番目、七番目)同士が、図2(a)(b)や図3(a)(b)のような手段で連結されているとともに、偶数番目の鋼管列(図中、上から二番目、四番目、六番目の鋼管列)に、PC鋼材14xが挿通されている。一夜間分に施工された三枚の軽量床版1a〜1c(床版ユニット)には、その日のうちにプレストレスが与えられる。具体的には、三枚の軽量床版1a〜1cの鋼管列に挿通されたPC鋼材14xの長手方向両端に支圧板12が取り付けられ、PC鋼材14xが緊張されて連結される。   In the example shown in FIG. 7B, a plurality of lightweight floor slabs 1a to 1c are arranged, and the steel pipes 2a to 2c communicate with each other to form a plurality of steel pipe rows in the longitudinal direction of the steel pipes 2a to 2c. Among the light-weight floor slabs 1a to 1c, the odd-numbered ones of the steel pipes 2 (for example, the steel pipes 2a and 2b, 2b and 2c) of the adjacent light-weight floor slabs 1 (for example, the light-weight floor slabs 1a and 1b, 1b and 1c) The steel pipes 2 (first, third, fifth, seventh from the top in the figure) are connected by means such as FIGS. 2 (a) (b) and 3 (a) (b). The PC steel material 14x is inserted through the even-numbered steel pipe rows (the second, fourth, and sixth steel pipe rows from the top in the figure). The three lightweight floor slabs 1a to 1c (floor slab units) constructed overnight are given prestress on that day. Specifically, the bearing plates 12 are attached to both ends in the longitudinal direction of the PC steel material 14x inserted through the steel pipe rows of the three lightweight floor slabs 1a to 1c, and the PC steel material 14x is tensioned and connected.

図7(b)に示すように、プレストレスが加えられた床版ユニットの橋軸方向右側(図7(b)の右側)には、前日に施工された床版ユニットと同様、三枚の新たな軽量床版1d〜1f(床版ユニット)が施工されている。新たに施工される軽量床版1d〜1fは、前日に施工された軽量床版1a〜1cと同様、奇数番目の鋼管2(図中、上から一番目、三番目、五番目、七番目)同士が連結されると共に、偶数番目の鋼管列(図中、上から二番目、四番目、六番目の鋼管列)に挿通されたPC鋼材14yによって緊張されて連結されている。   As shown in FIG. 7 (b), on the right side of the bridge axis direction of the pre-stressed floor slab unit (right side of FIG. 7 (b)), the same as the floor slab unit constructed the day before, New lightweight floor slabs 1d to 1f (floor slab units) are being constructed. The newly constructed lightweight floor slabs 1d to 1f are odd-numbered steel pipes 2 (first, third, fifth and seventh from the top in the figure), similarly to the lightweight floor slabs 1a to 1c constructed on the previous day. While being connected to each other, they are connected by being strained by the PC steel material 14y inserted into the even-numbered steel pipe rows (the second, fourth and sixth steel pipe rows from the top in the figure).

新たに施工された床版ユニットの鋼管列に挿通されたPC鋼材14yは、カップラー13を介してPC鋼材14xと連結される。カップラー13は、軽量床版1c及び1dに設けられた収容空間11内に収まるようにしてある。   The PC steel material 14y inserted into the steel pipe row of the newly installed floor slab unit is connected to the PC steel material 14x via the coupler 13. The coupler 13 is adapted to be accommodated in the accommodating space 11 provided in the lightweight floor slabs 1c and 1d.

支圧板12やカップラー13を配置した収容空間11には段差が生じるため、橋梁床版の表面が均一になるように、当該段差部分にモルタル等の充填材15を充填する。軽量床版1の他の連結部分(例えば、軽量床版1aと1bの間や、軽量床版1bと1cの間など)に段差が生じている場合には、当該段差部分にもモルタル等の充填材15を充填し、軽量床版1の表面が平滑になるようにするのが好ましい。充填材15の充填は、全ての床版の施工が完成した後にまとめて行うことができる。   Since there is a step in the accommodating space 11 in which the bearing plate 12 and the coupler 13 are arranged, the step portion is filled with a filler 15 such as mortar so that the surface of the bridge deck is uniform. In the case where there is a step in the other connecting portion of the lightweight floor slab 1 (for example, between the lightweight floor slabs 1a and 1b, between the lightweight floor slabs 1b and 1c, etc.) It is preferable to fill the filler 15 so that the surface of the lightweight floor slab 1 becomes smooth. The filling of the filler 15 can be performed collectively after the construction of all the floor slabs is completed.

なお、図7(a)(b)では図示を省略してあるが、図8(a)(b)の場合と同様、鋼管2の上下には補強材16が配設されている。   Although not shown in FIGS. 7 (a) and 7 (b), reinforcing members 16 are disposed above and below the steel pipe 2 as in FIGS. 8 (a) and 8 (b).

前記のように床版ユニットずつ施工する場合は、数枚の軽量床版1を、予め、PC鋼材14yによって緊張連結してユニット化しておき、その床版ユニットを施工することもできるし、カップラー13の連結後に新たに隣接する床版ユニットをまとめて緊張することもできる。   When constructing the floor slab unit as described above, several lightweight floor slabs 1 can be pre-tensioned with PC steel 14y to form a unit, and the floor slab unit can be constructed. After the 13 connections, the newly adjacent floor slab units can be tensioned together.

[重量比較例]
本発明の床版厚200mmで軽量床版1の1m2あたりの重量を、従来のコンクリート床版(以下「従来床版」という)の1m2あたりの重量と比較すると、次のとおりである。なお、対象である本発明の軽量床版1は、一本あたりの重量が8.51kg/mの鋼管を1mあたり七本配置し、一本あたりの重量が1.101kg/mのPC鋼材14を1mあたり十本配置したものである。
[Weight comparison example]
The weight per 1 m 2 of the slab thickness lightweight slab 1 at 200mm of the present invention, when compared to the weight per 1 m 2 of conventional concrete slab (hereinafter referred to as "conventional slab"), is as follows. In addition, the lightweight floor slab 1 of the present invention, which is the object, has seven steel pipes with a weight of 8.51 kg / m arranged per m and seven PC pipes 14 with a weight of 1.101 kg / m per m. Ten of them are arranged.

[従来のRC床版]
W=2.5×1×1×0.2=0.5ton=500kg・・・・(X)
ここで、2.5(ton/m3)は鉄筋コンクリートの単位体積重量である。
[本発明の軽量床版]
(1)鋼管一本の重量を8.51kg/m、1mあたりの鋼管の本数を七本とすると、鋼管2の総重量WPは、
P=7×8.51kg=59.57kg
(2)PC鋼材(15.22mm)一本の重量を1.101kg/m、1mあたり十本とすると、PC鋼材14の総重量WPCは、
PC=10×1.101=11.10kg
(3)コンクリートの重量WCは、
C=2300×0.2×1×1×0.717=330kg
ここで、2300(kg/m3)はコンクリートの単位体積重量である。
(4)本発明の軽量床版の重量IWは、
IW=WP+WPC+WC≒400kg・・・・(Y)
(5)本発明の軽量床版に重量WLの軽量コンクリートを用いた場合の重量IWLは、
L=2000×0.2×1×1×0.717=287kg
IWL=WP+WPC+WC≒358kg・・・・(Z)
ここで、2000(kg/m3)は軽量コンクリートの単位体積重量である。
[Conventional RC floor slab]
W = 2.5 × 1 × 1 × 0.2 = 0.5ton = 500kg ... (X)
Here, 2.5 (ton / m 3 ) is a unit volume weight of reinforced concrete.
[Lightweight slab of the present invention]
(1) If the weight of one steel pipe is 8.51 kg / m and the number of steel pipes per meter is seven, the total weight W P of the steel pipe 2 is
W P = 7 × 8.51kg = 59.57kg
(2) If the weight of one PC steel (15.22mm) is 1.101kg / m, ten per m, the total weight W PC of PC steel 14 is
W PC = 10 x 1.101 = 11.10 kg
(3) the weight W C of concrete,
W C = 2300 × 0.2 × 1 × 1 × 0.717 = 330kg
Here, 2300 (kg / m 3 ) is a unit volume weight of concrete.
(4) The weight IW of the lightweight floor slab of the present invention is:
IW = W P + W PC + W C ≒ 400kg ・ ・ ・ ・ (Y)
(5) weight IW L in the case of using a lightweight concrete weight W L lightweight floor plate of the present invention,
W L = 2000 × 0.2 × 1 × 1 × 0.717 = 287kg
IW L = W P + W PC + W C ≈ 358 kg ··· (Z)
Here, 2000 (kg / m 3 ) is a unit volume weight of the lightweight concrete.

前述のように、本発明の軽量床版は、通常のコンクリートを用いた場合の重量が約400kg(Y)、軽量コンクリートを用いた場合の重量が358kg(Z)であり、従来のRC床版の重量(500kg(X))に対して、通常のコンクリートを用いる場合で80%、軽量コンクリートを用いる場合で70%の重量となり、20%〜30%の軽量化が実現できる。   As described above, the lightweight floor slab of the present invention has a weight of about 400 kg (Y) when using ordinary concrete and a weight of 358 kg (Z) when using light concrete, and is a conventional RC floor slab. The weight (500 kg (X)) is 80% when ordinary concrete is used, and 70% when lightweight concrete is used, and a weight reduction of 20% to 30% can be realized.

本発明の軽量床版1は、橋梁床版のほか、高速道路用の道路床版等としても用いることができる。   The lightweight floor slab 1 of the present invention can be used not only as a bridge floor slab but also as a road floor slab for an expressway.

1、1a〜f 軽量床版
2、2a〜f 鋼管
3 連結部
4 接合面
5 嵌合突部
6 嵌合凹部
7 連結治具
8 鍔
9 外螺子
10 内螺子
11 収容空間
12 支圧板
13 カップラー
14、14x、14y PC鋼材
15 充填材
16 補強材
A 床版
B PC鋼材(撚線)
C モルタル
D 支圧板
DESCRIPTION OF SYMBOLS 1, 1a-f Light weight floor slab 2, 2a-f Steel pipe 3 Connection part 4 Joining surface 5 Fitting protrusion 6 Fitting recessed part 7 Connection jig 8 9 9 Outer screw 10 Inner screw 11 Housing space 12 Supporting pressure plate 13 Coupler 14 , 14x, 14y PC steel 15 Filler 16 Reinforcement material A Floor slab B PC steel (twisted wire)
C mortar D bearing plate

Claims (10)

複数枚が配置連結して使用されるコンクリート製のプレキャスト床版において、
床版のコンクリート内に床版の連結方向に長く剛性のある管が複数本配置され、
前記管は床版の連結方向に交差する方向に間隔をあけて配置され、且つ設計荷重作用下ではコンクリートと一体化された、
ことを特徴とする軽量床版。
In concrete precast floor slabs that are used with multiple pieces arranged and connected,
Several long and rigid pipes are arranged in the floor slab concrete in the floor slab concrete,
The pipes are spaced apart in the direction intersecting the connecting direction of the floor slabs, and integrated with the concrete under the design load action,
A lightweight floor slab characterized by that.
請求項1記載の軽量床版において、
管の軸方向端部に、床版の連結方向に配列された他の床版の管と連結できる連結部を備えた、
ことを特徴とする軽量床版。
In the lightweight floor slab of Claim 1,
At the axial end of the tube, provided with a connecting portion that can be connected to other floor slab tubes arranged in the connecting direction of the floor slab,
A lightweight floor slab characterized by that.
床版をその連結方向に二枚以上配置して連結する床版施工方法において、
請求項1又は請求項2記載の軽量床版を、それら軽量床版の管同士を連通させて、軽量床版の連結方向に二枚以上並べ配置し、
前記のように配置された軽量床版のうち、隣接する軽量床版の管の軸方向端部の連結部同士を直接又は連結治具を介して連結することによって、配置された二枚以上の軽量床版を連結する、
ことを特徴とする軽量床版施工方法。
In the floor slab construction method in which two or more floor slabs are arranged and connected in the connecting direction,
The lightweight floor slabs according to claim 1 or claim 2 are arranged side by side in the connecting direction of the lightweight floor slabs by communicating the pipes of the lightweight floor slabs,
Of the lightweight floor slabs arranged as described above, two or more sheets arranged by connecting the connecting portions of the axial ends of the adjacent lightweight floor slabs directly or via a connecting jig. Articulating lightweight floor slabs,
A lightweight floor slab construction method characterized by that.
請求項3記載の軽量床版施工方法において、
二枚以上の軽量床版がプレ加工により連結された床版ユニットを、連結方向に二以上配置し、配置された二以上の床版ユニットを連結する、
ことを特徴とする軽量床版施工方法。
In the lightweight floor slab construction method according to claim 3,
Two or more floor slab units in which two or more lightweight floor slabs are connected by pre-processing are arranged in the connecting direction, and two or more arranged floor slab units are connected,
A lightweight floor slab construction method characterized by that.
請求項3記載の軽量床版施工方法において、
一回の施工により、二枚以上の軽量床版をその連結方向に連結して床版ユニットを設け、
前記連結の繰返しにより床版ユニットを二以上設け、
前記二以上の床版ユニットをその連結方向に連結する、
ことを特徴とする軽量床版施工方法。
In the lightweight floor slab construction method according to claim 3,
By one construction, two or more lightweight floor slabs are connected in the connecting direction to provide a floor slab unit,
Two or more floor slab units are provided by repeating the connection,
Connecting the two or more floor slab units in the connecting direction;
A lightweight floor slab construction method characterized by that.
請求項3から請求項5のいずれか1項に記載の軽量床版施工方法において、
管を一列に揃えて配置した二枚以上の軽量床版の管内にPC鋼材を挿通し、
前記PC鋼材を緊張することによって軽量床版にプレストレスを与えて連結する、
ことを特徴とする軽量床版施工方法。
In the lightweight floor slab construction method according to any one of claims 3 to 5,
PC steel is inserted into the pipes of two or more lightweight floor slabs with the pipes arranged in a row,
Prestressing and connecting to the lightweight floor slab by tensioning the PC steel material,
A lightweight floor slab construction method characterized by that.
請求項3から請求項6のいずれか1項に記載の軽量床版施工方法において、
隣接する軽量床版の接合面を接着剤で接着することで接続部の耐久性を高める、
ことを特徴とする軽量床版施工方法。
In the lightweight floor slab construction method according to any one of claims 3 to 6,
Increase the durability of the connecting part by bonding the joint surface of the adjacent lightweight floor slab with an adhesive.
A lightweight floor slab construction method characterized by that.
床版が二枚以上配置連結された床版連結構造において、
請求項1又は請求項2記載の軽量床版が二枚以上並べて配置され、
前記軽量床版はその管同士が軽量床版の連結方向に連通して管列が形成されるように配置され、
前記配置された軽量床版のうち隣接する軽量床版の管の軸方向端部の連結部同士が直接又は連結治具を介して連結された、
ことを特徴とする軽量床版連結構造。
In the floor slab connection structure where two or more floor slabs are arranged and connected,
Two or more lightweight floor slabs according to claim 1 or 2 are arranged side by side,
The lightweight floor slab is arranged such that the tubes communicate with each other in the connecting direction of the lightweight floor slab to form a tube row,
The connecting portions of the axial end portions of the adjacent lightweight floor slabs among the arranged lightweight floor slabs are connected directly or via a connecting jig,
A lightweight floor slab connection structure characterized by that.
床版が二枚以上配置され連結された床版連結構造において、
請求項1又は請求項2記載の軽量床版が二枚以上その連結方向に配置連結された床版ユニットが、その連結方向に二以上並べて配置され、
前記床版ユニットは軽量床版の管同士が軽量床版の連結方向に連通して管列が形成されるように配置され、
前記配置された床版ユニットのうち隣接する床版ユニットの管の軸方向端部の連結部同士が直接又は連結治具を介して連結された、
ことを特徴とする軽量床版連結構造。
In the floor slab connection structure where two or more floor slabs are arranged and connected,
The floor slab unit in which two or more lightweight floor slabs according to claim 1 or 2 are arranged and connected in the connecting direction is arranged in two or more in the connecting direction,
The floor slab unit is arranged so that the pipes of the lightweight floor slabs communicate with each other in the connecting direction of the lightweight floor slabs,
The connecting portions of the end portions in the axial direction of the pipes of the adjacent floor slab units among the arranged floor slab units are connected directly or via a connecting jig,
A lightweight floor slab connection structure characterized by that.
請求項8又は請求項9記載の軽量床版連結構造において、
二枚以上の軽量床版の複数の管列のいずれか一又は二以上にPC鋼材が挿通され、
前記PC鋼材が緊張されて二枚以上の軽量床版にプレストレスが加えられて連結された、
ことを特徴とする軽量床版連結構造。
In the lightweight floor slab connection structure according to claim 8 or 9,
PC steel material is inserted into any one or more of a plurality of tube rows of two or more lightweight floor slabs,
The PC steel was tensioned and connected to two or more lightweight floor slabs by applying prestress,
A lightweight floor slab connection structure characterized by that.
JP2013156796A 2013-07-29 2013-07-29 Lightweight floor slab, lightweight floor slab construction method, and lightweight floor slab connection structure Pending JP2015025330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013156796A JP2015025330A (en) 2013-07-29 2013-07-29 Lightweight floor slab, lightweight floor slab construction method, and lightweight floor slab connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013156796A JP2015025330A (en) 2013-07-29 2013-07-29 Lightweight floor slab, lightweight floor slab construction method, and lightweight floor slab connection structure

Publications (1)

Publication Number Publication Date
JP2015025330A true JP2015025330A (en) 2015-02-05

Family

ID=52490192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013156796A Pending JP2015025330A (en) 2013-07-29 2013-07-29 Lightweight floor slab, lightweight floor slab construction method, and lightweight floor slab connection structure

Country Status (1)

Country Link
JP (1) JP2015025330A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059345A (en) * 2016-10-06 2018-04-12 清水建設株式会社 Composite floor slab
WO2018191670A1 (en) * 2017-04-13 2018-10-18 Porous Technologies, Llc Precast porous concrete with cast-in conduits
JP2018199968A (en) * 2017-05-29 2018-12-20 清水建設株式会社 Composite floor slab
WO2019021516A1 (en) * 2017-07-28 2019-01-31 住友電工スチールワイヤー株式会社 Concrete structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059345A (en) * 2016-10-06 2018-04-12 清水建設株式会社 Composite floor slab
WO2018191670A1 (en) * 2017-04-13 2018-10-18 Porous Technologies, Llc Precast porous concrete with cast-in conduits
JP2018199968A (en) * 2017-05-29 2018-12-20 清水建設株式会社 Composite floor slab
WO2019021516A1 (en) * 2017-07-28 2019-01-31 住友電工スチールワイヤー株式会社 Concrete structure
CN111094653A (en) * 2017-07-28 2020-05-01 住友电气工业株式会社 Concrete structure
JPWO2019021516A1 (en) * 2017-07-28 2020-06-11 住友電気工業株式会社 Concrete structure
US11001978B2 (en) 2017-07-28 2021-05-11 Sumitomo Electric Industries, Ltd. Concrete structure
JP7088191B2 (en) 2017-07-28 2022-06-21 住友電気工業株式会社 Concrete structure

Similar Documents

Publication Publication Date Title
CN107542190B (en) Composite structural wall and method of construction thereof
KR101652664B1 (en) Precast deckplate and composite slab and concrete slab manufacturing method using the same
KR101505579B1 (en) Prestressed precast concrete using pipe rack or beam column joint structure and construction method of the same
JP2015025330A (en) Lightweight floor slab, lightweight floor slab construction method, and lightweight floor slab connection structure
KR101693256B1 (en) Construction method of prefabricated psc bridge
JP2006316580A (en) Corrugated steel plate web pc composite beam and construction method of bridge using corrugated steel plate web pc composite beam
JP5442421B2 (en) Half precast slab and slab construction method using the same
JP6567965B2 (en) Joint structure of PCa slab and its construction method
KR101060566B1 (en) Continuous method of multi-span PS beam using plate type tension material
KR20080111686A (en) Bridge using phc girder and slab-phc complex girder
JP2010007337A (en) Jointing structure of concrete member
JP2001262513A (en) Cable stayed bridge having composite synthetic steel tube beam material with slab and method of installing the beam material
JP4928341B2 (en) Construction method of truss bridge
JPH05340031A (en) Prestressed concrete girder and its manufacture
JP5602455B2 (en) Beam members and building structures
KR101023172B1 (en) Segmental precast prestressed concrete girder and method for constructing the same
JP6865874B2 (en) Construction method of prestressed concrete floor slab and floor slab using prestressed concrete floor slab
JP5439016B2 (en) Buried formwork
JP2007211552A (en) Continuous viaduct
KR100730018B1 (en) Prestressed steel-concrete composite and method for constructing the same
JP5160529B2 (en) Prestressed hybrid floor slab manufacturing method and floor slab by the method
JP2017223055A (en) Form-reinforcement integral structure and reinforced concrete, and form-reinforcement integral construction method
KR102033052B1 (en) Method for constructing truss bridge support with infilled tube using src girder
JP2016204925A (en) Prestressed Concrete Slab
JP6352092B2 (en) Junction structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20151119