JP2003331799A - Packed battery - Google Patents

Packed battery

Info

Publication number
JP2003331799A
JP2003331799A JP2002134050A JP2002134050A JP2003331799A JP 2003331799 A JP2003331799 A JP 2003331799A JP 2002134050 A JP2002134050 A JP 2002134050A JP 2002134050 A JP2002134050 A JP 2002134050A JP 2003331799 A JP2003331799 A JP 2003331799A
Authority
JP
Japan
Prior art keywords
lead terminal
lead
battery
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002134050A
Other languages
Japanese (ja)
Inventor
Tomonori Tanabe
友紀 田辺
Mitsuhiro Taki
充博 滝
Nobuaki Yoshioka
伸晃 吉岡
Hiroshi Yagata
弘志 屋ケ田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2002134050A priority Critical patent/JP2003331799A/en
Publication of JP2003331799A publication Critical patent/JP2003331799A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a packed battery with excellent resistance characteristics against peeling off by an electrolyte solution of a joining part of a lead terminal and an outer package body. <P>SOLUTION: The packed battery made by laminating a plural number of a unit cell with a positive electrode lead terminal 11 and a negative electrode lead terminal 12 extended outside from a unit cell main body is provided with a means by which an electrolyte solution in the packed battery is prevented from contacting a joint part of the lead terminal and the outer package, for instance, a means for putting the side where the lead terminal is not extended headed downward. With this, an attack by the electrolyte solution on a joint interface of the lead/outer package in a battery is alleviated, and thus, a packed battery hardly affected by peeling off degradation of the lead/outer package and with an excellent sealing reliability can be provided. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、単電池を複数積層
接続してなる組電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an assembled battery formed by connecting a plurality of unit cells in a laminated manner.

【0002】[0002]

【従来の技術】従来、積層型ラミネート電池としては、
金属層および熱融着性樹脂層とが積層されたフィルム、
すなわちラミネートフィルムにより発電体を被包し、熱
融着性樹脂層同士を熱融着することにより密封封止した
構成のものが知られている。積層型ラミネート電池の正
極リード端子及び負極リード端子は外装体であるラミネ
ートフィルムから延出されており、リード端子は図4
(a)に示すように正極リード11と負極リード12を互い
に対向する向きに引き出すか、あるいは図4(b)に示
すように正極リード11と負極リード12を電池4辺のうち
同じ一辺の封止部のみから引き出すのが一般的である。
この積層型ラミネート電池を複数接続したものが組電池
である。組電池は積層型ラミネート電池のリード端子部
を直列または並列になるようにリード端子同士を導電性
材料の正極リード接触部8又は負極リード接触部9で接
続して構成されている。またこの組電池は図5に示すよ
うに、角筒状の金属等のケース7で覆って用いられるこ
とが多い。
2. Description of the Related Art Conventionally, as a laminated laminate battery,
A film in which a metal layer and a heat-fusible resin layer are laminated,
That is, there is known a structure in which a power generator is covered with a laminate film and the heat-fusible resin layers are heat-sealed to hermetically seal. The positive electrode lead terminal and the negative electrode lead terminal of the laminated laminate battery are extended from the laminate film which is the outer package, and the lead terminal is shown in FIG.
As shown in FIG. 4A, the positive electrode lead 11 and the negative electrode lead 12 are pulled out in the opposite directions, or as shown in FIG. 4B, the positive electrode lead 11 and the negative electrode lead 12 are sealed on the same side of the four sides of the battery. It is common to pull out only from the stop.
An assembled battery is formed by connecting a plurality of the laminated laminate batteries. The assembled battery is configured by connecting the lead terminals to each other with the positive electrode lead contact portion 8 or the negative electrode lead contact portion 9 made of a conductive material so that the lead terminal portions of the laminated laminate battery are arranged in series or in parallel. Further, as shown in FIG. 5, this assembled battery is often used by being covered with a case 7 made of a metal such as a rectangular tube.

【0003】[0003]

【発明が解決しようとする課題】積層型ラミネート電池
の内部において、電解液は重力方向である下側に溜ま
る。電池の下側方向に、リード端子とラミネート外装体
が接合されたリード封止部が位置している場合、リード
封止部に電解液が溜まり、電解液がリード/外装体接着
界面を攻撃して剥離劣化を引き起こし、封止信頼性が悪
化する。特に電池が加圧状態で挟持されるように金属等
のケースで覆った組電池の場合には、電池のラミネート
外装体が押さえつけられる為、電池内部でのガス発生に
よる内圧の上昇がリード封止部を圧迫し、封止信頼性の
劣化が加速される。またリード封止部が破れた場合、電
解液が噴出し電池同士のリード端子接続部分の損傷を引
き起こし、正常な電池性能にも悪影響を与えてしまう。
つまり、図6(a)、(b)、(c)のように、正極リ
ード端子11及び負極リード端子12のうち少なくとも
一方を、電池のリード封止部が下側になるように組電池
を設置した場合、積層型ラミネート電池の内部において
電解液は重力方向である下側に溜まる。するとリード封
止部に電解液が溜まり、電解液がリード/外装体接着界
面を攻撃し剥離劣化を引き起こし、封止信頼性が悪化す
る。またリード封止が破れた場合、電解液が噴出しリー
ド端子接続部分の損傷を引き起こし、正常な電池にも悪
影響を与えるという不具合が発生しやすい。
In the inside of the laminated laminate battery, the electrolytic solution accumulates on the lower side in the direction of gravity. When the lead sealing part where the lead terminal and the laminated outer package are joined is located in the lower side of the battery, the electrolytic solution accumulates in the lead sealing part and the electrolytic solution attacks the lead / sheath bonding interface. As a result, peeling deterioration is caused and sealing reliability deteriorates. In particular, in the case of an assembled battery in which the battery is covered with a case such as a metal so as to be sandwiched under pressure, the laminated outer casing of the battery is pressed down, so the rise in internal pressure due to gas generation inside the battery causes lead sealing. As a result, the reliability of the sealing is deteriorated. Further, when the lead sealing portion is broken, the electrolytic solution is ejected to cause damage to the lead terminal connection portion between the batteries, which adversely affects the normal battery performance.
That is, as shown in FIGS. 6A, 6B, and 6C, at least one of the positive electrode lead terminal 11 and the negative electrode lead terminal 12 is assembled into a battery pack so that the lead sealing portion of the battery is on the lower side. When installed, the electrolytic solution accumulates inside the laminated laminate battery on the lower side in the direction of gravity. Then, the electrolytic solution accumulates in the lead sealing portion, and the electrolytic solution attacks the lead / exterior body adhesive interface to cause peeling deterioration, which deteriorates sealing reliability. Further, when the lead sealing is broken, the electrolyte solution is likely to be ejected, causing damage to the lead terminal connection portion, which is likely to adversely affect a normal battery.

【0004】本発明は上記に挙げたような問題を解決す
るものであり、電解液によるリード/外装体接着界面の
攻撃を緩和し、リード/外装体の剥離劣化が生じにく
く、封止信頼性の優れた組電池を提供することを目的と
する。
The present invention solves the above-mentioned problems, mitigates the attack on the adhesive interface between the lead and the outer package by the electrolytic solution, makes it difficult for the lead / outer package to be peeled and deteriorated, and has a high sealing reliability. It is an object of the present invention to provide an excellent battery pack.

【0005】[0005]

【課題を解決するための手段】本発明の組電池は、複数
の極板が積層されてなり電解液を含有する発電体にリー
ド端子を接続した電池本体を、該リード端子が外部と通
電可能となるよう延出させ、かつ外装体で前記リード端
子を挟み込んで密封封止した複数の積層型ラミネート単
電池を、前記積層方向に重ね合わせ、前記リード端子同
士を接続してなる組電池において、前記電解液を、前記
リード端子と外装体の接合部に接触させないための手段
を有することを特徴とする。
The battery pack of the present invention comprises a battery main body in which a plurality of electrode plates are laminated and a lead terminal is connected to a power generator containing an electrolytic solution, and the lead terminal can conduct electricity to the outside. And a plurality of laminated laminated single cells that are hermetically sealed by sandwiching the lead terminals with an outer package, are stacked in the stacking direction, and an assembled battery formed by connecting the lead terminals to each other, It is characterized in that it has means for preventing the electrolytic solution from coming into contact with the joint between the lead terminal and the outer package.

【0006】以下本発明をより詳細に説明する。本発明
の、上記した電解液をリード端子と外装体の接合部に接
触させない手段(以下非接触手段という)によれば、電
解液によるリード/外装体接着界面の攻撃が緩和され、
リード/外装体の剥離劣化が生じにくく封止信頼性に優
れた組電池を得ることができる。特に、組電池を金属製
等のケース内に収容し、単電池の各極板を加圧状態で収
容した場合には、前述した通り封止信頼性の低下が著し
いが、前記非接触手段によると電解液がリード/外装体
接着界面に接触することが極力回避されるため、前記封
止信頼性の低下を最小限に抑えることができる。
The present invention will be described in more detail below. According to the means for preventing the above-mentioned electrolytic solution from coming into contact with the joint between the lead terminal and the exterior body (hereinafter referred to as non-contact means) of the present invention, the attack on the lead / exterior body adhesive interface by the electrolytic solution is mitigated,
It is possible to obtain an assembled battery that is less likely to cause peeling deterioration of the lead / sheath body and has excellent sealing reliability. In particular, when the assembled battery is housed in a case made of metal or the like and each electrode plate of the unit cell is housed under pressure, the sealing reliability is significantly reduced as described above. Since the contact between the electrolyte solution and the lead / exterior body adhesive interface is avoided as much as possible, the decrease in the sealing reliability can be minimized.

【0007】具体的な前記非接触手段としては、リード
端子を下方に向けて設置しないこと、換言すると電池設
置時に、前記リード端子が延出していない単電池の一辺
を下側に設置することが含まれる。他の手法としては、
電池機能を損なわない範囲で、発電体とリード/外装体
接着界面間に、前記発電体から浸出する電解液を前記リ
ード/外装体接着界面に到達させない手段、例えば電解
液を吸収する綿状物質の設置、あるいは電解液の移動を
阻止するブロック板の設置等がある。
[0007] As the specific non-contact means, the lead terminals are not installed downward, in other words, when the battery is installed, one side of the unit cell in which the lead terminals do not extend is installed on the lower side. included. Another approach is
Means for preventing the electrolytic solution leaching from the power generation body from reaching the lead / exterior body adhesion interface between the power generation body and the lead / exterior body adhesion interface, for example, a cotton-like substance that absorbs the electrolyte solution, within a range that does not impair the battery function. Or the installation of a block plate that blocks the movement of the electrolytic solution.

【0008】次に本発明の組電池で使用可能な各部材に
ついて説明する。
Next, each member usable in the assembled battery of the present invention will be described.

【0009】[リード端子]リード端子は、材質として
はAl、Cu、燐青銅、Ni、Ti、Fe、真鍮、ステ
ンレスなどが使用でき、必要ならば焼き鈍し処理を施さ
れたものでもよい。平板状であることが好ましく、厚さ
としては20μm〜2mmの範囲であることが好まし
い。図4(a)に示すように正極リードと負極リードを
互いに対向する向きに引き出しても、あるいは図4
(b)に示すように電池の4辺のうち1辺の封止部のみ
から2本の端子を引き出し、外装体封止部を経由しても
よい。
[Lead Terminal] The lead terminal may be made of Al, Cu, phosphor bronze, Ni, Ti, Fe, brass, stainless steel, or the like, and may be annealed if necessary. The plate-like shape is preferable, and the thickness is preferably in the range of 20 μm to 2 mm. As shown in FIG. 4A, the positive electrode lead and the negative electrode lead may be pulled out in the opposite directions, or
As shown in (b), two terminals may be led out only from the sealing portion on one side of the four sides of the battery, and may be routed through the sealing portion of the exterior body.

【0010】[外装体]積層型ラミネート電池の外装体
はフィルム状のもの、すなわち、金属箔、樹脂薄膜、こ
れらの積層体などで例示される柔軟性を有する薄い部材
から成り、凹部が形成されているものが使用できる。な
おここでフィルムとは曲げ変形に対して柔軟性を有する
薄い部材を指す。厚さは、10〜300μmが好ましく、さ
らに好ましくは、50〜200μmである。10μm未満であ
ると、電池外装体としての力学的強度に乏しく、容易に
破断するなどの不都合が生じ、300μmを超えると、柔
軟性に乏しくなり、内圧を上昇させずにガスを受容する
ことにおいて不都合となる。凹部の形成は、成形予定部
の周囲のフィルムを滑り可能な状態で押さえながらポン
チとダイスでフィルムを押し込んで成形する絞り成形
(深絞り成形)が好ましい。なお、成形予定部の周囲の
フィルムを滑らせずに固定して、ダイスでフィルムを引
っ張り伸ばして成形する張り出し成形法で凹部を形成し
ても良い。また、射出成形法で凹部を持つ外装体を作製
してもよい。
[Exterior body] The exterior body of the laminated laminate battery is a film-like one, that is, a metal foil, a resin thin film, a thin member having flexibility exemplified by a laminate of these, and a concave portion is formed. Can be used. Here, the film refers to a thin member having flexibility against bending deformation. The thickness is preferably 10 to 300 μm, more preferably 50 to 200 μm. When it is less than 10 μm, mechanical strength as a battery outer package is poor and it easily breaks, and when it is more than 300 μm, it becomes poor in flexibility and in receiving gas without increasing internal pressure. It will be inconvenient. The recess is preferably formed by draw forming (deep draw forming) in which the film around the planned forming portion is pressed in a slidable state and the film is pushed in with a punch and a die. The recess may be formed by a stretch molding method in which the film around the planned molding portion is fixed without slipping and the film is stretched and stretched with a die. Alternatively, an outer package having a recess may be manufactured by an injection molding method.

【0011】[発電体]発電体の構成、形態は特に限定
されず、例えば正極、負極、セパレータからなり、平板
状のもの、単純に2組以上積層したもの等が用いられ
る。正極は放電時に正イオンを吸収するもの又は負イオ
ンを放出するものであれば特に限定されず、(i)LiM
nO2、LiMn24、LiCoO2、LiNiO2等の
金属酸化物、(ii)ポリアセチレン、ポリアニリン等の導
電性高分子、(iii)一般式(R−Sm n(Rは、脂肪族
基、または芳香族基であり、Sは、硫黄であり、m、n
は、m≧1、n≧1の整数である)で示されるジスルフ
ィド化合物(ジチオグリコール、2、5−ジメルカプト
−1、3、4−チアジアゾール、S−トリアジン−2、
4、6−トリチオール等)等の二次電池の正極材料とし
て従来公知のものが使用できる。
[Power Generator] The structure and form of the power generator are particularly limited.
Not, for example, a positive electrode, a negative electrode, a separator, a flat plate
Shaped, or simply stacked two or more sets
It The positive electrode absorbs positive ions during discharge or negative ions.
It is not particularly limited as long as it emits nitrogen (i) LiM
nO2, LiMn2OFour, LiCoO2, LiNiO2Etc.
Conducting metal oxides, (ii) polyacetylene, polyaniline, etc.
Electroconductive polymer, (iii) general formula (RSm) n(R is aliphatic
Group, or an aromatic group, S is sulfur, m, n
Is an integer of m ≧ 1 and n ≧ 1)
Compound (dithioglycol, 2,5-dimercapto
-1,3,4-thiadiazole, S-triazine-2,
4,6-trithiol, etc.) as a positive electrode material for secondary batteries
Conventionally known ones can be used.

【0012】また、正極に正極活物質を適当な結着剤や
機能性材料と混合して形成することもできる。これらの
結着剤としてはポリフッ化ビニリデン等のハロゲン含有
高分子等が、機能性材料としては電子伝導性を確保する
ためのアセチレンブラック、ポリピロール、ポリアニリ
ン等の導電性高分子、イオン伝導性を確保するための高
分子電解質、それらの複合体等が挙げられる。負極は、
カチオンを吸蔵・放出可能な材料であれば特に限定され
ず、天然黒鉛、石炭・石油ピッチ等を高温で熱処理して
得られる黒鉛化炭素等の結晶質カーボン、石炭、石油ピ
ッチコークス、アセチレンピッチコークス等を熱処理し
て得られる非晶質カーボン、金属リチウムやAlLi等
のリチウム合金など、二次電池の負極活物質として従来
公知のものが使用できる。
Further, the positive electrode can be formed by mixing a positive electrode active material with a suitable binder or a functional material. Halogen-containing polymers such as polyvinylidene fluoride are used as these binders, and conductive polymers such as acetylene black, polypyrrole, and polyaniline are used as functional materials to ensure electron conductivity, and ion conductivity is ensured. Examples thereof include polymer electrolytes and composites thereof. The negative electrode is
It is not particularly limited as long as it is a material capable of occluding and releasing cations, crystalline graphite such as natural graphite, graphitized carbon obtained by heat treatment of coal, petroleum pitch, etc. at high temperature, coal, petroleum pitch coke, acetylene pitch coke Conventionally known materials can be used as the negative electrode active material of the secondary battery, such as amorphous carbon obtained by heat-treating etc., lithium alloys such as metallic lithium and AlLi.

【0013】発電体に含まれる非水系電解質溶液として
は、例えば、エチレンカーボネート、プロピレンカーボ
ネート、ジメチルカーボネート、ジエチルカーボネー
ト、メチルエチルカーボネート、γ−ブチロラクトン、
N,N’−ジメチルホルムアミド、ジメチルスルホキシ
ド、N−メチルピロリドン、m−クレゾール等の二次電
池の電解液として利用可能な極性の高い塩基性溶媒にL
iやK、Na等のアルカリ金属のカチオンと、Cl
4 -、BF4 -、PF6 -、CF3SO3 -、(CF3SO22
-、(C25SO22-、(CF3SO23-、(C
25SO23-等のハロゲンを含む化合物のアニオン
からなる塩を溶解したものが挙げられる。また、これら
の塩基性溶媒からなる溶剤や電解質塩を単独、あるいは
複数組み合わせて用いることもできる。また、電解液を
含むポリマーゲルとしたゲル状電解質としてもよい。
The non-aqueous electrolyte solution contained in the power generator is, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone,
L, N, N′-dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone, m-cresol and the like can be used as a highly polar basic solvent that can be used as an electrolytic solution of a secondary battery.
Alkali metal cations such as i, K, and Na, and Cl
O 4 , BF 4 , PF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2
N -, (C 2 F 5 SO 2) 2 N -, (CF 3 SO 2) 3 C -, (C
2 F 5 SO 2 ) 3 C − and the like in which a salt composed of an anion of a compound containing a halogen is dissolved. Further, a solvent composed of these basic solvents and an electrolyte salt may be used alone or in combination. Alternatively, a gel electrolyte that is a polymer gel containing an electrolytic solution may be used.

【0014】[0014]

【発明の実施の形態】次に本発明の実施の形態について
図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings.

【0015】まず図1を用いて積層型ラミネート電池を
構成する単電池について説明する。凹部を予め形成して
ある下部外装体5の凹部に、複数の極板1をセパレータ
2を介して積層した発電体3を載置する。発電体3から
伸びる集電箔4には予め正極リード11及び負極リード
12を溶接しておく。次に上部外装体6として凹部を有
しない平面状のフィルムを、発電体3及び両リード端子
11及び12上から被せ、次いで減圧下においてヒート
シールを行い、減圧封止された図1の積層型ラミネート
タイプの単電池7を得る。前述の通り、フィルムとは、
曲げ変形に対して柔軟性を有する薄い部材を指す。
First, a unit cell constituting a laminated laminate battery will be described with reference to FIG. A power generator 3 having a plurality of electrode plates 1 stacked on each other with a separator 2 is placed in the recess of the lower exterior body 5 in which the recess is formed in advance. The positive electrode lead 11 and the negative electrode lead 12 are previously welded to the collector foil 4 extending from the power generator 3. Next, a flat film having no recess as the upper exterior body 6 is covered on the power generator 3 and both lead terminals 11 and 12, and then heat-sealed under reduced pressure, and the laminated type of FIG. 1 sealed under reduced pressure. A laminate type single battery 7 is obtained. As mentioned above, the film is
It refers to a thin member that is flexible against bending deformation.

【0016】この単電池7を各リード端子部が直列また
は並列になるようにリード接続部で接続してラミネート
組電池を構成する。並列に接続した例を、図2(a)、
(b)、(c)、(d)に示している。これらの組電池
の特徴は、正極リード端子11および負極リード端子1
2が外装体5及び6から延出されてなるリード封止部を
有する辺が下側方向に向かないように、換言すると前記
リード封止部を有する辺以外の辺が下側を向くように設
置されていることである。
The unit cells 7 are connected at the lead connecting portions so that the lead terminal portions are connected in series or in parallel to form a laminated battery pack. An example of parallel connection is shown in FIG.
It is shown in (b), (c) and (d). These assembled batteries are characterized by the positive electrode lead terminal 11 and the negative electrode lead terminal 1.
2 so that the side having the lead sealing portion formed by extending from the outer casings 5 and 6 does not face downward, in other words, the sides other than the side having the lead sealing portion face downward. It is installed.

【0017】つまり、図2(a)では、正極リード端子
11及び負極リード端子12の両者が重力方向とは逆の
上側を向くよう設置され、複数の正極リード端子11が
正極リード端子用接続部8に接続され、かつ複数の負極
リード端子12が負極リード端子用接続部9に接続され
ている。また図2(b)では、正極リード端子11及び
負極リード端子12の両者が重力方向と直角方向である
組電池の側面を向きかつ正極リード端子11が負極リー
ド端子12より上方に位置するように設置されている。
図2(c)では、正極リード端子11及び負極リード端
子12の両者が重力方向と直角方向である組電池の側面
を向きかつ正極リード端子11が負極リード端子12よ
り下方に位置するように設置されている。更に、図2
(d)では、正極リード端子11及び負極リード端子1
2の両者が重力方向と直角方向である組電池の側面に互
いに逆方向を向くように設置されている。
That is, in FIG. 2A, both the positive electrode lead terminal 11 and the negative electrode lead terminal 12 are installed so as to face the upper side opposite to the direction of gravity, and the plurality of positive electrode lead terminals 11 are connected to the positive electrode lead terminal connecting portion. 8 and a plurality of negative electrode lead terminals 12 are connected to the negative electrode lead terminal connection portion 9. In addition, in FIG. 2B, both the positive electrode lead terminal 11 and the negative electrode lead terminal 12 face the side surface of the battery pack which is a direction perpendicular to the gravity direction and the positive electrode lead terminal 11 is positioned above the negative electrode lead terminal 12. is set up.
In FIG. 2C, the positive electrode lead terminal 11 and the negative electrode lead terminal 12 both face the side surface of the battery pack that is perpendicular to the direction of gravity, and the positive electrode lead terminal 11 is located below the negative electrode lead terminal 12. Has been done. Furthermore, FIG.
In (d), the positive electrode lead terminal 11 and the negative electrode lead terminal 1
Both of them are installed so as to face in opposite directions to each other on the side surface of the battery pack, which is perpendicular to the direction of gravity.

【0018】リード接続部8及び9は導電性材料からな
り、一般に銅板が用いられることが多い。リード端子1
1及び12とリード接続部8及び9の接続は超音波溶
接,抵抗溶接,リベットによるかしめ等により行われ
る。図2(a)に示した形態の組電池の場合、図3に示
すように組電池全体を金属や樹脂から成るケース10に
収容して発電体3を加圧状態で挟持しても良い。これに
より、電池の発電体3の極板1間の密着性を保つことが
できる。
The lead connecting portions 8 and 9 are made of a conductive material, and generally a copper plate is often used. Lead terminal 1
The connection between 1 and 12 and the lead connection portions 8 and 9 is performed by ultrasonic welding, resistance welding, caulking with rivets, or the like. In the case of the assembled battery of the form shown in FIG. 2A, the entire assembled battery may be housed in a case 10 made of metal or resin to sandwich the power generator 3 under pressure as shown in FIG. As a result, the adhesion between the electrode plates 1 of the power generator 3 of the battery can be maintained.

【0019】[0019]

【実施例】以下、本発明の詳細について実施例を用いて
具体的に説明するが、本発明はこれらの実施例に限定さ
れるものではない。
EXAMPLES The details of the present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0020】<実施例1>スピネル構造を持つマンガン
酸リチウム粉末、炭素質導電性付与材、およびポリフッ
化ビニリデンを90:5:5の重量比でNMP(N−メ
チル−2−ピロリジノン)に混合分散、攪拌してスラリ
ーとした。NMPの量はスラリーが適当な粘度になるよ
うに調整した。このスラリーをドクターブレードを用い
て、正極集電体となる厚さ20ミクロンのアルミニウム
箔の片面に均一に塗布した。塗布時には、わずかに未塗
布部(集電体が露出している部分)が筋状にできるよう
にした。次にこれを100℃で2時間真空乾燥させた。
同様にもう一方の面にもスラリーを塗布し、真空乾燥さ
せた。この際、表裏の未塗布部が一致するようにした。
このようにして両面に活物質を塗布したシートをロール
プレスした。これを未塗布部を含めて矩形に切り出した
ものを8枚用意した。活物質未塗布部はリード端子への
接続予定部とした。このようにして、合計の理論容量が
3Ahとなる正極を用意した。
<Example 1> Lithium manganate powder having a spinel structure, carbonaceous conductivity-imparting material, and polyvinylidene fluoride were mixed with NMP (N-methyl-2-pyrrolidinone) in a weight ratio of 90: 5: 5. Dispersed and stirred to obtain a slurry. The amount of NMP was adjusted so that the slurry had an appropriate viscosity. Using a doctor blade, this slurry was uniformly applied to one surface of a 20-micron-thick aluminum foil that was a positive electrode current collector. At the time of application, a slightly uncoated part (a part where the current collector is exposed) was made to be streaky. Next, this was vacuum dried at 100 ° C. for 2 hours.
Similarly, the other surface was coated with the slurry and vacuum dried. At this time, the uncoated portions on the front and back were made to coincide.
The sheet thus coated with the active material on both sides was roll-pressed. Eight sheets were prepared by cutting this into a rectangular shape including the uncoated portion. The portion not coated with the active material was the portion to be connected to the lead terminal. In this way, a positive electrode having a total theoretical capacity of 3 Ah was prepared.

【0021】一方、アモルファスカーボン粉末、ポリフ
ッ化ビニリデンを91:9の重量比でNMPに混合、分
散、攪拌してスラリーとした。NMPの量はスラリーが
適当な粘度になるように調整した。このスラリーをドク
ターブレードを用いて、負極集電体となる厚さ10ミク
ロンの銅箔の片面に均一に塗布した。塗布時には、わず
かに未塗布部(集電体が露出している部分)が筋状にで
きるようにした。次にこれを100℃2時間真空乾燥し
た。なお、このとき負極層の単位面積あたりの理論容量
と正極層の単位面積あたりの理論容量を1:1となるよ
うに活物質層の膜厚を調整した。同様にもう一方の面に
も同様のスラリーを塗布し真空乾燥した。このようにし
て両面に活物質を塗布したシートをロールプレスした。
これを正極のサイズよりも縦横2mmずつ大きいサイズ
に、未塗布部を含めて矩形に切り出したものを9枚用意
し、負極とした。活物質未塗布部はリード端子への接続
予定部とした。
On the other hand, amorphous carbon powder and polyvinylidene fluoride were mixed in NMP at a weight ratio of 91: 9, dispersed and stirred to form a slurry. The amount of NMP was adjusted so that the slurry had an appropriate viscosity. Using a doctor blade, this slurry was uniformly applied to one surface of a copper foil having a thickness of 10 μm and serving as a negative electrode current collector. At the time of application, a slightly uncoated part (a part where the current collector is exposed) was made to be streaky. Then, this was vacuum dried at 100 ° C. for 2 hours. At this time, the film thickness of the active material layer was adjusted so that the theoretical capacity per unit area of the negative electrode layer and the theoretical capacity per unit area of the positive electrode layer were 1: 1. Similarly, the same slurry was applied to the other surface and vacuum dried. The sheet thus coated with the active material on both sides was roll-pressed.
Nine sheets were prepared by cutting each of these into a rectangular shape including the uncoated portion into a size larger by 2 mm in length and width than the size of the positive electrode, and used as a negative electrode. The portion not coated with the active material was the portion to be connected to the lead terminal.

【0022】上記のようにして用意した正極と負極の間
に、負極のサイズよりも縦横2mmずつ大きいサイズの
矩形の、ポリプロピレン/ポリエチレン/ポリプロピレ
ンの3層構造を持つマイクロポーラスセパレーター(ヘ
キストセラニーズ社製、セルガード2300)を介して
積層した。電極の最外側は負極となるようにし、その負
極のさらに外側にセパレータを設置した(セパレータ/
負極/セパレータ/正極/セパレータ/・・・・・・/
負極/セパレータの順)。正極の活物質未塗布部と負極
の活物質未塗布部とは電池4辺のうち、同じ辺に位置す
る向きに揃えた。次に、正極リード端子となる厚さ0.
1mm、幅50mm、長さ50mmのアルミニウム板
と、正極8枚の活物質未塗布部とを一括して超音波溶接
した。同様に負極リード端子となる厚さ0.1mm、幅
50mm、長さ50mmのニッケル板と、負極9枚の活
物質未塗布部とを一括して超音波溶接した。なお、正極
リード端子および負極リード端子は、上記の溶接接続に
先立ち、外装体による封止予定部に予め30μmの厚さ
のフィルム状の酸変成ポリプロピレンからなるシール材
を熱融着した。
Between the positive electrode and the negative electrode prepared as described above, a microporous separator having a three-layer structure of polypropylene / polyethylene / polypropylene (Hoechst Celanese Co. Manufactured by Celgard 2300). The outermost side of the electrode was the negative electrode, and a separator was placed further outside the negative electrode (separator /
Negative electrode / separator / positive electrode / separator / ...
Negative electrode / separator order). The positive electrode active material-uncoated portion and the negative electrode active material-uncoated portion were aligned so as to be located on the same side of the four sides of the battery. Next, a thickness of 0.
An aluminum plate having a width of 1 mm, a width of 50 mm, and a length of 50 mm was ultrasonically welded together with eight active material-uncoated portions of the positive electrode. Similarly, a nickel plate having a thickness of 0.1 mm, a width of 50 mm, and a length of 50 mm, which serves as a negative electrode lead terminal, and nine negative electrode active material-uncoated portions were collectively ultrasonically welded. Prior to the above-mentioned welding connection, the positive electrode lead terminal and the negative electrode lead terminal were heat-sealed in advance with a sealing material made of a film-like acid-modified polypropylene having a thickness of 30 μm at a portion to be sealed by the outer package.

【0023】一方、外装体用のラミネートフィルムとし
て、ナイロン25μm、軟質アルミニウム40μm、酸
変成ポリプロピレン30μmの積層体からなるフィルム
を準備し、所定のサイズに切り出し、カップ状に深絞り
成形した。このラミネートフィルムのカップ成形部に、
上記の積層体を収納した。次に上記のラミネートフィル
ムを成形せずに所定のサイズに切り出しただけのもの
を、上記の発電要素が収納されたカップ成形部の上にシ
ール面を内側に向けて蓋をするように置いた。次にカッ
プ成形されたフィルムのつば部の上を経由して引き出さ
れているリード端子をフィルムつば部と蓋とで挟むよう
にして、リード端子引き出し部をヒートシールし、次い
でリード端子引き出し部と対向する辺およびリード端子
引き出し部でない長辺(以下長辺A、長辺Bという)の
うち一辺(以下長辺Aという)をヒートシールした。な
お、リード端子封止部のシール強度を水準間で比較しや
すいように、リード端子引き出し部はやや弱めの条件で
ヒートシールを行った。
On the other hand, as a laminate film for the outer package, a film composed of a laminate of nylon 25 μm, soft aluminum 40 μm, and acid-modified polypropylene 30 μm was prepared, cut into a predetermined size, and deep-drawn into a cup shape. In the cup molding part of this laminated film,
The above laminate was stored. Next, the above laminated film, which was just cut into a predetermined size without molding, was placed so as to cover the cup molding portion in which the above-mentioned power generation element was housed with the sealing surface facing inward. . Next, the lead terminal lead-out portion is heat-sealed by sandwiching the lead terminal pulled out via the upper portion of the cup-formed film by the film collar portion and the lid, and then facing the lead terminal lead-out portion. One side (hereinafter referred to as long side A) out of the sides and long sides (hereinafter referred to as long side A and long side B) that is not the lead terminal lead-out portion was heat-sealed. The lead terminal lead-out portion was heat-sealed under a slightly weaker condition so that the seal strength of the lead terminal sealing portion could be easily compared between levels.

【0024】次に、長辺Aを下にして傾け、最後の未シ
ール部である長辺Bの隙間から、電極積層体に電解液を
注液した。電解液は1mol/リットルのLiPF6
支持塩とし、プロピレンカーボネートとメチルエチルカ
ーボネートの混合溶媒(重量比50:50)を溶媒とす
るものである。注液量は、発電要素の体積の5%に相当
する量とした。注液後、減圧脱泡を行った。最後に、真
空シール機を用いて減圧状態で長辺Bのヒートシールを
行い、電池を完成させた。このようにして作製した複数
の電池のリード端子部を並列になるようにリード接続部
で接続し実施例1の組電池を作製した。リード接続部に
は導電性材料である銅板を用い、超音波溶接で接続し
た。
Next, the long side A was tilted downward, and the electrolytic solution was injected into the electrode laminate through the gap between the long sides B which is the last unsealed portion. The electrolytic solution uses 1 mol / liter of LiPF 6 as a supporting salt and a mixed solvent of propylene carbonate and methyl ethyl carbonate (weight ratio 50:50) as a solvent. The liquid injection amount was set to an amount corresponding to 5% of the volume of the power generation element. After the injection, defoaming under reduced pressure was performed. Finally, the long side B was heat-sealed under reduced pressure using a vacuum sealing machine to complete the battery. The assembled battery of Example 1 was produced by connecting the lead terminal portions of the thus-produced batteries in parallel with the lead connection portions. A copper plate, which is a conductive material, was used for the lead connection portion and was connected by ultrasonic welding.

【0025】この組電池を図3のように厚さ1mmのア
ルミ板のケースで周辺を覆い、アルミ外装体による圧力
により発電体が加圧状態で挟持されるようにした。こう
することにより、電池の発電体の極板密着性が保たれ
た。なお、電池の側面部、ラミネートフィルムのヒート
シール部はアルミ外装体の内壁と接触せず、圧力が掛か
らないようにした。この組電池を電圧4.3Vの満充電
にして、図2(a)のようにリード端子引き出し辺が上
側になるように設置し、60℃,90%環境下で3ヶ月
間放置したところ、正極・負極端子部ともにリークは発
生しなかった。なお、本実施例・比較例で行った評価に
ついては以下の基準で結果を判断した。剥離劣化によっ
て最初に発生するのがリークであり、リークの有無はリ
ード端子引き出し部根元のリーク痕(析出物等)を確認
することにより行った。更に剥離劣化が進行し、剥離部
近辺に電解液が溜まっている場合には剥離部から電解液
が噴出し、この場合、各電池のリード端子同士が接続さ
れているリード端子接続部が損傷を受ける。このリーク
有無およびリード端子接続部の損傷を観察し、封止信頼
性の判断基準とした。
As shown in FIG. 3, the assembled battery was covered with a case of an aluminum plate having a thickness of 1 mm so that the power generator was sandwiched in a pressurized state by the pressure of the aluminum outer casing. By doing so, the electrode plate adhesion of the battery power generator was maintained. The side surface of the battery and the heat-sealed portion of the laminate film were not in contact with the inner wall of the aluminum outer package, and were not applied with pressure. When the assembled battery was fully charged at a voltage of 4.3 V, the lead terminal lead-out side was placed on the upper side as shown in FIG. 2A, and the battery was left for 3 months at 60 ° C. and 90% environment. No leak occurred in both the positive electrode and negative electrode terminal portions. In addition, about the evaluation performed in this Example and the comparative example, the result was judged based on the following criteria. A leak first occurs due to the deterioration due to peeling, and the presence or absence of the leak was checked by confirming a leak mark (precipitate or the like) at the root of the lead terminal lead portion. When the peeling deterioration progresses and the electrolytic solution is accumulated near the peeling portion, the electrolytic solution is ejected from the peeling portion.In this case, the lead terminal connecting portion where the lead terminals of each battery are connected is damaged. receive. The presence or absence of this leak and the damage of the lead terminal connection portion were observed and used as a criterion for the sealing reliability.

【0026】<実施例2>実施例1と同じ組電池を電圧
4.3Vの満充電にして、図2(b)のようにリード端
子引き出し辺が側面になるように、かつAl正極リード
端子がNi負極リード端子よりも上側になるように設置
し、60℃,90%環境下で3ヶ月間放置したところ、
まずAl正極リード端子で、次にNi負極リード端子で
リークが発生したが電解液の噴出は無く、リード端子接
続部の損傷はなかった。
Example 2 The same assembled battery as in Example 1 was fully charged to a voltage of 4.3 V, and the lead terminal lead-out side was a side surface as shown in FIG. 2B, and the Al positive electrode lead terminal was used. Is placed above the Ni negative electrode lead terminal and left for 3 months at 60 ° C. and 90% environment.
Leaks occurred first in the Al positive electrode lead terminal and then in the Ni negative electrode lead terminal, but no electrolytic solution was ejected and the lead terminal connection portion was not damaged.

【0027】<実施例3>実施例1と同じ組電池を電圧
4.3Vの満充電にして、図2(c)のようにリード端
子引き出し辺が側面になるように、かつNi負極リード
端子がAl正極リード端子よりも上側になるように設置
し、60℃,90%環境下で3ヶ月間放置したところ、
まずAl正極リード端子で、次にNi負極リード端子で
リークが発生したが電解液の噴出は無く、リード端子接
続部の損傷はなかった。
<Embodiment 3> The same assembled battery as in Embodiment 1 is fully charged to a voltage of 4.3 V so that the lead terminal lead-out side is the side surface and the Ni negative lead terminal is as shown in FIG. 2 (c). Was placed so that it was on the upper side of the Al positive electrode lead terminal and left for 3 months at 60 ° C. and 90% environment.
Leaks occurred first in the Al positive electrode lead terminal and then in the Ni negative electrode lead terminal, but no electrolytic solution was ejected and the lead terminal connection portion was not damaged.

【0028】<実施例4>正極リード端子と負極リード
端子を互いに対向する辺から引き出した積層型ラミネー
ト電池を、実施例1と同様の方法で組電池にした。この
組電池を電圧4.3Vの満充電にして、図2(d)のよ
うにリード端子の無い辺が下面になるように設置し、6
0℃,90%環境下で3ヶ月間放置したところ、まずA
l正極リード端子で、次にNi負極リード端子でリーク
が発生したが電解液の噴出は無く、リード端子接続部の
損傷はなかった。
Example 4 A laminated type laminate battery in which the positive electrode lead terminal and the negative electrode lead terminal were drawn out from the sides facing each other was made into an assembled battery by the same method as in Example 1. This battery pack was fully charged to a voltage of 4.3 V, and was installed so that the side without the lead terminals was the bottom surface as shown in FIG.
When left at 0 ° C and 90% for 3 months,
Although leakage occurred at the positive electrode lead terminal and then at the Ni negative electrode lead terminal, no electrolytic solution was ejected and the lead terminal connection portion was not damaged.

【0029】<比較例1>正極リード端子と負極リード
端子を互いに対向する辺から引き出した積層型ラミネー
ト電池を、実施例1と同様の方法で組電池にした。この
組電池を電圧4.3Vの満充電にして、図6(a)のよ
うにNi負極リード端子が下側になるように設置し、6
0℃,90%環境下で3ヶ月間放置したところ、Ni負
極リード端子でリークが発生して電解液が噴出し、リー
ド端子接続部が損傷した。
<Comparative Example 1> A laminated laminate battery in which a positive electrode lead terminal and a negative electrode lead terminal were drawn out from opposite sides was formed into an assembled battery in the same manner as in Example 1. The battery pack was fully charged to a voltage of 4.3 V, and the Ni negative electrode lead terminal was placed on the lower side as shown in FIG.
When left for 3 months in an environment of 0 ° C. and 90%, a leak occurred in the Ni negative electrode lead terminal, the electrolytic solution was ejected, and the lead terminal connection part was damaged.

【0030】<比較例2>正極リード端子と負極リード
端子を互いに対向する辺から引き出した積層型ラミネー
ト電池を、実施例1と同様の方法で組電池にした。この
組電池を電圧4.3Vの満充電にして、図6(b)のよ
うにAl正極リード端子が下側になるように設置し、6
0℃,90%環境下で3ヶ月間放置したところ、Al正
極リード端子でリークが発生して電解液が噴出し、リー
ド端子接続部が損傷した。
<Comparative Example 2> A laminated laminate battery in which the positive electrode lead terminal and the negative electrode lead terminal were drawn out from the sides facing each other was made into an assembled battery by the same method as in Example 1. The assembled battery was fully charged at a voltage of 4.3 V, and was installed so that the Al positive electrode lead terminal was on the lower side as shown in FIG.
When left for 3 months in an environment of 0 ° C. and 90%, a leak occurred in the Al positive electrode lead terminal, the electrolytic solution was ejected, and the lead terminal connection part was damaged.

【0031】<比較例3>実施例1と同じ組電池を電圧
4.3Vの満充電にして、図6(c)のように正極及び
負極リード端子引き出し辺が下側になるように設置し、
60℃,90%環境下で3ヶ月間放置したところ、まず
Al正極リード端子で、次にNi負極リード端子でリー
クが発生し、双方のリード端子接続部が損傷した。
<Comparative Example 3> The same assembled battery as in Example 1 was fully charged to a voltage of 4.3 V, and the positive and negative lead terminal lead-out sides were set downward as shown in FIG. 6 (c). ,
When left in an environment of 60 ° C. and 90% for 3 months, leakage occurred first in the Al positive electrode lead terminal and then in the Ni negative electrode lead terminal, and both lead terminal connection parts were damaged.

【0032】実施例1〜4,比較例1〜3の組電池を6
0℃,90%環境下で3ヶ月間放置した場合のAl正極
リード端子,Ni負極リード端子封止部のリークおよび
端子接続部の損傷状況を表1に纏めた。Al端子部,N
i端子部において表中に示す順序でリークが発生した。
つまり比較例2及び3の組電池のAl端子部で同時に、
次いで比較例1及び3のNi端子部で同時に、更に順
次、実施例3の組電池のAl端子部で、実施例4の組電
池のAl端子部で、実施例2の組電池のAl端子部で、
実施例2の組電池のNi端子部で、実施例4の組電池の
Ni端子部で、最後に実施例3の組電池のNi端子部で
リークが起こった。実施例1の組電池のAl端子部及び
Ni端子部、比較例1の組電池のAl端子部及び比較例
2の組電池のNi端子部ではリークが起こらなかった。
Six assembled batteries of Examples 1 to 4 and Comparative Examples 1 to 3 were used.
Table 1 summarizes the leakage state of the Al positive electrode lead terminal, the Ni negative electrode lead terminal sealing part and the damage state of the terminal connecting part when left for 3 months at 0 ° C. and 90% environment. Al terminal part, N
Leakage occurred in the i terminal portion in the order shown in the table.
That is, at the same time at the Al terminal portions of the assembled batteries of Comparative Examples 2 and 3,
Then, at the same time in the Ni terminal portions of Comparative Examples 1 and 3, further sequentially, the Al terminal portion of the assembled battery of Example 3, the Al terminal portion of the assembled battery of Example 4, and the Al terminal portion of the assembled battery of Example 2. so,
Leakage occurred at the Ni terminal of the assembled battery of Example 2, at the Ni terminal of the assembled battery of Example 4, and finally at the Ni terminal of the assembled battery of Example 3. No leakage occurred in the Al terminal portion and Ni terminal portion of the assembled battery of Example 1, the Al terminal portion of the assembled battery of Comparative Example 1, and the Ni terminal portion of the assembled battery of Comparative Example 2.

【0033】また比較例1〜3の下側にリード端子が設
置されている組電池のうち、比較例1のNi接続部、比
較例2のAl接続部及び比較例3のAl接続部及びNi
接続部では、リークにより電解液が漏れ、リード端子接
続部の損傷が発生した。これらの結果より、リード端子
部が下側に位置するほどリード封止部が電解液で濡れ、
電解液がリード/外装体接着界面を攻撃し剥離劣化が生
じやすいことが確認された。また、リード端子はNiと
比較してAlの方が電解液に攻撃されやすいことも確認
された。
Further, among the battery packs in which the lead terminals are provided on the lower side of Comparative Examples 1 to 3, the Ni connecting portion of Comparative Example 1, the Al connecting portion of Comparative Example 2, the Al connecting portion of Comparative Example 3, and Ni.
At the connecting portion, the electrolyte leaked due to the leak, and the lead terminal connecting portion was damaged. From these results, the lower the lead terminal portion is, the more wet the lead sealing portion is with the electrolytic solution,
It was confirmed that the electrolytic solution attacked the lead / exterior body adhesive interface to cause peeling deterioration. It was also confirmed that Al was more likely to be attacked by the electrolytic solution in the lead terminal than in Ni.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
電解液を、リード端子と外装体の接合部に接触させない
手段を設置することにより、電池内において電解液によ
るリード/外装体接着界面の攻撃が緩和されるためリー
ド/外装体の剥離劣化が生じにくく、封止信頼性の優れ
た組電池を得ることができる。また、リード封止部から
の電解液噴出によるリード端子接続部分の損傷を防ぐこ
とができる。
As described above, according to the present invention,
By providing a means for preventing the electrolytic solution from coming into contact with the joint between the lead terminal and the outer package, the attack of the electrolytic solution on the adhesive interface between the lead and the outer package is mitigated, resulting in deterioration of peeling of the lead / outer package. It is difficult to obtain an assembled battery having excellent sealing reliability. In addition, it is possible to prevent damage to the lead terminal connecting portion due to ejection of the electrolytic solution from the lead sealing portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で使用可能な単電池を示す概略断面図で
ある。
FIG. 1 is a schematic sectional view showing a unit cell that can be used in the present invention.

【図2】図2(a)〜(d)はそれぞれ本発明の実施例
を示す概略斜視図である。
2 (a) to 2 (d) are schematic perspective views showing an embodiment of the present invention.

【図3】本発明の一例である組電池を金属製ケースで覆
った態様を示す概略斜視図である。
FIG. 3 is a schematic perspective view showing a mode in which the assembled battery which is an example of the present invention is covered with a metal case.

【図4】図4(a)及び(b)は従来の単電池を例示す
る概略斜視図である。
FIG. 4A and FIG. 4B are schematic perspective views illustrating a conventional unit cell.

【図5】金属製ケースで覆った従来の組電池の一例を示
す概略断面図である。
FIG. 5 is a schematic cross-sectional view showing an example of a conventional assembled battery covered with a metal case.

【図6】図6(a)〜(c)は従来の組電池の概略斜視
図である。
FIG. 6A to FIG. 6C are schematic perspective views of a conventional assembled battery.

【符号の説明】[Explanation of symbols]

1・・・・極板 2・・・・セパレータ 3・・・・発電体 4・・・・集電箔 5・・・・下部外装体 6・・・・上部外装体 7・・・・単電池 8・・・・正極リード接続部 9・・・・負極リード接続部 10・・・ケース 11・・・正極リード 12・・・負極リード 1 ... electrode plate 2 ... Separator 3 ... Power generator 4 ... Current collector foil 5 ... Lower exterior body 6 ... Upper exterior body 7 ... Single battery 8 ··· Positive electrode lead connection part 9 ... Negative electrode lead connection 10 ... Case 11 ... Positive electrode lead 12 ... Negative electrode lead

フロントページの続き (72)発明者 吉岡 伸晃 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 屋ケ田 弘志 東京都港区芝五丁目7番1号 日本電気株 式会社内 Fターム(参考) 5H011 AA17 EE04 FF02 GG00 Continued front page    (72) Inventor Nobuaki Yoshioka             5-7 Shiba 5-1, Minato-ku, Tokyo NEC Corporation             Inside the company (72) Inventor Hiroshi Yagada             5-7 Shiba 5-1, Minato-ku, Tokyo NEC Corporation             Inside the company F-term (reference) 5H011 AA17 EE04 FF02 GG00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の極板が積層されて成り電解液を含
有する発電体にリード端子を接続した電池本体を、該リ
ード端子が外部と通電可能となるよう延出させ、かつ外
装体で前記リード端子を挟み込んで密封封止した複数の
積層型ラミネート単電池を、前記積層方向に重ね合わ
せ、前記リード端子同士を接続してなる組電池におい
て、前記電解液を、前記リード端子と外装体の接合部に
接触させないための手段を有することを特徴とする組電
池。
1. A battery body having a lead terminal connected to a power generator containing a plurality of electrode plates and containing an electrolytic solution is extended so that the lead terminal can be electrically connected to the outside, and an exterior body is used. In a battery pack in which a plurality of laminated laminated single cells sandwiching the lead terminals and hermetically sealed are stacked in the stacking direction, and the lead terminals are connected to each other, the electrolytic solution is added to the lead terminals and an outer package. An assembled battery, characterized in that it has means for preventing it from coming into contact with the joint portion of the battery.
【請求項2】 電解液を記リード端子と外装体の接合部
に接触させないための手段が、リード端子を下方に向け
て設置しないことである請求項1に記載の組電池。
2. The assembled battery according to claim 1, wherein the means for preventing the electrolytic solution from coming into contact with the joint between the lead terminal and the outer casing is that the lead terminal is not installed downward.
【請求項3】 ケース内に、各極板を加圧状態で収容し
た請求項1又は2に記載の組電池。
3. The assembled battery according to claim 1, wherein the electrode plates are housed in a case under pressure.
【請求項4】 リード端子がニッケル製である請求項1
から3までのいずれかに記載の組電池。
4. The lead terminal is made of nickel.
The assembled battery according to any one of 1 to 3.
JP2002134050A 2002-05-09 2002-05-09 Packed battery Pending JP2003331799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134050A JP2003331799A (en) 2002-05-09 2002-05-09 Packed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134050A JP2003331799A (en) 2002-05-09 2002-05-09 Packed battery

Publications (1)

Publication Number Publication Date
JP2003331799A true JP2003331799A (en) 2003-11-21

Family

ID=29696825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134050A Pending JP2003331799A (en) 2002-05-09 2002-05-09 Packed battery

Country Status (1)

Country Link
JP (1) JP2003331799A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108626A (en) * 2009-11-16 2011-06-02 Samsung Sdi Co Ltd Lithium polymer secondary battery
US9159969B2 (en) 2009-02-05 2015-10-13 Samsung Sdi Co., Ltd. Laminate strengthened battery pack and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214638A (en) * 1997-01-30 1998-08-11 Hitachi Ltd Lithium secondary battery
JP2002175790A (en) * 2000-12-08 2002-06-21 Matsushita Electric Ind Co Ltd Flat battery
JP2003109557A (en) * 2001-09-28 2003-04-11 Mitsubishi Electric Corp Non-aqueous electrolyte battery and its manufacturing method
JP2003323874A (en) * 2002-05-07 2003-11-14 Fuji Heavy Ind Ltd Assembling structure of flat battery
JP2003323879A (en) * 2002-05-07 2003-11-14 Fuji Heavy Ind Ltd Electrode connecting structure of flat battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214638A (en) * 1997-01-30 1998-08-11 Hitachi Ltd Lithium secondary battery
JP2002175790A (en) * 2000-12-08 2002-06-21 Matsushita Electric Ind Co Ltd Flat battery
JP2003109557A (en) * 2001-09-28 2003-04-11 Mitsubishi Electric Corp Non-aqueous electrolyte battery and its manufacturing method
JP2003323874A (en) * 2002-05-07 2003-11-14 Fuji Heavy Ind Ltd Assembling structure of flat battery
JP2003323879A (en) * 2002-05-07 2003-11-14 Fuji Heavy Ind Ltd Electrode connecting structure of flat battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9159969B2 (en) 2009-02-05 2015-10-13 Samsung Sdi Co., Ltd. Laminate strengthened battery pack and method of manufacturing the same
JP2011108626A (en) * 2009-11-16 2011-06-02 Samsung Sdi Co Ltd Lithium polymer secondary battery
US8895180B2 (en) 2009-11-16 2014-11-25 Samsung Sdi Co., Ltd. Lithium polymer secondary battery with external wrapping member

Similar Documents

Publication Publication Date Title
CN107431232B (en) Electrode assembly comprising coupling part between electrode tab and electrode lead located at gap portion
US10340498B2 (en) Electrode assembly with tab-lead coupler and method for manufacturing the same
JP5830953B2 (en) Secondary battery, battery unit and battery module
US9136556B2 (en) Electrode assembly of novel structure and process for preparation of the same
EP1530246B1 (en) Laminated battery
US20120202105A1 (en) Stack type battery and method of manufacturing the same
JP6315269B2 (en) Sealed battery module and manufacturing method thereof
JP4096718B2 (en) Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle
EP1424744A1 (en) Stacked battery, assembled battery and vehicle
US9698408B2 (en) Secondary battery
US10468638B2 (en) Method for forming a pouch for a secondary battery
KR20140012601A (en) Secondary battery and electrochemical cell having the same
KR101484369B1 (en) Secondary battery and electrochemical cell having the same
US10158107B2 (en) Battery comprising insulative films
JP2006054119A (en) Bipolar battery and battery pack
JP4304715B2 (en) How to install the battery pack
JP6113972B2 (en) Secondary battery
JP6048477B2 (en) Method for producing non-aqueous electrolyte battery
JP5224336B2 (en) Film exterior electrochemical device
US20230060060A1 (en) Electrochemical cell and electrochemical cell module
JP2003331799A (en) Packed battery
JP2020173989A (en) Non-aqueous electrolyte secondary battery
KR101738542B1 (en) Battery Cell Having Film for Fixing of Electrode Assembly
JP4304716B2 (en) How to install the battery pack
JP5646944B2 (en) Secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080526