JP4304716B2 - How to install the battery pack - Google Patents

How to install the battery pack Download PDF

Info

Publication number
JP4304716B2
JP4304716B2 JP2002186620A JP2002186620A JP4304716B2 JP 4304716 B2 JP4304716 B2 JP 4304716B2 JP 2002186620 A JP2002186620 A JP 2002186620A JP 2002186620 A JP2002186620 A JP 2002186620A JP 4304716 B2 JP4304716 B2 JP 4304716B2
Authority
JP
Japan
Prior art keywords
lead terminal
positive electrode
battery
electrode lead
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002186620A
Other languages
Japanese (ja)
Other versions
JP2004031162A (en
Inventor
友紀 田辺
充博 滝
伸晃 吉岡
弘志 屋ケ田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2002186620A priority Critical patent/JP4304716B2/en
Publication of JP2004031162A publication Critical patent/JP2004031162A/en
Application granted granted Critical
Publication of JP4304716B2 publication Critical patent/JP4304716B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池を複数接続してなる組電池の設置方法に関する。
【0002】
【従来の技術】
従来、積層型ラミネート電池としては、金属層と熱融着性樹脂層とが積層されたフィルム、すなわちラミネートフィルムにより発電体を被包し、熱融着性樹脂層同士を熱融着することにより密封封止したものが知られており、正極リード端子および負極リード端子は外装体であるラミネートフィルムの封止部から延出された構成が知られている。この積層型ラミネート電池を複数接続したものが組電池である。組電池は、積層型ラミネート電池のリード端子同士を導電性材料で接続して構成されている。また、この組電池は金属等のケースで覆って用いられることが多い。
【0003】
【発明が解決しようとする課題】
電池内において、正極リード端子は負極リード端子と比較して高電位にあり、一般的には電気化学的に金属イオンが溶出しやすい状態になっているといえる。このため、概して負極リード端子よりも先に正極リード端子表面が劣化して正極リード/外装体の剥離劣化が生じやすい。正極リードおよび負極リードのいずれか一方の端子でリード/外装体の剥離劣化が生じ、リークが発生すれば、電池としてはその時点で封止寿命となるため、実質的に電池の封止寿命は正極リード封止寿命で決定される。特に、電池が加圧状態で挟持されるように金属等のケースで覆った組電池の場合には、電池のラミネートフィルムからなる外装体が押さえつけられるため、電池内部でのガス発生による内圧の上昇がリード封止を圧迫し、封止信頼性の劣化が加速される。
【0004】
本発明は、前述したような問題を解決するためになされたものであり、電池の正極リード端子の劣化を防ぐことにより、封止信頼性の向上を図った組電池の設置方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の組電池の設置方法は、発電体をフィルムで密封封止して外装した複数の積層型ラミネート電池のリード端子同士を接続してなる組電池の設置方法において、電池を設置する際、正極リード端子を上側方向にして設置したことを特徴とする。
【0006】
すなわち、本発明は、少なくとも極板が積層されてなる発電体にリード端子を設けた電池本体を、前記リード端子が外部と通電可能となるよう延出させて挟み込むようにしてフィルムで密封封止してなる積層型ラミネート電池を複数含む組電池の設置方法であって、
複数の前記積層型ラミネート電池を前記積層方向に複数重ね合わせ、
前記リード端子同士を接続する際に、全ての正極リード端子が延出された辺を重力方向で見て上側にして設置ることを特徴とする組電池の設置方法である。
【0007】
本発明の組電池の設置方法は、正極リード端子が延出された辺を上側にして設置されているので、正極リード端子の劣化が緩和され、正極リード/外装体の剥離劣化が生じにくく、封止信頼性に優れた組電池を得ることができる。
【0008】
【発明の実施の形態】
以下に本発明の実施の形態について図面を参照して説明する。図1は本発明の実施の一例としての積層型ラミネート組電池の斜視図で、その特徴は、正極リード端子11が上側方向になるように組電池1が設置されていることである。
【0009】
図2は組電池1に用いられている積層型ラミネート電池21の一例であり、その断面図を図3に示す。図3を参照すると、積層型ラミネート電池21は、少なくとも極板が積層されてなる発電体3にリード端子11、12を設けた電池本体14を、リード端子11、12が外部と通電可能となるよう延出させて挟み込むようにしてフィルムで密封封止してなる。すなわち、発電体3が、両者ともフィルムからなる下部外装体5および上部外装体6により被包され、発電体の周囲の外装体同士がヒートシールされることにより密封封止されている。なお、フィルムとは曲げ変形に対して柔軟性を有する薄い部材を指し、本発明においては金属箔単独、あるいは一般にラミネートフィルムと呼ばれる金属箔と樹脂フィルムとの積層体が好ましい。本形態の電池は、外装体のヒートシールを減圧下で行うことにより減圧封止されている。
【0010】
続いて、図3を用いて積層型ラミネート電池の製造方法の一例を説明する。まず、凹部22を予め形成してある下部外装体5の凹部22に、発電体3を載置する。発電体3から伸びる集電箔23には、符号4の部分(溶接部)において予めリード11、12を溶接しておく。次に、上部外装体6として凹部を有しない平面状のフィルムを上からかぶせる。その後、減圧下においてヒートシールを行い、図2の積層型ラミネートタイプの単電池21を得る。
【0011】
次に、本発明の組電池の実施の形態を説明する。先述のようにして得られた積層型ラミネート電池21を極板の積層方向に複数重ね合わせるとともに、正極リード端子11および負極リード端子12をそれぞれ並列になるようにリード接続部2で接続し、図1に示す積層型ラミネート組電池1を得る。リード接続部2は導電性材料からなり、一般に銅板が用いられることが多い。接続は超音波溶接、抵抗溶接、リベットによるかしめ等により行われる。本発明では図1に示すように、この組電池1を正極リード端子11が上側方向になるように設置している。一般に、この組電池は金属等のケースで周辺を覆い、発電体が加圧状態で挟持されるようにしている。こうすることにより、電池の発電体の極板密着性を保つことができる。
【0012】
仮に図4のように正極リード端子11が下側になるように組電池を設置した場合、積層型ラミネート電池21の内部において電解液は重力方向である正極リード端子11側に溜まり、正極リード端子が電解液と接触する。電池内において正極リード端子は負極リード端子と比較して高電位にあり、一般的には電気化学的に金属イオンが溶出しやすい状態になっているといえる。このため、概して負極リード端子よりも先に正極リード端子表面が劣化して正極リード/外装体の剥離劣化が生じやすい。正極リードおよび負極リードのいずれか一方の端子でリード/外装体の剥離劣化が生じ、リークが発生すれば、電池としてはその時点で封止寿命となるため、実質的に電池の封止寿命は正極リード封止寿命で決定される。
【0013】
本発明では、図1に示すように正極リード端子11を上側方向にして積層型ラミネート組電池1を設置することで、一般的に負極リード12よりも表面劣化しやすい正極リード端子の封止劣化を抑制し、それにより電池そのものの封止寿命を改善し、封止信頼性の優れた組電池を提供することができる。
【0014】
図1に示すような正極リードと負極リードを互いに対向する向きに引き出した積層型ラミネート電池を縦置きに設置する場合に、本発明は特に有効である。両リードを対向する向きに引き出した場合、一方の極のリードを上側に向けると他方の極のリードは下側に向けることになる。正極負極どちらのリード端子封止部が剥離劣化を引き起こしリークに至った場合でも、その時点で組電池全体としての封止寿命に到達することになる。従って、電池内で負極リード端子と比較して高電位にあり電気化学的に金属イオンが溶出し表面劣化しやすい正極リード端子を上側に、正極リードと比較して低電位にある負極リード端子を下側に向けて組電池を設置することで、組電池としての封止寿命をより長くすることができ、封止信頼性の優れた組電池を提供することができる。
【0015】
以下に各構成要素の実施の形態について詳述する。
[リード端子]
リード端子の材質としては、正極リード端子にAl、Tiなど、負極リード端子にNi、Cu、燐青銅、Fe、真鍮、ステンレス鋼などが使用でき、必要ならば焼き鈍し処理が施されたものでもよい。リード端子は平板状であることが好ましく、厚さとしては20μm〜2mmの範囲であることが好ましい。リード端子は正極リードと負極リードを同じ側に、あるいは図2に示すように互いに対向する向きに引き出し、外装体封止部を経由させる。
【0016】
[外装体]
積層型ラミネート電池の外装体としてはフィルム状のもの、すなわち、金属箔、樹脂薄膜、これらの積層体などで例示される柔軟性を有する薄い部材であり、凹部が形成されているものが好適に使用できる。フィルムの厚さとしては10〜300μmが好ましく、さらに好ましくは50〜200μmである。フィルムの厚さが10μm未満であると、電池外装体としての力学的強度に乏しく、容易に破断するなどの不都合が生じ、300μmを超えると、柔軟性に乏しくなり、内圧を上昇させずにガスを受容することにおいて不都合となる。凹部の形成は、成形予定部の周囲のフィルムを滑り可能な状態で押さえながら、ポンチとダイスでフィルムを押し込んで成形する絞り成形(深絞り成形)が好ましい。なお、成形予定部の周囲のフィルムを滑らせずに固定して、ダイスでフィルムを引っ張り伸ばして成形する張り出し成形法で凹部を形成してもよい。また、射出成形法で凹部を持つ外装体を作製してもよい。
【0017】
[発電要素]
発電体3の構成、形態は特に限定されず、例えば正極、負極、セパレータからなり、平板状のもの、単純に極板を2組以上積層したもの等が用いられる。正極は放電時に正イオンを吸収するもの、または負イオンを放出するものであれば特に限定されず、(I)LiMnO2、LiMn24、LiCoO2、LiNiO2等の金属酸化物、(II)ポリアセチレン、ポリアニリン等の導電性高分子、(III)一般式(R−Sm)n(Rは、脂肪族、または芳香族であり、Sは、硫黄であり、m、nは、m≧1、n≧1の整数である)で示されるジスルフィド化合物(ジチオグリコール、2,5−ジメルカプト−1,3,4−チアジアゾール、S−トリアジン−2,4,6−トリチオール等)等の二次電池の正極材料として従来公知のものが使用できる。また、正極に正極活物質を適当な結着剤や機能性材料と混合して形成することもできる。これらの結着剤としてはポリフッ化ビニリデン等のハロゲン含有高分子等が、機能性材料としては電子伝導性を確保するためのアセチレンブラック、ポリピロール、ポリアニリン等の導電性高分子、イオン伝導性を確保するための高分子電解質、それらの複合体等が挙げられる。負極は、カチオンを吸蔵・放出可能な材料であれば特に限定されず、天然黒鉛、石炭・石油ピッチ等を高温で熱処理して得られる黒鉛化炭素等の結晶質カーボン、石炭、石油ピッチコークス、アセチレンピッチコークス等を熱処理して得られる非晶質カーボン、金属リチウムやAlLi等のリチウム合金など、二次電池の負極活物質として従来公知のものが使用できる。
【0018】
発電体に含まれる非水系電解質溶液としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、N、N’−ジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドン、m−クレゾール等の二次電池の電解液として利用可能な極性の高い塩基性溶媒に、LiやK、Na等のアルカリ金属のカチオンとClO4 -、BF4 -、PF6 -、CF3SO3 -、(CF3SO22-、(C25SO22-、(CF3SO23-、(C25SO23-等のハロゲンを含む化合物のアニオンからなる塩を溶解したものが挙げられる。また、これらの塩基性溶媒からなる溶剤や電解質塩を単独、あるいは複数組み合わせて用いることもできる。また、電解液を含むポリマーゲルとしたゲル状電解質としてもよい。
【0019】
【実施例】
以下、本発明の詳細について実施例を用いて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0020】
<実施例>
スピネル構造を持つマンガン酸リチウム粉末、炭素質導電性付与材、およびポリフッ化ビニリデンを90:5:5の重量比でNMPに混合分散、攪拌してスラリーとした。NMPの量はスラリーが適当な粘度になるように調整した。このスラリーをドクターブレードを用いて、正極集電体となる厚さ20ミクロンのアルミニウム箔の片面に均一に塗布した。塗布時には、わずかに未塗布部(集電体が露出している部分)が筋状にできるようにした。次に、これを100℃で2時間真空乾燥させた。同様にもう一方の面にもスラリーを塗布し、真空乾燥させた。この際、表裏の未塗布部が一致するようにした。このようにして両面に活物質を塗布したシートをロールプレスした。これを未塗布部を含めて矩形に切り出したものを8枚用意した。活物質未塗布部はリード端子への接続予定部とするものである。このようにして、合計の理論容量が3Ahとなる正極を用意した。
【0021】
一方、アモルファスカーボン粉末、ポリフッ化ビニリデンを91:9の重量比でNMPに混合、分散、攪拌してスラリーとした。NMPの量はスラリーが適当な粘度になるように調整した。このスラリーをドクターブレードを用いて、負極集電体となる厚さ10ミクロンの銅箔の片面に均一に塗布した。塗布時には、わずかに未塗布部(集電体が露出している部分)が筋状にできるようにした。次に、これを100℃で2時間真空乾燥した。なお、このとき負極層の単位面積あたりの理論容量と正極層の単位面積あたりの理論容量が1:1となるように活物質層の膜厚を調整した。同様にもう一方の面にもスラリーを塗布し真空乾燥した。このようにして両面に活物質を塗布したシートをロールプレスした。これを正極のサイズよりも縦横2mmずつ大きいサイズに、未塗布部を含めて矩形に切り出したものを9枚用意した。活物質未塗布部はリード端子への接続予定部とするものである。このようにして負極を用意した。
【0022】
上記のようにして用意した正極と負極の間に、負極のサイズよりも縦横2mmずつ大きいサイズの矩形の、ポリプロピレン/ポリエチレン/ポリプロピレンの3層構造を持つマイクロポーラスセパレーター(ヘキストセラニーズ社製、セルガード2300)を介してこれらを積層した。電極の最外側は負極となるようにし、その負極のさらに外側にセパレータを設置した(セパレータ/負極/セパレータ/正極/セパレータ/・・・・・・/負極/セパレータ、という順番)。正極の活物質未塗布部と負極の活物質未塗布部とは対向する側となるような向きに揃えた。次に、正極リード端子となる厚さ0.1mm、幅50mm、長さ50mmのアルミニウム板と、正極8枚の活物質未塗布部とを一括して超音波溶接した。同様に負極リード端子となる厚さ0.1mm、幅50mm、長さ50mmのニッケル板と、負極9枚の活物質未塗布部とを一括して超音波溶接した。なお、正極リード端子および負極リード端子は、上記の溶接接続に先立ち、外装体による封止予定部に予め30μmの厚さのフィルム状の酸変成ポリプロピレンからなるシール材を熱融着した。
【0023】
一方、外装体用のラミネートフィルムとして、ナイロン25μm、軟質アルミニウム40μm、酸変成ポリプロピレン30μmの積層体からなるフィルムを準備し、所定のサイズに切り出し、カップ状に深絞り成形した。このラミネートフィルムのカップ成形部に、上記の電極積層体を収納した。次に、上記のラミネートフィルムを成形せずに所定のサイズに切り出しただけのものを、上記の発電要素が収納されたカップ成形部の上にシール面を内側に向けて蓋をするように置いた。
【0024】
次に、カップ成形されたフィルムのつば部の上を経由して引き出されているリード端子をフィルムつば部と蓋とで挟むようにして、リード端子引き出し部2辺をヒートシールし、次いでリード端子引き出し部でない長辺(以下長辺A、長辺Bという)のうち一辺(以下長辺Aという)をヒートシールした。なお、リード端子封止部のシール強度を水準間で比較しやすいように、リード端子引き出し部はやや弱めの条件でヒートシールを行った。
【0025】
次に、長辺Aを下にして傾け、最後の未シール部である長辺Bの隙間から、電極積層体に電解液を注液した。電解液は1mol/リットルのLiPF6を支持塩とし、プロピレンカーボネートとメチルエチルカーボネートの混合溶媒(重量比50:50)を溶媒とするものである。注液量は、発電要素の体積の5%に相当する量とした。注液後、減圧脱泡を行った。最後に、真空シール機を用いて減圧状態で長辺Bのヒートシールを行い、単電池を完成させた。
【0026】
このようにして作製した複数の単電池のリード端子部を並列になるようにリード接続部で接続し、組電池を作製した。リード接続部には導電性材料である銅板を用い、超音波溶接で接続した。この組電池を厚さ1mmのアルミニウム板のケースで周辺を覆い、アルミニウム外装体による圧力により発電体が加圧状態で挟持されるようにした。こうすることにより、電池の発電体の極板密着性が保たれている。なお、電池の側面部、ラミネートフィルムのヒートシール部はアルミニウム外装体の内壁と接触せず、圧力が掛からないようにした。
【0027】
上記組電池を電圧4.3Vの満充電にして、図1のように正極リード端子が上側になるように設置し、60℃、90%環境下で2ヶ月間放置したところ、リード端子封止部におけるリークは発生しなかった。
【0028】
なお、本明細書の実施例・比較例において、リークの有無はリード端子引き出し部根元のリーク痕(析出物等)を確認することにより行った。
【0029】
<比較例>
実施例と同じ組電池を電圧4.3Vの満充電にして、図4のように正極リード端子が下側になるように設置し、60℃、90%環境下で2ヶ月間放置したところ、正極リード端子封止部でリークが発生した。
【0030】
<考察>
実施例、比較例の組電池を60℃、90%環境下で2ヶ月間放置したところ、実施例では正極リード端子、負極リード端子共にリークは発生しなかった。一方、比較例では正極リード端子封止部でリークが発生した。これらの結果により、電池内において高電位にある正極リード端子を電解液が溜まる下側に設置すると、正極リード端子から金属イオンが溶出して表面劣化が生じ、リード/ラミネート外装体の剥離劣化が生じやすいことが確認された。一方、実施例では正極リード端子を上側にして設置したことでリークは発生せず、封止信頼性の向上が確認された。
【0031】
【発明の効果】
以上説明したように、本発明によれば、正極リード端子の劣化が緩和されるため、正極リード/外装体の剥離劣化が生じにくく、封止信頼性の優れた組電池を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る組電池の一実施形態を示す模式的斜視図である。
【図2】本発明に用いる単電池の一例を示す模式的斜視図である。
【図3】図2の単電池の模式的断面図である。
【図4】本発明を適用しない場合の問題点を説明するための模式的斜視図である。
【符号の説明】
1・・・・組電池
2・・・・リード接続部
3・・・・発電体
4・・・・溶接部
5・・・・下部外装体
6・・・・上部外装体
11・・・・正極リード端子
12・・・・負極リード端子
14・・・・電池本体
21・・・・積層型ラミネート電池
22・・・・凹部
23・・・・集電箔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for installing an assembled battery formed by connecting a plurality of batteries.
[0002]
[Prior art]
Conventionally, as a laminated laminated battery, a film in which a metal layer and a heat-fusible resin layer are laminated, that is, a power generation body is encapsulated by a laminate film, and the heat-fusible resin layers are heat-sealed. What is hermetically sealed is known, and a configuration in which the positive electrode lead terminal and the negative electrode lead terminal are extended from a sealing portion of a laminate film that is an exterior body is known. An assembled battery is obtained by connecting a plurality of the laminated laminate batteries. The assembled battery is configured by connecting lead terminals of a laminated laminate battery with a conductive material. Moreover, this assembled battery is often used by being covered with a case of metal or the like.
[0003]
[Problems to be solved by the invention]
In the battery, the positive electrode lead terminal is at a higher potential than the negative electrode lead terminal, and generally it can be said that the metal ions are likely to elute electrochemically. For this reason, the surface of the positive electrode lead terminal is generally deteriorated before the negative electrode lead terminal, and the positive electrode lead / exterior body is likely to be peeled off. If the lead / exterior body peels and deteriorates at either the positive electrode lead or the negative electrode lead and a leak occurs, the battery has a sealing life at that time, so the battery's sealing life is substantially It is determined by the positive electrode lead sealing life. In particular, in the case of an assembled battery that is covered with a metal case so that the battery is sandwiched in a pressurized state, the outer body made of a laminate film of the battery is pressed down, so the internal pressure rises due to gas generation inside the battery. However, the lead sealing is pressed, and the deterioration of the sealing reliability is accelerated.
[0004]
The present invention has been made to solve the above-described problems, and provides an assembled battery installation method that improves sealing reliability by preventing deterioration of the positive electrode lead terminal of the battery. With the goal.
[0005]
[Means for Solving the Problems]
The battery pack installation method of the present invention is a battery pack installation method in which the lead terminals of a plurality of laminated laminate batteries that are externally sealed and sealed with a film of a power generator are installed in the battery pack installation method . The positive electrode lead terminal is installed with the upper side direction.
[0006]
That is, the present invention seals and seals a battery body in which a lead terminal is provided on a power generating body in which at least electrode plates are laminated so that the lead terminal can be electrically connected to the outside and sandwiched with a film. An assembled battery installation method including a plurality of laminated laminate batteries,
A plurality of the stacked laminate batteries are stacked in the stacking direction,
When connecting the lead terminals to each other, an installation method of an assembled battery for all the positive electrode lead side terminals is extended, it characterized that you placed in the upper as viewed in the direction of gravity.
[0007]
In the assembled battery installation method of the present invention, since the side where the positive electrode lead terminal is extended is installed on the upper side, the deterioration of the positive electrode lead terminal is alleviated, and the positive electrode lead / exterior body peeling deterioration hardly occurs, An assembled battery having excellent sealing reliability can be obtained.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a laminated laminate battery as an example of the embodiment of the present invention, and the feature thereof is that the battery pack 1 is installed so that the positive electrode lead terminal 11 is directed upward.
[0009]
FIG. 2 shows an example of a laminated laminate battery 21 used in the assembled battery 1, and a cross-sectional view thereof is shown in FIG. Referring to FIG. 3, the laminated laminate battery 21 is capable of energizing the battery body 14 in which the lead terminals 11 and 12 are provided on the power generating body 3 in which at least the electrode plates are laminated, and the lead terminals 11 and 12 are externally energized. The film is hermetically sealed with a film so as to extend and sandwich. That is, the power generation body 3 is encapsulated by the lower exterior body 5 and the upper exterior body 6 both made of a film, and the exterior bodies around the power generation body are heat sealed to be hermetically sealed. The film refers to a thin member having flexibility with respect to bending deformation. In the present invention, a metal foil alone or a laminate of a metal foil and a resin film generally called a laminate film is preferable. The battery of this embodiment is sealed under reduced pressure by heat sealing the exterior body under reduced pressure.
[0010]
Then, an example of the manufacturing method of a lamination type laminated battery is demonstrated using FIG. First, the power generator 3 is placed in the recess 22 of the lower exterior body 5 in which the recess 22 is formed in advance. Leads 11 and 12 are previously welded to the current collector foil 23 extending from the power generator 3 at a portion 4 (welded portion). Next, a flat film having no recess is applied as the upper exterior body 6 from above. Thereafter, heat sealing is performed under reduced pressure to obtain the laminated type single cell 21 of FIG.
[0011]
Next, an embodiment of the assembled battery of the present invention will be described. A plurality of stacked laminate batteries 21 obtained as described above are stacked in the stacking direction of the electrode plates, and the positive electrode lead terminal 11 and the negative electrode lead terminal 12 are connected by the lead connection portion 2 in parallel, respectively. 1 is obtained. The lead connection portion 2 is made of a conductive material, and generally a copper plate is often used. Connection is performed by ultrasonic welding, resistance welding, rivet caulking, or the like. In the present invention, as shown in FIG. 1, the assembled battery 1 is installed so that the positive electrode lead terminal 11 faces upward. Generally, this assembled battery is covered with a case of metal or the like so that the power generator is sandwiched in a pressurized state. By doing so, the electrode plate adhesion of the battery power generator can be maintained.
[0012]
If the assembled battery is installed so that the positive electrode lead terminal 11 is on the lower side as shown in FIG. 4, the electrolyte accumulates on the positive electrode lead terminal 11 side in the direction of gravity in the laminated laminate battery 21, and the positive electrode lead terminal In contact with the electrolyte. In the battery, the positive electrode lead terminal is at a higher potential than the negative electrode lead terminal, and generally it can be said that the metal ions are likely to elute electrochemically. For this reason, the surface of the positive electrode lead terminal is generally deteriorated before the negative electrode lead terminal, and the positive electrode lead / exterior body is likely to be peeled off. If the lead / exterior body peels and deteriorates at either the positive electrode lead or the negative electrode lead and a leak occurs, the battery has a sealing life at that time, so the battery's sealing life is substantially It is determined by the positive electrode lead sealing life.
[0013]
In the present invention, as shown in FIG. 1, by installing the laminated battery pack 1 with the positive electrode lead terminal 11 facing upward, sealing deterioration of the positive electrode lead terminal that is generally more susceptible to surface deterioration than the negative electrode lead 12. , Thereby improving the sealing life of the battery itself and providing an assembled battery with excellent sealing reliability.
[0014]
The present invention is particularly effective when a stacked laminate battery in which the positive electrode lead and the negative electrode lead as shown in FIG. When both leads are pulled out in the opposite direction, when one lead is directed upward, the other lead is directed downward. Even if the lead terminal sealing portion of either the positive electrode or the negative electrode causes deterioration due to peeling, the sealing life of the assembled battery as a whole is reached at that time. Therefore, the positive electrode lead terminal that is at a higher potential than the negative electrode lead terminal in the battery and is likely to cause surface degradation due to electrochemical elution of metal ions, and the negative electrode lead terminal that is at a lower potential than the positive electrode lead. By installing the assembled battery toward the lower side, it is possible to extend the sealing life as the assembled battery, and to provide an assembled battery with excellent sealing reliability.
[0015]
Hereinafter, embodiments of each component will be described in detail.
[Lead terminal]
As the material of the lead terminal, Al, Ti, etc. can be used for the positive electrode lead terminal, Ni, Cu, phosphor bronze, Fe, brass, stainless steel, etc. can be used for the negative electrode lead terminal, and annealing treatment may be performed if necessary. . The lead terminal is preferably flat and has a thickness in the range of 20 μm to 2 mm. As for the lead terminal, the positive electrode lead and the negative electrode lead are drawn out to the same side or facing each other as shown in FIG.
[0016]
[Exterior body]
As an exterior body of a laminated laminate battery, a film-like body, that is, a thin member having flexibility exemplified by a metal foil, a resin thin film, and a laminate thereof, and having a recess formed therein is preferable. Can be used. The thickness of the film is preferably 10 to 300 μm, more preferably 50 to 200 μm. If the thickness of the film is less than 10 μm, the mechanical strength as a battery exterior body is poor, causing inconvenience such as easy breakage, and if it exceeds 300 μm, the flexibility is poor and the gas is not increased without increasing the internal pressure. It becomes inconvenient in accepting. The formation of the recess is preferably drawing (deep drawing) in which the film around the part to be formed is pressed in a slidable state and the film is pressed and formed with a punch and a die. In addition, you may fix a film around a shaping | molding part without slipping, and you may form a recessed part with the overhanging molding method which stretches and stretches a film with a die | dye. Moreover, you may produce the exterior body which has a recessed part with the injection molding method.
[0017]
[Power generation element]
The configuration and form of the power generation body 3 are not particularly limited, and for example, a plate-shaped one, a simple laminate of two or more electrode plates, or the like made of a positive electrode, a negative electrode, and a separator is used. The positive electrode is not particularly limited as long as it absorbs positive ions during discharge or discharges negative ions. (I) Metal oxide such as LiMnO 2 , LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , (II ) Conductive polymers such as polyacetylene and polyaniline, (III) General formula (R-Sm) n (R is aliphatic or aromatic, S is sulfur, m, n is m ≧ 1 Secondary battery such as a disulfide compound (dithioglycol, 2,5-dimercapto-1,3,4-thiadiazole, S-triazine-2,4,6-trithiol, etc.) As the positive electrode material, conventionally known materials can be used. Alternatively, the positive electrode active material can be mixed with an appropriate binder or functional material in the positive electrode. These binders include halogen-containing polymers such as polyvinylidene fluoride, and functional materials include conductive polymers such as acetylene black, polypyrrole, and polyaniline to ensure electron conductivity, and ion conductivity. For example, a polymer electrolyte, a composite thereof, and the like. The negative electrode is not particularly limited as long as it is a material capable of occluding and releasing cations, natural graphite, crystalline carbon such as graphitized carbon obtained by heat treatment of coal / petroleum pitch at high temperature, coal, petroleum pitch coke, Conventionally known negative electrode active materials for secondary batteries, such as amorphous carbon obtained by heat treatment of acetylene pitch coke and the like, lithium alloys such as metallic lithium and AlLi, can be used.
[0018]
Examples of the non-aqueous electrolyte solution contained in the power generator include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, N, N′-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, Examples of highly polar basic solvents that can be used as electrolytes for secondary batteries such as m-cresol include alkali metal cations such as Li, K, and Na, ClO 4 , BF 4 , PF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N , (CF 3 SO 2 ) 3 C , (C 2 F 5 SO 2 ) 3 C − and the like What melt | dissolved the salt which consists of the anion of the compound to contain is mentioned. Moreover, the solvent and electrolyte salt which consist of these basic solvents can also be used individually or in combination. Moreover, it is good also as a gel electrolyte made into the polymer gel containing electrolyte solution.
[0019]
【Example】
Hereinafter, although the detail of this invention is concretely demonstrated using an Example, this invention is not limited to these Examples.
[0020]
<Example>
A lithium manganate powder having a spinel structure, a carbonaceous conductivity imparting material, and polyvinylidene fluoride were mixed and dispersed in NMP at a weight ratio of 90: 5: 5 and stirred to form a slurry. The amount of NMP was adjusted so that the slurry had an appropriate viscosity. This slurry was uniformly applied to one side of an aluminum foil having a thickness of 20 microns serving as a positive electrode current collector using a doctor blade. At the time of application, the unapplied part (the part where the current collector was exposed) was made to be slightly streaked. Next, this was vacuum-dried at 100 ° C. for 2 hours. Similarly, the slurry was applied to the other surface and vacuum-dried. At this time, the uncoated portions on the front and back sides were made to coincide. Thus, the sheet | seat which apply | coated the active material on both surfaces was roll-pressed. Eight sheets were cut out into rectangles including uncoated portions. The active material uncoated portion is a portion to be connected to the lead terminal. In this way, a positive electrode having a total theoretical capacity of 3 Ah was prepared.
[0021]
On the other hand, amorphous carbon powder and polyvinylidene fluoride were mixed in NMP at a weight ratio of 91: 9, dispersed and stirred to obtain a slurry. The amount of NMP was adjusted so that the slurry had an appropriate viscosity. This slurry was uniformly applied to one side of a copper foil having a thickness of 10 microns serving as a negative electrode current collector using a doctor blade. At the time of application, the unapplied part (the part where the current collector was exposed) was made to be slightly streaked. Next, this was vacuum-dried at 100 ° C. for 2 hours. At this time, the film thickness of the active material layer was adjusted so that the theoretical capacity per unit area of the negative electrode layer and the theoretical capacity per unit area of the positive electrode layer were 1: 1. Similarly, the slurry was applied to the other surface and dried in vacuum. Thus, the sheet | seat which apply | coated the active material on both surfaces was roll-pressed. Nine sheets were prepared by cutting this into a size 2 mm longer and wider than the size of the positive electrode, including a non-coated portion, in a rectangular shape. The active material uncoated portion is a portion to be connected to the lead terminal. In this way, a negative electrode was prepared.
[0022]
Between the positive electrode and the negative electrode prepared as described above, a microporous separator having a three-layer structure of polypropylene / polyethylene / polypropylene having a size larger by 2 mm in length and width than the size of the negative electrode (manufactured by Hoechst Celanese, Cellguard) 2300). The outermost side of the electrode was a negative electrode, and a separator was placed on the outer side of the negative electrode (in the order of separator / negative electrode / separator / positive electrode / separator /.../ negative electrode / separator). The positive electrode active material uncoated portion and the negative electrode active material uncoated portion were aligned in the opposite direction. Next, an aluminum plate having a thickness of 0.1 mm, a width of 50 mm, and a length of 50 mm serving as a positive electrode lead terminal and eight positive electrode active material uncoated portions were collectively ultrasonically welded. Similarly, a nickel plate having a thickness of 0.1 mm, a width of 50 mm, and a length of 50 mm serving as a negative electrode lead terminal and nine negative electrode active material uncoated portions were ultrasonically welded together. In addition, the positive electrode lead terminal and the negative electrode lead terminal were heat-sealed with a sealing material made of a film-like acid-modified polypropylene having a thickness of 30 μm in advance on a portion to be sealed by the exterior body prior to the above-described welding connection.
[0023]
On the other hand, a film made of a laminate of 25 μm nylon, 40 μm soft aluminum, and 30 μm acid-modified polypropylene was prepared as a laminate film for an exterior body, cut into a predetermined size, and deep-drawn into a cup shape. The electrode laminate was housed in the cup molding portion of this laminate film. Next, place the above laminated film that has been cut into a predetermined size without being molded on the cup molding part containing the power generating element so that the sealing surface faces inward. It was.
[0024]
Next, the lead terminals drawn out via the cup collars are sandwiched between the film collars and the lid, the lead terminal lead parts 2 are heat-sealed, and then the lead terminal lead parts One side (hereinafter referred to as “long side A”) of the long sides (hereinafter referred to as “long side A” and “long side B”) was not heat-sealed. The lead terminal lead-out part was heat-sealed under slightly weaker conditions so that the seal strength of the lead terminal sealing part could be easily compared between levels.
[0025]
Next, the long side A was inclined downward, and an electrolyte solution was injected into the electrode laminate from the gap between the long side B, which was the last unsealed portion. The electrolytic solution uses 1 mol / liter LiPF 6 as a supporting salt and a mixed solvent of propylene carbonate and methyl ethyl carbonate (weight ratio 50:50) as a solvent. The amount of liquid injection was an amount corresponding to 5% of the volume of the power generation element. After pouring, vacuum degassing was performed. Finally, the long side B was heat-sealed in a reduced pressure state using a vacuum sealing machine to complete the unit cell.
[0026]
The lead terminal portions of the plurality of single cells produced in this way were connected by lead connection portions so as to be in parallel to produce an assembled battery. A copper plate, which is a conductive material, was used for the lead connection portion and connected by ultrasonic welding. The assembled battery was covered with a case of an aluminum plate having a thickness of 1 mm, and the power generation body was held in a pressurized state by the pressure of the aluminum exterior body. By doing so, the electrode plate adhesion of the battery power generator is maintained. In addition, the side part of the battery and the heat seal part of the laminate film were not in contact with the inner wall of the aluminum outer package so that no pressure was applied.
[0027]
When the above assembled battery is fully charged at a voltage of 4.3 V, the positive lead terminal is placed on the upper side as shown in FIG. 1, and left at 60 ° C. in a 90% environment for two months. There was no leak in the part.
[0028]
In the examples and comparative examples of the present specification, the presence or absence of leakage was confirmed by confirming the leakage trace (precipitate, etc.) at the root of the lead terminal lead portion.
[0029]
<Comparative example>
When the same assembled battery as in the example was fully charged at a voltage of 4.3 V, the positive electrode lead terminal was placed on the lower side as shown in FIG. 4, and left at 60 ° C. in a 90% environment for 2 months. Leakage occurred at the positive lead terminal sealing portion.
[0030]
<Discussion>
When the assembled batteries of Examples and Comparative Examples were allowed to stand for 2 months in an environment of 60 ° C. and 90%, no leakage occurred in both the positive electrode lead terminal and the negative electrode lead terminal in the example. On the other hand, in the comparative example, a leak occurred in the positive electrode lead terminal sealing portion. Based on these results, when a positive electrode lead terminal at a high potential in the battery is installed on the lower side where the electrolyte is accumulated, metal ions are eluted from the positive electrode lead terminal, resulting in surface deterioration, and peeling / deterioration of the lead / laminate outer package. It was confirmed that it is likely to occur. On the other hand, in the example, since the positive electrode lead terminal was placed on the upper side, no leakage occurred and it was confirmed that the sealing reliability was improved.
[0031]
【The invention's effect】
As described above, according to the present invention, since the deterioration of the positive electrode lead terminal is alleviated, it is difficult for the positive electrode lead / exterior body to be peeled and the assembled battery having excellent sealing reliability can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing an embodiment of an assembled battery according to the present invention.
FIG. 2 is a schematic perspective view showing an example of a unit cell used in the present invention.
FIG. 3 is a schematic cross-sectional view of the unit cell of FIG.
FIG. 4 is a schematic perspective view for explaining a problem when the present invention is not applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Battery assembly 2 ... Lead connection part 3 ... Electric power generation body 4 ... Welding part 5 ... Lower exterior body 6 ... Upper exterior body 11 ... Positive electrode lead terminal 12 ... Negative electrode lead terminal 14 ... Battery body 21 ... Laminated laminate battery 22 ... Recess 23 ... Current collecting foil

Claims (2)

少なくとも極板が積層されてなる発電体にリード端子を設けた電池本体を、前記リード端子が外部と通電可能となるよう延出させて挟み込むようにしてフィルムで密封封止してなる積層型ラミネート電池を複数含む組電池の設置方法であって、
複数の前記積層型ラミネート電池を前記積層方向に複数重ね合わせ、
前記リード端子同士を接続する際に、全ての正極リード端子が延出された辺を重力方向で見て上側にして設置ることを特徴とする組電池の設置方法
A laminated laminate in which a battery body provided with a lead terminal on at least a power generating body in which electrode plates are laminated is hermetically sealed with a film so that the lead terminal is extended and sandwiched so as to be able to conduct electricity to the outside. A method for installing an assembled battery including a plurality of batteries,
A plurality of the stacked laminate batteries are stacked in the stacking direction,
Said lead terminals to each other when connecting, installation method of an assembled battery for all the positive electrode lead side terminals is extended, it characterized that you placed in the upper as viewed in the direction of gravity.
正極リード端子と負極リード端子が互いに対向する向きに引き出されている積層型ラミネート電池で構成されたことを特徴とする請求項1に記載の組電池の設置方法2. The assembled battery installation method according to claim 1, comprising a laminated laminate battery in which a positive electrode lead terminal and a negative electrode lead terminal are drawn out in directions facing each other.
JP2002186620A 2002-06-26 2002-06-26 How to install the battery pack Expired - Lifetime JP4304716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002186620A JP4304716B2 (en) 2002-06-26 2002-06-26 How to install the battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002186620A JP4304716B2 (en) 2002-06-26 2002-06-26 How to install the battery pack

Publications (2)

Publication Number Publication Date
JP2004031162A JP2004031162A (en) 2004-01-29
JP4304716B2 true JP4304716B2 (en) 2009-07-29

Family

ID=31181919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002186620A Expired - Lifetime JP4304716B2 (en) 2002-06-26 2002-06-26 How to install the battery pack

Country Status (1)

Country Link
JP (1) JP4304716B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5852881B2 (en) * 2011-12-28 2016-02-03 旭化成株式会社 LAMINATE TYPE ELECTRIC STORAGE ELEMENT AND MANUFACTURING METHOD THEREOF

Also Published As

Publication number Publication date
JP2004031162A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP5774752B2 (en) Battery and battery pack
JP4135473B2 (en) Bipolar battery
JP4158440B2 (en) Secondary battery and assembled battery using the same
JP3789439B2 (en) Film exterior laminated battery pack
JP3819785B2 (en) Battery
JP4370902B2 (en) Bipolar battery and manufacturing method thereof.
US10263237B2 (en) Cylindrical battery, and collector member used therefor, and manufacturing method thereof
JP5505218B2 (en) Sealed storage battery
JP4720384B2 (en) Bipolar battery
US7754379B2 (en) Secondary battery
EP1424744A1 (en) Stacked battery, assembled battery and vehicle
JP2008016368A (en) Film armored battery and battery pack
JP4363017B2 (en) Battery and battery manufacturing method
JP2009087722A (en) Battery and battery pack
US20050100784A1 (en) Laminated battery
JP4096718B2 (en) Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle
JP4096664B2 (en) Laminated battery
JP2006202680A (en) Polymer battery
JP4042613B2 (en) Bipolar battery
JP2005174691A (en) Bipolar battery
JP4670275B2 (en) Bipolar battery and battery pack
JP4304715B2 (en) How to install the battery pack
JP4178926B2 (en) Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle
KR20140012601A (en) Secondary battery and electrochemical cell having the same
KR101484369B1 (en) Secondary battery and electrochemical cell having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4304716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

EXPY Cancellation because of completion of term