JP2020173989A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2020173989A
JP2020173989A JP2019075638A JP2019075638A JP2020173989A JP 2020173989 A JP2020173989 A JP 2020173989A JP 2019075638 A JP2019075638 A JP 2019075638A JP 2019075638 A JP2019075638 A JP 2019075638A JP 2020173989 A JP2020173989 A JP 2020173989A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
aqueous electrolyte
heat
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019075638A
Other languages
Japanese (ja)
Inventor
智哉 井上
Tomoya Inoue
智哉 井上
和也 小出
Kazuya Koide
和也 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2019075638A priority Critical patent/JP2020173989A/en
Publication of JP2020173989A publication Critical patent/JP2020173989A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a non-aqueous electrolyte secondary battery having high reliability which can suppress expansion of an exterior body and leakage of non-aqueous electrolyte even in use under a vacuum environment.SOLUTION: A non-aqueous electrolyte secondary battery includes an electrode group which has a positive electrode plate, a negative electrode plate and a separator and has first and second side surfaces, a non-aqueous electrolyte, a positive electrode current collecting lead extending from the first side surface, a negative electrode current collecting lead extending from the second side surface, an exterior packaging body which is configured by a laminate having a stainless foil and a thermal fusion resin layer, a positive electrode terminal and a negative electrode terminal. A sealant portion is formed so as to cover the peripheral surface of each terminal portion passing through the sealing portion, and is heat-sealed with the thermal fusion resin layer. The thickness of the thermal fusion resin layer is not less than 30 μm and not more and 80 μm, and when the widths of a first side and a second side are represented by W1 and the widths of the positive electrode terminal and the negative electrode terminal are represented by W2, the ratio of W2/W1 is not less than 0.32 and not more than 0.48. The non-aqueous electrolyte secondary battery is used under an external pressure of not less than 0.1 Pa and not more than 100 Pa.SELECTED DRAWING: Figure 1

Description

本発明は、非水電解質二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery.

近年、非水電解質二次電池、例えば、リチウムイオン二次電池は、高エネルギー密度を有する等の理由から広く普及し、携帯電話やデジタルカメラ、ノートパソコン等の携帯用小型機器の電源として搭載されている。また、環境問題への配慮からも、繰り返し充電可能な非水電解質二次電池の需要が増大している。現在、非水電解質二次電池は、電気自動車、住宅又は事業施設用の蓄電池、更には宇宙開発のための人工衛星又は惑星探査機用の蓄電池として開発が進められている。 In recent years, non-aqueous electrolyte secondary batteries, for example, lithium ion secondary batteries, have become widespread because of their high energy density, and are installed as power sources for small portable devices such as mobile phones, digital cameras, and laptop computers. ing. In addition, due to consideration for environmental issues, the demand for rechargeable non-aqueous electrolyte secondary batteries is increasing. Currently, non-aqueous electrolyte secondary batteries are being developed as storage batteries for electric vehicles, residential or business facilities, and as storage batteries for artificial satellites or planetary explorers for space development.

非水電解質二次電池の外装体には、一般的に、円筒缶、角型缶又はラミネートフィルムが使用される。外装体がラミネートフィルムである当該電池は、外装体が円筒缶や角型缶である当該電池と比較して、軽量であり、放熱性が高く、体積エネルギー密度を高くできる利点があり、広く普及している。特許文献1では、アルミニウム又はアルミニウム合金からなる金属層を有するラミネートフィルムで形成される外装体を備える非水電解質二次電池が開示されている。 A cylindrical can, a square can, or a laminated film is generally used for the exterior body of the non-aqueous electrolyte secondary battery. The battery whose outer body is a laminated film has advantages that it is lighter in weight, has higher heat dissipation, and can have a higher volume energy density than the battery whose outer body is a cylindrical can or a square can, and is widely used. are doing. Patent Document 1 discloses a non-aqueous electrolyte secondary battery including an exterior body formed of a laminated film having a metal layer made of aluminum or an aluminum alloy.

このような非水電解質二次電池では、ラミネートフィルムから構成される外装体内に直方体状の電極板群が収容される。外装体を構成するラミネートフィルムは、金属層と熱融着樹脂層とを備える。外装体は、熱融着樹脂層の周縁部同士を熱融着して封止部を形成して、電極群を密封する。電極群は、正極板、負極板、及び正極板と負極板との間に介在されたセパレータを有し、非水電解質を保持している。正極板及び負極板には、それぞれ帯状の正極集電リード及び負極集電リードが電気的に接続されている。正極集電リード及び負極集電リードには、外装体内でそれぞれ正極端子及び負極端子に電気的に接続されている。正極端子及び負極端子は、それぞれ外装体の封止部を通過して外部に延出されている In such a non-aqueous electrolyte secondary battery, a group of rectangular parallelepiped electrode plates is housed in an exterior body made of a laminated film. The laminated film constituting the exterior body includes a metal layer and a heat-sealing resin layer. In the exterior body, the peripheral edges of the heat-sealed resin layer are heat-sealed to form a sealing portion, and the electrode group is sealed. The electrode group has a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate, and holds a non-aqueous electrolyte. A band-shaped positive electrode current collecting lead and a negative electrode current collecting lead are electrically connected to the positive electrode plate and the negative electrode plate, respectively. The positive electrode current collecting lead and the negative electrode current collecting lead are electrically connected to the positive electrode terminal and the negative electrode terminal, respectively, inside the exterior. The positive electrode terminal and the negative electrode terminal each pass through the sealing portion of the exterior body and extend to the outside.

特開2004−241381号公報Japanese Unexamined Patent Publication No. 2004-241381

従来の外装体がラミネートフィルムである非水電解質二次電池では、真空環境下(外圧が0.1Pa以上100Pa以下の環境下)で使用すると、外装体の膨張や、封止部の開裂による非水電解質の漏出が生じる問題があった。外装体の膨張は、主に、高温時の電極群から発生するガスに起因する。真空環境下では、内圧と外圧との差によって発生したガスが膨張するため、外装体の膨張が生じやすくなる。外装体の膨張は、外装体内に収納される電極群への圧迫や変形をもたらし、内部抵抗の上昇や、電極群の破損による内部短絡の原因となる。また、外装体の膨張は、封止部の熱融着樹脂層同士の密着強度を低下させ、封止部の開裂による非水電解質の漏出の原因となる。
本発明は、上記課題を解決し、真空環境下で使用しても外装体の膨張や、非水電解質の漏出を抑制できる、高い信頼性を有する非水電解質二次電池を提供するものである。
In a conventional non-aqueous electrolyte secondary battery in which the exterior body is a laminated film, when used in a vacuum environment (in an environment where the external pressure is 0.1 Pa or more and 100 Pa or less), the exterior body expands or the sealing portion is cleaved. There was a problem that water electrolyte leaked. The expansion of the exterior body is mainly due to the gas generated from the electrode group at high temperature. In a vacuum environment, the gas generated by the difference between the internal pressure and the external pressure expands, so that the exterior body tends to expand. The expansion of the outer body causes pressure or deformation on the electrode group housed in the outer body, which causes an increase in internal resistance and an internal short circuit due to damage to the electrode group. Further, the expansion of the exterior body lowers the adhesion strength between the heat-sealed resin layers of the sealing portion, and causes leakage of the non-aqueous electrolyte due to the cleavage of the sealing portion.
The present invention solves the above problems and provides a highly reliable non-aqueous electrolyte secondary battery capable of suppressing expansion of an exterior body and leakage of non-aqueous electrolyte even when used in a vacuum environment. ..

上記の課題を解決するために、一つの実施形態に係る非水電解質二次電池は、正極板、負極板、及び正極板と負極板との間に介在されたセパレータを有し、互いに対向する第1の側面及び第2の側面を有する矩形体状の電極群;電極群に保持される非水電解質;正極板に電気的に接続され、第1の側面から延出する帯状の正極集電リード;負極板に電気的に接続され、第2の側面から延出する帯状の負極集電リード;ステンレス箔及び当該ステンレス箔の片面に被覆された熱融着樹脂層を備える1枚又は2枚のラミネートフィルムから構成され、当該ラミネートフィルムの熱融着樹脂層を互いに対向して配置し、熱融着樹脂層間に電極群を収納し、熱融着樹脂層の周縁部同士を熱融着して封止部を形成して、電極群を密封する、外装体;一端が正極集電リードと電気的に接続し、他端が封止部を通過して外部に延出された正極端子;及び一端が負極集電リードに電気的に接続し、他端が封止部を通過して外部に延出された負極端子を備えている。シーラント部は、それぞれ封止部を通過する正極端子及び負極端子の部分の周面を覆って形成され、かつ熱融着樹脂層と熱融着されている。熱融着樹脂層の厚さは、30μm以上80μm以下である。第1の側面及び第2の側面の幅をW1、正極端子及び負極端子の幅をW2とすると、W2/W1の比がそれぞれ0.32以上0.48以下である。非水電解質二次電池は、外圧が0.1Pa以上100Pa以下の環境下で使用される。 In order to solve the above problems, the non-aqueous electrolyte secondary battery according to one embodiment has a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate, and faces each other. A rectangular body-shaped electrode group having a first side surface and a second side surface; a non-aqueous electrolyte held by the electrode group; a band-shaped positive electrode current collection electrically connected to a positive electrode plate and extending from the first side surface. Leads; Strip-shaped negative electrode current collecting leads that are electrically connected to the negative electrode plate and extend from the second side surface; one or two sheets provided with a stainless steel foil and a heat-sealing resin layer coated on one side of the stainless steel foil. The heat-sealed resin layers of the laminated film are arranged so as to face each other, the electrode group is housed between the heat-sealed resin layers, and the peripheral edges of the heat-sealed resin layers are heat-sealed. An exterior body that seals the electrode group by forming a sealing portion; one end is electrically connected to the positive electrode current collecting lead, and the other end passes through the sealing portion and extends to the outside. And one end is electrically connected to the negative electrode current collecting lead, and the other end is provided with a negative electrode terminal that passes through a sealing portion and extends to the outside. The sealant portion is formed so as to cover the peripheral surfaces of the positive electrode terminal and the negative electrode terminal portion that pass through the sealing portion, respectively, and is heat-sealed with the heat-sealing resin layer. The thickness of the heat-sealed resin layer is 30 μm or more and 80 μm or less. Assuming that the widths of the first side surface and the second side surface are W1 and the widths of the positive electrode terminal and the negative electrode terminal are W2, the ratio of W2 / W1 is 0.32 or more and 0.48 or less, respectively. The non-aqueous electrolyte secondary battery is used in an environment where the external pressure is 0.1 Pa or more and 100 Pa or less.

本発明によれば、真空環境下で使用しても外装体の膨張や、非水電解質の漏出を抑制でき、高い信頼性を有する非水電解質二次電池を提供できる。 According to the present invention, it is possible to provide a highly reliable non-aqueous electrolyte secondary battery capable of suppressing expansion of the exterior body and leakage of the non-aqueous electrolyte even when used in a vacuum environment.

第1の実施形態に係る非水電解質二次電池が備える電極群を示す平面図である。It is a top view which shows the electrode group provided in the non-aqueous electrolyte secondary battery which concerns on 1st Embodiment. 第1の実施形態に係る非水電解質二次電池が備える電極群を示す分解斜視図である。It is an exploded perspective view which shows the electrode group provided in the non-aqueous electrolyte secondary battery which concerns on 1st Embodiment. 第1の実施形態に係る非水電解質二次電池を示す斜視図である。It is a perspective view which shows the non-aqueous electrolyte secondary battery which concerns on 1st Embodiment. 図3のIV−IV線に沿う断面図である。It is sectional drawing which follows the IV-IV line of FIG. 第2の実施形態に係る非水電解質二次電池を示す分解斜視図である。It is an exploded perspective view which shows the non-aqueous electrolyte secondary battery which concerns on 2nd Embodiment. スペーサを示す図であって、(a)は第1面側からみた斜視図、(b)は第2面側からみた斜視図、(c)は(a)のC−C線に沿う断面図である。The spacers are shown, (a) is a perspective view seen from the first surface side, (b) is a perspective view seen from the second surface side, and (c) is a sectional view taken along the line CC of (a). Is. 図5の電池の一部の断面図である。It is sectional drawing of a part of the battery of FIG. スペーサの他の形態を示す断面図である。It is sectional drawing which shows the other form of a spacer.

以下、いくつかの実施形態について図面を参照して説明する。
なお、図面は、説明をより明確にするため、実際の態様に比べて模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。各図において、連続して配置される同一又は類似の要素については符号を省略することがある。また、本明細書と各図において、既出の図に関して前述したものと同一又は類似した機能を発揮する構成要素には同一の参照符号を付し、重複する詳細な説明を省略することがある。
Hereinafter, some embodiments will be described with reference to the drawings.
The drawings may be schematically shown as compared with actual embodiments in order to clarify the description, but the drawings are merely examples and do not limit the interpretation of the present invention. In each figure, the reference numerals may be omitted for the same or similar elements arranged consecutively. Further, in the present specification and each figure, components exhibiting the same or similar functions as those described above with respect to the above-mentioned figures may be designated by the same reference numerals, and duplicate detailed description may be omitted.

[第1の実施形態]
以下、第1の実施形態に係る非水電解質二次電池を詳細に説明する。
非水電解質二次電池は、外圧が0.1Pa以上100Pa以下の極低圧環境下(以下、真空環境下と称する)で使用される。すなわち、非水電解質二次電池は、当該環境下で使用されれば特に限定されないが、例えば、宇宙開発のための人工衛星又は惑星探査機用の蓄電池に好適に適用される。
[First Embodiment]
Hereinafter, the non-aqueous electrolyte secondary battery according to the first embodiment will be described in detail.
The non-aqueous electrolyte secondary battery is used in an extremely low pressure environment (hereinafter, referred to as a vacuum environment) in which the external pressure is 0.1 Pa or more and 100 Pa or less. That is, the non-aqueous electrolyte secondary battery is not particularly limited as long as it is used in the environment, but is suitably applied to, for example, a storage battery for an artificial satellite or a planetary probe for space development.

(非水電解質二次電池の構造)
以下、第1の実施形態に係る非水電解質二次電池を、積層型リチウムイオン二次電池を例にして、図1〜図4に基づいて説明する。図1は、第1の実施形態に係る非水電解質二次電池(積層型リチウムイオン二次電池)が備える電極群を示す平面図である。図2は、図1の電極群を示す分解斜視図である。図3は、積層型リチウムイオン二次電池を示す斜視図である。図4は、図3のIV−IV線に沿う断面図である。
(Structure of non-aqueous electrolyte secondary battery)
Hereinafter, the non-aqueous electrolyte secondary battery according to the first embodiment will be described with reference to FIGS. 1 to 4 by taking a laminated lithium ion secondary battery as an example. FIG. 1 is a plan view showing a group of electrodes included in the non-aqueous electrolyte secondary battery (laminated lithium ion secondary battery) according to the first embodiment. FIG. 2 is an exploded perspective view showing the electrode group of FIG. FIG. 3 is a perspective view showing a laminated lithium ion secondary battery. FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.

積層型リチウムイオン二次電池1は、図1に示すように、矩形体状(例えば、直方体状)の電極群3を備えている。電極群3は、互いに対向する第1の側面F1及び第2の側面F2を有している。電極群3は、互いに対向する他の側面である第3の側面F3及び第4の側面F4を有している。なお、本明細書では、図1に示すように、電極群3の第1及び第2の側面F1,F2に沿う方向と平行な方向をX方向、電極群3の第3及び第4の側面F3,F4に沿う方向と平行な方向をY方向、X方向及びY方向に対して垂直な方向をZ方向と定義する。第1及び第2の側面F1,F2は、それぞれX方向の幅W1を有している。電極群3は、例えば、Y方向の長さがX方向の幅W1よりも長くなっている。 As shown in FIG. 1, the laminated lithium ion secondary battery 1 includes a rectangular parallelepiped (for example, a rectangular parallelepiped) electrode group 3. The electrode group 3 has a first side surface F1 and a second side surface F2 facing each other. The electrode group 3 has a third side surface F3 and a fourth side surface F4 which are other side surfaces facing each other. In this specification, as shown in FIG. 1, the direction parallel to the direction along the first and second side surfaces F1 and F2 of the electrode group 3 is the X direction, and the third and fourth side surfaces of the electrode group 3 The direction parallel to the direction along F3 and F4 is defined as the Y direction, and the direction perpendicular to the X direction and the Y direction is defined as the Z direction. The first and second side surfaces F1 and F2 each have a width W1 in the X direction. For example, the electrode group 3 has a length in the Y direction longer than the width W1 in the X direction.

電極群3は、例えば、図2に示すように、正極板4と負極板5とそれらの間に介在されたセパレータ6とを負極板5が最外層に位置するようZ方向に複数積層して構成されている。
正極板4は、図4に示すように、正極集電体42と、当該集電体42の両面に形成された正極層41,41とから構成されている。正極集電体42は、矩形状の金属箔であり、例えば、アルミニウム箔等で形成されている。正極集電体42は、例えば、5μm〜100μmの厚さを有している。正極層41,41は、リチウムイオンを吸蔵放出できる正極活物質を含み、例えば、正極活物質、導電剤、及び結着剤を含んでいる。正極活物質としては、例えば、LiCoO等のリチウム含有金属酸化物、リン酸金属リチウム等を単独又は混合して使用することができる。導電材としては、例えば、カーボンブラック等の導電性カーボンを単独又は混合して使用することができる。結着剤としては、例えば、ポリフッ化ビニリデン、スチレンブタジエンゴム等のポリマー材料を単独又は混合して使用することができる。
In the electrode group 3, for example, as shown in FIG. 2, a plurality of positive electrode plates 4, negative electrode plates 5, and separators 6 interposed between them are laminated in the Z direction so that the negative electrode plate 5 is located on the outermost layer. It is configured.
As shown in FIG. 4, the positive electrode plate 4 is composed of a positive electrode current collector 42 and positive electrode layers 41 and 41 formed on both sides of the current collector 42. The positive electrode current collector 42 is a rectangular metal foil, and is formed of, for example, an aluminum foil. The positive electrode current collector 42 has a thickness of, for example, 5 μm to 100 μm. The positive electrode layers 41 and 41 include a positive electrode active material capable of occluding and releasing lithium ions, and include, for example, a positive electrode active material, a conductive agent, and a binder. As the positive electrode active material, for example, a lithium-containing metal oxide such as LiCoO 2 , lithium metal phosphate, or the like can be used alone or in combination. As the conductive material, for example, conductive carbon such as carbon black can be used alone or in combination. As the binder, for example, a polymer material such as polyvinylidene fluoride or styrene-butadiene rubber can be used alone or in combination.

最外層に位置する負極板5は、図4に示すように、負極集電体52と、当該集電体52のセパレータ6と対向する面に形成された負極層51とから構成されている。最外層に位置する負極板5を除く、正極板4間に位置する負極板5は、負極集電体52と、当該集電体52の両面に形成された負極層51,51とから構成されている。負極集電体52は、矩形状の金属箔であり、例えば、銅箔、ニッケル箔等で形成されている。負極集電体52は、例えば、5μm〜100μmの厚さを有している。負極層51は、リチウムイオンを吸蔵放出できる負極活物質を含み、例えば、負極活物質、導電剤、及び結着剤を含んでいる。負極活物質としては、例えば、人造黒鉛、天然黒鉛等の炭素類を単独又は混合して使用することができる。導電材及び結着剤は、例えば、正極板に使用するものと同様のものを使用することができる。 As shown in FIG. 4, the negative electrode plate 5 located in the outermost layer is composed of a negative electrode current collector 52 and a negative electrode layer 51 formed on a surface of the current collector 52 facing the separator 6. The negative electrode plate 5 located between the positive electrode plates 4 excluding the negative electrode plate 5 located in the outermost layer is composed of a negative electrode current collector 52 and negative electrode layers 51 and 51 formed on both sides of the current collector 52. ing. The negative electrode current collector 52 is a rectangular metal foil, and is formed of, for example, a copper foil, a nickel foil, or the like. The negative electrode current collector 52 has a thickness of, for example, 5 μm to 100 μm. The negative electrode layer 51 contains a negative electrode active material capable of occluding and releasing lithium ions, and contains, for example, a negative electrode active material, a conductive agent, and a binder. As the negative electrode active material, for example, carbons such as artificial graphite and natural graphite can be used alone or in combination. As the conductive material and the binder, for example, the same ones used for the positive electrode plate can be used.

電極群3には、例えば図1に示すように、2枚のテープ10が電極群3の表面から第3の側面F3を跨いで裏面に貼着されている。また、電極群3には、例えば2枚のテープ10が電極群3の表面から第4の側面F4を跨いで裏面に貼着されている。これらテープ10は、積層した正極板4及び負極板5のずれを防止している。 On the electrode group 3, for example, as shown in FIG. 1, two tapes 10 are attached to the back surface of the electrode group 3 so as to straddle the third side surface F3 from the front surface of the electrode group 3. Further, for example, two tapes 10 are attached to the electrode group 3 from the front surface of the electrode group 3 to the back surface across the fourth side surface F4. These tapes 10 prevent the laminated positive electrode plate 4 and the negative electrode plate 5 from being displaced.

電極群3には、非水電解質が保持されている。非水電解質は、例えば、非水溶媒、及び電解質を含む非水電解液である。非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート等の非プロトン性有機溶媒を単独又は混合して使用することができる。電解質としては、例えば、LiPF、LiBF等のリチウム塩を単独又は混合して使用することができる。 A non-aqueous electrolyte is retained in the electrode group 3. The non-aqueous electrolyte is, for example, a non-aqueous solvent and a non-aqueous electrolyte solution containing an electrolyte. As the non-aqueous solvent, for example, aprotic organic solvents such as ethylene carbonate, propylene carbonate and dimethyl carbonate can be used alone or in combination. As the electrolyte, for example, lithium salts such as LiPF 4 and LiBF 4 can be used alone or in combination.

セパレータ6は、電解質を透過する微多孔性フィルム、例えば、50μm〜200μmの厚さを有する微多孔性ポリオレフィンフィルムから形成されている。 The separator 6 is formed of a microporous film that allows the electrolyte to permeate, for example, a microporous polyolefin film having a thickness of 50 μm to 200 μm.

電極群3の第1の側面F1側に位置する正極板4の側面には、帯状の正極集電リード43が電気的に接続されている。正極集電リード43は、図1に示すように、正極集電体42のX方向における中央の位置からY方向に延出している。正極集電リード43は、例えば、正極集電体42と一体成型されている。正極集電リード43は、図1に示すように、X方向の幅W3を有している。正極集電リード43は、例えば、5μm〜100μmの厚さを有している。 A band-shaped positive electrode current collecting lead 43 is electrically connected to the side surface of the positive electrode plate 4 located on the first side surface F1 side of the electrode group 3. As shown in FIG. 1, the positive electrode current collector lead 43 extends in the Y direction from the central position of the positive electrode current collector 42 in the X direction. The positive electrode current collector lead 43 is integrally molded with, for example, the positive electrode current collector 42. As shown in FIG. 1, the positive electrode current collecting lead 43 has a width W3 in the X direction. The positive electrode current collecting lead 43 has a thickness of, for example, 5 μm to 100 μm.

電極群3の第2の側面F2側に位置する負極板5の側面には、帯状の負極集電リード53が電気的に接続されている。負極集電リード53は、図1に示すように、負極集電体52のX方向における中央の位置からY方向に延出している。負極集電リード53は、例えば、負極集電体52と一体成型されている。負極集電リード53は、図1に示すように、X方向の幅W3を有している。負極集電リード53は、例えば、5μm〜100μmの厚さを有している。 A band-shaped negative electrode current collecting lead 53 is electrically connected to the side surface of the negative electrode plate 5 located on the second side surface F2 side of the electrode group 3. As shown in FIG. 1, the negative electrode current collector lead 53 extends in the Y direction from the central position of the negative electrode current collector 52 in the X direction. The negative electrode current collector lead 53 is integrally molded with, for example, the negative electrode current collector 52. As shown in FIG. 1, the negative electrode current collecting lead 53 has a width W3 in the X direction. The negative electrode current collector lead 53 has a thickness of, for example, 5 μm to 100 μm.

図4に示すように、電極群3の第2の側面F2側に位置する各負極板5の側面から延出した複数の負極集電リード53は、電極群3の積層方向(Z方向)に沿って例えば下側に寄せて集束され、Y方向に折り曲げられ、端面が揃うように切断し、互いに接合されている。図示しないが、電極群3の第1の側面F1側に位置する各正極板4の側面から延出した複数の正極集電リード43も、負極集電リード53と同様に集束、折り曲げ、切断、接合されている。 As shown in FIG. 4, a plurality of negative electrode current collecting leads 53 extending from the side surface of each negative electrode plate 5 located on the second side surface F2 side of the electrode group 3 are arranged in the stacking direction (Z direction) of the electrode group 3. Along, for example, they are focused downward, bent in the Y direction, cut so that the end faces are aligned, and joined to each other. Although not shown, a plurality of positive electrode current collecting leads 43 extending from the side surfaces of the positive electrode plates 4 located on the first side surface F1 side of the electrode group 3 are also focused, bent, and cut in the same manner as the negative electrode current collecting leads 53. It is joined.

集束された正極集電リード43の先端部は、例えば、正極端子7の一端側片面(例えば、図4における上面)に超音波溶接、抵抗溶接等によって接合され、電気的に接続さている。正極端子7の他端は、後述する外装体2の封止部25を通過して外部に延出されている。正極端子7は、金属板であり、例えば、矩形状のアルミニウム板、ステンレス板等で形成されている。正極端子7は、例えば、100μm〜500μmの厚さを有し、図1に示すように、X方向に沿う幅W2を有している。正極端子7は、例えば、その外部に延出された部分がニッケルメッキされ得る。正極端子7をX方向に沿って切断した断面積は、8mm以上15mm以下にすることが好ましい。正極端子7の断面積を当該範囲にすることによって、当該電池1を高レートで充放電しても、良好な充放電特性を得ることができる。 The tip of the focused positive electrode current collecting lead 43 is, for example, bonded to one end side (for example, the upper surface in FIG. 4) of the positive electrode terminal 7 by ultrasonic welding, resistance welding, or the like, and is electrically connected. The other end of the positive electrode terminal 7 passes through the sealing portion 25 of the exterior body 2 described later and extends to the outside. The positive electrode terminal 7 is a metal plate, and is formed of, for example, a rectangular aluminum plate, a stainless steel plate, or the like. The positive electrode terminal 7 has a thickness of, for example, 100 μm to 500 μm, and has a width W2 along the X direction as shown in FIG. The positive electrode terminal 7 may be nickel-plated, for example, in a portion extending to the outside thereof. The cross-sectional area of the positive electrode terminal 7 cut along the X direction is preferably 8 mm 2 or more and 15 mm 2 or less. By setting the cross-sectional area of the positive electrode terminal 7 to the above range, good charge / discharge characteristics can be obtained even if the battery 1 is charged / discharged at a high rate.

集束された負極集電リード53の先端部は、例えば、負極端子8の一端側片面(例えば、図2における上面)に超音波溶接、抵抗溶接等によって接合され、電気的に接続されている。負極端子8の他端は、後述する外装体2の封止部25を通過して外部に延出されている。負極端子8は、金属板であり、例えば、矩形状の銅板、ニッケル板等で形成されている。負極端子8は、例えば、100μm〜500μmの厚さを有し、図1に示すように、X方向に沿う幅W2を有している。負極端子8は、例えば、その外部に延出された部分がニッケルメッキされ得る。負極端子8をX方向に沿って切断した断面積は、正極端子7と同様の理由から、好ましくは8mm以上15mm以下である。 The tip of the focused negative electrode current collecting lead 53 is bonded to, for example, one end side (for example, the upper surface in FIG. 2) of the negative electrode terminal 8 by ultrasonic welding, resistance welding, or the like, and is electrically connected. The other end of the negative electrode terminal 8 passes through the sealing portion 25 of the exterior body 2 described later and extends to the outside. The negative electrode terminal 8 is a metal plate, and is formed of, for example, a rectangular copper plate, a nickel plate, or the like. The negative electrode terminal 8 has a thickness of, for example, 100 μm to 500 μm, and has a width W2 along the X direction as shown in FIG. The negative electrode terminal 8 may be nickel-plated, for example, in a portion extending to the outside thereof. The cross-sectional area of the negative electrode terminal 8 cut along the X direction is preferably 8 mm 2 or more and 15 mm 2 or less for the same reason as that of the positive electrode terminal 7.

図1に示すように、第1の側面F1及び第2の側面F2の幅をW1、各端子7,8の幅をW2とすると、W2/W1の比がそれぞれ0.32以上0.48以下である。W2/W1の比を0.32以上0.48以下に規定することによって、充放電時の電極群3で発生した反応熱を、各集電リード43,53を通じて外部に露出する各端子7,8に伝達でき、効率的に放熱できる。そのため、高温時の電極群3からのガスの発生を抑制でき、外装体2の膨張を抑制して、当該電池1の信頼性を高めることができる。また、W2/W1の比を0.32以上0.48以下に規定することによって、当該電池1を高レートで充放電しても、良好な充放電特性を得ることができる。 As shown in FIG. 1, assuming that the widths of the first side surface F1 and the second side surface F2 are W1 and the widths of the terminals 7 and 8 are W2, the ratio of W2 / W1 is 0.32 or more and 0.48 or less, respectively. Is. By defining the W2 / W1 ratio to 0.32 or more and 0.48 or less, the reaction heat generated in the electrode group 3 during charging and discharging is exposed to the outside through the current collecting leads 43 and 53, respectively. It can be transmitted to 8 and heat can be dissipated efficiently. Therefore, it is possible to suppress the generation of gas from the electrode group 3 at a high temperature, suppress the expansion of the exterior body 2, and improve the reliability of the battery 1. Further, by defining the ratio of W2 / W1 to 0.32 or more and 0.48 or less, good charge / discharge characteristics can be obtained even if the battery 1 is charged / discharged at a high rate.

W2/W1の比が0.32未満であると、効率な放熱ができず、かつ高レートでの良好な放電特性が得られない虞がある。一方、W2/W1の比が0.48を超えると、各端子7,8の重量の増加に伴って、当該電池1の重量エネルギー密度が低下する虞がある。 If the ratio of W2 / W1 is less than 0.32, efficient heat dissipation may not be possible and good discharge characteristics at a high rate may not be obtained. On the other hand, if the W2 / W1 ratio exceeds 0.48, the weight energy density of the battery 1 may decrease as the weight of each of the terminals 7 and 8 increases.

ここで、各集電リード43,53の幅W3と、各端子7,8の幅W2とは、それぞれ同程度であることが好ましい。具体的には、W2/W3の比は、それぞれ0.8以上1.2以下であることが好ましい。W2/W3の比がこの範囲にすることによって、各集電リードの幅を適切にできるため、当該電池1の放熱性を更に向上でき、当該電池1を高レートで充放電しても、更に良好な充放電特性を得ることができる。また、各集電リード43,53が不要な重量の増加に伴って、当該電池1の重量エネルギー密度が低下することを抑制できる。 Here, it is preferable that the width W3 of each of the current collecting leads 43 and 53 and the width W2 of each of the terminals 7 and 8 are about the same. Specifically, the ratio of W2 / W3 is preferably 0.8 or more and 1.2 or less, respectively. By setting the ratio of W2 / W3 to this range, the width of each current collecting lead can be made appropriate, so that the heat dissipation of the battery 1 can be further improved, and even if the battery 1 is charged and discharged at a high rate, it is further improved. Good charge / discharge characteristics can be obtained. Further, it is possible to suppress a decrease in the weight energy density of the battery 1 as the weight of each of the current collecting leads 43 and 53 increases unnecessarily.

図1及び図4に示すように、シーラント部9はそれぞれ後述する外装体2の封止部25を通過する正極端子7及び負極端子8の部分の周面を覆って形成されている。シーラント部9は、後述するラミネートフィルム21,24の熱融着樹脂層21a,24aと熱融着されて、各端子7,8が通過する封止部25の部分の密着強度を向上させる。シーラント部9は、熱可塑性樹脂から形成され、例えば、ポリプロピレン、ポリエチレン等で形成されている。シーラント部9は、100μm以上200μm以下の厚さを有することが好ましく、100μm以上150μm以下の厚さを有することがより好ましい。 As shown in FIGS. 1 and 4, the sealant portion 9 is formed so as to cover the peripheral surfaces of the positive electrode terminal 7 and the negative electrode terminal 8 that pass through the sealing portion 25 of the exterior body 2 described later, respectively. The sealant portion 9 is heat-sealed with the heat-sealing resin layers 21a and 24a of the laminated films 21 and 24 described later to improve the adhesion strength of the sealing portion 25 through which the terminals 7 and 8 pass. The sealant portion 9 is formed of a thermoplastic resin, for example, polypropylene, polyethylene, or the like. The sealant portion 9 preferably has a thickness of 100 μm or more and 200 μm or less, and more preferably 100 μm or more and 150 μm or less.

積層型リチウムイオン二次電池1は、上述する電極群3を収納する1枚又は2枚のラミネートフィルムから構成される外装体2を備えている。図3に示すように、外装体2は、例えば、2枚のラミネートフィルム21,24から構成されている。一方のラミネートフィルム21は、有底矩形中空状の収容凹部22及び当該収容凹部22の周縁に位置される枠状の鍔部23を有している。他方のラミネートフィルム24は、ラミネートフィルム21と等しい外径寸法を有し、平板状である。ラミネートフィルム21,24は、例えば、それぞれ外形が矩形状である。 The laminated lithium ion secondary battery 1 includes an exterior body 2 composed of one or two laminated films for accommodating the electrode group 3 described above. As shown in FIG. 3, the exterior body 2 is composed of, for example, two laminated films 21 and 24. On the other hand, the laminated film 21 has a bottomed rectangular hollow accommodating recess 22 and a frame-shaped flange portion 23 located on the peripheral edge of the accommodating recess 22. The other laminated film 24 has an outer diameter dimension equal to that of the laminated film 21 and is flat. The laminated films 21 and 24 have a rectangular outer shape, for example.

ラミネートフィルム21,24は、ステンレス箔21b,24b及び当該ステンレス箔21b,24bの片面に被覆された熱融着樹脂層21a,24aをそれぞれ備え、具体的には図4に示すようにそれぞれ熱融着樹脂層21a,24a、ステンレス箔からなる金属層21b,24b、及び保護層21c,24cがこの順序で内側から外側に向けて積層して構成されている。ラミネートフィルム21,24は、熱融着樹脂層21a,24a同士が対向するように配置され、熱融着樹脂層21a,24a間に電極群3を収納している。外装体2は、2枚のラミネートフィルム21,24の熱融着樹脂層21a,24aの周縁部(鍔部23)同士を熱融着して形成される封止部25を有している。電極群3は、外装体2によって外気から遮断され、密封されている。 The laminated films 21 and 24 are provided with stainless steel foils 21b and 24b and heat-sealing resin layers 21a and 24a coated on one side of the stainless steel foils 21b and 24b, respectively, and specifically, as shown in FIG. 4, respectively. The resin-bonded layers 21a and 24a, the metal layers 21b and 24b made of stainless steel foil, and the protective layers 21c and 24c are laminated in this order from the inside to the outside. The laminated films 21 and 24 are arranged so that the heat-sealed resin layers 21a and 24a face each other, and the electrode group 3 is housed between the heat-sealed resin layers 21a and 24a. The exterior body 2 has a sealing portion 25 formed by heat-sealing the peripheral portions (flange portions 23) of the heat-sealing resin layers 21a and 24a of the two laminated films 21 and 24. The electrode group 3 is shielded from the outside air by the exterior body 2 and sealed.

熱融着樹脂層21a,24aは、例えば、ポリプロピレン、ポリエチレン等で形成されている。熱融着樹脂層21a,24aは、30μm以上80μm以下の厚さを有する。熱融着樹脂層21a,24aの厚さをこの範囲とすることによって、封止部25の密着強度を向上させ、真空環境下における封止部25の開裂による非水電解質の漏出を抑制することができる。熱融着樹脂層21a,24aの厚さが30μm未満であると、封止部25の密着強度が不足する虞がある。また、熱融着樹脂層21a,24aの厚さが30μm未満であると、封止部25を形成する際、熱融着樹脂層が融解して流れ、ステンレス箔21b,24bと各端子7,8とが接触して内部短絡する虞がある。一方、熱融着樹脂層21a,24aの厚さが80μmを超えると、封止部25を形成する際に各熱融着樹脂層への熱の伝達が不足して封止部25の密着強度が不足する虞がある。好ましい熱融着樹脂層21a,24aの厚さは、30μm以上50μm以下である。 The heat-sealed resin layers 21a and 24a are made of, for example, polypropylene, polyethylene, or the like. The heat-sealed resin layers 21a and 24a have a thickness of 30 μm or more and 80 μm or less. By setting the thickness of the heat-sealed resin layers 21a and 24a within this range, the adhesion strength of the sealing portion 25 is improved, and leakage of the non-aqueous electrolyte due to the cleavage of the sealing portion 25 in a vacuum environment is suppressed. Can be done. If the thickness of the heat-sealed resin layers 21a and 24a is less than 30 μm, the adhesion strength of the sealing portion 25 may be insufficient. If the thickness of the heat-sealed resin layers 21a and 24a is less than 30 μm, the heat-sealed resin layers melt and flow when the sealing portion 25 is formed, and the stainless foils 21b and 24b and the terminals 7 and 7 There is a risk of contact with 8 and an internal short circuit. On the other hand, if the thickness of the heat-sealed resin layers 21a and 24a exceeds 80 μm, heat transfer to each heat-sealed resin layer is insufficient when the sealing portion 25 is formed, and the adhesion strength of the sealing portion 25 is insufficient. May run short. The preferred thickness of the heat-sealed resin layers 21a and 24a is 30 μm or more and 50 μm or less.

ステンレス箔からなる金属層21b,24bは、真空環境下での使用に耐え得る剛性を外装体2に与え、50μm以上200μm以下の厚さを有することが好ましく、100μm以上200μm以下の厚さを有することがより好ましい。ステンレス箔の厚さが50μm未満であると、真空環境下での膨張を抑制できる剛性を外装体2に与えられない虞がある。一方、ステンレス箔の厚さが500μmを超えると、外装体2の重量の増加に伴って、当該電池1の重量エネルギー密度が低下する虞があり、かつプレス加工等による成形が困難になる虞がある。 The metal layers 21b and 24b made of stainless steel foil give the exterior body 2 rigidity that can withstand use in a vacuum environment, preferably have a thickness of 50 μm or more and 200 μm or less, and have a thickness of 100 μm or more and 200 μm or less. Is more preferable. If the thickness of the stainless steel foil is less than 50 μm, the exterior body 2 may not be provided with rigidity capable of suppressing expansion in a vacuum environment. On the other hand, if the thickness of the stainless steel foil exceeds 500 μm, the weight energy density of the battery 1 may decrease as the weight of the exterior body 2 increases, and molding by press working or the like may become difficult. is there.

保護層21c,24cは、ステンレス箔からなる金属層21b,24bを保護し、例えば、ナイロン、ポリエチレンテレフタララート(PET)等で形成されている。保護層21c,24cは、例えば5μm以上50μm以下の厚さを有している。 The protective layers 21c and 24c protect the metal layers 21b and 24b made of stainless steel foil, and are formed of, for example, nylon, polyethylene terephthalalate (PET), or the like. The protective layers 21c and 24c have a thickness of, for example, 5 μm or more and 50 μm or less.

封止部25は、図3に示すように、平均の幅W4の矩形枠状を有している。封止部25の幅W4は、10mm以上20mm以下の幅を有することが好ましく、10mm以上15mm以下の幅を有することがより好ましい。幅W4が10mm未満であると、封止部25の密着強度が不足する虞がある。幅W4が20mmを超えると、外装体2の重量の増加に伴って、当該電池1の重量エネルギー密度が低下する虞がある。 As shown in FIG. 3, the sealing portion 25 has a rectangular frame shape having an average width W4. The width W4 of the sealing portion 25 preferably has a width of 10 mm or more and 20 mm or less, and more preferably 10 mm or more and 15 mm or less. If the width W4 is less than 10 mm, the adhesion strength of the sealing portion 25 may be insufficient. If the width W4 exceeds 20 mm, the weight energy density of the battery 1 may decrease as the weight of the exterior body 2 increases.

このような構成によれば、外装体2が剛性の高いステンレス箔21b,24bを備えているため、当該電池1を真空環境下で使用しても、外装体2の膨張を抑制することができる。また、W2/W1の比を0.32以上0.48以下にすることによって、当該電池1の放熱性を向上し、電極群3からのガスの発生を抑制できるため、外装体2の膨張を更に抑制することができる。また、熱融着樹脂層21a,24aが特定の厚さを有し、シーラント部9をそれぞれ外装体2の封止部25を通過する正極端子7及び負極端子8の部分の周面を覆って形成しているため、封止部25の密着強度を向上できる。このため、当該電池1を真空環境下で使用しても、外装体2の封止部25の開裂を抑制でき、非水電解質の漏出を抑制することができる。その結果、外装体2の膨張、非水電解液の漏出を抑制した高い信頼性を有する非水電解質二次電池1を実現できる。更に、当該電池は、W2/W1の比を0.32以上0.48以下にすることによって、当該電池1を高レートで充放電しても、良好な充放電特性を得ることができる。 According to such a configuration, since the exterior body 2 is provided with highly rigid stainless steel foils 21b and 24b, expansion of the exterior body 2 can be suppressed even when the battery 1 is used in a vacuum environment. .. Further, by setting the W2 / W1 ratio to 0.32 or more and 0.48 or less, the heat dissipation of the battery 1 can be improved and the generation of gas from the electrode group 3 can be suppressed, so that the exterior body 2 can be expanded. It can be further suppressed. Further, the heat-sealed resin layers 21a and 24a have a specific thickness, and the sealant portion 9 covers the peripheral surfaces of the positive electrode terminal 7 and the negative electrode terminal 8 that pass through the sealing portion 25 of the exterior body 2, respectively. Since it is formed, the adhesion strength of the sealing portion 25 can be improved. Therefore, even if the battery 1 is used in a vacuum environment, the cleavage of the sealing portion 25 of the exterior body 2 can be suppressed, and the leakage of the non-aqueous electrolyte can be suppressed. As a result, it is possible to realize a highly reliable non-aqueous electrolyte secondary battery 1 in which expansion of the exterior body 2 and leakage of the non-aqueous electrolyte solution are suppressed. Further, by setting the W2 / W1 ratio to 0.32 or more and 0.48 or less, the battery 1 can obtain good charge / discharge characteristics even if the battery 1 is charged / discharged at a high rate.

なお、第1の実施形態は、上述した構成の他に以下に説明する種々の形態を採用できる。
各端子7,8のシーラント部9が形成される部分には、各端子7,8とシーラント部9との間に更に絶縁性被膜を形成し得る。絶縁性被膜は、例えば、10μm以上50μm以下の厚さを有し、ポリプロピレン、ポリエチレン等から形成されている。絶縁性被膜の形成により、封止部を形成する際、シーラント部9や熱融着樹脂層21a,24aの融解による流れを防止し、ステンレス箔21b,24bと各端子7,8との接触による内部短絡を更に抑制できる。
In addition to the above-described configuration, various embodiments described below can be adopted as the first embodiment.
An insulating film may be further formed between the terminals 7 and 8 and the sealant portion 9 at the portion where the sealant portion 9 of the terminals 7 and 8 is formed. The insulating coating has a thickness of, for example, 10 μm or more and 50 μm or less, and is made of polypropylene, polyethylene, or the like. By forming the insulating film, when the sealing portion is formed, the flow due to melting of the sealant portion 9 and the heat-sealed resin layers 21a and 24a is prevented, and the stainless foils 21b and 24b are brought into contact with the terminals 7 and 8 respectively. Internal short circuit can be further suppressed.

外装体は、2枚のラミネートフィルムから構成されるものではなく、1枚のラミネートフィルムを折り曲げられて形成されてもよい。また、外装体のラミネートフィルムは、2枚のラミネートフィルムの一方が収容凹部を有し、他方が平坦なものに限定されず、2枚ともに収容凹部を有するものであってもよい。 The exterior body is not composed of two laminated films, but may be formed by bending one laminated film. Further, the laminated film of the exterior body is not limited to one in which one of the two laminated films has a housing recess and the other is flat, and both of the two laminated films may have a storage recess.

非水電解質二次電池は、積層型リチウムイオン二次電池に限定されず、ラミネートフィルムからなる外装体を備える様々な電池であり得る。例えば、非水電解質二次電池は、巻回型リチウムイオン二次電池であって、巻回型の電極群が扁平な矩形体状に潰されているものであってもよい。 The non-aqueous electrolyte secondary battery is not limited to the laminated lithium ion secondary battery, and may be various batteries including an exterior body made of a laminated film. For example, the non-aqueous electrolyte secondary battery may be a wound lithium ion secondary battery in which the wound electrode group is crushed into a flat rectangular body.

(非水電解質二次電池の製造方法)
以下、第1の実施形態に係る非水電解質二次電池の製造方法を、積層型リチウムイオン二次電池を例にして説明する。
正極活物質と、導電剤と、結着剤と、溶剤とを混合して正極スラリーを調製する。次に、この正極スラリーを、正極集電体の両面に塗布する。その後、溶剤を乾燥し、圧縮した後、正極層41の形成された矩形状の正極集電体42である正極板4の一辺から、帯状の正極集電リード43が延出するように切断する。
(Manufacturing method of non-aqueous electrolyte secondary battery)
Hereinafter, the method for manufacturing the non-aqueous electrolyte secondary battery according to the first embodiment will be described by taking a laminated lithium ion secondary battery as an example.
A positive electrode slurry is prepared by mixing a positive electrode active material, a conductive agent, a binder, and a solvent. Next, this positive electrode slurry is applied to both sides of the positive electrode current collector. Then, after the solvent is dried and compressed, the strip-shaped positive electrode current collector lead 43 is cut so as to extend from one side of the positive electrode plate 4 which is the rectangular positive electrode current collector 42 on which the positive electrode layer 41 is formed. ..

負極活物質と、結着剤と、溶剤とを混合してスラリーを調製する。次に、この負極スラリーを、負極集電体の両面に塗布する。その後、溶剤を乾燥し、圧縮した後、負極層51の形成された矩形状の負極集電体52である負極板5の一辺から、帯状の負極集電リード53が延出するように切断する。 A slurry is prepared by mixing a negative electrode active material, a binder, and a solvent. Next, this negative electrode slurry is applied to both sides of the negative electrode current collector. Then, after the solvent is dried and compressed, the strip-shaped negative electrode current collector lead 53 is cut so as to extend from one side of the negative electrode plate 5 which is the rectangular negative electrode current collector 52 on which the negative electrode layer 51 is formed. ..

次に、正極板4及び負極板5を、セパレータ6を介して交互に積層して電極群3を作製する。なお、電極群3の積層方向(Z方向)における両端面には、負極板5が位置するようにする。この際、正極集電リード43及び負極集電リード53が、それぞれ電極群3の第1及び第2の側面F1,F2からY方向に延出するように積層する。正極板4及び負極板5のずれを防止するため、電極群3の第3及び第4の側面F3,F4において、上面、各側面及び下面を跨いでテープ10を貼着する。 Next, the positive electrode plate 4 and the negative electrode plate 5 are alternately laminated via the separator 6 to prepare the electrode group 3. The negative electrode plates 5 are located on both end faces of the electrode group 3 in the stacking direction (Z direction). At this time, the positive electrode current collecting lead 43 and the negative electrode current collecting lead 53 are laminated so as to extend in the Y direction from the first and second side surfaces F1 and F2 of the electrode group 3, respectively. In order to prevent the positive electrode plate 4 and the negative electrode plate 5 from being displaced, the tape 10 is attached to the upper surface, each side surface, and the lower surface on the third and fourth side surfaces F3 and F4 of the electrode group 3.

次いで、電極群3から延出した各集電リード43,53は、それぞれ電極群3の積層方向(Z方向)に沿って、片側に寄せて集束し、Z方向に対して垂直方向(Y方向)に折り曲げて、端面が揃うように先端を切断する。各端子7,8の上面に、それぞれ集束した各集電リード43,53の端部を重ね、超音波溶接で互いに接合する。次いで、各端子7,8の封止部25を通過する部分には、それぞれ周面を覆うシーラント部9を形成する。 Next, the current collecting leads 43 and 53 extending from the electrode group 3 are focused on one side along the stacking direction (Z direction) of the electrode group 3, respectively, and are focused in the direction perpendicular to the Z direction (Y direction). ), And cut the tip so that the end faces are aligned. The ends of the focused current collector leads 43 and 53 are superposed on the upper surfaces of the terminals 7 and 8 and joined to each other by ultrasonic welding. Next, a sealant portion 9 covering the peripheral surface is formed in each of the portions of the terminals 7 and 8 that pass through the sealing portion 25.

その後、2枚のラミネートフィルム21,24の熱融着樹脂層21a,24aを互いに対向して配置する。次いで、熱融着樹脂層21a,24a間であって、ラミネートフィルム21の収容凹部22内に電極群3が収納されるように、2枚のラミネートフィルム21,24を重ね合わせた。このとき、2枚のラミネートフィルム21,24は、それらの周縁部間に各端子7,8のシーラント部9が形成される部分が通過し、各端子7,8の一部が外部に露出するように配置する。この状態で、ラミネートフィルム21,24の各端子7,8が延出する辺を含む3辺において、熱融着樹脂層21a,24aの周縁部同士をヒートシール機で熱融着する。この際、熱融着樹脂層21a,24a及びシーラント部9間も熱融着する。 After that, the heat-sealed resin layers 21a and 24a of the two laminated films 21 and 24 are arranged so as to face each other. Next, the two laminated films 21 and 24 were overlapped between the heat-sealed resin layers 21a and 24a so that the electrode group 3 was housed in the accommodating recess 22 of the laminated film 21. At this time, in the two laminated films 21 and 24, the portion where the sealant portion 9 of each terminal 7 and 8 is formed passes between the peripheral portions thereof, and a part of each terminal 7 and 8 is exposed to the outside. Arrange as follows. In this state, the peripheral edges of the heat-sealing resin layers 21a and 24a are heat-sealed with a heat-sealing machine on three sides including the side on which the terminals 7 and 8 of the laminated films 21 and 24 extend. At this time, the heat-sealing resin layers 21a and 24a and the sealant portion 9 are also heat-sealed.

次いで、減圧環境下で、ラミネートフィルム21,24の熱融着されていない1辺から、電極群3に非水電解液を注入する。次に、減圧環境下で、外装体2の残りの1辺を熱融着して、積層型リチウムイオン二次電池1を製造する。
なお、非水電解質二次電池1の一例となるリチウムイオン二次電池では、実際に電池として使用する前に予備的に充放電を行って、そこで発生するガスを排出するガス抜き工程を行うことが好ましい。ガス抜き工程を行うと、当該電池1の使用時にガス発生して外装体2が膨張することを更に抑制することができる。
Next, in a reduced pressure environment, the non-aqueous electrolytic solution is injected into the electrode group 3 from one side of the laminated films 21 and 24 that is not heat-sealed. Next, in a reduced pressure environment, the remaining one side of the exterior body 2 is heat-sealed to manufacture a laminated lithium ion secondary battery 1.
In the lithium ion secondary battery, which is an example of the non-aqueous electrolyte secondary battery 1, a degassing step is performed in which the lithium ion secondary battery is preliminarily charged and discharged before being actually used as a battery, and the gas generated there is discharged. Is preferable. When the degassing step is performed, it is possible to further suppress the expansion of the exterior body 2 due to the generation of gas when the battery 1 is used.

[第2の実施形態]
以下、第2の実施形態に係る非水電解質二次電池を、積層型リチウムイオン二次電池を例にして、図5〜7に基づいて説明する。第2の実施形態に係る積層型リチウムイオン二次電池は、スペーサを更に備えること以外、第1の実施形態と同様である。図5は、第2の実施形態に係る非水電解質二次電池(積層型リチウムイオン二次電池)の分解斜視図である。図6は、図5のスペーサを示す図であって、(a)は第1面側からみた斜視図、(b)は第2面側からみた斜視図、(c)は(a)のC−C線に沿う断面図である。図7は、図5に示す電池の一部の断面図である。
[Second Embodiment]
Hereinafter, the non-aqueous electrolyte secondary battery according to the second embodiment will be described with reference to FIGS. 5 to 7 by taking a laminated lithium ion secondary battery as an example. The laminated lithium ion secondary battery according to the second embodiment is the same as that of the first embodiment except that a spacer is further provided. FIG. 5 is an exploded perspective view of the non-aqueous electrolyte secondary battery (laminated lithium ion secondary battery) according to the second embodiment. 6A and 6B are views showing the spacer of FIG. 5, in which FIG. 6A is a perspective view seen from the first surface side, FIG. 6B is a perspective view seen from the second surface side, and FIG. 6C is C in FIG. It is sectional drawing along the-C line. FIG. 7 is a cross-sectional view of a part of the battery shown in FIG.

積層型リチウムイオン二次電池1は、図5に示すように、電極群3の外周面と、ラミネートフィルム21の収容凹部22の内側面との間に介在して配置されるスペーサSPを備えている。ラミネートフィルム21,24は、それぞれ第1及び第2のラミネートフィルムに対応する。
図6(a)〜(c)に示すように、スペーサSPは、矩形枠状を有し、電極群3の外周面と対向する内周側面11と、ラミネートフィルム21の収容凹部22の内側面と対向する外周側面12とを有している。スペーサSPは、ラミネートフィルム21の収容凹部22の内底面と対向する第1面13と、当該第1面13と反対側の面であってラミネートフィルム24と対向する第2面14とを有している。スペーサSPの内周側面11は、電極群3の外周面に沿った形状を有し、例えば、電極群3の外周面に当接している。スペーサSPの外周側面12及び第1面13は、ラミネートフィルム21の収容凹部22の内側面に沿った形状を有し、例えば、当該内側面に当接している。スペーサSPの第2面14は、例えば、ラミネートフィルム24の内面に、後述する切欠部16以外の部分が当接している。スペーサSPは、電気絶縁性であり、例えばポリプロピレンからなる樹脂から形成されている。
As shown in FIG. 5, the laminated lithium ion secondary battery 1 includes a spacer SP that is arranged between the outer peripheral surface of the electrode group 3 and the inner surface of the accommodating recess 22 of the laminated film 21. There is. The laminated films 21 and 24 correspond to the first and second laminated films, respectively.
As shown in FIGS. 6A to 6C, the spacer SP has a rectangular frame shape, and has an inner peripheral side surface 11 facing the outer peripheral surface of the electrode group 3 and an inner surface surface of the accommodating recess 22 of the laminated film 21. It has an outer peripheral side surface 12 facing the same. The spacer SP has a first surface 13 facing the inner bottom surface of the accommodating recess 22 of the laminated film 21, and a second surface 14 opposite to the first surface 13 and facing the laminated film 24. ing. The inner peripheral side surface 11 of the spacer SP has a shape along the outer peripheral surface of the electrode group 3, and is in contact with, for example, the outer peripheral surface of the electrode group 3. The outer peripheral side surface 12 and the first surface 13 of the spacer SP have a shape along the inner side surface of the accommodating recess 22 of the laminated film 21, and are in contact with, for example, the inner side surface. The second surface 14 of the spacer SP is, for example, in contact with the inner surface of the laminated film 24 with a portion other than the notch portion 16 described later. The spacer SP is electrically insulating and is formed of, for example, a resin made of polypropylene.

図6(a)〜(c)に示すように、スペーサSPは、ラミネートフィルム21の収容凹部22の角部と対向する角部にR形状を有している。具体的には、図6(a)に示すように、スペーサSPが矩形枠状であるため外周側面12が有する角部12a、及びスペーサSPの第1面13と外周側面12とが交差する角部15は、有底矩形中空状を有する収容凹部22の角部に対向し、R形状を有している。 As shown in FIGS. 6A to 6C, the spacer SP has an R shape at a corner portion of the laminated film 21 facing the corner portion of the accommodating recess 22. Specifically, as shown in FIG. 6A, since the spacer SP has a rectangular frame shape, the corner portion 12a of the outer peripheral side surface 12 and the angle at which the first surface 13 of the spacer SP and the outer peripheral side surface 12 intersect. The portion 15 faces the corner portion of the accommodating recess 22 having a bottomed rectangular hollow shape and has an R shape.

また、図7に示すように、各端子7,8は、ラミネートフィルム24及びスペーサSPの間を通過する。スペーサSPは、第2面14の各端子7,8が通過する部分に切欠部16をそれぞれ有している。切欠部16は、各端子7,8と対向する2つの切欠壁16aを有している。スペーサSPは、切欠壁16aと、内周側面11とが交差する角部16bにR形状をそれぞれ有している。具体的には、切欠壁16aと内周側面11とが交差する角部16bには、図7に示すように、それぞれ正極集電リード43及び負極集電リード53の上記折り曲げられた部分が当接し、当該角部16bはその折り曲げ形状に沿ってR形状をなしている。図6(c)に示すスペーサSPの厚さT1は、例えば、電極群3の厚さに相当している。図6(c)に示す切欠部16の深さT2は、例えば、正極端子7及び正極集電リード43の束の厚さの合計、又は負極端子8及び負極集電リード53の束の厚さの合計、に相当している。 Further, as shown in FIG. 7, the terminals 7 and 8 pass between the laminate film 24 and the spacer SP. The spacer SP has a notch 16 at a portion through which the terminals 7 and 8 of the second surface 14 pass. The notch 16 has two notch walls 16a facing the terminals 7 and 8. The spacer SP has an R shape at a corner portion 16b where the cutout wall 16a and the inner peripheral side surface 11 intersect. Specifically, as shown in FIG. 7, the bent portions of the positive electrode current collecting lead 43 and the negative electrode current collecting lead 53 correspond to the corner portion 16b where the cutout wall 16a and the inner peripheral side surface 11 intersect. The corners 16b are in contact with each other and form an R shape along the bent shape. The thickness T1 of the spacer SP shown in FIG. 6C corresponds to, for example, the thickness of the electrode group 3. The depth T2 of the notch 16 shown in FIG. 6C is, for example, the total thickness of the bundles of the positive electrode terminal 7 and the positive electrode current collecting lead 43, or the thickness of the bundle of the negative electrode terminal 8 and the negative electrode current collecting lead 53. Corresponds to the total of.

このような構成によれば、スペーサSPによって、外装体2の形状が内面から支持されるため、外装体2の歪み、皺、凹み等の欠陥の発生を抑制することができる。外装体2の歪み等の欠陥は、非水電解液の漏出や、外装体2内に収納される電極群3への圧迫や破損による内部短絡の原因となる。また、このような構成によれば、スペーサSPが各角部12a,15,16bにR形状を有しているため、当該角部12a,15,16bが外装体2の内面の熱融着樹脂層21aや各集電リード43,53に傷を与えることを抑制できる。また、このような構成によれば、スペーサSPによって、電極群3の外周面が支持されるため、電極群3を外部からの衝撃や圧力による変形や破損から保護でき、電極群3を構成する正極板4及び負極板5の位置ずれを抑制することができる。その結果、非水電解質の漏出や内部短絡を防止した、更に高い信頼性を有する非水電解質二次電池を実現できる。 According to such a configuration, since the shape of the exterior body 2 is supported from the inner surface by the spacer SP, it is possible to suppress the occurrence of defects such as distortion, wrinkles, and dents of the exterior body 2. Defects such as distortion of the exterior body 2 cause leakage of the non-aqueous electrolyte solution and internal short circuit due to pressure or damage to the electrode group 3 housed in the exterior body 2. Further, according to such a configuration, since the spacer SP has an R shape at each corner portion 12a, 15, 16b, the corner portion 12a, 15, 16b is a heat-sealing resin on the inner surface of the exterior body 2. It is possible to suppress damage to the layer 21a and the current collecting leads 43 and 53. Further, according to such a configuration, since the outer peripheral surface of the electrode group 3 is supported by the spacer SP, the electrode group 3 can be protected from deformation or breakage due to an external impact or pressure, and the electrode group 3 is configured. The displacement of the positive electrode plate 4 and the negative electrode plate 5 can be suppressed. As a result, it is possible to realize a non-aqueous electrolyte secondary battery having higher reliability in which leakage of the non-aqueous electrolyte and internal short circuit are prevented.

なお、第2の実施形態のスペーサSPは、上述した構成の他に以下に説明する種々の形態を採用できる。
スペーサSPは、外周側面12から内周側面11に向けて貫通する複数の電解液供給口を開口するものであり得る。外装体2の金属層21b,24bが剛性の高いステンレス箔からなる場合、非水電解液の注入工程で、外装体2とスペーサSPとが密着して非水電解液が通過する隙間が生じにくい。スペーサSPが電解液注入口を有すると、非水電解液の注入工程を円滑に行うことができる。当該電解液供給口は、上述するガス抜き工程で、電極群3から発生するガスを外部に排出する経路としても機能できる。そのため、スペーサSPが電解液注入口を有すると、ガス抜き工程を円滑に行うことができ、外装体2の膨張を更に抑制することができる。電解液供給口は、例えば、スペーサSPの切欠部16が形成される2辺を除く2辺において形成され得る。
In addition to the above-described configuration, the spacer SP of the second embodiment can adopt various forms described below.
The spacer SP may open a plurality of electrolytic solution supply ports penetrating from the outer peripheral side surface 12 toward the inner peripheral side surface 11. When the metal layers 21b and 24b of the exterior body 2 are made of highly rigid stainless steel foil, the exterior body 2 and the spacer SP are in close contact with each other in the process of injecting the non-aqueous electrolytic solution, and a gap through which the non-aqueous electrolytic solution passes is unlikely to occur. .. When the spacer SP has an electrolytic solution injection port, the non-aqueous electrolytic solution injection step can be smoothly performed. The electrolytic solution supply port can also function as a path for discharging the gas generated from the electrode group 3 to the outside in the above-mentioned degassing step. Therefore, when the spacer SP has an electrolytic solution injection port, the degassing step can be smoothly performed, and the expansion of the exterior body 2 can be further suppressed. The electrolytic solution supply port may be formed on, for example, two sides other than the two sides on which the notch 16 of the spacer SP is formed.

スペーサSPは、単一の部材からなるものに限定されず、複数の部材が組み合わされて矩形枠状になるものであり得る。スペーサSPが単一の部材からなる場合、複数の部材からなる場合と比較して、当該電池1の組立時の位置決めが容易になるため好ましい。 The spacer SP is not limited to a single member, but may be a combination of a plurality of members to form a rectangular frame. When the spacer SP is composed of a single member, it is preferable because positioning of the battery 1 at the time of assembly becomes easier as compared with the case where the spacer SP is composed of a plurality of members.

図8(a)〜(d)は、スペーサSPの他の形態を示す断面図である。図8(a)〜(d)は、図6(c)に対応する位置のスペーサSPの断面図である。図8(a)に示すように、スペーサSPは、ラミネートフィルム21の内底面と対向する面(すなわち、第1面13)と、内周側面11とが交差する角部17に更にR形状を有し得る。このR形状は、例えば、矩形枠状を有するスペーサSPの当該角部17の全周に亘って設けられている。このような構成によれば、スペーサSPが、外装体2の内面の熱融着樹脂層21aに傷を与えるのを更に抑制できる。 8 (a) to 8 (d) are cross-sectional views showing another form of the spacer SP. 8 (a) to 8 (d) are cross-sectional views of the spacer SP at positions corresponding to FIG. 6 (c). As shown in FIG. 8A, the spacer SP further forms an R shape on the corner portion 17 where the surface facing the inner bottom surface of the laminated film 21 (that is, the first surface 13) and the inner peripheral side surface 11 intersect. Can have. This R shape is provided, for example, over the entire circumference of the corner portion 17 of the spacer SP having a rectangular frame shape. According to such a configuration, it is possible to further suppress the spacer SP from damaging the heat-sealed resin layer 21a on the inner surface of the exterior body 2.

図8(b)に示すように、スペーサSPは、ラミネートフィルム24と対向する面(すなわち、第2面14)の切欠壁16aを除く面と、内周側面11とが交差する角部18に更にR形状を有し得る。このR形状は、例えば、矩形枠状を有するスペーサSPの当該角部18の全周に亘って設けられている。このような構成によれば、スペーサSPが外装体2の内面の熱融着樹脂層24aに傷を与えるのを更に抑制できる。 As shown in FIG. 8B, the spacer SP is provided at a corner portion 18 where the surface of the surface facing the laminated film 24 (that is, the second surface 14) excluding the notch wall 16a and the inner peripheral side surface 11 intersect. Further, it may have an R shape. This R shape is provided, for example, over the entire circumference of the corner portion 18 of the spacer SP having a rectangular frame shape. According to such a configuration, it is possible to further suppress the spacer SP from damaging the heat-sealed resin layer 24a on the inner surface of the exterior body 2.

図8(c)に示すように、スペーサSPは、ラミネートフィルム24と対向する面(すなわち、第2面14)の切欠壁16aを除く面と、外周側面12とが交差する角部19にR形状を有し得る。このR形状は、例えば、矩形枠状を有するスペーサSPの当該角部19の全周に亘って設けられている。このような構成によれば、スペーサSPが外装体2の内面の熱融着樹脂層24aに傷を与えるのを更に抑制できる。 As shown in FIG. 8C, the spacer SP is provided at a corner portion 19 where the surface of the surface facing the laminated film 24 (that is, the second surface 14) excluding the notch wall 16a and the outer peripheral side surface 12 intersect. Can have a shape. This R shape is provided, for example, over the entire circumference of the corner portion 19 of the spacer SP having a rectangular frame shape. According to such a configuration, it is possible to further suppress the spacer SP from damaging the heat-sealed resin layer 24a on the inner surface of the exterior body 2.

図8(d)に示すように、スペーサSPは、外周側面20が第1面13側から第2面14側に向けて、周縁側に拡口する傾斜を有するものであり得る。このとき、外装体2のラミネートフィルム21の収容凹部22の側壁は、スペーサSPの外周側面20に沿う傾斜を有し得る。一般的に、ラミネートフィルム21の収容凹部22は、プレス絞り加工や打ち出し加工等の方法で成形される。外装体2の金属層21bが剛性の高いステンレス箔からなる場合、収容凹部22を深く成形すると、収容凹部22の側壁が拡口して傾斜を有する形状になり得る。そのため、このような構成によれば、収容凹部22の側壁が当該傾斜を有している場合でも、スペーサSPの外周側面20によって収容凹部22の形状を内面から支持できるため、外装体2の凹み等の欠陥を抑制することができる。 As shown in FIG. 8 (d), the spacer SP may have an inclination in which the outer peripheral side surface 20 expands toward the peripheral edge side from the first surface 13 side to the second surface 14 side. At this time, the side wall of the accommodating recess 22 of the laminated film 21 of the exterior body 2 may have an inclination along the outer peripheral side surface 20 of the spacer SP. Generally, the accommodating recess 22 of the laminated film 21 is formed by a method such as press drawing or punching. When the metal layer 21b of the exterior body 2 is made of a highly rigid stainless steel foil, if the accommodating recess 22 is deeply formed, the side wall of the accommodating recess 22 may be widened to have an inclined shape. Therefore, according to such a configuration, even when the side wall of the accommodating recess 22 has the inclination, the shape of the accommodating recess 22 can be supported from the inner surface by the outer peripheral side surface 20 of the spacer SP, so that the recess of the exterior body 2 is recessed. It is possible to suppress defects such as.

なお、第1及び第2の実施形態で説明した種々の構成は適宜組み合わせて使用することができる。例えば、第2の実施形態の外装体は、ラミネートフィルムが2枚共に収容凹部を有するものであってもよい。その場合、電極群の外周面と各収容凹部との間にそれぞれ上記構造のスペーサSPを各第2面が対向するように配置することが好ましい。 The various configurations described in the first and second embodiments can be used in combination as appropriate. For example, in the exterior body of the second embodiment, both laminated films may have accommodating recesses. In that case, it is preferable to arrange the spacer SP having the above structure between the outer peripheral surface of the electrode group and each accommodating recess so that the second surfaces face each other.

(実施例及び比較例)
以下、実施例及び比較例を挙げて、本発明を詳細に説明する。
実施例1〜4、比較例1〜2に係る試作電池を、以下の方法で作製した。なお、特に説明しない試作電池の作製方法については、第1の実施形態において説明した非水電解質二次電池の製造方法と同様とする。
(Examples and comparative examples)
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.
Prototype batteries according to Examples 1 to 4 and Comparative Examples 1 and 2 were produced by the following methods. The method for manufacturing the prototype battery, which is not particularly described, is the same as the method for manufacturing the non-aqueous electrolyte secondary battery described in the first embodiment.

[実施例1に係る試作電池の作製]
[正極板の作製]
正極活物質である3種混合したコバルト酸リチウム(LiXCoO、0<X≦1)94重量%、結着材であるポリフッ化ビニリデン(PVDF)(株式会社クレハ製、KF♯1120(商品名))3重量%、導電材であるカーボンブラック(イメリス・グラファイト・アンド・カーボン社製、super P(登録商標))及びアセチレンブラックを2種混合したもの3重量%を、溶剤であるN−メチル−2−ピロリドン(NMP)に分散させ、正極スラリーを調製した。次に、この正極スラリーを、正極集電体としてのアルミニウム箔(厚さ15μm)の両面に塗布した。その後、溶剤を乾燥し、プレス加工で厚さ122μmまで圧縮した後、幅114.5mm及び長さ117.0mmの領域が正極層の形成された正極集電体である正極板であって、その一辺から幅40mm(幅W3)及び長さ15.5mmの正極集電リードが延出するように切断した。
[Preparation of prototype battery according to Example 1]
[Preparation of positive electrode plate]
Lithium cobalt oxide (LiXCoO 2 , 0 <X ≦ 1) 94% by weight, which is a positive electrode active material, and polyvinylidene fluoride (PVDF), which is a binder (manufactured by Kureha Co., Ltd., KF # 1120 (trade name)) ) 3% by weight, 3% by weight of a mixture of carbon black (manufactured by Imeris Graphite & Carbon Co., Ltd., super P (registered trademark)) and acetylene black, which is a conductive material, and N-methyl- as a solvent. A positive electrode slurry was prepared by dispersing in 2-pyrrolidone (NMP). Next, this positive electrode slurry was applied to both sides of an aluminum foil (thickness 15 μm) as a positive electrode current collector. Then, the solvent is dried and compressed to a thickness of 122 μm by press working, and then a region having a width of 114.5 mm and a length of 117.0 mm is a positive electrode plate which is a positive electrode current collector on which a positive electrode layer is formed. A positive electrode current collector lead having a width of 40 mm (width W3) and a length of 15.5 mm was cut so as to extend from one side.

[負極板の作製]
負極活物質である人造黒鉛(日立化成株式会社製、MAGD−20(商品名))97.5重量%、結着材であるスチレンブタジエンゴム(SBR)(日本ゼオン株式会社製、BM400B(商品名))1.5重量%、及び増粘剤としてカルボキシメチルセルロース(CMC)(日本製紙株式会社製、MAC350HC(商品名))1.0重量%を、溶剤である水に分散させ、負極スラリーを調製した。次に、この負極スラリーを、負極集電体としての銅箔(厚さ8μm)の両面に塗布した。その後、溶剤を乾燥し、プレス加工で厚さ121μmまで圧縮した後、幅120.5mm及び長さ121.0mmの領域が負極層の形成された負極集電体である負極板であって、その一辺から幅40mm(幅W3)及び長さ12.0mmの負極集電リードが延出するように切断した。
[Manufacturing of negative electrode plate]
Artificial graphite (manufactured by Hitachi Chemical Co., Ltd., MAGD-20 (trade name)) 97.5% by weight, which is a negative electrode active material, styrene-butadiene rubber (SBR) which is a binder (manufactured by Nippon Zeon Corporation, BM400B (trade name)) )) 1.5% by weight and 1.0% by weight of carboxymethyl cellulose (CMC) (manufactured by Nippon Paper Co., Ltd., MAC350HC (trade name)) as a thickener are dispersed in water as a solvent to prepare a negative electrode slurry. did. Next, this negative electrode slurry was applied to both sides of a copper foil (thickness 8 μm) as a negative electrode current collector. Then, the solvent is dried, compressed to a thickness of 121 μm by press working, and then the region having a width of 120.5 mm and a length of 121.0 mm is a negative electrode plate which is a negative electrode current collector on which a negative electrode layer is formed. The negative electrode current collector lead having a width of 40 mm (width W3) and a length of 12.0 mm was cut so as to extend from one side.

[電極群の作製]
第1の実施形態において説明した非水電解質二次電池の製造方法に従って、作製した20枚の正極板及び21枚の負極板を、セパレータを介して交互に積層して、電極群を作製した。電極群は、第1の側面から正極集電リード、第2の側面から負極集電リードが延出するように積層した。セパレータには、厚さ25μmの微多孔性ポリオレフィンフィルムを使用した。電極群は、直方体状であって、互いに対向する第1及び第2の側面を有し、第1及び第2の側面の幅W1が125mmである。電極群には、正極板及び負極板のずれを防止し、かつ内部短絡を防止するため、上面、第3又は第4の側面、下面を跨いでポリイミドテープで固定した。
[Preparation of electrode group]
According to the method for producing a non-aqueous electrolyte secondary battery described in the first embodiment, the 20 positive electrode plates and 21 negative electrode plates produced were alternately laminated via a separator to prepare an electrode group. The electrode group was laminated so that the positive electrode current collecting lead extends from the first side surface and the negative electrode current collecting lead extends from the second side surface. A microporous polyolefin film having a thickness of 25 μm was used as the separator. The electrode group has a rectangular parallelepiped shape, has first and second side surfaces facing each other, and has a width W1 of the first and second side surfaces of 125 mm. The electrode group was fixed with polyimide tape across the upper surface, the third or fourth side surface, and the lower surface in order to prevent the positive electrode plate and the negative electrode plate from slipping and to prevent an internal short circuit.

正極端子は、幅W2が40mm、厚さ0.2mmのアルミニウム板を用いた。正極端子のX方向に切断した断面積は、8mmであった。正極端子の外装体から外部に延出される一部は、上面に厚さ0.1mmのニッケルメッキがされ、厚さ0.3mmである。負極端子は、幅W2が40mm、厚さ0.2mmの銅板を用いた。負極端子のX方向に切断した断面積は、8mmであった。正極端子の外装体から外部に延出される一部は、上面に厚さ0.1mmのニッケルメッキがされ、厚さ0.3mmである。作製した電極群においてW2/W1の比は、0.32であった。また、作製した電極群において、W2/W3の比は、1であった。次に、シーラント部を、それぞれ封止部を通過する正極端子及び負極端子の部分の周面を覆って形成した。シーラント部は、厚さ100μmのポリプロピレン層で形成した。 As the positive electrode terminal, an aluminum plate having a width W2 of 40 mm and a thickness of 0.2 mm was used. The cross-sectional area of the positive electrode terminal cut in the X direction was 8 mm 2 . A part extending to the outside from the exterior body of the positive electrode terminal is nickel-plated with a thickness of 0.1 mm on the upper surface and has a thickness of 0.3 mm. As the negative electrode terminal, a copper plate having a width W2 of 40 mm and a thickness of 0.2 mm was used. The cross-sectional area of the negative electrode terminal cut in the X direction was 8 mm 2 . A part extending to the outside from the exterior body of the positive electrode terminal is nickel-plated with a thickness of 0.1 mm on the upper surface and has a thickness of 0.3 mm. The ratio of W2 / W1 in the prepared electrode group was 0.32. Moreover, in the prepared electrode group, the ratio of W2 / W3 was 1. Next, the sealant portion was formed so as to cover the peripheral surfaces of the positive electrode terminal and the negative electrode terminal portion passing through the sealing portion, respectively. The sealant portion was formed of a polypropylene layer having a thickness of 100 μm.

[外装体]
図3に示すような2枚のラミネートフィルムを用意した。一方のラミネートフィルムは、有底中空直方体状の収容凹部と、収容凹部を囲む矩形枠状の鍔部を有する。他方のラミネートフィルムは、長方形の平板状である。ラミネートフィルムは、それぞれポリプロピレンからなる熱融着樹脂層(厚さ50μm)と、ステンレス箔からなる金属層(厚さ100μm)と、PETからなる保護層(厚さ12μm)とがこの順番で内側から外側まで積層した構造を有する。
[Exterior body]
Two laminated films as shown in FIG. 3 were prepared. One laminated film has a bottomed hollow rectangular parallelepiped housing recess and a rectangular frame-shaped collar surrounding the housing recess. The other laminated film has a rectangular flat plate shape. The laminated film consists of a heat-sealing resin layer made of polypropylene (thickness 50 μm), a metal layer made of stainless steel foil (thickness 100 μm), and a protective layer made of PET (thickness 12 μm) in this order from the inside. It has a structure laminated to the outside.

[試作電池の組立て]
第1の実施形態において説明した非水電解質二次電池の製造方法に従って、作製した電極群、及びラミネートフィルムを用いて、試作電池を組立てた。
外装体を構成する2枚のラミネートフィルムの封止部の形成は、ヒートシール機を用いて行った。まず、2枚のラミネートフィルムの各端子が延出する辺を含む3辺において、熱融着樹脂層の周縁部同士をヒートシール機で熱融着した。この際、熱融着樹脂層及びシーラント部間も熱融着した。各端子が延出する封止部の2辺は、温度170℃の平坦なヘッドに挟み、0.45MPaの圧力を加えて12秒間保持して熱融着を行った。封止部の他の1辺は、温度230℃の平坦なヘッドに挟み、0.45MPaの圧力を加えて12秒間保持して熱融着を行った。その後、当該電池を70℃、真空度−99kPaの環境下で12時間真空乾燥させた。
[Assembly of prototype battery]
A prototype battery was assembled using the prepared electrode group and the laminated film according to the method for manufacturing a non-aqueous electrolyte secondary battery described in the first embodiment.
The sealing portions of the two laminated films constituting the exterior body were formed by using a heat sealing machine. First, the peripheral edges of the heat-sealing resin layers were heat-sealed with a heat-sealing machine on three sides including the side where each terminal of the two laminated films extended. At this time, the heat-sealed resin layer and the sealant portion were also heat-sealed. The two sides of the sealing portion extending from each terminal were sandwiched between flat heads having a temperature of 170 ° C., and a pressure of 0.45 MPa was applied and held for 12 seconds for heat fusion. The other side of the sealing portion was sandwiched between flat heads having a temperature of 230 ° C., and a pressure of 0.45 MPa was applied and held for 12 seconds for heat fusion. Then, the battery was vacuum-dried at 70 ° C. and a vacuum degree of −99 kPa for 12 hours.

次いで、常温で、外装体の熱融着していない1辺から、常温で−70℃〜−60℃露点環境下において、非水電解液を65g注入した。非水電解液としては、エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジメチルカーボネート(DMC)とが体積比で2:5:3の割合で混合された混合溶媒に、電解質としてLiPFが1.3mol/Lの割合で溶解されたものを用いた。 Next, 65 g of a non-aqueous electrolytic solution was injected at room temperature from one side of the exterior body that had not been heat-sealed under a dew point environment of −70 ° C. to −60 ° C. at room temperature. The non-aqueous electrolyte solution is a mixed solvent in which ethylene carbonate (EC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC) are mixed at a volume ratio of 2: 5: 3, and LiPF as an electrolyte. The one in which 6 was dissolved at a ratio of 1.3 mol / L was used.

次に、封止部の残りの1辺を、真空度98%、熱融着時間4.5秒、冷却時間4.0秒の条件で、減圧環境下で仮封止した。次に、仮封止した試作電池を充放電後、仮封止を解いて発生したガスを排出させ、再度仮封止することを繰り返すガス抜き工程を行った。次に、封止部の残りの1辺を、ヒートシール機で温度230℃の平坦なヘッドに挟み、0.45MPaの圧力を加えて12秒間保持して外装体を最終封止した。実施例1に係る試作電池は、電池重量350g、理論容量10Ahであった。なお、作製した試作電池の封止部の平均の幅W4は、10mmであった。 Next, the remaining one side of the sealing portion was temporarily sealed under a reduced pressure environment under the conditions of a vacuum degree of 98%, a heat fusion time of 4.5 seconds, and a cooling time of 4.0 seconds. Next, a degassing step was performed in which the temporarily sealed prototype battery was charged and discharged, the temporarily sealed was released, the generated gas was discharged, and the temporarily sealed was repeated. Next, the remaining one side of the sealing portion was sandwiched between flat heads having a temperature of 230 ° C. with a heat sealing machine, and a pressure of 0.45 MPa was applied and held for 12 seconds to finally seal the exterior body. The prototype battery according to Example 1 had a battery weight of 350 g and a theoretical capacity of 10 Ah. The average width W4 of the sealing portion of the produced prototype battery was 10 mm.

[実施例2に係る試作電池の作製]
各端子の幅W2を50mmとし、W2/W1の比が0.40であること以外は、実施例1に係る試作電池と同様に作製した。
[Making a prototype battery according to Example 2]
It was produced in the same manner as the prototype battery according to Example 1 except that the width W2 of each terminal was 50 mm and the ratio of W2 / W1 was 0.40.

[実施例3に係る試作電池の作製]
各端子の幅W2を60mmとし、W2/W1の比が0.48であり、各ラミネートフィルムの熱融着樹脂層の厚さが80μmであること以外は、実施例1に係る試作電池と同様に作製した。
[Making a prototype battery according to Example 3]
Similar to the prototype battery according to Example 1, except that the width W2 of each terminal is 60 mm, the ratio of W2 / W1 is 0.48, and the thickness of the heat-sealed resin layer of each laminated film is 80 μm. Made in.

[実施例4に係る試作電池の作製]
各ラミネートフィルムの熱融着樹脂層の厚さが30μmであること以外は、実施例3に係る試作電池と同様に作製した。
[Making a prototype battery according to Example 4]
It was produced in the same manner as the prototype battery according to Example 3 except that the thickness of the heat-sealed resin layer of each laminated film was 30 μm.

[比較例1に係る試作電池の作製]
正極端子及び負極端子の幅W2を30mmとし、W2/W1の比が0.24であり、各ラミネートフィルムの熱融着樹脂層の厚さが15μmであること以外は、実施例1に係る試作電池と同様に作製した。
[Production of prototype battery according to Comparative Example 1]
Prototype according to Example 1 except that the width W2 of the positive electrode terminal and the negative electrode terminal is 30 mm, the ratio of W2 / W1 is 0.24, and the thickness of the heat-sealed resin layer of each laminated film is 15 μm. It was made in the same way as a battery.

[比較例2に係る試作電池の作製]
各ラミネートフィルムの金属層をステンレス箔に代えて、アルミニウム箔を使用したこと以外は、比較例1に係る試作電池と同様に作製した。
[Production of prototype battery according to Comparative Example 2]
It was produced in the same manner as the prototype battery according to Comparative Example 1 except that an aluminum foil was used instead of the stainless steel foil for the metal layer of each laminated film.

<評価1:放電容量試験>
実施例1〜4及び比較例1〜2の各試作電池に対して、25℃で真空環境下(11Pa〜13Pa)にて放電容量の測定を行った。また、比較例1〜2の各試作電池に対して、25℃で大気圧(1013hPa)環境下でも放電容量の測定を行った。
<Evaluation 1: Discharge capacity test>
The discharge capacity of each of the prototype batteries of Examples 1 to 4 and Comparative Examples 1 and 2 was measured at 25 ° C. in a vacuum environment (11 Pa to 13 Pa). In addition, the discharge capacity of each of the prototype batteries of Comparative Examples 1 and 2 was measured at 25 ° C. even in an atmospheric pressure (1013 hPa) environment.

各試作電池の理論容量が10Ahであるため、当該理論容量を1時間で放電する10Aの電流が1ItAである。各試作電池に対して、0.2ItAで放電したときの放電容量と、10ItAで放電したときの放電容量とをそれぞれ測定し、放電容量比を下記(1)式で算出した。それら算出結果を下記表1に示す。
放電容量比[%]=(10ItAでの放電容量/0.2ItAでの放電容量)×100…(1)
なお、熱融着樹脂層の厚さが15μmである比較例1〜2では、真空環境下におくと、外装体の膨張が発生して測定に耐えなかったため、表1には大気圧環境下における算出結果のみ示した。
Since the theoretical capacity of each prototype battery is 10 Ah, the current of 10 A for discharging the theoretical capacity in 1 hour is 1 ItA. For each prototype battery, the discharge capacity when discharged at 0.2 ItA and the discharge capacity when discharged at 10 ItA were measured, and the discharge capacity ratio was calculated by the following equation (1). The calculation results are shown in Table 1 below.
Discharge capacity ratio [%] = (Discharge capacity at 10 ItA / Discharge capacity at 0.2 ItA) x 100 ... (1)
In Comparative Examples 1 and 2 in which the thickness of the heat-sealed resin layer was 15 μm, when the heat-sealed resin layer was placed in a vacuum environment, the exterior body expanded and could not withstand the measurement. Therefore, Table 1 shows the atmospheric pressure environment. Only the calculation results in are shown.

<評価2:封止部の密着強度試験>
実施例1〜4及び比較例1〜2の各試作電池に対して、封止部の正極端子が通過する部分を、X方向に沿う幅10mm、Y方向に沿う長さ30mmに切断したサンプルを用意した。次いで、JIS K6854−2に準拠して、引張試験機(日本電産シンポ株式会社製、SHIMPO FGS−100VC(商品名))にて、180°剥離試験を行った。その結果、各サンプルは、ラミネートフィルムの熱融着樹脂層とシーラント部との間で剥離した。密着強度は、3段階(a:0.6N/mm以上、b:0.3N/mm以上0.6N/mm未満、c:0.3N/mm未満)にて評価した。それらの評価結果を下記表1に示す。
<Evaluation 2: Adhesion strength test of sealing part>
For each of the prototype batteries of Examples 1 to 4 and Comparative Examples 1 and 2, a sample obtained by cutting a portion through which the positive electrode terminal of the sealing portion passes into a width of 10 mm along the X direction and a length of 30 mm along the Y direction was obtained. I prepared it. Then, in accordance with JIS K6854-2, a 180 ° peel test was performed with a tensile tester (SHIMPO FGS-100VC (trade name) manufactured by Nidec-Shimpo Co., Ltd.). As a result, each sample was peeled off between the heat-sealed resin layer of the laminated film and the sealant portion. The adhesion strength was evaluated in three stages (a: 0.6 N / mm or more, b: 0.3 N / mm or more and less than 0.6 N / mm, c: less than 0.3 N / mm). The evaluation results are shown in Table 1 below.

Figure 2020173989
Figure 2020173989

表1に示す結果より、W2/W1の比を0.32以上0.48以下とし、金属層をステンレス箔とし、かつ熱融着樹脂層の厚さを30μm以上80μm以下とする実施例1〜4では、85%〜95%の良好な放電容量比が得られ、良好な封止部の密着強度が得られることがわかる。 From the results shown in Table 1, Examples 1 to 1 in which the ratio of W2 / W1 is 0.32 or more and 0.48 or less, the metal layer is a stainless foil, and the thickness of the heat-sealed resin layer is 30 μm or more and 80 μm or less. In No. 4, it can be seen that a good discharge capacity ratio of 85% to 95% can be obtained, and a good adhesion strength of the sealing portion can be obtained.

一方、上述するように熱融着樹脂層の厚さが15μmである比較例1〜2では、密着強度が0.6N/mm未満の値であるため、真空環境下におくと、外装体の膨張が発生して使用に耐えなかった。W2/W1の比が0.24である比較例1〜2では、大気圧環境下での放電容量比が75%であり、高レートでの放電容量が低下した。 On the other hand, in Comparative Examples 1 and 2 in which the thickness of the heat-sealed resin layer is 15 μm as described above, the adhesion strength is less than 0.6 N / mm. Therefore, when placed in a vacuum environment, the exterior body It swelled and could not be used. In Comparative Examples 1 and 2 in which the ratio of W2 / W1 was 0.24, the discharge capacity ratio in the atmospheric pressure environment was 75%, and the discharge capacity at a high rate decreased.

<評価3:過充電試験>
実施例1〜4及び比較例1〜2の各試作電池を、それぞれ100個を過充電させ、各試作電池の中央部の最高温度を測定し、電池異常の有無を確認した。実施例1〜4及び比較例1〜2の各試作電池に対して、25℃で真空環境下(11Pa〜13Pa)にて過充電試験を行った。
充放電条件としては、各試作電池の上限電圧である4.1Vの120%である4.92Vまで10A(1ItA)にて定電流充電させた。各試作電池の温度は、4.92Vまで過充電された時点で、外装体の収容凹部上であって、電極群を平面視して、X方向及びY方向における中央部分に熱電対を設置して測定した。
<Evaluation 3: Overcharge test>
100 of each of the prototype batteries of Examples 1 to 4 and Comparative Examples 1 and 2 were overcharged, and the maximum temperature at the center of each prototype battery was measured to confirm the presence or absence of a battery abnormality. Each of the prototype batteries of Examples 1 to 4 and Comparative Examples 1 and 2 was subjected to an overcharge test at 25 ° C. in a vacuum environment (11 Pa to 13 Pa).
As the charging / discharging conditions, constant current charging was performed at 10 A (1 ItA) up to 4.92 V, which is 120% of the upper limit voltage of 4.1 V of each prototype battery. When the temperature of each prototype battery is overcharged to 4.92V, a thermocouple is installed in the central portion in the X and Y directions on the accommodating recess of the exterior body with the electrode group viewed in a plan view. Was measured.

各試作電池の中央部の最高温度は、100個の試作電池の過充電時の最高温度の平均値として算出した。また、電池異常の有無は、目視にて、外装体の膨張、外装体の封止部の開裂、非水電解液の漏出が発生していないかで評価した。各100個の試作電池の電池異常の有無から、電池異常率を下記(2)式にて算出した。それらの算出結果を下記表2に示す。
電池異常率(%)=(異常発生した試作電池の数/試作電池の総数)×100…(2)
The maximum temperature at the center of each prototype battery was calculated as the average value of the maximum temperatures at the time of overcharging of 100 prototype batteries. In addition, the presence or absence of battery abnormality was visually evaluated by checking whether the exterior body was expanded, the sealing portion of the exterior body was cleaved, or the non-aqueous electrolyte solution was leaked. The battery abnormality rate was calculated by the following equation (2) from the presence or absence of battery abnormality in each of the 100 prototype batteries. The calculation results are shown in Table 2 below.
Battery abnormality rate (%) = (number of prototype batteries with abnormalities / total number of prototype batteries) x 100 ... (2)

Figure 2020173989
Figure 2020173989

表2に示す結果より、W2/W1の比が0.32以上0.48以下である実施例1〜4では、過充電させても試作電池の中央部の温度が40℃以下であり高温にならず、外装体の膨張や開裂等の電池異常も発生しなかった。この結果は、W2/W1の比が0.32以上0.48以下の範囲であるため、電極群で発生した熱が各端子を介して外部に適切に放出されたことによる。また、外装体がステンレス箔を備えるため、外装体の剛性が向上し、外装体の膨張の電池異常を抑制することができたことによる。 From the results shown in Table 2, in Examples 1 to 4 in which the ratio of W2 / W1 is 0.32 or more and 0.48 or less, the temperature of the central portion of the prototype battery is 40 ° C. or less and becomes high even if overcharged. In addition, no battery abnormality such as expansion or opening of the exterior body occurred. This result is because the ratio of W2 / W1 is in the range of 0.32 or more and 0.48 or less, so that the heat generated in the electrode group is appropriately released to the outside through each terminal. Further, since the exterior body is provided with stainless steel foil, the rigidity of the exterior body is improved, and the battery abnormality of the expansion of the exterior body can be suppressed.

一方、W2/W1の比が0.32以上0.48以下である比較例1〜2では、過充電させると、試作電池の中央部の温度が60℃の高温になり、ガス発生して、外装体の膨張や非水電解液の染み出しの電池異常が発生した。 On the other hand, in Comparative Examples 1 and 2 in which the ratio of W2 / W1 is 0.32 or more and 0.48 or less, when overcharged, the temperature of the central portion of the prototype battery becomes a high temperature of 60 ° C., and gas is generated. A battery abnormality occurred in which the exterior body expanded and the non-aqueous electrolyte oozes out.

実施例及び比較例の結果によって、本実施形態に係る非水電解質二次電池では、真空環境下で使用でき、良好な放電特性が得られ、高い信頼性を有することが示された。 From the results of Examples and Comparative Examples, it was shown that the non-aqueous electrolyte secondary battery according to the present embodiment can be used in a vacuum environment, has good discharge characteristics, and has high reliability.

なお、いくつかの実施形態について、具体的に説明したが、これらは単なる例示であり、本発明はこれらの実施形態及び実施例に限定されるものではなく、本発明の技術的思想に基づく種々の変更が可能である。 Although some embodiments have been specifically described, these are merely examples, and the present invention is not limited to these embodiments and examples, and various aspects based on the technical idea of the present invention are used. Can be changed.

1…非水電解質二次電池、2…外装体、21,24…ラミネートフィルム、22…収容凹部、23…鍔部、25…封止部、3…電極群、4…正極板、41…正極層、42…正極集電体、43…正極集電リード、5…負極板、51…負極層、52…負極集電体、53…負極集電リード、6…セパレータ、7…正極端子、8…負極端子、9…シーラント部、10…テープ、SP…スペーサ、11…内周側面、12…外周側面、12a…角部、13…第1面、14…第2面、15…角部、16…切欠部、16a…切欠壁、16b,17,18,19…角部 1 ... Non-aqueous electrolyte secondary battery, 2 ... Exterior body, 21,24 ... Laminated film, 22 ... Containing recess, 23 ... Flange, 25 ... Sealing part, 3 ... Electrode group, 4 ... Positive electrode plate, 41 ... Positive electrode Layer, 42 ... positive electrode current collector, 43 ... positive electrode current collector lead, 5 ... negative electrode plate, 51 ... negative electrode layer, 52 ... negative electrode current collector, 53 ... negative electrode current collector lead, 6 ... separator, 7 ... positive electrode terminal, 8 ... Negative electrode terminal, 9 ... Sealant part, 10 ... Tape, SP ... Spacer, 11 ... Inner peripheral side surface, 12 ... Outer peripheral side surface, 12a ... Corner part, 13 ... First surface, 14 ... Second surface, 15 ... Corner part, 16 ... notch, 16a ... notch wall, 16b, 17, 18, 19 ... corner

Claims (6)

正極板、負極板、及び前記正極板と前記負極板との間に介在されたセパレータを有し、互いに対向する第1の側面及び第2の側面を有する矩形体状の電極群;
前記電極群に保持される非水電解質;
前記正極板に電気的に接続され、前記第1の側面から延出する帯状の正極集電リード;
前記負極板に電気的に接続され、前記第2の側面から延出する帯状の負極集電リード;
ステンレス箔及び当該ステンレス箔の片面に被覆された熱融着樹脂層を備える1枚又は2枚のラミネートフィルムから構成され、当該ラミネートフィルムの前記熱融着樹脂層を互いに対向して配置し、前記熱融着樹脂層間に前記電極群を収納し、前記熱融着樹脂層の周縁部同士を熱融着して封止部を形成して、前記電極群を密封する、外装体;
一端が前記正極集電リードと電気的に接続し、他端が前記封止部を通過して外部に延出された正極端子;及び
一端が前記負極集電リードに電気的に接続し、他端が前記封止部を通過して外部に延出された負極端子;
を備える非水電解質二次電池であって、
シーラント部は、それぞれ封止部を通過する正極端子及び負極端子の部分の周面を覆って形成され、かつ前記熱融着樹脂層と熱融着され、
前記熱融着樹脂層の厚さは、30μm以上80μm以下であり、かつ
前記第1の側面及び前記第2の側面の幅をW1、前記正極端子及び前記負極端子の幅をW2とすると、W2/W1の比がそれぞれ0.32以上0.48以下である、
外圧が0.1Pa以上100Pa以下の環境下で使用される、非水電解質二次電池。
A rectangular body-shaped electrode group having a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate, and having a first side surface and a second side surface facing each other;
Non-aqueous electrolyte retained in the electrode group;
A strip-shaped positive electrode current collecting lead that is electrically connected to the positive electrode plate and extends from the first side surface;
A strip-shaped negative electrode current collecting lead that is electrically connected to the negative electrode plate and extends from the second side surface;
It is composed of one or two laminated films including a stainless steel foil and a heat-sealed resin layer coated on one side of the stainless steel foil, and the heat-sealed resin layers of the laminated film are arranged so as to face each other. An exterior body in which the electrode group is housed between the heat-sealed resin layers, the peripheral edges of the heat-sealed resin layer are heat-sealed to form a sealing portion, and the electrode group is sealed.
One end is electrically connected to the positive electrode current collector lead, the other end is a positive electrode terminal that passes through the sealing portion and extends to the outside; and one end is electrically connected to the negative electrode current collector lead, and the other Negative electrode terminal whose end extends out through the sealing portion;
A non-aqueous electrolyte secondary battery equipped with
The sealant portion is formed so as to cover the peripheral surfaces of the positive electrode terminal and the negative electrode terminal portion that pass through the sealing portion, respectively, and is heat-sealed with the heat-sealing resin layer.
Assuming that the thickness of the heat-sealed resin layer is 30 μm or more and 80 μm or less, the widths of the first side surface and the second side surface are W1, and the widths of the positive electrode terminal and the negative electrode terminal are W2, W2 The ratio of / W1 is 0.32 or more and 0.48 or less, respectively.
A non-aqueous electrolyte secondary battery used in an environment where the external pressure is 0.1 Pa or more and 100 Pa or less.
前記ステンレス箔の厚さは、50μm以上200μm以下である、請求項1に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the thickness of the stainless foil is 50 μm or more and 200 μm or less. 前記封止部の平均の幅は、10mm以上20mm以下である、請求項1又は2に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the average width of the sealing portion is 10 mm or more and 20 mm or less. 前記電極群の外周面と前記外装体との間に配置される矩形枠状のスペーサを更に備えている、請求項1〜3のいずれか1項に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, further comprising a rectangular frame-shaped spacer arranged between the outer peripheral surface of the electrode group and the exterior body. 前記2枚のラミネートフィルムは、第1のラミネートフィルム及び第2のラミネートフィルムであり、
前記第1のラミネートフィルムは前記電極群が収納される有底矩形中空形状の収容凹部及び当該収容凹部の周縁に位置される枠状の鍔部を有し、前記第2のラミネートフィルムは当該第1のラミネートフィルムと等しい外径寸法を有する平板状であり、
前記スペーサは、前記第1のラミネートフィルムの前記収容凹部の角部と対向する角部にR形状を有し、
前記正極端子及び前記負極端子は、前記第2のラミネートフィルム及び前記スペーサの間を通過し、かつ
前記スペーサは、前記第2のラミネートフィルムと対向する面のうち、前記正極端子及び前記負極端子が通過する部分に切欠部をそれぞれ有し、当該切欠部の前記正極端子及び前記負極端子と対向する切欠壁と、内周側面とが交差する角部にR形状をそれぞれ有する、請求項4に記載の非水電解質二次電池。
The two laminated films are a first laminated film and a second laminated film.
The first laminated film has a bottomed rectangular hollow-shaped accommodating recess in which the electrode group is accommodating, and a frame-shaped flange portion located at the periphery of the accommodating recess, and the second laminated film has the second laminated film. It is a flat plate having the same outer diameter as the laminated film of 1.
The spacer has an R shape at a corner portion of the first laminated film facing the corner portion of the accommodating recess.
The positive electrode terminal and the negative electrode terminal pass between the second laminated film and the spacer, and the spacer has the positive electrode terminal and the negative electrode terminal on the surface facing the second laminated film. The fourth aspect of claim 4, wherein each of the passage portions has a notch, and the notch wall facing the positive electrode terminal and the negative electrode terminal of the notch and the corner portion where the inner peripheral side surface intersects each have an R shape. Non-aqueous electrolyte secondary battery.
前記正極板に用いられる正極活物質と、前記負極板に用いられる負極活物質とが、リチウムイオンを吸蔵放出できる材料から構成されている、請求項1〜5のいずれか1項に記載の非水電解質二次電池。 The non-one according to any one of claims 1 to 5, wherein the positive electrode active material used for the positive electrode plate and the negative electrode active material used for the negative electrode plate are composed of a material capable of occluding and releasing lithium ions. Water electrolyte secondary battery.
JP2019075638A 2019-04-11 2019-04-11 Non-aqueous electrolyte secondary battery Pending JP2020173989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019075638A JP2020173989A (en) 2019-04-11 2019-04-11 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019075638A JP2020173989A (en) 2019-04-11 2019-04-11 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2020173989A true JP2020173989A (en) 2020-10-22

Family

ID=72831582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019075638A Pending JP2020173989A (en) 2019-04-11 2019-04-11 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2020173989A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4080651A1 (en) 2021-03-31 2022-10-26 Toyota Jidosha Kabushiki Kaisha Power storage cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059063A1 (en) * 1999-03-26 2000-10-05 Matsushita Electric Industrial Co., Ltd. Laminate sheath type battery
WO2005013408A1 (en) * 2003-07-31 2005-02-10 Nec Lamilion Energy, Ltd. Lithium ion secondary cell
JP2007018881A (en) * 2005-07-07 2007-01-25 Toshiba Corp Non-aqueous electrolyte battery and battery pack
JP2012238454A (en) * 2011-05-11 2012-12-06 Toppan Printing Co Ltd Electrode terminal for secondary battery
JP2017152092A (en) * 2016-02-22 2017-08-31 凸版印刷株式会社 Exterior packaging material for power storage device, and power storage device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059063A1 (en) * 1999-03-26 2000-10-05 Matsushita Electric Industrial Co., Ltd. Laminate sheath type battery
WO2005013408A1 (en) * 2003-07-31 2005-02-10 Nec Lamilion Energy, Ltd. Lithium ion secondary cell
JP2007018881A (en) * 2005-07-07 2007-01-25 Toshiba Corp Non-aqueous electrolyte battery and battery pack
JP2012238454A (en) * 2011-05-11 2012-12-06 Toppan Printing Co Ltd Electrode terminal for secondary battery
JP2017152092A (en) * 2016-02-22 2017-08-31 凸版印刷株式会社 Exterior packaging material for power storage device, and power storage device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4080651A1 (en) 2021-03-31 2022-10-26 Toyota Jidosha Kabushiki Kaisha Power storage cell
US11955644B2 (en) 2021-03-31 2024-04-09 Toyota Jidosha Kabushiki Kaisha Power storage cell

Similar Documents

Publication Publication Date Title
US8119277B2 (en) Stack type battery
JP6250921B2 (en) battery
JP4892893B2 (en) Bipolar battery
US20120202105A1 (en) Stack type battery and method of manufacturing the same
KR20160134761A (en) Sheet-laminated lithium ion secondary battery and production method for sheet-laminated lithium ion secondary battery
JP2012124146A (en) Secondary battery, battery unit, and battery module
WO2018180828A1 (en) Cylindrical battery
US20110076544A1 (en) Stack type battery
US20210119285A1 (en) Battery cell
US20210175510A1 (en) Secondary battery and manufacturing method of secondary battery
KR101273472B1 (en) Manufacturing method for pouch-type secondary battery and pouch-type secondary battery made by the same
JP4670275B2 (en) Bipolar battery and battery pack
KR20180047992A (en) Battery Cell Comprising Protection Circuit Module Assembly Having Lead Plate
JP2004031137A (en) Thin battery
JP4224739B2 (en) Battery with frame
JP6113972B2 (en) Secondary battery
KR101825007B1 (en) Pouch type secondary battery and method of fabricating the same
JP2020173989A (en) Non-aqueous electrolyte secondary battery
US20190088977A1 (en) Method for manufacturing secondary battery
EP4075578A1 (en) Electrochemical cell and electrochemical cell module
KR101722662B1 (en) Pouch-Type Secondary Battery
JP2006202652A (en) Battery pack
JP2000156211A (en) Battery and battery pack
JP2000100404A (en) Nonaqueous electrolyte battery and battery pack
CN112909345B (en) Secondary battery and method for manufacturing secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230530