JP2003331726A - Manufacturing method of cold cathode discharge tube - Google Patents

Manufacturing method of cold cathode discharge tube

Info

Publication number
JP2003331726A
JP2003331726A JP2002134210A JP2002134210A JP2003331726A JP 2003331726 A JP2003331726 A JP 2003331726A JP 2002134210 A JP2002134210 A JP 2002134210A JP 2002134210 A JP2002134210 A JP 2002134210A JP 2003331726 A JP2003331726 A JP 2003331726A
Authority
JP
Japan
Prior art keywords
glass bulb
mercury
glass
main electrode
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002134210A
Other languages
Japanese (ja)
Other versions
JP3964258B2 (en
Inventor
Tomio Matsuzaki
富雄 松崎
Masaharu Ikemoto
正治 池本
Kazuo Nishiyama
和夫 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West Electric Co Ltd
Original Assignee
West Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West Electric Co Ltd filed Critical West Electric Co Ltd
Priority to JP2002134210A priority Critical patent/JP3964258B2/en
Publication of JP2003331726A publication Critical patent/JP2003331726A/en
Application granted granted Critical
Publication of JP3964258B2 publication Critical patent/JP3964258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a cold cathode discharge tube in which a prescribed amount of mercury pellets filled in the glass bulb is diffused between a pair of main electrodes and sealed by preventing leakage of the mercury gas due to break of the glass bulb in the manufacturing process of the cold cathode discharge tube. <P>SOLUTION: An opening at one end of a cylindrical glass bulb 2 is sealed by bead glass 4a of a main electrode 3a at one end and the other main electrode 3b is inserted in a prescribed position in the glass bulb 2. And mercury pellet P is filled from the opening of the other end, and the inside of the glass bulb is exhausted and a rare gas is filled, and then, the opening at the other end is sealed. While the glass bulb 2 is rotated centered on an axis, the mercury pellet P is heated and vaporized through the glass bulb 2 and diffused between the pair of main electrodes 3a, 3b, and then, the vaporized mercury is filled between the pair of main electrodes 3a, 3b. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、パソコン、ワープ
ロ等のOA機器、液晶テレビなどのバックライトとして
使用される冷陰極放電管の製造方法に関する。 【0002】 【従来の技術】従来からOA機器、液晶テレビなどのバ
ックライトとして使用される冷陰極放電管は、図1に示
す如く、内周面に蛍光被膜1が形成された筒状のガラス
バルブ2と、このガラスバルブ2内で一端同士を対向す
るように配置された一対の棒状をなした主電極3a,3
bと、主電極3a,3bの外周回りに取り付けられ、ガ
ラスバルブ2の両端部を封止するビードガラス4a,4
bとで構成されており、ガラスバルブ2の内部には、ア
ルゴンとネオンとの混合ガスからなる希ガス、及び水銀
ガスが封入されたものが主流である。なお、主電極3
a,3bは、有底筒状の電極5a,5bと、電極5a,
5bの底部に一端が接続された棒体からなる導入金属体
6a,6bとで構成されたものであり、ビードガラス4
a,4bは、導入金属体6a,6bの外周回りに取り付
けられている。 【0003】この種の冷陰極放電管を製造するには、図
3に示す如く、内周面に蛍光被膜1が形成されたガラス
バルブ2の一端開口部と、一方の主電極3aに取り付け
られたビードガラス4aとを溶着し、ガラスバルブ2の
一端開口部を封止する。一方、ガラスバルブ2の他端開
口からビードガラス4bが取り付けられた他方の主電極
3bを、ガラスバルブ2内に挿入し、他方の主電極3b
の電極5bを一方の主電極3aの電極5aから所定距離
離間した位置に位置させ、ガラスバルブ2の内部空間を
完全に封止しない(気体を流出入可能な)ように、該他
方の主電極3bに取り付けたビードガラス4bの一部と
ガラスバルブ2の一部とを溶着して他方の主電極3bの
位置決めを行う。 【0004】そして、主電極3aを端開口部に封止し、
他端開口に主電極3bを仮止めしたガラスバルブ2の開
口端部に水銀ペレットPを内挿した状態で図示しない排
気封止容器内に載置す。次いで、排気封止容器内を排気
することにより、一対の主電極3a,3b間におけるガ
ラスバルブ2内の内部気体を排気した後に、ガラスバル
ブ2内に前述した希ガスを充填するとともに、ガラスバ
ルブ2の他端開口部を溶融して封止し、水銀ペレットP
が入れられた水銀放出室9を形成する。次いで、ガラス
バルブ2を排気封止容器から取り出したのち、投入した
ペレット状の水銀ペレットPが位置する水銀放出室9の
外周を高周波コイル7で加熱し、水銀ペレットPをガス
化させることにより、ガス化した水銀(以下、水銀ガス
という)が拡散して、ビードガラス4bとガラスバルブ
2との間を介して、一対の主電極3a,3b間に流入す
る。そして、他方の主電極3bのビードガラス4bに対
応するガラスバルブ2の外周面をバーナー8で加熱し、
ガラスバルブ2とビードガラス4bとを互いに溶着させ
てガラスバルブ2の内部空間を一対の主電極3a,3b
で封止し、一対の主電極3a,3b間に希ガス及び水銀
ガス(以下、封入ガスXという)を封入した状態にす
る。そして、封入ガスXの封入状態を維持させるよう
に、ガラスバルブ2と他方の主電極3bのビードガラス
4bとの溶着部分からガラスバルブ2における水銀放出
室9を形成した部分を切除することにより、図1に示し
た冷陰極放電管が完成する。 【0005】 【発明が解決しようとする課題】しかしながら、前述の
如く、水銀ペレットPを気化させて拡散させるべく、水
銀放出室9を高周波コイル7で加熱すると、水銀放出室
9内の気体に比して水銀ペレットPの熱伝導率が高いた
め、気化しようとする水銀ペレットPが高温になり、水
銀放出室9を形成するガラスバルブ2と水銀ペレットP
との当接部分に熱が集中してしまう。 【0006】そのため、最近の様にガラスバルブ2の径
が細く、ガラスバルブの厚みが薄いものである場合に
は、ガラスバルブ2と水銀ペレットPとの当接部分が局
部的に溶融して穴Hが空いてしまう場合がある。したが
って、この穴Hから気化した水銀が漏れてしまうといっ
た事態になり、ガラスバルブ2内に投入した水銀ペレッ
トPの全てを効率よく、一対の主電極3a,3b間に封
入することができない惧れを有している。 【0007】そこで、本発明は、斯かる実情に鑑み、冷
陰極放電管の製造過程における水銀ガスの漏れを防止し
て、ガラスバルブ内に投入した所定量の水銀ペレットを
効率よく一対の主電極間に拡散させて封入することがで
きる冷陰極放電管の製造方法を提供することを課題とす
る。 【0008】 【課題を解決するための手段】上記課題を解決すべく、
本発明にかかる冷陰極放電管の製造方法は、請求項1記
載の如く、外周回りにビードガラスが取り付けられ、軸
方向に所定間隔を有して配置される一対の棒状をなす主
電極で、筒状のガラスバルブの内部空間が封止され、内
部空間に所定量の希ガスとガス化した水銀が封入された
冷陰極放電管の製造方法であって、一方の主電極に取り
付けられたビードガラスでガラスバルブの一端開口部を
封止する第一封止工程と、前記一方の主電極に対して所
定間隔を有するガラスバルブ内の所定位置に、ビードガ
ラスが取り付けられた他方の主電極を遊挿する遊挿工程
と、遊挿工程の後に、他端開口部からガラスバルブ内に
水銀ペレットを投入し、請求範囲他端開口部を封止する
第二封止工程と、ガラスバルブを軸心回りに回転させつ
つ、水銀ペレットをガラスバルブを介して加熱してガス
化させ、ガス化した水銀を他方の主電極を介して一対の
主電極間に拡散させる拡散工程と、ガラスバルブ及び他
方の主電極のビードガラスを溶着し、一対の主電極間に
ガス化した水銀を封入する封入工程とを備えたことを特
徴とする。 【0009】上記構成の冷陰極放電管の製造方法によれ
ば、水銀ペレットを一対の主電極間に拡散させる際に、
ガラスバルブを軸心回りに回転させつつ、ガラスバルブ
を介して水銀ペレットを加熱させるようにしたので、水
銀ペレットを加熱する際に、ガラスバルブの回転により
水銀ペレットがガラスバルブの内周面上を移動して、ガ
ラスバルブにおける水銀ペレットとの当接箇所が移り変
わり、ガラスバルブにおける同一箇所に熱が集中するの
を防止することができる。したがって、ガラスバルブの
特定の場所に熱が集中して穴が空くと言った事態を防止
することができるので、冷陰極放電管の製造過程におけ
る水銀ガスの漏れを防止することができ、しかもガラス
バルブ内に投入した所定量の水銀ペレットを効率よく一
対の主電極間に拡散させることができる。 【0010】 【発明の実施の形態】以下、本発明の一実施形態にかか
る冷陰極放電管について、図面を参酌しつつ説明する。 【0011】本実施形態にかかる冷陰極放電管は、図1
に示す如く、内周面の蛍光被膜1が形成された筒状のガ
ラスバルブ2と、ガラスバルブ2内で一端同士を対向す
るように配置された一対の棒状をなした主電極3a,3
bと、主電極3a,3bの外周回りに取り付けられ、ガ
ラスバルブ2の両端部を封止するビードガラス4a,4
bとで構成されており、ガラスバルブ2内には、アルゴ
ンとネオンとの混合ガスからなる希ガス、及び気化した
水銀が封入されている。なお、主電極3a,3bは、有
底筒状の電極5a,5bと、電極5a,5bの底部の中
央部に一端が接続された棒体からなる導入金属体6a,
6bとで構成されて棒状をなしたものであり、前記ビー
ドガラス4a,4bは、導入金属体6a,6bの外周回
りに取り付けられている。 【0012】かかる冷陰極放電管を製造するには、図2
に示す如く、上述した導入金属体6a,6bの外周回り
に球状のビードガラス4a,4bが取り付けられた一対
の主電極3a,3bと、内周面に蛍光被膜1が形成さ
れ、両端が開口状態にある筒状のガラスバルブ2とを用
意する。 【0013】そして、電極5aが筒状のガラスバルブ2
内に位置し、且つ導入金属体6aの他端部がガラスバル
ブ2から露出するように、一方の主電極3aをガラスバ
ルブ2の一端開口部内に挿入した後、導入金属体6aに
取り付けられたビードガラス4a及びガラスバルブ2の
一端開口部を加熱し、気密性を有するように互いに溶着
して一端開口部を封止する(第一封止工程)。 【0014】その後、他方の主電極3bの電極5bが、
ガラスバルブ2の一端開口部を封止した一方の主電極3
aの電極5aと対向し、且つ前記一方の主電極3aの電
極5aと所定間隔となる位置に配置されるように、ガラ
スバルブ2の他端開口からガラスバルブ2内に他方の主
電極3bを遊挿する(遊挿工程)。そして、他方の主電
極3bに取り付けられたビードガラス4bと対応したガ
ラスバルブ2の外周面の一部をバーナー8で加熱し、気
体の流出入が可能な隙間を形成するように、ガラスバル
ブ2の一部と、他方の主電極3bに取り付けられたビー
ドガラス4bの一部とを溶着して、他方の主電極3b
(ビードガラス4b)を仮止めする。かかる状態のガラ
スバルブの電極3bが、仮止めされた側の他方開口部に
水銀ペレットPを内挿し、ガラスバルブ2を図示しない
排気封止用の密閉容器内に載置する。そして、密閉容器
内を排気することにより、他方の主電極3bのビードガ
ラス4bを仮止めした部分を介して、ガラスバルブ2の
他端開口から一対の主電極3a,3b間におけるガラス
バルブ2内の内部気体を排気し、さらに、この状態を維
持させてアルゴンとネオンとの混合ガスからなる希ガス
を一対の主電極3a,3b間に充填する。 【0015】そして、ガラスバルブ2内に希ガスを充填
した状態を維持させたまま、ガラスバルブ2の他端開口
部を溶融して封止し、ビードガラス4bと他端開口部を
封止した部分とで、水銀ペレットPが内在する水銀放出
室9を形成する(第二封止工程)。次いで、かかるガラ
スバルブ2を密閉容器から取り出し、その後、ガラスバ
ルブ2を軸心回りに回転させつつ、水銀放出室9を形成
するガラスバルブ2の外周面を高周波コイル7により加
熱し、水銀放出室9内の水銀ペレットPをガス化させて
拡散状態にし、ビードガラス4bを仮止めした部分を介
してガス化した水銀(水銀ガス)を一対の主電極3a,
3b間に流入(拡散)させる(拡散工程)。このように
ガラスバルブ2内の一対の主電極3a,3b間に水銀ガ
スを確実に拡散させるべく、所定時間経過後に、他方の
主電極3bのビードガラス4bを仮止めした部分に対応
するガラスバルブ2の外周面をバーナー8で加熱し、該
ビードガラス4bとガラスバルブ2とで形成していた隙
間を完全に閉鎖するように、ビードガラス4bとガラス
バルブ2とを溶着し、一対の主電極3a,3b間に希ガ
ス及び水銀ガス(以下、封入ガスXという)を封入した
状態にする(封入工程)。 【0016】最後に放電管として不要である水銀放出室
9側に位置するガラスバルブ2を切除することで、図1
に示した冷陰極放電管が完成する。 【0017】以上のように、水銀ガスをガラスバルブ2
内の一対の主電極3a,3b間に拡散させるべく、水銀
ペレットPを気化させる際に、ガラスバルブ2を軸心回
りに回転させつつ、水銀ペレットPが内在する水銀放出
室9を高周波コイル7で加熱するようにしたので、高周
波コイル7の加熱による熱が水銀ペレットPに伝達され
ても、ガラスバルブ2の回転により水銀ペレットPがガ
ラスバルブ2の内周面を滑り、或いは転がって、水銀ペ
レットPと水銀放出室9の内周面とが相対的に移動する
こととなり、水銀ペレットPに伝達した熱が水銀放出室
9を形成するガラスバルブ2の一部に集中するのを防止
することができる。したがって、水銀放出室9を形成す
るガラスバルブ2が局部的に溶融して穴が開くといった
事態を防止することができるので、水銀放出室9(ガラ
スバルブ2)内から水銀ガスが漏れるのを防止すること
ができ、水銀放出室9に投入した一対の主電極間3a,
3bに封入するのに必要な所定量の水銀ペレットPの全
てを効率よくガス化してガラスバルブ2内の一対の主電
極3a,3b間に流入(拡散)させることができる。 【0018】尚、本発明の冷陰極放電管の製造方法は、
上記実施形態に限定されるものではなく、本発明の要旨
を逸脱しない範囲内において種々変更を加え得ることは
勿論である。 【0019】本実施形態において、一方の主電極3aで
ガラスバルブ2の一端開口部を封止した(第一封止工
程)後に、他方の主電極3bをガラスバルブ2内に遊挿
した(遊挿工程)が、他方の主電極3bのガラスバルブ
2に対する遊挿(遊挿工程)は、必ずしも一方の主電極
3a(ビードガラス4a)でガラスバルブ2の一端開口
部を封止した(第一封止工程)後に行うようにする必要
はなく、他方の主電極3bをガラスバルブ2に遊挿した
(遊挿工程)後に、一方の主電極3aでガラスバルブ2
の一端開口部を封止(第一封止工程)してもよい。この
場合、ガラスバルブ2の一端開口部を一方の主電極3a
で封止した際に、当該一方の主電極3aと所定間隔を有
した位置となるガラスバルブ2内の所定位置に、他方の
主電極3bを遊挿することは勿論のことである。 【0020】 【発明の効果】以上述べたように、本発明は、冷陰極放
電管の製造過程における水銀ペレットを一対の主電極間
に拡散させる工程(拡散工程)において、ガラスバルブ
を軸心回りに回転させつつ、ガラスバルブを介して水銀
ペレットを加熱するようにしたので、ガラスバルブの回
転により、水銀ペレットとガラスバルブの内周面とを相
対的に移動させることができ、水銀ペレットがガラスバ
ルブの同一箇所に当接するのを防止することができる。
しがたって、水銀ペレットに伝達された熱がガラスバル
ブ内の特定に部位に集中せず、ガラスバルブに穴が開く
等と言った事態を防止することができるので、冷陰極放
電管の製造過程における水銀ガスの漏れを防止すること
ができるとともに、ガラスバルブ内に投入した所定量の
水銀ペレットを効率よく一対の主電極間に拡散させて封
入することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a cold cathode discharge tube used as a backlight for OA equipment such as a personal computer, a word processor, and a liquid crystal television. 2. Description of the Related Art As shown in FIG. 1, a cold cathode discharge tube conventionally used as a backlight of OA equipment, a liquid crystal television, etc. is a cylindrical glass having a fluorescent film 1 formed on an inner peripheral surface thereof. A bulb 2 and a pair of rod-shaped main electrodes 3a, 3 arranged such that one ends thereof are opposed to each other in the glass bulb 2.
b and bead glasses 4 a, 4 attached around the outer circumference of the main electrodes 3 a, 3 b and sealing both ends of the glass bulb 2.
In the glass bulb 2, a rare gas composed of a mixed gas of argon and neon and a mercury gas filled therein are mainly used. The main electrode 3
a and 3b are bottomed cylindrical electrodes 5a and 5b, and electrodes 5a and 5b.
5b, which are formed of metal rods 6a and 6b each having a rod connected at one end to the bottom of the glass 5b.
a, 4b are attached around the outer periphery of the introduction metal bodies 6a, 6b. In order to manufacture this kind of cold cathode discharge tube, as shown in FIG. 3, one end opening of a glass bulb 2 having a fluorescent coating 1 formed on the inner peripheral surface and one main electrode 3a are attached. The bead glass 4a is welded, and one end opening of the glass bulb 2 is sealed. On the other hand, the other main electrode 3b to which the bead glass 4b is attached is inserted into the glass bulb 2 from the other end opening of the glass bulb 2, and the other main electrode 3b
Electrode 5b is positioned at a predetermined distance from the electrode 5a of one main electrode 3a, and the other main electrode is not completely sealed (gas can flow in and out) of the internal space of the glass bulb 2. A part of the bead glass 4b attached to 3b and a part of the glass bulb 2 are welded to position the other main electrode 3b. Then, the main electrode 3a is sealed in the end opening,
The mercury pellet P is inserted in the opening end of the glass bulb 2 having the main electrode 3b temporarily fixed to the other end opening, and the glass bulb 2 is placed in an exhaust sealing container (not shown). Next, by evacuating the interior of the glass bulb 2 between the pair of main electrodes 3a and 3b by evacuating the interior of the evacuated sealing container, the rare bulb described above is filled into the glass bulb 2 and the glass bulb is filled. 2 is melted and sealed, and the mercury pellet P
To form a mercury discharge chamber 9 in which Next, after taking out the glass bulb 2 from the exhaust sealing container, the outer periphery of the mercury discharge chamber 9 in which the charged mercury pellets P are located is heated by the high-frequency coil 7 to gasify the mercury pellets P. Gasified mercury (hereinafter, referred to as mercury gas) diffuses and flows between the pair of main electrodes 3a and 3b through between the bead glass 4b and the glass bulb 2. Then, the outer peripheral surface of the glass bulb 2 corresponding to the bead glass 4b of the other main electrode 3b is heated by the burner 8,
The glass bulb 2 and the bead glass 4b are welded to each other to form an inner space of the glass bulb 2 with a pair of main electrodes 3a, 3b.
And a rare gas and a mercury gas (hereinafter referred to as a sealing gas X) are sealed between the pair of main electrodes 3a and 3b. Then, the portion where the mercury discharge chamber 9 is formed in the glass bulb 2 is cut off from the welded portion between the glass bulb 2 and the bead glass 4b of the other main electrode 3b so as to maintain the sealed state of the enclosed gas X. The cold cathode discharge tube shown in FIG. 1 is completed. However, as described above, when the mercury discharge chamber 9 is heated by the high-frequency coil 7 in order to vaporize and diffuse the mercury pellets P, the gas in the mercury discharge chamber 9 has a smaller volume than the gas in the mercury discharge chamber 9. Since the heat conductivity of the mercury pellet P is high, the temperature of the mercury pellet P to be vaporized becomes high, and the glass bulb 2 forming the mercury discharge chamber 9 and the mercury pellet P
Heat concentrates on the abutting part. For this reason, when the diameter of the glass bulb 2 is small and the thickness of the glass bulb is thin recently, the contact portion between the glass bulb 2 and the mercury pellet P is locally melted and the hole is formed. H may become empty. Therefore, the vaporized mercury leaks from the hole H, and all of the mercury pellets P introduced into the glass bulb 2 may not be efficiently sealed between the pair of main electrodes 3a and 3b. have. In view of such circumstances, the present invention prevents the leakage of mercury gas in the process of manufacturing a cold cathode discharge tube, and efficiently transfers a predetermined amount of mercury pellets charged into a glass bulb to a pair of main electrodes. An object of the present invention is to provide a method for manufacturing a cold cathode discharge tube that can be diffused and sealed between the discharge tubes. [0008] In order to solve the above problems,
The method for manufacturing a cold cathode discharge tube according to the present invention comprises a pair of rod-shaped main electrodes to which a bead glass is attached around the outer periphery and is arranged at a predetermined interval in the axial direction, as described in claim 1, A method for manufacturing a cold cathode discharge tube in which an internal space of a cylindrical glass bulb is sealed and a predetermined amount of a rare gas and gasified mercury are sealed in the internal space, wherein a bead attached to one main electrode is provided. A first sealing step of sealing one end opening of the glass bulb with glass, and at a predetermined position in the glass bulb having a predetermined interval with respect to the one main electrode, the other main electrode with bead glass attached thereto. A loose insertion step of loosely inserting, and after the loose insertion step, a second sealing step of charging a mercury pellet into the glass bulb from the other end opening and sealing the other end opening of the claim, Mercury pellet while rotating around the center Heating and gasifying through a glass bulb, a diffusion step of diffusing gasified mercury between the pair of main electrodes via the other main electrode, and welding a glass bulb and bead glass of the other main electrode, And a sealing step of sealing gasified mercury between the pair of main electrodes. According to the method of manufacturing a cold cathode discharge tube having the above structure, when diffusing a mercury pellet between a pair of main electrodes,
Since the mercury pellet is heated via the glass bulb while rotating the glass bulb around the axis, when the mercury pellet is heated, the rotation of the glass bulb causes the mercury pellet to move on the inner peripheral surface of the glass bulb. By moving, the contact point of the glass bulb with the mercury pellet changes, and it is possible to prevent heat from being concentrated on the same point on the glass bulb. Therefore, it is possible to prevent a situation in which heat is concentrated on a specific place of the glass bulb and a hole is opened, so that it is possible to prevent mercury gas from leaking in a manufacturing process of the cold cathode discharge tube, and furthermore, it is possible to prevent the glass bulb from leaking. A predetermined amount of mercury pellets charged into the bulb can be efficiently diffused between the pair of main electrodes. Hereinafter, a cold cathode discharge tube according to an embodiment of the present invention will be described with reference to the drawings. The cold cathode discharge tube according to the present embodiment is shown in FIG.
As shown in FIG. 3, a cylindrical glass bulb 2 on which an inner peripheral surface fluorescent film 1 is formed, and a pair of rod-shaped main electrodes 3a, 3 arranged such that one ends thereof face each other in the glass bulb 2.
b and bead glasses 4 a, 4 attached around the outer circumference of the main electrodes 3 a, 3 b and sealing both ends of the glass bulb 2.
In the glass bulb 2, a rare gas composed of a mixed gas of argon and neon, and vaporized mercury are sealed. The main electrodes 3a and 3b are formed of cylindrical electrodes 5a and 5b having bottoms, and an introduced metal body 6a formed of a rod having one end connected to the center of the bottom of the electrodes 5a and 5b.
6b. The bead glass 4a, 4b is attached around the outer periphery of the introduced metal body 6a, 6b. In order to manufacture such a cold cathode discharge tube, FIG.
As shown in the figure, a pair of main electrodes 3a and 3b having spherical bead glasses 4a and 4b attached around the outer circumference of the above-described introduced metal bodies 6a and 6b, and a fluorescent coating 1 formed on the inner circumference, and both ends are opened A cylindrical glass bulb 2 in a state is prepared. The electrode 5a is a cylindrical glass bulb 2.
After inserting one main electrode 3a into one end opening of the glass bulb 2 so that the other end of the introduction metal body 6a is located inside the glass bulb 2 and then attached to the introduction metal body 6a. The bead glass 4a and the one end opening of the glass bulb 2 are heated and welded to each other so as to be airtight, thereby sealing the one end opening (first sealing step). Thereafter, the electrode 5b of the other main electrode 3b is
One main electrode 3 sealing one end opening of the glass bulb 2
The other main electrode 3b is inserted into the glass bulb 2 from the other end opening of the glass bulb 2 so as to be opposed to the electrode 5a of the glass bulb 2 and at a predetermined distance from the electrode 5a of the one main electrode 3a. Play insertion (play insertion process). Then, a part of the outer peripheral surface of the glass bulb 2 corresponding to the bead glass 4b attached to the other main electrode 3b is heated by the burner 8 so as to form a gap through which gas can flow in and out. And a part of the bead glass 4b attached to the other main electrode 3b are welded to form the other main electrode 3b.
(Bead glass 4b) is temporarily fixed. In this state, the mercury pellet P is inserted into the other opening on the side where the electrode 3b of the glass bulb is temporarily fixed, and the glass bulb 2 is placed in a closed container (not shown) for exhaust sealing. Then, by exhausting the inside of the closed vessel, the other end of the glass electrode 2 is opened from the other end opening of the glass bulb 2 via the portion where the bead glass 4b of the other main electrode 3b is temporarily fixed. Is discharged, and this state is maintained, and a rare gas composed of a mixed gas of argon and neon is filled between the pair of main electrodes 3a and 3b. Then, while maintaining the state in which the rare gas is filled in the glass bulb 2, the other end opening of the glass bulb 2 is melted and sealed, and the bead glass 4b and the other end opening are sealed. The part forms a mercury discharge chamber 9 in which the mercury pellet P is present (second sealing step). Next, the glass bulb 2 is taken out of the sealed container, and thereafter, the outer peripheral surface of the glass bulb 2 forming the mercury emission chamber 9 is heated by the high-frequency coil 7 while rotating the glass bulb 2 around the axis. The mercury pellet P in the gas 9 is gasified to be in a diffusion state, and mercury (mercury gas) gasified through a portion where the bead glass 4b is temporarily fixed is used as a pair of main electrodes 3a,
Inflow (diffusion) between 3b (diffusion step). In order to surely diffuse the mercury gas between the pair of main electrodes 3a and 3b in the glass bulb 2, the glass bulb corresponding to the portion where the bead glass 4b of the other main electrode 3b is temporarily fixed after a predetermined time has elapsed. 2 is heated by a burner 8, and the bead glass 4b and the glass bulb 2 are welded so that the gap formed between the bead glass 4b and the glass bulb 2 is completely closed. A rare gas and a mercury gas (hereinafter, referred to as a sealing gas X) are sealed between 3a and 3b (sealing step). Finally, the glass bulb 2 located on the mercury discharge chamber 9 side, which is not necessary as a discharge tube, is cut off to obtain the structure shown in FIG.
Is completed. As described above, mercury gas is supplied to the glass bulb 2
When the mercury pellet P is vaporized so as to be diffused between the pair of main electrodes 3a and 3b, the glass bulb 2 is rotated around the axis while the mercury discharge chamber 9 in which the mercury pellet P is located Therefore, even if the heat generated by the heating of the high-frequency coil 7 is transmitted to the mercury pellet P, the rotation of the glass bulb 2 causes the mercury pellet P to slide on the inner peripheral surface of the glass bulb 2 or to be rolled. The pellet P and the inner peripheral surface of the mercury discharge chamber 9 move relatively to prevent heat transmitted to the mercury pellet P from being concentrated on a part of the glass bulb 2 forming the mercury discharge chamber 9. Can be. Accordingly, it is possible to prevent a situation in which the glass bulb 2 forming the mercury emission chamber 9 is locally melted and a hole is opened, so that the mercury gas is prevented from leaking from the inside of the mercury emission chamber 9 (glass bulb 2). Between the pair of main electrodes 3a,
All of the predetermined amount of mercury pellets P necessary for sealing in 3b can be efficiently gasified and flown (diffused) between the pair of main electrodes 3a, 3b in the glass bulb 2. The method for manufacturing a cold cathode discharge tube according to the present invention comprises:
It is needless to say that the present invention is not limited to the above embodiment, and various changes can be made without departing from the spirit of the present invention. In this embodiment, after one end of the opening of the glass bulb 2 is sealed with one main electrode 3a (first sealing step), the other main electrode 3b is loosely inserted into the glass bulb 2 (free sealing). In the insertion step), in the loose insertion of the other main electrode 3b into the glass bulb 2 (the loose insertion step), the opening of one end of the glass bulb 2 is necessarily sealed with the one main electrode 3a (bead glass 4a) (first insertion). It is not necessary to perform the operation after the sealing step), and after the other main electrode 3b is loosely inserted into the glass bulb 2 (the loose insertion step), the glass electrode 2 is connected to the one main electrode 3a.
May be sealed (first sealing step). In this case, one end opening of the glass bulb 2 is connected to one main electrode 3a.
Of course, the other main electrode 3b is loosely inserted into a predetermined position in the glass bulb 2 at a position having a predetermined distance from the one main electrode 3a when sealing is performed. As described above, according to the present invention, in the step of diffusing mercury pellets between a pair of main electrodes in the process of manufacturing a cold cathode discharge tube (diffusion step), a glass bulb is rotated around an axis. The mercury pellet was heated via the glass bulb while rotating the glass bulb, so that the rotation of the glass bulb allowed the relative movement between the mercury pellet and the inner peripheral surface of the glass bulb. It is possible to prevent contact with the same part of the valve.
Therefore, since the heat transmitted to the mercury pellet is not concentrated on a specific part in the glass bulb, and a situation such as a hole being opened in the glass bulb can be prevented, the manufacturing process of the cold cathode discharge tube can be prevented. In addition, it is possible to prevent the leakage of the mercury gas at a time, and to efficiently diffuse a predetermined amount of the mercury pellets charged into the glass bulb between the pair of main electrodes and seal the same.

【図面の簡単な説明】 【図1】本発明の一実施形態にかかる冷陰極放電管の全
体断面図 【図2】同実施形態にかかる冷陰極放電管の製造方法を
説明するための説明図 【図3】従来の冷陰極放電管の製造時に、ガラスバルブ
に穴が空いた状態を示した状態図 【符号の説明】 1 蛍光被膜 2 ガラスバルブ 3a 主電極 3b 主電極 4a ビードガラス 4b ビードガラス 5a 電極 5b 電極 6a 導入金属体 6b 導入金属体 7 高周波コイル 8 バーナー 9 水銀放出室 P 水銀ペレット X 封入ガス(希ガス及び水銀ガス)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall sectional view of a cold cathode discharge tube according to one embodiment of the present invention. FIG. 2 is an explanatory diagram for explaining a method of manufacturing the cold cathode discharge tube according to the embodiment. FIG. 3 is a state diagram showing a state in which a glass bulb has a hole when a conventional cold cathode discharge tube is manufactured. [Description of References] 1 Fluorescent coating 2 Glass bulb 3a Main electrode 3b Main electrode 4a Bead glass 4b Bead glass 5a Electrode 5b Electrode 6a Introduced metal body 6b Introduced metal body 7 High-frequency coil 8 Burner 9 Mercury discharge chamber P Mercury pellet X Filled gas (rare gas and mercury gas)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西山 和夫 大阪府大阪市北区長柄東2丁目9番95号 ウエスト電気株式会社内 Fターム(参考) 5C012 RR03 RR05    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Kazuo Nishiyama             2-9-95 Nagara Higashi 2-chome, Kita-ku, Osaka-shi, Osaka             West Electric Co., Ltd. F term (reference) 5C012 RR03 RR05

Claims (1)

【特許請求の範囲】 【請求項1】 外周回りにビードガラスが取り付けら
れ、軸方向に所定間隔を有して配置される一対の棒状を
なす主電極で、筒状のガラスバルブの内部空間が封止さ
れ、前記内部空間に所定の量の希ガスとガス化した水銀
が封入された冷陰極放電管の製造方法であって、一方の
主電極に取り付けられたビードガラスでガラスバルブの
一端開口部を封止する第一封止工程と、前記一方の主電
極に対して所定間隔を有するガラスバルブ内の所定位置
に、ビードガラスが取り付けられた他方の主電極を遊挿
する遊挿工程と、この遊挿工程の後に、他端開口部から
ガラスバルブ内に水銀ペレットを投入し、前記ガラスバ
ルブの内部空間を排気し前記希ガスを封入したのち前記
他端開口部を封止する第二封止工程と、ガラスバルブを
軸心回りに回転させつつ、前記水銀ペレットをガラスバ
ルブを介して加熱してガス化させ、このガス化した水銀
を前記他方の主電極を介して一対の主電極間に拡散させ
る拡散工程と、ガラスバルブ及び他方の主電極のビード
ガラスを溶着し、一対の主電極間にガス化した水銀を封
入する封入工程とを備えたことを特徴とする冷陰極放電
管の製造方法。
Claims: 1. A pair of rod-shaped main electrodes having bead glass attached around an outer periphery thereof and arranged at a predetermined interval in an axial direction, wherein an inner space of a cylindrical glass bulb is formed. A method for manufacturing a cold cathode discharge tube in which a predetermined amount of a rare gas and gasified mercury are sealed in the internal space, wherein one end of a glass bulb is opened with bead glass attached to one main electrode. A first sealing step of sealing the portion, a loose insertion step of loosely inserting the other main electrode to which the bead glass is attached, at a predetermined position in the glass bulb having a predetermined interval with respect to the one main electrode, After this play insertion step, a mercury pellet is charged into the glass bulb from the other end opening, the internal space of the glass bulb is evacuated, the rare gas is sealed, and then the second end opening is sealed. Sealing process and glass bulb While rotating around the center, the mercury pellet is heated and gasified through a glass bulb, and a diffusion step of diffusing the gasified mercury between the pair of main electrodes via the other main electrode, A process of welding a bulb and bead glass of the other main electrode, and sealing gasified mercury between the pair of main electrodes.
JP2002134210A 2002-05-09 2002-05-09 Method for manufacturing a cold cathode discharge tube Expired - Fee Related JP3964258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134210A JP3964258B2 (en) 2002-05-09 2002-05-09 Method for manufacturing a cold cathode discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134210A JP3964258B2 (en) 2002-05-09 2002-05-09 Method for manufacturing a cold cathode discharge tube

Publications (2)

Publication Number Publication Date
JP2003331726A true JP2003331726A (en) 2003-11-21
JP3964258B2 JP3964258B2 (en) 2007-08-22

Family

ID=29696931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134210A Expired - Fee Related JP3964258B2 (en) 2002-05-09 2002-05-09 Method for manufacturing a cold cathode discharge tube

Country Status (1)

Country Link
JP (1) JP3964258B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861227B1 (en) * 2007-08-02 2008-10-02 주식회사 에이디피엔지니어링 Bulb loading apparatus
CN108747952A (en) * 2018-07-19 2018-11-06 济南市半导体元件实验所 A kind of filling device and packing method for the glass bulb in patch zener diode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861227B1 (en) * 2007-08-02 2008-10-02 주식회사 에이디피엔지니어링 Bulb loading apparatus
CN108747952A (en) * 2018-07-19 2018-11-06 济南市半导体元件实验所 A kind of filling device and packing method for the glass bulb in patch zener diode
CN108747952B (en) * 2018-07-19 2023-10-20 济南市半导体元件实验所 Filling device and filling method for glass bulb in patch voltage-stabilizing diode

Also Published As

Publication number Publication date
JP3964258B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
KR19990029947A (en) High-pressure discharge lamp and its manufacturing method
KR20050087731A (en) High pressure discharge lamp
KR20070031885A (en) Gas discharge lamp comprising a helicoid discharge tube and an inner tube piece
JP2003331726A (en) Manufacturing method of cold cathode discharge tube
US5757129A (en) Low-pressure mercury-vapor discharge lamp, and method of placing mercury therein
JPH0620647A (en) Method and apparatus for putting mercury into arc discharge lamp
KR19990088411A (en) Gas filling method and device, and method for filling discharge gas into plasma display panel
US20020031975A1 (en) Short-arc, ultra-high-pressure discharge lamp and method of manufacture
JP3908968B2 (en) Cold cathode discharge tube manufacturing method and cold cathode discharge tube
JPH02223131A (en) Manufacture of double-ended high voltage discharge lamp
JP2004265663A (en) Discharge lamp
JP2003203566A (en) Method of manufacturing cold cathode discharge tube and cold cathode discharge tube
JPH1079228A (en) Manufacture of fluorescent tube and fluorescent discharge tube
JP2004186154A (en) Method for introducing mercury into fluorescent lamp during manufacture and mercury carrier body facilitating such method
TWI277119B (en) Dielectric barrier discharging type low pressure discharge lamp
JP2003203567A (en) Method of manufacturing cold cathode discharge tube and cold cathode discharge tube
JP5686557B2 (en) Fluorescent lamp, fluorescent lamp manufacturing method and lighting device
JP2003151438A (en) Manufacturing method for discharge lamp
JPH09283081A (en) Cold cathode low pressure mercury vapor discharge lamp, display device and lighting system
JP3950821B2 (en) Manufacturing method of single-end discharge lamp
JPH01243339A (en) Manufacture of fluorescent lamp
JPH08273614A (en) Cold-cathode fluorescent lamp and manufacture thereof
JPS63164142A (en) Manufacture of chipless fluorescent lamp and device therefor
JPH0215556A (en) Low pressure discharge lamp and its manufacture
JP2001319623A (en) Discharge lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

RD01 Notification of change of attorney

Effective date: 20050620

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Effective date: 20061002

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070424

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20070523

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100601

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110601

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees