JP3950821B2 - Manufacturing method of single-end discharge lamp - Google Patents

Manufacturing method of single-end discharge lamp Download PDF

Info

Publication number
JP3950821B2
JP3950821B2 JP2003200863A JP2003200863A JP3950821B2 JP 3950821 B2 JP3950821 B2 JP 3950821B2 JP 2003200863 A JP2003200863 A JP 2003200863A JP 2003200863 A JP2003200863 A JP 2003200863A JP 3950821 B2 JP3950821 B2 JP 3950821B2
Authority
JP
Japan
Prior art keywords
light emitting
sealing
envelope
electrodes
emitting part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003200863A
Other languages
Japanese (ja)
Other versions
JP2005044553A (en
Inventor
稔 西堀
Original Assignee
株式会社トゥルーウェル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トゥルーウェル filed Critical 株式会社トゥルーウェル
Priority to JP2003200863A priority Critical patent/JP3950821B2/en
Publication of JP2005044553A publication Critical patent/JP2005044553A/en
Application granted granted Critical
Publication of JP3950821B2 publication Critical patent/JP3950821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、新規な片口放電灯、特に超小型片口放電灯最適製造方法に関する。
【0002】
【従来の技術】
片口放電灯は従来、次のような方法により製造されていた。
(a) 頂点が半球状に形成され、他端が開口している封体を用い、半球状の頂点に排気管を接続し、
(b) 一対の電極が並設されている電極マウントを封体内に挿入し、前記一対の電極を半球状の頂点部分内に配置し、電極マウントの給電部を封体内に弾接させて電極マウントを封体内に仮止めし、
(c) アルゴンガス等の不活性ガスを流しつつ半球状の頂点部分を中空の回転楕円体状に形成して、この部分を一対の電極が並設された状態の発光部とすると共に発光部の基部側部分を封止し、電極マウントの給電部を構成する金属箔をこの封止部に埋設し、
(d) 前記排気管を利用して必要充填物(水銀や沃化物)を封入し、発光部内にキセノンガスを封入した後、排気管の根本を封切するという方法が一般的に用いられていた。
【0003】
このような排気管を利用して製造された片口放電灯は、(1)点灯中の発光部内の高圧(場合においては60気圧以上)により、最も残留ひずみの大きい排気管の接続部分から破裂することがある、(2)排気管の封切り部分の肉厚が不均一であるため、ここから出てくる光に歪みが発生し、精密光学設計に基づいて設計された光学機器の光源として不適切なものとなる、(3)また、前記肉厚の不均一により、光の焦点に乱れが生じ光の利用率が下がる、などの不都合があった。
【0004】
片口放電灯に対する要求の高度化に伴い、前記不都合の解消が片口放電灯に求められ、ついに、排気管を使用しない所謂チップレス片口放電灯の製造方法が発明された(オスラム特許;特開平2−186530号公報)。この方法は、
(a) 一端閉塞、他端開放の管状封体に一対の電極が並設された電極マウントを挿入し、発光部となる閉塞端に一対の電極を並設・配置して、電極マウントの給電部に取り付けられている仮止め部材を封体内に弾接させて仮止めし、
(b) 前記発光部となる閉塞端内に水銀や沃化物等の必要充填物を充填し、
(c) 発光部を液体窒素などで冷却しつつ封止部分となる発光部の基部側全体を強熱・軟化させ、
(d) 前記発光部が回転楕円状となるように形成すると共に発光部に隣接する封止部内に給電部の一部を構成する金属箔を埋設するというものである。
【0005】
【特許文献】
特開平2−186530号公報(オスラム特許)
【0006】
これにより、従来、問題となっていた排気管封切跡の肉厚不同部分(この部分は最大歪み部分でもある)の解消が図られたが、最近では、精密光学機器の劇的な進化により前記方法で製造されたチップレス片口放電灯の性能では到底対処しきれなくなってきた。即ち、最近の精密光学機器は光源の更なる小型化と点光源化、長寿命化が要求されており、従来のチップレス片口放電灯では、製造中に発光部内に不純物が入り込み(理由は後述)、これが発光部の黒化現象やランプ破裂の原因となり、またランプ寿命を低下させていたという問題点や、更には発光部内に充填される水銀量や沃化物の量のばらつきが大きかったため、ランプの明るさにばらつきがあったなど様々な問題点が精密光学機器の能性能向上とともに浮かび上がってきた。
【0007】
特に、放電灯の点光源化による小型化は必然的に発光部の小容積化となって現れ、前述の不純物や充填物のばらつきなどはランプ性能に大きく影響を与え、これら不安定要因の除去がチップレス片口放電灯の小型化・点光源化に大きな障害となっていることが認識されるに至った。
【0008】
【発明が解決しようとする課題】
本発明はかかる従来の問題点に鑑みてなされたもので、特に前記不安定要因中、製造中の不純物の発光部内への混入を極力除去することができる方法の開発と、当該方法により製造されたチップレス片口放電灯、特に超小型化対応に可能なチップレス片口放電灯の提供をその課題とする。
【0009】
【課題を解決するための手段】
「請求項1」に記載の発明は「(a)先端に発光部 (3) となる空間部が形成された封体 (10) を形成する工程、(b)並設されている一対の電極 (1)(2) を封体 (10) 内に挿入し、前記一対の電極 (1)(2) を発光部 (3) 内に並設し、電極 (1)(2) に接続された給電部 (5)(6) にて前記封体 (10) 内に前記電極 (1)(2) を仮止めする工程、(c)発光部 (3) に連なる封体 (10) の封止部分を加熱した後、封止部分 (F) の一部を封止して前記給電部 (4)(5) を1次封止部 (6)(7) 内に封じると共に1次封止部 (6)(7) に沿って発光部 (3) に連通する充填物供給通孔 (8) を形成する工程、(d)1次封止部 (6)(7) が形成された封体 (10) の内部を不活性ガスでフラッシングする工程、(e)充填物供給通孔 (8) から発光部 (3) 内に必要充填物 (11) や封入ガスを充填する工程、(f)充填物供給通孔 (8) の少なくとも一部を閉塞する工程、とで構成されている片口放電灯 (A) の製造方法において、前記(c)及び(d)工程の間、前記発光部 (3) を1,000℃以上で且つ封体 (10) が軟化しない温度で加熱する」ことを特徴とする。
【0010】
請求項2に記載の発明は、「(a)先端に発光部 (3) となる空間部が形成された封体 (10) を形成する工程、(b)並設されている一対の電極 (1)(2) を封体 (10) 内に挿入し、前記一対の電極 (1)(2) を発光部 (3) 内に並設し、電極 (1)(2) に接続された給電部 (5)(6) にて前記封体 (10) 内に前記電極 (1)(2) を仮止めする工程、(c)発光部 (3) に連なる封体 (10) の封止部分を加熱した後、封止部分 (F) の一部を封止して前記給電部 (4)(5) を1次封止部 (6)(7) 内に封じると共に1次封止部 (6)(7) に沿って発光部 (3) に連通する充填物供給通孔 (8) を形成する工程、(d)1次封止部 (6)(7) が形成された封体 (10) の内部を不活性ガスでフラッシングする工程、(e)充填物供給通孔 (8) から発光部 (3) 内に必要充填物 (11) や封入ガスを充填する工程、(f)封体 (10) の根元を封切する工程、(g)充填物供給通孔 (8) の少なくとも一部を閉塞する工程、とで構成されている片口放電灯 (A) の製造方法において、前記(c)及び(d)工程の間、前記発光部 (3) を1,000℃以上で且つ封体 (10) が軟化しない温度で加熱する」ことを特徴とする。
【0011】
従来例で説明したチップレス片口放電灯の製造方法では、充填物を封体に充填し、更にキセノンガスを封入した後、発光部の基部側を封止する場合、封体の円筒形の封止部分全体を外周から強熱して当該部分を軟化させ、軟化部分をピンチシールして封止を行うものであるが、封止部分全体が軟化するまで加熱するには封体である石英ガラスの軟化点以上の温度で長時間加熱することが必要である。この加熱により石英ガラスの一部が分解し、多量の酸素が封体内部に放出され或いはOH基が封体の内表面に滲み出てくる。また、封体内に仮止めされているタングステン製の電極やモリブデン製の給電部も同じ温度に加熱されるので、これら金属部分に吸蔵されていたガスも封体内に放出される。
【0012】
これら不純物ガスの一部は前述の封止作業において発光部内に閉じこめられ、従来例で説明したような黒化現象やランプ破裂の原因となる。特に、チップレス片口放電灯が超小型化し、発光部の内容積が小さくなるに伴い、混入不純物による悪影響が当然顕著になる。
【0013】
これに対して本発明では、1次封止時及びフラッシング工程中、発光部 (3) を1,000℃以上で且つ封体 (10) が軟化しない温度で加熱しているので、封止部分 (F) や金属電極マウント (M) からの放出不純物が発光部 (3) に吸蔵されるのを防止することができる。加えて、最終封止部分が細い充填物供給通孔(8)の一部である(勿論、充填物供給通孔(8)全体でもよい)2次封止部(9)であり、最終封止時間(即ち、封止加熱時間)を大幅に短縮することができる。従って、最終封止における封体(10)や金属マウント(M)から放出される不純物の量が大幅に減少し、発光部(3)内の不純物の混入が大幅に減少することになる。
【0017】
【発明の実施の形態】
以下、本発明を図示実施例に従って順次説明する。図11は本発明にかかる片口放電灯(A)の断面図である。封体(10)には先端部分に回転楕円形又は球形或いはその類似形状の発光部(3)が形成され、前記発光部(3)の基部側に発光部(3)に沿って1次封止部(6)(7)が形成され、前記1次封止部(6)(7)に沿って設けられ、前記発光部(3)に連通していた充填物供給通孔(8)に2次封止部(9)が形成されている。
【0018】
給電部(4)(5)は、モリブデン金属箔(4a)(5a)とこれに一端がスポット溶接されているモリブデン製の外部リード棒(4b)(5b)とで構成されており、金属箔(4a)(5a)の他端に一対のタングステン製の電極(1)(2)がスポット溶接されている。そして、この一対の電極(1)(2)が発光部(3)の内部に並設され、電極(1)(2)に接続されている金属箔(4a)(5a)とその近傍部分が前記1次封止部(6)(7)にそれぞれ埋設されている。なお、前記外部リード棒(4b)(5b)は、図4に示すようにU字状に曲成された外部リード用部材(13)を封止後、不要部分を切除して形成される。また、ここで用いられる電極(1)(2)は図4からわかるように略L字状となっており、その折曲端部(1a)(2a)の先端が互いに対向し、電極基部(1b)(2b)が互いに平行となるように配置されるようになっている。
【0019】
充填物供給通孔(8)は本実施例では1次封止部(6)(7)の間に形成されており、2次封止部(9)が形成される前は、発光部(3)に連通しており、後述するようにここから必要充填物(11)やキセノンガス単体或いはこれを始めとする他の必要充填ガスの充填が行われる。これらが行われた後、充填物供給通孔(8)のいずれかの箇所で2次封止が行われる。図の実施例では、発光部(3)の基部側に沿って2次封止が行われ、発光部(3)が回転楕円体近似形状(勿論、発光部(3)の形状は回転楕円体近似形状に限られるものでなく、球形のようなものでもよい)となるように形成されている。また、2次封止は発光部(3)の基部に沿って形成される必要はなく、充填物供給通孔(8)が閉塞されれば足るので、充填物供給通孔(8)のいずれの箇所或いは全体を閉塞してもよいが、発光部(3)に低温部分を形成しないという前述した理由により、発光部(3)の基部に沿って形成することが好ましい。
【0020】
次に、本発明の製造手順の一例を図面に従って説明する。図1、2は本発明に使用される封体(10)の製造手順の図面で、石英ガラス直管(10a)を回転させつつその中央部分を加熱して軟化させ、続いて図2のように軟化部分にローラ(20)を押圧して次第に縮径させ、図3のように一端が半球状に形成され、他端が開口している封体(10)を形成する。
【0021】
続いて、略U形に曲成された外部リード用部材(13)の両端にスポット溶接された金属箔(4a)(5a)及びこの金属箔(4a)(5a)の他端にスポット溶接された電極(1)(2)とで構成された電極マウント(M)を封体(10)に挿入し、一対の電極(1)(2)を封体(10)の閉塞球状端部内に並設させ且つ封体(10)の内径より若干幅広に形成された外部リード用部材(13)を封体(10)の内面に弾接させて電極マウント(M)を封体(10)内に仮止めする。
【0022】
このように電極マウント(M)が装着されると、封体(10)の開口端が排気台(30)に装着され、0リング(31)により気密状に保持される。続いて排気台(30)により真空引きが行われ封体(10)内が高真空にされた後、アルゴンガス等の不活性ガスが封入され、1,000℃〜1,050℃の温度で必要箇所が所定時間(約15秒程度)加熱される。この間、封体(10)の内部の清浄化のためのアルゴンガスの排気→真空引き→アルゴンガスの封入→アルゴンガスの排気・・・工程(所謂ウォッシング或いはフラッシング工程)が複数回繰り返され、このフラッシングにより金属製の電極マウント(M)や石英ガラス製封体(10)から封体(10)内に放出された不純物を封体(10)から完全に除去する。
【0023】
その後、金属箔(4a)(5a)に一致する封止部分(F)を強熱し、この部分を2,100℃以上の温度まで上昇させる。この時点で封体(10)内のアルゴンガス圧は加熱膨張した状態で約1気圧となるように封入ガス圧が設定される。
【0024】
封止部分(F)の温度が所定温度に到達し、加熱部分が軟化状態となるとアルゴンガスを封体(10)に追加封入し、これと同時あるいはこの直後に充填物供給通孔(8)形成用の溝(42)(43)がそれぞれ形成されている雌雄一対のピンチャ(40)(41)で軟化封止部分(F)をピンチングする。この図が図5〜7で、前記軟化封止部分(F)は溝(42)(43)以外の部分[この部分を1次ピンチング部(44)とする]で押圧され、溝(42)(43)に一致する部分を残して1次封止がなされ、この1次封止により1次封止部(6)(7)内に金属箔(4a)(5a)とその近傍部分が埋設される。そして、前述のように追加封入アルゴンガスの圧力によりピンチング時の押圧力に抗して溝(42)(43)に一致する部分が押し潰されず、発光部(3)に連通する充填物供給通孔(8)として封止部分に残留する。換言すれば、1次封止により形成された発光部(3)は充填物供給通孔(8)により外部と連通しているということである。
【0025】
そして、この1次封止時にも所定時間の強熱加熱が封止部分(F)に加えられるため、前述同様、封止部分(F)や金属電極マウント(M)から不純物が封体(10)内に放出されるが、発光部(3)が前述のように充填物供給通孔(8)により外部と連通しているので、一次封止後のフラッシングにより一次封止中に発生し、発光部(3)内に侵入した不純物を充填物供給通孔(8)により完全に除去することができる。
【0026】
なお、前記1次封止時及びこのフラッシング工程中、発光部(3)は1,000℃以上で封体(10)を構成する石英ガラスが軟化しない温度に加熱される。発光部(3)の加熱温度が低温である場合、封止部分(F)や金属電極マウント(M)から放出された不純物が発光部(3)に吸蔵・蓄積され、製品化後の黒化、ランプ破裂あるいは短寿命等の欠陥の原因となる。換言すれば、1次封止時及びフラッシング工程中、発光部(3)の温度をある程度高温に保っておき、発光部(3)自体の分解は発生しないが、封止部分(F)や金属電極マウント(M)からの放出不純物の吸蔵も行わない状態を保っておくことが本発明の重要なポイントである。
【0027】
このようにして1次封止を行った後、充填物供給通孔(8)を通じて発光部(3)内に必要充填物(11)とキセノンガスのような必要封入ガスを封体(10)に封入した後、封体(10)の根本を加熱封切し取り出す(図8)。
【0028】
この半製品(B)の発光部(3)を図9、10に示すように、遮蔽板(50)から外に突き出させ、発光部(3)をたとえば窒素ガスを吹きつけて冷却しつつ、充填物供給通孔(8)の一部を細いバーナ(60)から噴出させ、たとえば酸水素炎のようなバーナ炎(61)により軟化・閉塞する(2次封止)。この2次封止時は、半製品(B)内部全体が減圧状態となっているので、軟化部分が収縮により自然と閉塞する。勿論、外部からピンのようなもので押圧し、軟化部分を押し込んで閉塞するようにしてもよい。
【0029】
上記の別法として、図8の破線で示す前述の根本封じを行わず、この状態で前述の2次封止部(9)形成してもよい。
【0030】
いずれにせよこの2次封止は局部的加熱であるから、加熱時間はきわめて短く、従ってこの2次封止部(9)から発生する不純物は極く微量であり、従来例で示したような不純物の発光部(3)内の混入は無視できる程度である。この2次封止部(9)の封止長さは点灯時にこの2次封止部(9)が発光部(3)内のガス膨張による圧力増大に耐えるだけの長さで足り、一般的には2mm程度である。最後に封体(10)と電極マウント(M)の不要部分を切除して図11に示す完成品とする。
【0031】
図12は充填物供給通孔(8)の他の例で、充填物供給通孔(8)に細い排気管(8a)が一体的に形成されており、必要充填物(11)や必要封入ガスの発光部(3)への封入はこの排気管(8a)を通じて行われ、また、2次封止前の根本封止も排気管(8a)の根元で行われることになる。それ以外の点は前述と同様である。
【0032】
【発明の効果】
本発明によれば、1次封止時には充填物供給通孔が形成され、発光部が外部と連通された状態を保っているので、1次封止時に発生した多量の不純物を発光部内から除去することができ、これに続く2次封止は細い充填物供給通孔を部分的に封止するだけであるから短時間に完了し、2次封止における不純物の発生を大幅に抑制することができる。これにより発光部内に混入する不純物の量を大幅に抑制することができ、発光部の黒化、ランプ破裂やこれに伴う短寿命化など解消することができる。加えて本発明の大きな特徴は、前述のように不純物の発光部内での混入が大幅に抑制されるので、発光部内容積の非常に小さい超小型片口放電灯の大量生産への道を切り開いたことである。
なお、2次封止部を発光部の基部側形状に合わせて形成することで、発光部の基部側形状を滑らかな曲面とすることができ、低温部の発生を解消することができる。
【図面の簡単な説明】
【図1】本発明に使用する石英ガラス直管の加熱状態を示す正面図。
【図2】図1で加熱された直管の軟化部分をローラで変形させている状態を示す正面図。
【図3】図2で製造された本発明の封体用一端閉塞管の断面図。
【図4】図3の封体用一端閉塞管に電極マウントを装着し、排気台に立設させた状態の断面図。
【図5】図4に封体用一端閉塞管の封止部分を1次封止した状態を示す正断面図。
【図6】図5の直角方向の断面図。
【図7】図5のX―X断面図
【図8】1次封止された半製品に必要充填物を充填した状態の断面図。
【図9】封体の根本封切された半製品の2次封止状態を示す正断面図。
【図10】図9の直角方向の側断面図。
【図11】本発明方法により形成された超小型片口放電灯の断面図。
【図12】図4に対応する他の実施例の断面図。
【符号の説明】
(1)(2) 電極
(3) 発光部
(4)(5) 給電部
(6)(7) 1次封止部
(8) 充填物供給通孔
(9) 2次封止部
[0001]
[Industrial application fields]
The present invention relates to a novel single-end discharge lamp, and more particularly to an optimum manufacturing method of a micro single-end discharge lamp.
[0002]
[Prior art]
Conventionally, single-end discharge lamps have been manufactured by the following method.
(a) Using an envelope whose apex is formed in a hemisphere and the other end is open, an exhaust pipe is connected to the hemisphere apex,
(b) An electrode mount in which a pair of electrodes are arranged in parallel is inserted into the envelope, the pair of electrodes are arranged in a hemispherical apex portion, and the power supply portion of the electrode mount is elastically contacted in the envelope. Temporarily fix the mount inside the envelope,
(c) A hemispherical apex portion is formed into a hollow spheroid while flowing an inert gas such as argon gas, and this portion is used as a light emitting portion in which a pair of electrodes are arranged side by side, and the light emitting portion The base side part of the electrode is sealed, and a metal foil constituting the power supply part of the electrode mount is embedded in the sealing part,
(d) The method of sealing the necessary filling (mercury or iodide) using the exhaust pipe, sealing the xenon gas in the light emitting section, and then sealing the root of the exhaust pipe was generally used. .
[0003]
A single-ended discharge lamp manufactured using such an exhaust pipe bursts from the connection part of the exhaust pipe with the largest residual strain due to (1) the high pressure in the light-emitting section during lighting (in this case, 60 atmospheres or more). (2) Since the thickness of the sealed part of the exhaust pipe is not uniform, the light coming out of it will be distorted, making it unsuitable as a light source for optical equipment designed based on precision optical design. (3) In addition, due to the uneven thickness, the focus of light is disturbed and the light utilization rate is reduced.
[0004]
With the increasing demand for single-ended discharge lamps, the above-mentioned disadvantages have been solved for single-ended discharge lamps, and finally a so-called chipless single-ended discharge lamp manufacturing method that does not use an exhaust pipe has been invented (Osram Patent; -186530). This method
(a) Inserting an electrode mount in which a pair of electrodes are arranged side by side into a tubular envelope with one end closed and the other end open, and arranging and arranging a pair of electrodes side by side at the closed end to be a light emitting part The temporary fixing member attached to the part is brought into elastic contact with the envelope and temporarily fixed.
(b) Filling the closed end to be the light emitting part with a necessary filler such as mercury or iodide,
(c) While the light emitting part is cooled with liquid nitrogen or the like, the whole base side of the light emitting part that becomes the sealing part is ignited and softened,
(d) The light emitting portion is formed to have a spheroid shape, and a metal foil constituting a part of the power feeding portion is embedded in a sealing portion adjacent to the light emitting portion.
[0005]
[Patent Literature]
JP-A-2-186530 (OSRAM patent)
[0006]
As a result, it has been possible to eliminate the uneven thickness of the exhaust pipe seal that has been a problem in the past (this part is also the maximum distortion), but recently, due to the dramatic evolution of precision optical instruments, The performance of chipless single-end discharge lamps manufactured by this method cannot be fully addressed. That is, recent precision optical instruments are required to further reduce the size of the light source, to make it a point light source, and to extend the service life, and in conventional chipless single-end discharge lamps, impurities enter the light emitting part during manufacture (the reason will be described later). ), Which caused the blackening phenomenon of the light emitting part and the lamp rupture, and the problem that the lamp life was reduced, and furthermore, the variation in the amount of mercury and iodide filled in the light emitting part was large, Various problems, such as variations in the brightness of the lamp, emerged along with the improvement in performance of precision optical instruments.
[0007]
In particular, miniaturization of discharge lamps due to the use of point light sources inevitably leads to a reduction in the volume of the light-emitting part, and the aforementioned variations in impurities and fillings have a large effect on lamp performance, eliminating these instability factors. However, it has been recognized that this is a major obstacle to downsizing and point light sources for chipless single-end discharge lamps.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of such conventional problems, and in particular, the development of a method capable of removing as much as possible the contamination of impurities during production into the light emitting portion during the instability factor, and the production of the method. Another object of the present invention is to provide a chipless single-end discharge lamp, particularly a chipless single-end discharge lamp that can be used for miniaturization.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 is: (a) a step of forming a sealing body (10) in which a space portion serving as a light emitting portion (3) is formed at the tip ; (b) a pair of electrodes arranged side by side (1) (2) was inserted into the envelope (10) , the pair of electrodes (1) (2) were juxtaposed in the light emitting part (3 ) , connected to the electrodes (1) (2) sealing the feed portion (5) a step of temporarily fixing said electrode (1) (2) to said sealing member (10) at (6), sealing body connected to (c) emitting portion (3) (10) After heating the part, a part of the sealing part (F) is sealed to seal the power feeding part (4) (5) in the primary sealing part (6) (7) and the primary sealing part (6) A step of forming a filling material supply hole (8) communicating with the light emitting portion (3) along (7) , (d) an envelope formed with the primary sealing portion (6) (7) A step of flushing the inside of (10) with an inert gas, (e) a step of filling the light-emitting part (3) with the necessary filler (11) and a sealing gas from the filler supply through-hole (8) , (f) Close at least part of the filler supply hole (8) To process, in the manufacturing method of the single-ended discharge lamp (A) which is composed of capital, between the (c) and (d) step, said light emitting portion (3) and at 1,000 ° C. or higher envelope (10 ) Is heated at a temperature at which it does not soften .
[0010]
The invention according to claim 2 is: (a) a step of forming a sealing body (10) in which a space portion serving as a light emitting portion (3) is formed at the tip ; (b) a pair of electrodes arranged side by side ( 1) (2) is inserted into the envelope (10) , the pair of electrodes (1) (2) are juxtaposed in the light emitting part (3) , and the power supply connected to the electrodes (1) (2) A step of temporarily fixing the electrodes (1) and (2 ) in the envelope (10 ) at the portions (5) and (6) ; (c ) a sealing portion of the envelope (10) connected to the light emitting portion (3) After heating, a part of the sealing part (F) is sealed to seal the power feeding part (4) (5) in the primary sealing part (6) (7) and the primary sealing part ( 6) A step of forming a filling material supply hole (8) communicating with the light emitting portion (3) along (7) , (d) an envelope in which the primary sealing portions (6) and (7) are formed ( 10) a step of flushing the interior with an inert gas, (e) a step of filling the light-emitting part (3) with the necessary filler (11) and a sealing gas from the filler supply through-hole (8) , and (f) sealing. Cutting off the root of the body (10) , (g) filling Step of closing at least a portion of the feed hole (8), in the manufacturing method of the single-ended discharge lamp (A) which is composed of capital, the (c) and (d) during step, said light emitting portion (3) Is heated at a temperature of 1,000 ° C. or higher and the envelope (10) is not softened ”.
[0011]
In the manufacturing method of the chipless single-end discharge lamp described in the conventional example, when the filling is filled in the envelope, and further, the xenon gas is sealed, and then the base side of the light emitting portion is sealed, the sealed cylindrical seal The whole stop part is ignited from the outer periphery to soften the part, and the softened part is pinched and sealed to perform sealing. It is necessary to heat at a temperature above the softening point for a long time. By this heating, a part of the quartz glass is decomposed, and a large amount of oxygen is released into the envelope or OH groups ooze out on the inner surface of the envelope. In addition, since the tungsten electrode and the molybdenum power feeding portion temporarily fixed in the envelope are heated to the same temperature, the gas occluded in these metal portions is also released into the envelope.
[0012]
A part of these impurity gases is confined in the light emitting part in the above-described sealing operation, which causes blackening phenomenon and lamp burst as described in the conventional example. In particular, as chipless single-end discharge lamps are miniaturized and the internal volume of the light emitting part is reduced, the adverse effects of mixed impurities become obvious.
[0013]
In the present invention is contrary, in 1 Tsugifutome and during flushing step, since and the light emitting portion (3) at 1,000 ° C. or higher envelope (10) is heated to a temperature which is not softened, sealing portion Impurities emitted from (F) and the metal electrode mount (M) can be prevented from being occluded in the light emitting section (3) . In addition, the final sealing portion is a secondary sealing portion (9) which is a part of the thin filler supply through hole (8) (or the whole of the filler supply through hole (8)). The stop time (that is, the sealing heating time) can be greatly shortened. Therefore, the amount of impurities released from the envelope (10) and the metal mount (M) in the final sealing is greatly reduced, and the contamination of impurities in the light emitting part (3) is greatly reduced.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in order according to the illustrated embodiments. FIG. 11 is a cross-sectional view of a single-end discharge lamp (A) according to the present invention. The envelope (10) has a light-emitting part (3) having a spheroidal or spherical shape or a similar shape at the tip, and the primary seal along the light-emitting part (3) on the base side of the light-emitting part (3). Stop portions (6) and (7) are formed, and are provided along the primary sealing portions (6) and (7). The filler supply through holes (8) communicated with the light emitting portion (3) A secondary sealing part (9) is formed.
[0018]
The power feeding part (4) (5) is composed of molybdenum metal foils (4a) (5a) and molybdenum external lead rods (4b) (5b), one end of which is spot welded. A pair of tungsten electrodes (1) and (2) are spot welded to the other ends of (4a) and (5a). The pair of electrodes (1) and (2) are arranged inside the light emitting section (3), and the metal foils (4a) and (5a) connected to the electrodes (1) and (2) and the vicinity thereof are It is embed | buried under the said primary sealing part (6) (7), respectively. The external lead rods (4b) and (5b) are formed by sealing an external lead member (13) bent in a U-shape as shown in FIG. The electrodes (1) and (2) used here are substantially L-shaped as can be seen from FIG. 4, and the ends of the bent ends (1a) and (2a) face each other, and the electrode base ( 1b) and 2b are arranged so as to be parallel to each other.
[0019]
In this embodiment, the filling material supply hole (8) is formed between the primary sealing portions (6) and (7), and before the secondary sealing portion (9) is formed, the light emitting portion ( As will be described later, the necessary filling material (11), xenon gas alone, or other necessary filling gas such as this is filled. After these are performed, secondary sealing is performed at any point of the filler supply through hole (8). In the illustrated embodiment, secondary sealing is performed along the base side of the light emitting part (3), and the light emitting part (3) has a spheroid approximate shape (of course, the shape of the light emitting part (3) is a spheroid). The shape is not limited to the approximate shape, but may be a spherical shape). Further, the secondary sealing does not have to be formed along the base of the light emitting part (3), and it is sufficient that the filling supply through hole (8) is closed. However, it is preferably formed along the base of the light emitting part (3) for the reason described above that the low temperature part is not formed in the light emitting part (3).
[0020]
Next, an example of the manufacturing procedure of the present invention will be described with reference to the drawings. FIGS. 1 and 2 are drawings of a manufacturing procedure of the envelope (10) used in the present invention. While rotating the quartz glass straight tube (10a), the central portion is heated and softened, and then, as shown in FIG. Then, the roller (20) is pressed against the softened portion to gradually reduce the diameter, thereby forming a sealed body (10) having one end formed in a hemispherical shape and the other end opened as shown in FIG.
[0021]
Subsequently, the metal foil (4a) (5a) spot-welded to both ends of the external lead member (13) bent in a substantially U shape and the other end of the metal foil (4a) (5a) are spot-welded. The electrode mount (M) composed of the electrodes (1) and (2) is inserted into the envelope (10), and the pair of electrodes (1) and (2) are aligned in the closed spherical end of the envelope (10). The electrode mount (M) is placed in the envelope (10) by elastically contacting the outer lead member (13) formed slightly wider than the inner diameter of the envelope (10) to the inner surface of the envelope (10). Temporarily fix.
[0022]
When the electrode mount (M) is mounted in this way, the opening end of the envelope (10) is mounted on the exhaust stand (30) and is kept airtight by the 0 ring (31). Subsequently, the exhaust table (30) is evacuated and the inside of the envelope (10) is evacuated, and then an inert gas such as argon gas is enclosed and is heated at a temperature of 1,000 to 1,050 ° C. A necessary part is heated for a predetermined time (about 15 seconds). During this time, the exhaust of the argon gas for cleaning the inside of the envelope (10) → evacuation → the sealing of the argon gas → the exhaust of the argon gas ... the process (so-called washing or flushing process) is repeated a plurality of times. The impurities released from the metal electrode mount (M) and the quartz glass envelope (10) into the envelope (10) by the flushing are completely removed from the envelope (10).
[0023]
Thereafter, the sealing portion (F) corresponding to the metal foils (4a) and (5a) is ignited, and this portion is raised to a temperature of 2,100 ° C. or higher. At this time, the argon gas pressure in the envelope (10) is set so that the argon gas pressure is about 1 atm when heated and expanded.
[0024]
When the temperature of the sealing part (F) reaches a predetermined temperature and the heated part is in a softened state, argon gas is additionally sealed in the sealing body (10), and at the same time or immediately after this, the filling material supply hole (8) The softened and sealed portion (F) is pinched by a pair of male and female pinchers (40) and (41) in which grooves (42) and (43) for formation are respectively formed. This figure is shown in FIGS. 5 to 7, and the softened sealing portion (F) is pressed by a portion other than the grooves (42) and (43) [this portion is used as a primary pinching portion (44)], and the groove (42) Primary sealing is performed, leaving the part corresponding to (43), and the metal foil (4a) (5a) and its vicinity are embedded in the primary sealing part (6) (7) by this primary sealing. Is done. Then, as described above, the portion that matches the grooves (42) and (43) is not crushed against the pressing force at the time of pinching by the pressure of the additional sealed argon gas, and the filler supply passage that communicates with the light emitting section (3) is prevented. It remains in the sealing part as a hole (8). In other words, the light emitting part (3) formed by the primary sealing is in communication with the outside through the filling material supply hole (8).
[0025]
In addition, since intense heating for a predetermined time is applied to the sealing portion (F) even during the primary sealing, impurities are sealed from the sealing portion (F) and the metal electrode mount (M) as described above. ), But the light emitting part (3) communicates with the outside through the filler supply hole (8) as described above, and thus occurs during the primary sealing by the flushing after the primary sealing, Impurities that have entered the light emitting section (3) can be completely removed by the filler supply through hole (8).
[0026]
During the primary sealing and during the flushing step, the light emitting part (3) is heated to a temperature at which the quartz glass constituting the envelope (10) is not softened at 1,000 ° C. or higher. When the heating temperature of the light emitting part (3) is low, impurities released from the sealing part (F) and metal electrode mount (M) are occluded and accumulated in the light emitting part (3), and blackening after commercialization , It causes defects such as lamp burst or short life. In other words, the temperature of the light emitting part (3) is kept at a certain high temperature during the primary sealing and during the flushing process, and the light emitting part (3) itself is not decomposed, but the sealing part (F) or metal It is an important point of the present invention to maintain a state in which the impurities released from the electrode mount (M) are not occluded.
[0027]
After the primary sealing is performed in this manner, the necessary filling gas (11) and the necessary sealed gas such as xenon gas are sealed in the light emitting part (3) through the filling material supply hole (8) (10). Then, the base of the envelope (10) is heat-sealed and removed (FIG. 8).
[0028]
As shown in FIGS. 9 and 10, the light emitting part (3) of this semi-finished product (B) is projected outward from the shielding plate (50), and the light emitting part (3) is cooled by blowing nitrogen gas, for example, A part of the filler supply through hole (8) is ejected from a thin burner (60), and softened and blocked by a burner flame (61) such as an oxyhydrogen flame (secondary sealing). At the time of the secondary sealing, since the entire interior of the semi-finished product (B) is in a reduced pressure state, the softened part is naturally blocked by contraction. Of course, it may be pressed from the outside with a pin or the like, and the softened portion may be pushed in and closed.
[0029]
As an alternative to the above, the above-described secondary sealing portion (9) may be formed in this state without performing the above-described fundamental sealing indicated by a broken line in FIG.
[0030]
In any case, since this secondary sealing is local heating, the heating time is very short. Therefore, the amount of impurities generated from this secondary sealing part (9) is very small, as shown in the conventional example. The mixing of impurities in the light emitting part (3) is negligible. The sealing length of the secondary sealing portion (9) is sufficient to withstand the pressure increase due to gas expansion in the light emitting portion (3) when the secondary sealing portion (9) is lit. Is about 2 mm. Finally, unnecessary portions of the envelope (10) and the electrode mount (M) are cut off to obtain a finished product shown in FIG.
[0031]
FIG. 12 shows another example of the filling material supply hole (8). A thin exhaust pipe (8a) is integrally formed in the filling material supply hole (8), and the necessary filling material (11) and the necessary sealing are included. The gas is sealed in the light emitting part (3) through the exhaust pipe (8a), and the basic sealing before the secondary sealing is also performed at the root of the exhaust pipe (8a). Other points are the same as described above.
[0032]
【The invention's effect】
According to the present invention, the filler supply through hole is formed at the time of primary sealing, and the light emitting part is kept in communication with the outside, so that a large amount of impurities generated at the time of primary sealing are removed from the light emitting part. The subsequent secondary sealing can be completed in a short time because it only partially seals the thin filler supply through-hole, greatly reducing the generation of impurities in the secondary sealing. Can do. As a result, the amount of impurities mixed in the light emitting portion can be greatly suppressed, and blackening of the light emitting portion, lamp rupture, and accompanying shortening of the lifetime can be eliminated. In addition, the major feature of the present invention is that, as described above, the contamination of impurities in the light emitting part is greatly suppressed. That is.
In addition, by forming the secondary sealing portion in conformity with the shape of the base side of the light emitting unit, the shape of the base side of the light emitting unit can be a smooth curved surface, and generation of a low temperature part can be eliminated.
[Brief description of the drawings]
FIG. 1 is a front view showing a heating state of a quartz glass straight tube used in the present invention.
FIG. 2 is a front view showing a state where a softened portion of the straight pipe heated in FIG. 1 is deformed by a roller.
3 is a cross-sectional view of the one-end closed tube for a sealing body of the present invention manufactured in FIG. 2. FIG.
4 is a cross-sectional view of a state in which an electrode mount is attached to the sealing end-closed tube of FIG. 3 and is erected on an exhaust stand.
FIG. 5 is a front cross-sectional view showing a state where the sealing portion of the one-end closing tube for sealing body is primarily sealed in FIG. 4;
6 is a cross-sectional view in the direction perpendicular to FIG. 5;
7 is a cross-sectional view taken along the line XX of FIG. 5. FIG. 8 is a cross-sectional view of the semi-finished product that has been primarily sealed with a necessary filler.
FIG. 9 is a front cross-sectional view showing a secondary sealed state of a semi-finished product that is fundamentally sealed.
10 is a side sectional view in the direction perpendicular to FIG. 9;
FIG. 11 is a cross-sectional view of an ultra-compact single-ended discharge lamp formed by the method of the present invention.
12 is a cross-sectional view of another embodiment corresponding to FIG. 4. FIG.
[Explanation of symbols]
(1) (2) Electrode
(3) Light emitting part
(4) (5) Feeding part
(6) (7) Primary sealing part
(8) Filling supply hole
(9) Secondary sealing part

Claims (2)

(a)先端に発光部となる空間部が形成された封体を形成する工程、(A) forming a sealing body in which a space part to be a light emitting part is formed at the tip;
(b)並設されている一対の電極を封体内に挿入し、前記一対の電極を発光部内に並設し、電極に接続された給電部にて前記封体内に前記電極を仮止めする工程、(B) Inserting a pair of electrodes arranged side by side into the envelope, arranging the pair of electrodes in the light emitting portion side by side, and temporarily fixing the electrodes in the envelope with a power feeding portion connected to the electrodes ,
(c)発光部に連なる封体の封止部分を加熱した後、封止部分の一部を封止して前記給電部を1次封止部内に封じると共に1次封止部に沿って発光部に連通する充填物供給通孔を形成する工程、(C) After heating the sealing part of the sealing body connected to the light emitting part, part of the sealing part is sealed to seal the power feeding part in the primary sealing part and emit light along the primary sealing part. Forming a filler supply through hole communicating with the section;
(d)1次封止部が形成された封体の内部を不活性ガスでフラッシングする工程、(D) a step of flushing the inside of the envelope in which the primary sealing portion is formed with an inert gas;
(e)充填物供給通孔から発光部内に必要充填物を充填する工程、(E) a step of filling a necessary filler into the light emitting part from the filler supply through-hole,
(f)充填物供給通孔の少なくとも一部を閉塞する工程、とで構成されている片口放電灯の製造方法において、(F) In the method of manufacturing a single-end discharge lamp, comprising a step of closing at least a part of the filler supply through-hole,
前記(c)及び(d)工程の間、前記発光部を1,000℃以上で且つ前記封体が軟化しない温度で加熱することを特徴とする片口放電灯の製造方法。During the steps (c) and (d), the light emitting part is heated at a temperature of 1,000 ° C. or higher and the envelope is not softened.
(a)先端に発光部となる空間部が形成された封体を形成する工程、(A) forming a sealing body in which a space part to be a light emitting part is formed at the tip;
(b)並設されている一対の電極を封体内に挿入し、前記一対の電極を発光部内に並設し、電極に接続された給電部にて前記封体内に前記電極を仮止めする工程、(B) Inserting a pair of electrodes arranged side by side into the envelope, arranging the pair of electrodes in the light emitting portion side by side, and temporarily fixing the electrodes in the envelope with a power feeding portion connected to the electrodes ,
(c)発光部に連なる封体の封止部分を加熱した後、封止部分の一部を封止して前記給電部を1次封止部内に封じると共に1次封止部に沿って発光部に連通する充填物供給通孔を形成する工程、(C) After heating the sealing part of the sealing body connected to the light emitting part, part of the sealing part is sealed to seal the power feeding part in the primary sealing part and emit light along the primary sealing part. Forming a filler supply through hole communicating with the section;
(d)1次封止部が形成された封体の内部を不活性ガスでフラッシングする工程、(D) a step of flushing the inside of the envelope in which the primary sealing portion is formed with an inert gas;
(e)充填物供給通孔から発光部内に必要充填物を充填する工程、(E) a step of filling a necessary filler into the light emitting part from the filler supply through-hole,
(f)封体の根元を封切する工程、(F) a step of cutting off the base of the envelope;
(g)充填物供給通孔の少なくとも一部を閉塞する工程、とで構成されている片口放電灯の製造方法において、(G) In the method for manufacturing a single-end discharge lamp, comprising a step of closing at least a part of the filling material supply hole,
前記(c)及び(d)工程の間、前記発光部を1,000℃以上で且つ前記封体が軟化しない温度で加熱することを特徴とする片口放電灯の製造方法。During the steps (c) and (d), the light emitting part is heated at a temperature of 1,000 ° C. or higher and the envelope is not softened.
JP2003200863A 2003-07-24 2003-07-24 Manufacturing method of single-end discharge lamp Expired - Fee Related JP3950821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200863A JP3950821B2 (en) 2003-07-24 2003-07-24 Manufacturing method of single-end discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200863A JP3950821B2 (en) 2003-07-24 2003-07-24 Manufacturing method of single-end discharge lamp

Publications (2)

Publication Number Publication Date
JP2005044553A JP2005044553A (en) 2005-02-17
JP3950821B2 true JP3950821B2 (en) 2007-08-01

Family

ID=34261108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200863A Expired - Fee Related JP3950821B2 (en) 2003-07-24 2003-07-24 Manufacturing method of single-end discharge lamp

Country Status (1)

Country Link
JP (1) JP3950821B2 (en)

Also Published As

Publication number Publication date
JP2005044553A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
EP0866488B1 (en) Manufacturing method of a high-pressure discharge lamp
JP2007095665A (en) Short-arc type high-pressure discharge electrode, short-arc type high-pressure discharge tube, short-arc type high-pressure discharge light source device and their manufacturing methods
JP4229831B2 (en) Manufacturing method of arc tube for high intensity discharge lamp
JP2001015067A (en) Arc tube for discharge lamp device
US6790115B2 (en) Arc tube for discharge lamp and method of fabricating the same
JPS5816751B2 (en) Introductory seal assembly, small high pressure metal vapor discharge lamp and its sealing method
US7438620B2 (en) Arc tube of discharge lamp having electrode assemblies receiving vacuum heat treatment and method of manufacturing of arc tube
JP3555889B2 (en) High pressure discharge lamp and method of manufacturing the same
JP3950821B2 (en) Manufacturing method of single-end discharge lamp
JP3653195B2 (en) Manufacturing method of arc tube for discharge lamp apparatus and arc tube
JPH04262361A (en) High-voltage discharge lamp and manufacture thereof
JP4555591B2 (en) Manufacturing method of single-end discharge lamp
JP3217313B2 (en) High pressure discharge lamp and method of manufacturing the same
US6729925B2 (en) Method for manufacturing discharge tube and discharge lamp
JP2000294192A (en) Double discharge tube and its manufacture
JP2002298729A (en) Circular fluorescent lamp and luminaire
JP4307948B2 (en) Single-end discharge lamp and manufacturing method thereof
JP2005183267A (en) Lamp
JP5895120B2 (en) Ultraviolet transmission xenon discharge tube and lighting device using the ultraviolet transmission xenon discharge tube
KR101227766B1 (en) Electric lamp with inner assembly and outer bulb and method for manufacturing
JP2005116280A (en) Manufacturing method of single-base type discharge lamp and single-base type discharge lamp manufactured by the method
JP2004014326A (en) Fluorescent lamp and manufacturing method of fluorescent lamp
JP3463570B2 (en) Single-sided metal halide lamp and method of manufacturing the same
JP3577521B2 (en) Fluorescent lamp
JP2022061375A (en) Structure for sealing lamp, lamp, and method for sealing lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees