JP2003327966A - Liquid crystal material for optical modulation element - Google Patents

Liquid crystal material for optical modulation element

Info

Publication number
JP2003327966A
JP2003327966A JP2002132303A JP2002132303A JP2003327966A JP 2003327966 A JP2003327966 A JP 2003327966A JP 2002132303 A JP2002132303 A JP 2002132303A JP 2002132303 A JP2002132303 A JP 2002132303A JP 2003327966 A JP2003327966 A JP 2003327966A
Authority
JP
Japan
Prior art keywords
liquid crystal
monomer
crystal material
blue phase
polymer network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002132303A
Other languages
Japanese (ja)
Other versions
JP3779937B2 (en
Inventor
Hirotsugu Kikuchi
裕嗣 菊池
Chisato Kajiyama
千里 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002132303A priority Critical patent/JP3779937B2/en
Publication of JP2003327966A publication Critical patent/JP2003327966A/en
Application granted granted Critical
Publication of JP3779937B2 publication Critical patent/JP3779937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a liquid crystal material which can develop a blue phase over such a sufficiently wide temperature range as being supplied for practical uses as optical modulation elements. <P>SOLUTION: This liquid crystal material for optical modulation elements comprises the blue phase of a composite liquid crystal composition (polymer network/low molecular liquid crystal) which comprises a low molecule liquid crystal capable of developing the blue phase between a cholesteric phase and an isotropic phase, and a polymer network formed in the low molecule liquid crystal by polymerizing an amorphous monomer (for example, an alkyl group side chain-having acrylate-based monomer) together with a crosslinking agent. The liquid crystal material for optical modulation elements is produced by dispersing the monomer and the crosslinking agent in the low molecule liquid crystal and then polymerizing the dispersion at a temperature holding the blue phase. Thus, such the liquid crystal material that the developed temperature of the blue phase is ranged in a temperature width of ≥60°C nipping room temperature can be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液晶を利用する光
変調の技術分野に属し、特に、光学変調素子として用い
られるのに好適な新規な液晶材料とその作製法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of light modulation using liquid crystals, and more particularly to a novel liquid crystal material suitable for use as an optical modulator and a method for producing the same.

【0002】[0002]

【従来の技術】光の強度や偏光状態を高速・高精度で制
御する素子(光学変調素子)は、光情報処理技術におい
て不可欠である。これまで、光学変調素子として電気光
学効果を示す無機単結晶が主として使用されてきた。し
かしながら、一般に無機単結晶は高価であり形状の自由
度に乏しいため、近年液晶を用いた安価で小型の光学変
調素子が注目されている。液晶は大きな複屈折と多彩な
電気光学効果を示すが、応答速度が低いことと偏光板を
必要とするため透過光の約半分をロスすることが問題と
なっている。
2. Description of the Related Art An element (optical modulation element) for controlling the intensity and polarization state of light at high speed and with high precision is indispensable in optical information processing technology. Up to now, an inorganic single crystal exhibiting an electro-optical effect has been mainly used as an optical modulator. However, since an inorganic single crystal is generally expensive and has a low degree of freedom in shape, an inexpensive and small-sized optical modulation element using liquid crystal has recently been attracting attention. Liquid crystals exhibit large birefringence and various electro-optical effects, but the problem is that the response speed is low and a half of the transmitted light is lost because a polarizing plate is required.

【0003】青色相(Blue Phase:以下BPと略記する
ことがある)は、コレステリック相と等方相の間の数℃
(一般的には1〜3℃)の温度範囲(温度幅)で出現す
ることのある液晶相の一つで、数100nmオーダの格子
定数の体心立方格子(BPI)や単純立方格子(BPI
I)構造のような三次元周期構造の形成に起因すること
が知られている。BPは可視光に対して、ブラッグ反射
や旋光性を示し、電界や磁界などの外場により入射光の
回折角や偏光状態をマイクロ秒オーダーの応答時間で変
化させることのできる特異な電気光学特性を示す。その
ため、BPを示す液晶は、従来の液晶変調素子を遥かに
凌ぐ応答速度と多機能な光変調が可能である。しかしな
がら、BPはコレステリック相と等方相の間のわずか1
〜3℃の温度範囲でしか発現しないため、素子の精密な
温度制御が必要となることが問題となり、BP液晶から
成る光学変調素子は未だ実用化に到っていない。
The blue phase (hereinafter sometimes abbreviated as BP) is a few degrees Celsius between the cholesteric phase and the isotropic phase.
It is one of the liquid crystal phases that may appear in the temperature range (generally 1 to 3 ° C) (temperature range), and is a body-centered cubic lattice (BPI) or a simple cubic lattice (BPI) with a lattice constant of the order of several 100 nm.
I) It is known to be caused by the formation of a three-dimensional periodic structure such as a structure. BP exhibits Bragg reflection and optical rotatory power with respect to visible light, and is a unique electro-optical characteristic that can change the diffraction angle and polarization state of incident light with a microsecond-order response time by an external field such as an electric field or magnetic field. Indicates. Therefore, a liquid crystal exhibiting BP can have a response speed far superior to that of a conventional liquid crystal modulator and a multifunctional optical modulation. However, BP is only 1 between cholesteric and isotropic phases.
Since it appears only in the temperature range of up to 3 ° C., there is a problem that precise temperature control of the element is required, and an optical modulation element made of BP liquid crystal has not yet been put to practical use.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、光学
変調素子として実用に供し得るような充分に広い温度範
囲にわたって青色相を発現することのできる新しい液晶
材料を開発することにある。
An object of the present invention is to develop a new liquid crystal material capable of exhibiting a blue phase over a sufficiently wide temperature range that can be put to practical use as an optical modulator.

【0005】[0005]

【課題を解決するための手段】本発明者は、検討を重ね
た結果、青色相を示す低分子の液晶中に特定構造のモノ
マー由来の高分子のネットワークを形成させることによ
り青色相の発現温度範囲(温度幅)を大幅に拡大させる
ことに成功し、本発明を導き出した
Means for Solving the Problems As a result of extensive studies, the present inventors have found that by forming a polymer network derived from a monomer having a specific structure in a low-molecular liquid crystal exhibiting a blue phase, the temperature at which the blue phase appears. We succeeded in greatly expanding the range (temperature range) and derived the present invention.

【0006】かくして、本発明は、コレステリック相と
等方相の間で青色相を発現し得る低分子液晶と、該低分
子液晶中に形成された高分子ネットワークであって非液
晶性のモノマーが架橋剤とともに重合することにより形
成された高分子ネットワークとから成る(高分子ネット
ワーク/低分子液晶)複合系液晶組成物の青色相から構
成されていることを特徴とする光学変調素子用液晶材料
を提供するものである。本発明に従えば、さらに、上記
の光学変調素子用液晶を製造する方法であって、低分子
液晶中にモノマーと架橋剤を分散させ、青色相が保持さ
れている温度下に重合を行う工程を含むことを特徴とす
る方法が提供される。
Thus, according to the present invention, a low molecular weight liquid crystal capable of exhibiting a blue phase between a cholesteric phase and an isotropic phase, and a polymer network formed in the low molecular weight liquid crystal and having a non-liquid crystalline monomer are used. A liquid crystal material for an optical modulator, which is composed of a blue phase of a (polymer network / low-molecular liquid crystal) composite liquid crystal composition composed of a polymer network formed by polymerizing with a crosslinking agent. It is provided. According to the invention, there is further provided a method for producing the above liquid crystal for optical modulation element, which comprises a step of dispersing a monomer and a cross-linking agent in a low-molecular liquid crystal, and polymerizing at a temperature at which a blue phase is maintained. A method is provided comprising:

【0007】[0007]

【発明の実施の形態】光学変調素子として用いられるの
に好適な本発明の液晶材料は、これまでに知られている
(高分子ネットワーク/低分子液晶)複合系液晶組成物
とは別異の技術思想に基づく新しいタイプの(高分子ネ
ットワーク/低分子液晶)複合系液晶組成物によって発
現されるBP(青色相)から構成されるものである。す
なわち、表示素子(ディスプレイ)等として使用される
液晶モードであるPDLC(Polymer Dispersed Liquid
Crystal)モードの1つとして、低分子液晶中に微量の
高分子の網状構造が形成されている(高分子ネットワー
ク/低分子液晶)複合系液晶組成物がよく知られている
が、本発明における(高分子ネットワーク/低分子液
晶)構造は、このような従来のものとは異なる。従来か
ら知られた(高分子ネットワーク/低分子液晶)複合系
液晶組成物においては、ネットワークを形成するポリマ
ーの原料となるモノマー分子として、それ自身、液晶性
であり低分子液晶と相溶性のあるものを用いて高分子ネ
ットワークを形成することにより液晶相の配列を安定さ
せている。
BEST MODE FOR CARRYING OUT THE INVENTION The liquid crystal material of the present invention suitable for use as an optical modulator is different from the (polymer network / low molecular weight liquid crystal) composite liquid crystal composition known so far. It is composed of BP (blue phase) expressed by a new type (polymer network / low-molecular liquid crystal) composite liquid crystal composition based on a technical idea. That is, PDLC (Polymer Dispersed Liquid) which is a liquid crystal mode used as a display element (display) or the like.
As one of the (Crystal) modes, a composite liquid crystal composition in which a minute amount of a polymer network structure is formed in a low-molecular liquid crystal (polymer network / low-molecular liquid crystal) is well known. The (polymer network / low-molecular liquid crystal) structure is different from the conventional one. In the conventionally known (polymer network / low molecular weight liquid crystal) composite liquid crystal composition, as a monomer molecule which is a raw material of a polymer forming a network, it is liquid crystalline itself and is compatible with the low molecular weight liquid crystal. The alignment of the liquid crystal phase is stabilized by forming a polymer network using the material.

【0008】これに対して、本発明は、低分子液晶と相
溶性の低いモノマー分子を重合させて高分子ネットワー
クを形成させると、BPが発現される温度範囲が拡大さ
れるという事実に基づくものである。これは、以下のよ
うな理由によるものと解される:BPは分子配列の線欠
陥と共存状態にあり、欠陥を生成するエネルギーが大き
いために高エネルギー状態、すなわち、等方相直下のご
くわずかな温度範囲でしかBPは発現しない。モノマー
として低分子液晶と相溶性が低いものを用いると、該低
分子液晶のBPの線欠陥にモノマー分子が濃縮され重合
によりBPの線欠陥の構造に対応した高分子ネットワー
クが形成され、これにより、BPの線欠陥を生成するエ
ネルギーの量が低下し、より低温域においてもBPの線
欠陥が生成され、BPの発現温度範囲が拡大するのであ
ろう。
On the other hand, the present invention is based on the fact that when a polymer molecule is formed by polymerizing a monomer molecule having low compatibility with a low molecular weight liquid crystal, a temperature range in which BP is expressed is expanded. Is. This is understood to be due to the following reason: BP is in a state coexisting with line defects in the molecular arrangement, and the energy for generating defects is large, so that BP is in a high energy state, that is, just under the isotropic phase. BP is expressed only in a wide temperature range. When a monomer having low compatibility with a low molecular weight liquid crystal is used as the monomer, the monomer molecules are concentrated in the BP line defects of the low molecular weight liquid crystal, and a polymer network corresponding to the structure of the BP line defect is formed by polymerization. , The amount of energy for generating line defects of BP is reduced, line defects of BP are generated even in a lower temperature region, and the temperature range of BP development may be expanded.

【0009】かくして、本発明の光学変調素子用液晶材
料において高分子ネットワークを形成するのに用いられ
るモノマーは、非液晶性のモノマーである。ここで、本
発明において用いられる非液晶性のモノマーとは、光重
合または熱重合によって重合することができるモノマー
であって、よく知られた液晶を呈する棒状の分子構造
(例えば、ビフェニル基またはビフェニル・シクロヘキ
シル基等の末端にアルキル基、シアノ基、フッ素などが
付いたような分子構造)を有しないモノマーを指称し、
例えば、分子構造中にアクリロイル基、メタクリロイル
基、ビニル基、エポキシ基、フマレート基、シンナモイ
ル基等の重合性基を含むモノマーが挙げられるが、これ
らに限られるものではない。
Thus, the monomer used to form the polymer network in the liquid crystal material for an optical modulator of the present invention is a non-liquid crystalline monomer. Here, the non-liquid crystal monomer used in the present invention is a monomer that can be polymerized by photopolymerization or thermal polymerization, and has a well-known rod-shaped molecular structure (for example, biphenyl group or biphenyl).・ A monomer that does not have a molecular structure such as an alkyl group, cyano group, or fluorine attached to the terminal such as a cyclohexyl group)
For example, a monomer having a polymerizable group such as an acryloyl group, a methacryloyl group, a vinyl group, an epoxy group, a fumarate group, or a cinnamoyl group in its molecular structure can be used, but the monomer is not limited thereto.

【0010】本発明の光学変調素子用液晶材料において
高分子ネットワークを形成するのに用いられる非液晶性
モノマーとして好ましい例は、分子構造中にアクリロイ
ル基またはメタクリロイル基を含むアクリレート系モノ
マーであり、特に好ましいのは、側鎖としてアルキル基
を有する枝分かれ構造のアクリレート系モノマーであ
る。アルキル基は、一般に、炭素数1〜4のアルキル基
であり、このようなアルキル基から成る側鎖をモノマー
単位当たり少なくとも1個有するモノマーを用いる。非
液晶性の分子構造を有するモノマーであっても枝分かれ
していないモノマーから高分子ネットワークが形成され
る場合には、BPを発現する温度幅の拡大効果が小さい
ことが見出されている。アクリレート系モノマーの好適
な例としてはシクロヘキシルアクリレートなど、また、
側鎖としてアルキル基を有するアクリレート系モノマー
の好適な例としては、2−エチルヘキシルアクリレー
ト、1,3,3−トリメチルヘキシルアクリレートなど
を挙げることができる。
A preferred example of the non-liquid crystalline monomer used for forming a polymer network in the liquid crystal material for an optical modulator of the present invention is an acrylate-based monomer having an acryloyl group or a methacryloyl group in its molecular structure, Preferred is an acrylate-based monomer having a branched structure having an alkyl group as a side chain. The alkyl group is generally an alkyl group having 1 to 4 carbon atoms, and a monomer having at least one side chain composed of such an alkyl group per monomer unit is used. It has been found that the effect of expanding the temperature range for expressing BP is small when the polymer network is formed from monomers that are not branched even if they have a non-liquid crystalline molecular structure. Cyclohexyl acrylate is a preferred example of the acrylate-based monomer,
Preferable examples of the acrylate-based monomer having an alkyl group as a side chain include 2-ethylhexyl acrylate and 1,3,3-trimethylhexyl acrylate.

【0011】如上のモノマーが、架橋剤とともに重合に
供されることにより、高分子ネットワークが形成される
ことになる。この架橋剤は、液晶性または非液晶性の化
合物のいずれでもよく、用いたモノマーに対応してその
モノマー分子間を結合して網状構造を形成し得るような
反応性部位を有するものを使用すればよい。例えば、本
発明の好ましい態様に従いモノマーとしてアクリレート
系モノマーを用いる場合には、架橋剤として液晶性のジ
アクリレートモノマーを使用することもできる。但し、
架橋剤を用いず、または架橋剤の濃度が低過ぎると、B
P(青色相)が発現せず、または、その発現温度範囲
(温度幅)が狭くなるので、充分量の架橋剤を用いるこ
とが必要である。また、高分子ネットワークの濃度も重
要であり、BPの発現温度幅を広くするには充分量のモ
ノマーと架橋剤を用いて連続性の高い高分子ネットワー
クが形成されるようにすることも必要である(後述の実
施例参照)。
The above-mentioned monomer is subjected to polymerization together with the crosslinking agent to form a polymer network. The cross-linking agent may be either a liquid crystal or non-liquid crystal compound, and one having a reactive site capable of forming a network structure by binding the monomer molecules corresponding to the monomer used may be used. Good. For example, when an acrylate-based monomer is used as the monomer according to the preferred embodiment of the present invention, a liquid crystalline diacrylate monomer can also be used as the crosslinking agent. However,
If no crosslinking agent is used or the concentration of the crosslinking agent is too low, B
Since P (blue phase) is not expressed or the expression temperature range (temperature range) is narrowed, it is necessary to use a sufficient amount of the crosslinking agent. Further, the concentration of the polymer network is also important, and in order to widen the temperature range of BP expression, it is necessary to use a sufficient amount of the monomer and the cross-linking agent so that the polymer network having high continuity is formed. Yes (see Examples below).

【0012】光学変調素子として用いられるのに好適な
本発明の液晶材料における(高分子ネットワーク/低分
子液晶)複合系液晶組成物を構成する低分子液晶は、コ
レステリック相(カイラルネマチック相)と等方相の間
で青色相を発現し得るものである。このような低分子液
晶は、ビフェニル、ターフェニル、ビフェニル・シクロ
ヘキシル等の分子構造を含み、不斉原子の存在によりそ
れ自身がカイラリティー(キラリティー)を有するか、
または、カイラルな物質(カイラルドーパント)を添加
されることにより、コレステリック相(カイラルネマチ
ック相)を発現し得る物質であって、そのコレステリッ
ク相(カイラルネマチック相)におけるらせんのピッチ
長が約500nm以下となるようなものから選ばれる。こ
のような液晶は、低温でコレステリック相(カイラルネ
マチック相)を発現し、それより高温で等方相を発現す
るとともに、コレステリック相(カイラルネマチック
相)と等方相の間のわずかな温度領域において青色相を
発現することが知られている。これらの低分子液晶は、
一般に、複数の種類を混合して使用することが好まし
い。
The low molecular weight liquid crystal constituting the (polymer network / low molecular weight liquid crystal) composite liquid crystal composition in the liquid crystal material of the present invention which is suitable for use as an optical modulator is a cholesteric phase (chiral nematic phase) or the like. A blue phase can be developed between the phases. Such a low-molecular liquid crystal includes a molecular structure such as biphenyl, terphenyl, biphenyl / cyclohexyl, and has chirality (chirality) by itself due to the presence of an asymmetric atom.
Alternatively, it is a substance that can develop a cholesteric phase (chiral nematic phase) by adding a chiral substance (chiral dopant), and the helical pitch length in the cholesteric phase (chiral nematic phase) is about 500 nm or less. It is selected from the following. Such a liquid crystal develops a cholesteric phase (chiral nematic phase) at a low temperature and an isotropic phase at a higher temperature, and in a slight temperature region between the cholesteric phase (chiral nematic phase) and the isotropic phase. It is known to develop a blue hue. These low-molecular liquid crystals are
Generally, it is preferable to use a mixture of a plurality of types.

【0013】本発明の光学変調素子用液晶材料は、如上
の低分子液晶と高分子ネットワークとから成る(高分子
ネットワーク/低分子液晶)複合系液晶組成物の青色相
から構成される。この(高分子ネットワーク/低分子液
晶)複合系液晶組成物の青色相は、低分子液晶中にモノ
マーと架橋剤を分散させ、青色相が保持されている温度
下に重合反応を行うことによって得られる。
The liquid crystal material for an optical modulator of the present invention is composed of a blue phase of a composite liquid crystal composition (polymer network / low molecular liquid crystal) composed of the above low molecular liquid crystal and polymer network. The blue phase of this (polymer network / low-molecular liquid crystal) composite liquid crystal composition is obtained by dispersing a monomer and a cross-linking agent in the low-molecular liquid crystal and performing a polymerization reaction at a temperature at which the blue phase is maintained. To be

【0014】青色相が保持されていることは、偏光顕微
鏡による観察および反射スペクトルの測定により確認す
ることができる。すなわち、青色相が出現していると、
青色相に特徴的な青色および黄緑色のplatelets(小板
状組織)が偏光顕微鏡によって観察され、また、この黄
緑色のplateletsに対応する約550nmの波長において反
射スペクトルにピークが認められる。
The retention of the blue phase can be confirmed by observation with a polarization microscope and measurement of the reflection spectrum. That is, when the blue hue appears,
The blue and yellow-green platelets (platelet-like tissue) characteristic of the blue phase are observed by a polarization microscope, and a peak is observed in the reflection spectrum at a wavelength of about 550 nm corresponding to the yellow-green platelets.

【0015】重合は、熱重合および光重合のいずれでも
行うことができるが、熱重合の場合は、青色相が保持さ
れる温度と重合温度(加熱温度)とが重なる範囲に限界
があり、また、高分子ネットワークの形態が加熱により
変化する可能性もあるので、紫外光を用いる光重合によ
るのが好ましい。また、重合に際しては、重合速度を速
めるために、低分子液晶中に、モノマーと架橋剤に加え
て重合開始剤も分散させておくことが好ましい。光重合
開始剤としては、アセトフェノン系、ベンゾフェノン
系、ベンゾインエーテル系、チオキサントン系などの各
種の開始剤が使用可能であり、具体的には、2,2−ジ
メトキシ−2−フェニルアセトフェノンなどが例示でき
る。さらに、既述したように、低分子液晶にカイラルネ
マチック相を発現させるためのカイラルドーパントを添
加することが必要となることもある。
The polymerization can be carried out by either thermal polymerization or photopolymerization, but in the case of thermal polymerization, there is a limit to the range in which the temperature at which the blue phase is retained and the polymerization temperature (heating temperature) overlap, and Since the morphology of the polymer network may change by heating, photopolymerization using ultraviolet light is preferable. Further, in the polymerization, it is preferable to disperse the polymerization initiator in addition to the monomer and the crosslinking agent in the low molecular weight liquid crystal in order to accelerate the polymerization rate. As the photopolymerization initiator, various initiators such as acetophenone-based, benzophenone-based, benzoin ether-based, and thioxanthone-based initiators can be used, and specific examples thereof include 2,2-dimethoxy-2-phenylacetophenone. . Furthermore, as described above, it may be necessary to add a chiral dopant for expressing a chiral nematic phase in the low-molecular liquid crystal.

【0016】かくして、本発明に従い、(高分子ネット
ワーク/低分子液晶)複合系液晶組成物の青色相から成
る液晶材料を作製するには、如上のように、低分子液晶
中にモノマーと架橋剤、さらには、必要に応じて重合開
始剤やカイラルドーパントを分散させた混合溶液を適当
なセルに注入して以下のように重合反応に供する:先
ず、重合前の試料(混合溶液)を降温または昇温させて
BP(青色相)が発現していることを、既述のように偏
光顕微鏡観察および/または反射スペクトル測定により
確認する。次に、BP発現が確認された温度から試料を
昇温または降温しplateletsの黄緑色の輝度が弱くなっ
たことが(偏光顕微鏡観察および/または反射スペクト
ル測定により)認められた時点で紫外光を照射し、黄緑
色の輝度が強くなったら紫外光照射を一旦停止する。そ
の後、試料をさらに降温または昇温し、再びplatelets
の黄緑色の輝度が弱くなった温度において紫外光を照射
し、plateletsの黄緑色の輝度が強くなると紫外光照射
を一旦停止する。この操作を繰り返し、BPを発現する
温度(plateletsの黄緑色の輝度が強くなる温度)が低
分子液晶単独の系のBP発現温度とほぼ一致した後、さ
らに、一定時間(例えば、1時間)紫外光を照射するこ
とにより重合を完了させる。以上の操作は光重合による
ものであるが、熱重合による場合は、同様に偏光顕微鏡
観察および/または反射スペクトル測定によりBP発現
が確認され且つ重合反応が進行する温度下に系を維持す
ることにより重合を行うことができる。
Thus, according to the present invention, in order to prepare a liquid crystal material comprising a blue phase of the (polymer network / low molecular weight liquid crystal) composite liquid crystal composition, a monomer and a crosslinking agent are added to the low molecular weight liquid crystal as described above. Further, if necessary, a mixed solution in which a polymerization initiator or a chiral dopant is dispersed is injected into an appropriate cell and subjected to a polymerization reaction as follows: First, a sample (mixed solution) before polymerization is cooled or It is confirmed that BP (blue phase) is developed by raising the temperature by observing with a polarization microscope and / or reflection spectrum measurement as described above. Next, when the sample was heated or cooled from the temperature at which BP expression was confirmed and the yellow-green brightness of the platelets was weakened (by observation with a polarizing microscope and / or reflection spectrum measurement), ultraviolet light was emitted. Irradiate, and once the intensity of yellow-green becomes strong, stop the irradiation of ultraviolet light once. Then, further lower or raise the temperature of the sample,
UV light is radiated at a temperature at which the yellow-green brightness of No. 2 becomes weaker, and when the yellow-green brightness of the platelets becomes stronger, the UV light irradiation is temporarily stopped. By repeating this operation, the temperature at which BP is expressed (the temperature at which the yellow-green brightness of the platelets becomes stronger) almost coincides with the BP expression temperature of the system of the low-molecular liquid crystal alone, and then UV light is further maintained for a certain time (for example, 1 hour). The polymerization is completed by irradiating with light. Although the above operation is based on photopolymerization, in the case of thermal polymerization, similarly, by maintaining the system at a temperature at which BP expression is confirmed by a polarization microscope observation and / or reflection spectrum measurement and the polymerization reaction proceeds. Polymerization can be carried out.

【0017】以上のような重合反応により得られる(高
分子ネットワーク/低分子液晶)複合系液晶組成物の青
色相(BP)から構成される本発明の液晶材料は、きわ
めて広い温度範囲(温度幅)にわたり安定な青色相を呈
する。例えば、本発明の好ましい例であるアルキル基側
鎖を有するアクリレート系モノマーから形成された高分
子ネットワークを含む液晶材料には室温(15〜25℃)を
挟んで60℃以上の温度幅にわたりBPを発現することが
できるものもある。得られた液晶材料のBP発現も既述
したような偏光顕微鏡観察と反射スペクトル測定により
確認することができる。
The liquid crystal material of the present invention composed of the blue phase (BP) of the composite type liquid crystal composition (polymer network / low molecular liquid crystal) obtained by the above polymerization reaction has an extremely wide temperature range (temperature range). ) Presents a stable blue hue. For example, a liquid crystal material including a polymer network formed of an acrylate-based monomer having an alkyl group side chain, which is a preferred example of the present invention, has a BP over a temperature range of 60 ° C or more across room temperature (15 to 25 ° C). Some can be expressed. The BP expression of the obtained liquid crystal material can also be confirmed by observation with a polarization microscope and reflection spectrum measurement as described above.

【0018】[0018]

【実施例】以下に、本発明の特徴をさらに具体的に明ら
かにするため実施例を示すが、本発明はこれらの実施例
によって制限されるものではない。実施例1:液晶材料の作製 光重合性モノマーとして、非液晶性の2−エチルヘキシ
ルアクリレート(2EHA)(Aldrich社製)、ヘキシ
ルアクリレート(HA)(Aldrich社製)、および1,
3,3−トリメチルヘキシルアクリレート(TMHA)
(Aldrich社製)、ならびに液晶性の6−(4’−シア
ノビフェニル−4−イルオキシ)ヘキシルアクリレート
(6CBA)を用いた。架橋剤として液晶性ジアクリレ
ートモノマー(RM257)(Merck社製)、光重合開始剤
として2,2−ジメトキシ−2−フェニルアセトフェノ
ン(Aldrich社製)を用いた。低分子液晶として、フッ
素系ネマチック混合液晶JC−1041XX(7)(チッソ
社製)およびシアノビフェニル系ネマチック液晶4−シ
アノ−4’−ペンチルビフェニル(5CB)(Aldrich
社製)を等モルで混合したものを用い、カイラルドーパ
ントとしてZLI−4572(9)(Merck社製)を用い
た。用いた光重合性モノマー、架橋剤および光重合開始
剤の化学構造式を図1に、また、用いた低分子液晶およ
びカイラルドーパントの化学構造式を図2に、それぞれ
示している。なお、図1および図2に示す化学構造式に
おいては、慣用的な表現法に従い炭素原子および水素原
子を省略している。
EXAMPLES The features of the present invention will be more specifically described below.
Examples are shown for the sake of clarity, but the present invention is not limited to these examples.
Is not limited by.Example 1: Preparation of liquid crystal material Non-liquid crystalline 2-ethylhexyl as photopolymerizable monomer
Leacrylate (2EHA) (Aldrich), hex
Luacrylate (HA) (manufactured by Aldrich), and 1,
3,3-Trimethylhexyl acrylate (TMHA)
(Manufactured by Aldrich), and liquid crystalline 6- (4'-shear
Nobiphenyl-4-yloxy) hexyl acrylate
(6CBA) was used. Liquid crystalline diacryl as a cross-linking agent
Monomer (RM257) (Merck), photopolymerization initiator
2,2-dimethoxy-2-phenylacetopheno
(Manufactured by Aldrich) was used. As a low-molecular liquid crystal,
Elementary nematic mixed liquid crystal JC-1041XX (7) (Chisso
Company) and cyanobiphenyl nematic liquid crystal 4-system
Ano-4'-pentylbiphenyl (5CB) (Aldrich
Chiral dopa
ZLI-4572 (9) (manufactured by Merck) is used as the component.
It was Photopolymerizable monomer used, crosslinking agent and photopolymerization initiation
The chemical structural formula of the agent is shown in Fig. 1, and the used low-molecular liquid crystal and
Figure 2 shows the chemical structural formulas of chiral dopants and chiral dopants, respectively.
Shows. In addition, the chemical structural formulas shown in FIGS.
In the conventional expression, carbon atoms and hydrogen
The child is omitted.

【0019】上記の構成成分を所定の組成で調製した混
合溶液を等方相状態で無配向、セル厚14μmのサンドイ
ッチ型セルに注入した。各サンプルが注入されたセルを
クロスニコル下の偏光顕微鏡で観察し、既述した方法に
従いBPが保持された状態であることを確認しながらメ
タルハライドランプから得られる照射強度1.5mW・c
−2の紫外光を1時間以上照射することにより光重合
を行った。
A mixed solution of the above constituents prepared in a predetermined composition was poured in a non-oriented, sandwich type cell having a cell thickness of 14 μm in an isotropic phase state. The cell into which each sample was injected was observed with a polarizing microscope under crossed Nicols, and the irradiation intensity obtained from the metal halide lamp was 1.5 mW · c while confirming that the BP was retained according to the method described above.
Photopolymerization was performed by irradiating with m −2 ultraviolet light for 1 hour or more.

【0020】さらに、高感度マルチチャンネル光検出器
(C4564−010G、浜松ホトニクス(株))を用いて、
重合前後における各サンプルの反射スペクトル測定を等
方相とカイラルネマチック液晶相との間の温度領域にお
いて行った。光源としてキセノンランプを用いた。表1
は、2EHAを用いた場合の各サンプルの組成を示し、
また、表2は、偏光顕微鏡観察によって得られた表1に
示すサンプルの光重合後の相転移温度およびBPの発現
温度範囲を示すものである。
Further, by using a high sensitivity multi-channel photodetector (C4564-010G, Hamamatsu Photonics KK),
The reflection spectrum of each sample before and after the polymerization was measured in the temperature range between the isotropic phase and the chiral nematic liquid crystal phase. A xenon lamp was used as a light source. Table 1
Shows the composition of each sample when 2EHA is used,
Further, Table 2 shows the phase transition temperature after photopolymerization and the BP expression temperature range of the sample shown in Table 1 obtained by observation with a polarization microscope.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】表2に示されるように、高分子ネットワー
クが存在しない状態(サンプル1)では、BPの発現温
度範囲(温度幅)は1.1K(1.1℃)であったが、高分子
ネットワークの濃度が4mol%の複合系(サンプル2)
においては、BPの発現温度範囲は6.8K(6.8℃)と拡
大された。さらに、高分子ネットワークの濃度が7mol
%以上の複合系(サンプル3〜5)においてはBPの発
現温度範囲は60K(60℃)以上と大きく拡大された。こ
れは、非液晶性でアルキル基側鎖を有するモノマーであ
る2EHAを用いて、BPの線欠陥に対応した高分子ネ
ットワークが形成されたことにより、BPの分子配列構
造と共存関係にある線欠陥が安定化された結果、BPも
安定化されたことに因ると考えられる。
As shown in Table 2, in the absence of the polymer network (Sample 1), the BP expression temperature range (temperature range) was 1.1 K (1.1 ° C), but the concentration of the polymer network was Is a 4 mol% complex system (Sample 2)
In, the expression temperature range of BP was expanded to 6.8K (6.8 ° C). Furthermore, the concentration of the polymer network is 7 mol
In the composite system (samples 3 to 5) of more than%, the expression temperature range of BP was greatly expanded to 60 K (60 ° C.) or more. This is because the polymer network corresponding to the line defect of BP was formed by using 2EHA, which is a non-liquid crystalline monomer having an alkyl group side chain, and thus the line defect having a coexisting relationship with the molecular arrangement structure of BP was formed. It is considered that BP is also stabilized as a result of being stabilized.

【0024】2EHAと同様に非液晶性でアルキル基側
鎖を有するTMHAを用いた場合も顕著なBP発現温度
範囲拡大効果が認められ、サンプル3とほぼ同じ組成で
BPの発現温度範囲は60℃以上と大きく拡大された。し
かし、非液晶性であるがアルキル基側鎖を有しないHA
を用いた場合は、サンプル3とほぼ同じ組成においても
BPの発現温度範囲は8.2℃であり、2EHAを用いた
場合に比較して小さいものとなった。一方、液晶性の6
CBAを用いた場合のBPの発現温度範囲は組成に依存
せず2℃程度とほぼ一定であり、BP発現温度範囲の拡
大は実質的に認められなかった。
Similar to 2EHA, when TMHA having a non-liquid crystalline and having an alkyl group side chain was used, a remarkable effect of expanding the BP expression temperature range was recognized, and the BP expression temperature range was 60 ° C. with almost the same composition as Sample 3. It has been greatly expanded. However, HA that is non-liquid crystalline but does not have an alkyl group side chain
When BP was used, the expression temperature range of BP was 8.2 ° C. even when the composition was almost the same as that of sample 3, which was smaller than that when 2EHA was used. On the other hand, the liquid crystalline 6
When CBA was used, the BP expression temperature range was almost constant at about 2 ° C. without depending on the composition, and expansion of the BP expression temperature range was not substantially observed.

【0025】図3は、偏光顕微鏡観察の1例として、上
記のサンプル3の偏光顕微鏡観察像を示すものである。
等方相(図3の(A))から降温させていくと、BPの
発現に伴なう青色と黄緑色のplateletsが観察された
(図3のB)。他のサンプルについても幅広い温度範囲
で同様の像が観察された。
FIG. 3 shows a polarization microscope observation image of the sample 3 as an example of the polarization microscope observation.
When the temperature was lowered from the isotropic phase ((A) of FIG. 3), blue and yellow-green platelets associated with the expression of BP were observed (B of FIG. 3). Similar images were observed for other samples over a wide temperature range.

【0026】図4は、1例としてサンプル3の反射スペ
クトルの温度依存性を示すものである。低分子液晶単独
系と異なり、BPの発現に起因するピークが幅広い温度
範囲で観察された(図4の(A)および(B))。ま
た、カイラルネマチック液晶相のピッチ長に対応するピ
ークの発現が観測されなかった(図4の(C))。した
がって、幅広い温度でBPの分子配列構造が安定化され
たことが明らかとなった。
FIG. 4 shows the temperature dependence of the reflection spectrum of Sample 3 as an example. Unlike the low molecular weight liquid crystal alone system, peaks due to the expression of BP were observed in a wide temperature range ((A) and (B) of FIG. 4). Moreover, the expression of a peak corresponding to the pitch length of the chiral nematic liquid crystal phase was not observed ((C) of FIG. 4). Therefore, it was revealed that the molecular arrangement structure of BP was stabilized over a wide temperature range.

【0027】実施例2:液晶材料の電気光学特性の評価 本発明に従う液晶材料の光学変調素子としての適用性を
評価するため、電気光学特性評価装置を用いて、室温
(20℃)下に、正弦波、1kHzの交流電界を印加し、
その電気光学応答速度および透過光強度の印加電圧依存
性を測定した。用いた入射光はHe−Neレーザー光
(λ=632.8nm)であり、透過光の検出は、検格子を
偏光子に対して45度回転させた状態で行った。
[0027]Example 2: Evaluation of electro-optical characteristics of liquid crystal material The applicability of the liquid crystal material according to the present invention as an optical modulator
At the room temperature using an electro-optical characteristic evaluation device for evaluation.
Sine wave, 1kHz AC electric field is applied under (20 ℃),
Dependence of electro-optical response speed and transmitted light intensity on applied voltage
The sex was measured. The incident light used is He-Ne laser light.
(Λ = 632.8nm), and the transmitted light is detected by a check grid.
It was performed with the polarizer rotated by 45 degrees.

【0028】図5は、測定結果の1例として、実施例1
のサンプル3から作製された液晶材料に上記の交流電界
(80V)を印加したときの透過光強度の時間依存性を示
すものである。電界印加に対して透過光強度が増加し旋
光性が低下しており、液晶材料により入射光の偏光状態
が変化することが理解される。これは低分子液晶分子が
電界印加方向に沿って配列しようとすることでBPの螺
旋構造が崩れることに起因すると考えられる。また、立
ち上がりおよび下がりともに1〜2ms程度とネマチッ
ク液晶と比較して高速の電気光学応答を示した。図6
は、透過光強度の印加電圧の2乗に対する依存性を示す
ものである。透過光強度と印加電圧の2乗が比例関係に
あることから、誘電率異方性に伴う電気光学応答挙動で
あるといえる。
FIG. 5 shows Example 1 as an example of the measurement results.
3 shows the time dependence of the intensity of transmitted light when the above-mentioned AC electric field (80 V) is applied to the liquid crystal material produced from Sample 3 of FIG. It is understood that the transmitted light intensity is increased and the optical rotatory power is reduced in response to the application of an electric field, and the polarization state of incident light changes depending on the liquid crystal material. It is considered that this is because the low molecular weight liquid crystal molecules are arranged along the direction of the applied electric field to break the helical structure of BP. Further, both rising and falling are about 1-2 ms, which is a high-speed electro-optical response as compared with the nematic liquid crystal. Figure 6
Shows the dependence of the transmitted light intensity on the square of the applied voltage. Since the transmitted light intensity and the square of the applied voltage have a proportional relationship, it can be said that this is an electro-optical response behavior associated with the dielectric anisotropy.

【0029】[0029]

【発明の効果】本発明に従えば、青色相(BP)の特異
な電気光学特性を維持したまま、その発現温度範囲を大
幅に拡大することができ、BPを光学変調素子として実
用化するための障害であった発現温度の狭さの問題が克
服される。本発明の液晶材料は、BPの回折・旋光特性
を活用した新規な光学変調素子として幅広い温度範囲で
利用可能であり、マイクロオプトエレクトロニクス分野
における新たな発展に資することができる。
According to the present invention, the expression temperature range of the blue phase (BP) can be greatly expanded while maintaining the peculiar electro-optical characteristics of the blue phase (BP), and the BP is put into practical use as an optical modulator. The problem of narrowing the expression temperature, which was a hindrance to, is overcome. INDUSTRIAL APPLICABILITY The liquid crystal material of the present invention can be used in a wide temperature range as a novel optical modulator utilizing the diffraction and optical rotation properties of BP and can contribute to new development in the field of micro-optoelectronics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例において用いられた光重合性モ
ノマー、架橋剤および光重合開始剤の化学構造式を示
す。
FIG. 1 shows chemical structural formulas of a photopolymerizable monomer, a crosslinking agent and a photopolymerization initiator used in Examples of the present invention.

【図2】本発明の実施例において用いられた低分子液晶
およびカイラルドーパントの化学構造式を示す。
FIG. 2 shows chemical structural formulas of a low molecular weight liquid crystal and a chiral dopant used in Examples of the present invention.

【図3】本発明に従う液晶材料サンプルの偏光顕微鏡写
真の1例を示す。
FIG. 3 shows an example of a polarization micrograph of a liquid crystal material sample according to the present invention.

【図4】本発明に従う液晶材料サンプルの反射スペクト
ルの温度依存性の1例を示す。
FIG. 4 shows an example of temperature dependence of a reflection spectrum of a liquid crystal material sample according to the present invention.

【図5】本発明に従う液晶材料の電気光学特性として交
流電界が印加されたときの透過光強度の時間依存性の1
例を示す。
FIG. 5 shows the electro-optical characteristics of the liquid crystal material according to the present invention, which is one of the time dependence of the transmitted light intensity when an AC electric field is applied.
Here is an example:

【図6】本発明に従う液晶材料の電気光学特性として透
過光強度と印加電圧との関係の1例を示す。
FIG. 6 shows an example of the relationship between transmitted light intensity and applied voltage as electro-optical characteristics of the liquid crystal material according to the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 コレステリック相と等方相の間で青色相
を発現し得る低分子液晶と、該低分子液晶中に形成され
た高分子ネットワークであって非液晶性のモノマーが架
橋剤とともに重合することにより形成された高分子ネッ
トワークとから成る(高分子ネットワーク/低分子液
晶)複合系液晶組成物の青色相から構成されていること
を特徴とする光学変調素子用液晶材料。
1. A low-molecular liquid crystal capable of exhibiting a blue phase between a cholesteric phase and an isotropic phase, and a polymer network formed in the low-molecular liquid crystal and having a non-liquid crystal monomer are polymerized together with a crosslinking agent. A liquid crystal material for an optical modulation device, which is composed of a blue phase of a composite liquid crystal composition (polymer network / low-molecular liquid crystal) composed of a polymer network formed by the above.
【請求項2】 非液晶性のモノマーが、側鎖としてアル
キル基を有するアクリレート系モノマーであることを特
徴とする請求項1に記載の光学変調素子用液晶材料。
2. The liquid crystal material for an optical modulation element according to claim 1, wherein the non-liquid crystal monomer is an acrylate-based monomer having an alkyl group as a side chain.
【請求項3】 (高分子ネットワーク/低分子液晶)複
合系液晶組成物の青色相の発現温度幅が、室温を挟む60
℃以上にわたっていることを特徴とする請求項2に記載
の光学変調素子用液晶材料。
3. (Polymer network / low-molecular liquid crystal) composite liquid crystal composition has a blue phase development temperature range of 60 below room temperature.
The liquid crystal material for an optical modulation element according to claim 2, which has a temperature of not less than ° C.
【請求項4】 請求項1〜3のいずれかに記載の光学変
調素子用液晶材料を製造する方法であって、低分子液晶
中にモノマーと架橋剤を分散させ、青色相が保持されて
いる温度下に重合を行う工程を含むことを特徴とする方
法。
4. A method for producing a liquid crystal material for an optical modulation element according to claim 1, wherein a monomer and a cross-linking agent are dispersed in a low molecular weight liquid crystal, and a blue phase is retained. A method comprising the step of polymerizing at a temperature.
【請求項5】 光重合によって重合を行うことを特徴と
する請求項4に記載の光学変調素子用液晶材料の製造方
法。
5. The method for producing a liquid crystal material for an optical modulation device according to claim 4, wherein the polymerization is performed by photopolymerization.
JP2002132303A 2002-05-08 2002-05-08 Liquid crystal material for optical modulator Expired - Lifetime JP3779937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002132303A JP3779937B2 (en) 2002-05-08 2002-05-08 Liquid crystal material for optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002132303A JP3779937B2 (en) 2002-05-08 2002-05-08 Liquid crystal material for optical modulator

Publications (2)

Publication Number Publication Date
JP2003327966A true JP2003327966A (en) 2003-11-19
JP3779937B2 JP3779937B2 (en) 2006-05-31

Family

ID=29695985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002132303A Expired - Lifetime JP3779937B2 (en) 2002-05-08 2002-05-08 Liquid crystal material for optical modulator

Country Status (1)

Country Link
JP (1) JP3779937B2 (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052674A1 (en) * 2003-11-27 2005-06-09 Asahi Glass Company, Limited Optical element using liquid crystal having optical isotropy
WO2005080529A1 (en) * 2004-02-20 2005-09-01 Asahi Glass Company, Limited Liquid crystal material for optical device and optical modulation device
WO2005081051A1 (en) * 2004-02-20 2005-09-01 Asahi Glass Company, Limited Liquid crystal optical modulating device
WO2005090520A1 (en) * 2004-03-19 2005-09-29 Japan Science And Technology Agency Liquid crystal display device
JP2005316013A (en) * 2004-04-27 2005-11-10 Sharp Corp Display device
WO2006063662A1 (en) * 2004-12-17 2006-06-22 Merck Patent Gmbh Liquid crystal system and liquid crystal display
JP2006225655A (en) * 2005-02-14 2006-08-31 Merck Patent Gmbh Mesogenic compound, liquid crystal medium, and liquid crystal display
JP2007277531A (en) * 2006-03-13 2007-10-25 Kyushu Univ Liquid-crystal composition and liquid-crystal element
EP1887069A1 (en) * 2006-08-11 2008-02-13 MERCK PATENT GmbH Bicyclooctyl reactive mesogens
EP1876489A3 (en) * 2006-07-07 2008-03-26 Hitachi Displays, Ltd. Optically isotropic liquid crystal materials and display apparatus using the same
CN100387640C (en) * 2005-07-22 2008-05-14 东北大学 Thermotropic front cholesteric liquid crystal polymer and its preparing method
WO2008061606A1 (en) * 2006-11-24 2008-05-29 Merck Patent Gmbh Cyclohexylene reactive mesogens and their applications
US7420635B2 (en) 2005-02-03 2008-09-02 Seiko Epson Corporation Liquid crystal display and electronic apparatus having a quasi-isotropic liquid crystal material
JP2008201682A (en) * 2007-02-16 2008-09-04 Kyushu Univ Compound having dendron and mesogen, liquid crystal composition and photo-element
EP2028253A1 (en) 2007-08-24 2009-02-25 Chisso Corporation Optically isotropic liquid crystal medium and optical device
EP2098583A2 (en) 2007-11-20 2009-09-09 Chisso Corporation Optically isotropic liquid crystal medium and optical device
JP2009237584A (en) * 2009-07-13 2009-10-15 Sharp Corp Display device
WO2009139330A1 (en) 2008-05-15 2009-11-19 チッソ株式会社 Optically isotropic liquid crystalline medium, and optical element
US7648647B2 (en) 2007-05-08 2010-01-19 Kyushu University, National University Corporation Polymer/liquid crystal composite and liquid crystal element
US7722783B2 (en) 2007-11-20 2010-05-25 Chisso Corporation Optically isotropic liquid crystal medium and optical device
WO2010058681A1 (en) 2008-11-19 2010-05-27 チッソ株式会社 Optically isotropic liquid crystal medium and optical element
WO2010134430A1 (en) 2009-05-19 2010-11-25 チッソ株式会社 Chlorobenzene derivative, optically isotropic liquid crystal medium, and optical element
US7843540B2 (en) 2005-02-28 2010-11-30 Seiko Epson Corporation Liquid crystal display device and electronic apparatus
CN101900907A (en) * 2009-05-29 2010-12-01 株式会社半导体能源研究所 The manufacture method of liquid crystal indicator
US7879413B2 (en) 2007-08-29 2011-02-01 Chisso Corporation Optically isotropic liquid crystal medium and optical device
CN102122104A (en) * 2009-12-01 2011-07-13 斯坦雷电气株式会社 Optical deflecting device
JP2011145571A (en) * 2010-01-18 2011-07-28 Stanley Electric Co Ltd Light deflector
JP2011525553A (en) * 2008-06-27 2011-09-22 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Liquid crystal media
CN102250624A (en) * 2010-03-31 2011-11-23 索尼公司 Blue phase liquid crystal composition
US8068199B2 (en) 2004-10-29 2011-11-29 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8111358B2 (en) 2005-09-20 2012-02-07 Sharp Kabushiki Kaisha Dispay panel and display apparatus
KR20120026106A (en) * 2009-05-28 2012-03-16 코닌클리케 필립스 일렉트로닉스 엔.브이. Autostereoscopic display device
WO2012074081A1 (en) * 2010-11-30 2012-06-07 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal composition, polymer/liquid crystal composite, liquid crystal element, and liquid crystal display device
US8199291B2 (en) 2008-06-25 2012-06-12 Fujifilm Corporation Liquid crystal display device having polymer-stabilized blue phase liquid crystal layer and transparent films
CN102517035A (en) * 2011-10-05 2012-06-27 友达光电股份有限公司 Blue phase liquid crystal composition and blue phase liquid crystal panel
JP2012251138A (en) * 2011-05-09 2012-12-20 Semiconductor Energy Lab Co Ltd Polymerizable monomer compound, liquid crystal composition, and liquid crystal display apparatus
US8343595B2 (en) 2009-05-19 2013-01-01 Jnc Corporation Chlorofluorobenzene compound, optically isotropic liquid crystal medium, and optical device
US8349209B2 (en) 2006-03-13 2013-01-08 Jnc Corporation Liquid crystal composition and liquid crystal element
US8409468B2 (en) 2010-09-02 2013-04-02 Kabushiki Kaisha Toshiba Liquid crystal composition, liquid crystal panel using the same, and liquid crystal shutter glasses
WO2013065622A1 (en) 2011-11-01 2013-05-10 Jnc株式会社 Optically isotropic liquid crystal medium and optical device
WO2013080724A1 (en) 2011-11-30 2013-06-06 Jnc株式会社 Optically isotropic liquid crystal medium and optical element
WO2013146923A1 (en) * 2012-03-28 2013-10-03 富士フイルム株式会社 Cholesteric liquid crystal mixture, film, infrared reflecting plate, laminated article, and laminated glass
JP2013538249A (en) * 2010-07-22 2013-10-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymer stabilized liquid crystal media and displays
US8648983B2 (en) 2010-04-22 2014-02-11 Au Optronics Corporation Blue phase liquid crystal display and method for fabricating the same
US8760592B2 (en) 2010-03-26 2014-06-24 Stanley Electric Co., Ltd. Light deflecting apparatus
WO2014097952A1 (en) 2012-12-17 2014-06-26 Jnc株式会社 Octahydro binaphthyl-based chiral compound-containing liquid-crystal composition and optical element
US8836909B2 (en) 2010-11-30 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing liquid crystal display device
US8867005B2 (en) 2005-06-10 2014-10-21 Sharp Kabushiki Kaisha Display element and display device
WO2014176717A1 (en) * 2013-04-28 2014-11-06 East China University Of Science And Technology Polymer-stabilized dual frequency blue phase liquid crystals
US8911644B2 (en) 2010-09-27 2014-12-16 Jnc Corporation Optically isotropic liquid crystal medium and optical device
US9011989B2 (en) 2011-11-01 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal composition, composite of polymer and liquid crystal, and liquid crystal display device
US9116408B2 (en) 2011-11-11 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal element and method for manufacturing the same
US9175222B2 (en) 2012-05-28 2015-11-03 Jnc Corporation Optically isotropic liquid crystal medium and optical device
CN105093765A (en) * 2015-08-26 2015-11-25 上海交通大学 Method for electric control of polymerization process of polymer stabilized blue phase liquid crystal and device thereof
JP5825543B2 (en) * 2013-06-06 2015-12-02 Dic株式会社 Liquid crystal display
US9593094B2 (en) 2014-07-03 2017-03-14 Jnc Corporation Liquid crystal medium, optical device, and liquid crystal compound
US9611429B2 (en) 2013-05-27 2017-04-04 Jnc Corporation Liquid crystal medium, optical device and liquid crystal compound
US9701904B2 (en) 2014-12-25 2017-07-11 Jnc Corporation Optically isotropic liquid crystal medium and optical device
US9738831B2 (en) 2012-06-19 2017-08-22 Jnc Corporation Optically isotropic liquid crystal composition and optical device
KR20170117245A (en) 2009-08-28 2017-10-20 고쿠리쓰다이가쿠호진 규슈다이가쿠 Liquid-crystal display element and substrate used in same
US10308870B2 (en) 2013-12-10 2019-06-04 Jnc Corporation Liquid crystal medium, optical device and liquid crystal compound
KR20190088501A (en) * 2016-12-01 2019-07-26 메르크 파텐트 게엠베하 Polymerizable liquid crystal media with flat optical dispersion and polymer films
JP2021500435A (en) * 2017-10-19 2021-01-07 ユニバーシティ オブ リーズ Oriented nematic elastomer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102952551B (en) 2012-10-24 2014-10-22 京东方科技集团股份有限公司 Polymer dispersed blue-phase liquid crystal material and preparation method thereof as well as liquid crystal display device

Cited By (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052674A1 (en) * 2003-11-27 2005-06-09 Asahi Glass Company, Limited Optical element using liquid crystal having optical isotropy
WO2005080529A1 (en) * 2004-02-20 2005-09-01 Asahi Glass Company, Limited Liquid crystal material for optical device and optical modulation device
WO2005081051A1 (en) * 2004-02-20 2005-09-01 Asahi Glass Company, Limited Liquid crystal optical modulating device
JPWO2005081051A1 (en) * 2004-02-20 2007-10-25 旭硝子株式会社 Liquid crystal light modulator
WO2005090520A1 (en) * 2004-03-19 2005-09-29 Japan Science And Technology Agency Liquid crystal display device
KR100781819B1 (en) * 2004-03-19 2007-12-03 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Liquid crystal display device
JP4519511B2 (en) * 2004-04-27 2010-08-04 シャープ株式会社 Display element
JP2005316013A (en) * 2004-04-27 2005-11-10 Sharp Corp Display device
US8068199B2 (en) 2004-10-29 2011-11-29 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8274632B2 (en) 2004-10-29 2012-09-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
CN103254904A (en) * 2004-12-17 2013-08-21 默克专利股份有限公司 Liquid crystal system and liquid crystal display
US8333906B2 (en) 2004-12-17 2012-12-18 Merck Patent Gmbh Liquid crystal system and liquid crystal display
JP2013231186A (en) * 2004-12-17 2013-11-14 Merck Patent Gmbh Liquid crystal system and liquid crystal display
TWI425080B (en) * 2004-12-17 2014-02-01 Merck Patent Gmbh Liquid crystal system and liquid crystal display
JP2008524347A (en) * 2004-12-17 2008-07-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Liquid crystal system and liquid crystal display
US8409469B2 (en) 2004-12-17 2013-04-02 Merck Patent Gmbh Liquid crystal system and liquid crystal display
WO2006063662A1 (en) * 2004-12-17 2006-06-22 Merck Patent Gmbh Liquid crystal system and liquid crystal display
KR101435761B1 (en) * 2004-12-17 2014-08-28 메르크 파텐트 게엠베하 Liquid crystal system and liquid crystal display
JP2016094623A (en) * 2004-12-17 2016-05-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Liquid crystal system and liquid crystal display
CN103254904B (en) * 2004-12-17 2016-11-09 默克专利股份有限公司 Liquid crystal system and liquid crystal display
US9567522B2 (en) 2004-12-17 2017-02-14 Merck Patent Gmbh Liquid crystal system and liquid crystal display
US7794621B2 (en) 2004-12-17 2010-09-14 Merck Patent Gmbh Liquid crystal system and liquid crystal display
US7420635B2 (en) 2005-02-03 2008-09-02 Seiko Epson Corporation Liquid crystal display and electronic apparatus having a quasi-isotropic liquid crystal material
US7639327B2 (en) 2005-02-03 2009-12-29 Seiko Epson Corporation Liquid crystal display and electronic apparatus having a quasi-isotropic liquid crystal material
JP2006225655A (en) * 2005-02-14 2006-08-31 Merck Patent Gmbh Mesogenic compound, liquid crystal medium, and liquid crystal display
US7843540B2 (en) 2005-02-28 2010-11-30 Seiko Epson Corporation Liquid crystal display device and electronic apparatus
US8867005B2 (en) 2005-06-10 2014-10-21 Sharp Kabushiki Kaisha Display element and display device
CN100387640C (en) * 2005-07-22 2008-05-14 东北大学 Thermotropic front cholesteric liquid crystal polymer and its preparing method
US8111358B2 (en) 2005-09-20 2012-02-07 Sharp Kabushiki Kaisha Dispay panel and display apparatus
US8349209B2 (en) 2006-03-13 2013-01-08 Jnc Corporation Liquid crystal composition and liquid crystal element
JP2007277531A (en) * 2006-03-13 2007-10-25 Kyushu Univ Liquid-crystal composition and liquid-crystal element
EP2698415A2 (en) 2006-03-13 2014-02-19 JNC Corporation Liquid-crystal composition and liquid-crystal element
EP2698415A3 (en) * 2006-03-13 2014-06-11 JNC Corporation Liquid-crystal composition and liquid-crystal element
US7978301B2 (en) 2006-07-07 2011-07-12 Hitachi Displays, Ltd. Optically isotropic liquid crystal display device with interdigitally formed pixel and common electrodes
EP1876489A3 (en) * 2006-07-07 2008-03-26 Hitachi Displays, Ltd. Optically isotropic liquid crystal materials and display apparatus using the same
EP1887069A1 (en) * 2006-08-11 2008-02-13 MERCK PATENT GmbH Bicyclooctyl reactive mesogens
WO2008061606A1 (en) * 2006-11-24 2008-05-29 Merck Patent Gmbh Cyclohexylene reactive mesogens and their applications
US8372307B2 (en) 2006-11-24 2013-02-12 Merck Patent Gmbh Cyclohexylene reactive mesogens and their applications
JP2014159428A (en) * 2006-11-24 2014-09-04 Merck Patent Gmbh Cyclohexylene reactive mesogens and their applications
JP2010510256A (en) * 2006-11-24 2010-04-02 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Cyclohexylene reactive mesogens and their uses
JP2008201682A (en) * 2007-02-16 2008-09-04 Kyushu Univ Compound having dendron and mesogen, liquid crystal composition and photo-element
US7648647B2 (en) 2007-05-08 2010-01-19 Kyushu University, National University Corporation Polymer/liquid crystal composite and liquid crystal element
US7727417B2 (en) 2007-08-24 2010-06-01 Chisso Corporation Optically isotropic liquid crystal medium and optical device
EP2028253A1 (en) 2007-08-24 2009-02-25 Chisso Corporation Optically isotropic liquid crystal medium and optical device
US7879413B2 (en) 2007-08-29 2011-02-01 Chisso Corporation Optically isotropic liquid crystal medium and optical device
EP2098583A2 (en) 2007-11-20 2009-09-09 Chisso Corporation Optically isotropic liquid crystal medium and optical device
US7722783B2 (en) 2007-11-20 2010-05-25 Chisso Corporation Optically isotropic liquid crystal medium and optical device
US8475887B2 (en) 2008-05-15 2013-07-02 Jnc Corporation Optically isotropic liquid crystal medium, and optical device
WO2009139330A1 (en) 2008-05-15 2009-11-19 チッソ株式会社 Optically isotropic liquid crystalline medium, and optical element
US8199291B2 (en) 2008-06-25 2012-06-12 Fujifilm Corporation Liquid crystal display device having polymer-stabilized blue phase liquid crystal layer and transparent films
JP2011525553A (en) * 2008-06-27 2011-09-22 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Liquid crystal media
JP2017061705A (en) * 2008-06-27 2017-03-30 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Liquid-crystalline medium
TWI475097B (en) * 2008-11-19 2015-03-01 Jnc Corp Optical isotropy liquid crystal medium and optical device
US8501285B2 (en) 2008-11-19 2013-08-06 Jnc Corporation Optically isotropic liquid crystal medium and optical device
WO2010058681A1 (en) 2008-11-19 2010-05-27 チッソ株式会社 Optically isotropic liquid crystal medium and optical element
KR20110087280A (en) 2008-11-19 2011-08-02 제이엔씨 주식회사 Optically isotropic liquid crystal medium and optical element
US8409673B2 (en) 2009-05-19 2013-04-02 Jnc Corporation Chlorobenzene derivative, optically isotropic liquid crystal medium, and optical device
US8343595B2 (en) 2009-05-19 2013-01-01 Jnc Corporation Chlorofluorobenzene compound, optically isotropic liquid crystal medium, and optical device
WO2010134430A1 (en) 2009-05-19 2010-11-25 チッソ株式会社 Chlorobenzene derivative, optically isotropic liquid crystal medium, and optical element
KR20120026106A (en) * 2009-05-28 2012-03-16 코닌클리케 필립스 일렉트로닉스 엔.브이. Autostereoscopic display device
JP2012528349A (en) * 2009-05-28 2012-11-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Autostereoscopic display device
KR101696446B1 (en) * 2009-05-28 2017-01-13 코닌클리케 필립스 엔.브이. Autostereoscopic display device
JP2014197220A (en) * 2009-05-29 2014-10-16 株式会社半導体エネルギー研究所 Manufacturing method of liquid crystal display device
TWI504997B (en) * 2009-05-29 2015-10-21 Semiconductor Energy Lab Method for manufacturing liquid crystal display device
JP2011008242A (en) * 2009-05-29 2011-01-13 Semiconductor Energy Lab Co Ltd Method for manufacturing liquid crystal display device
KR101755597B1 (en) * 2009-05-29 2017-07-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing liquid crystal display device
US9239497B2 (en) 2009-05-29 2016-01-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing liquid crystal display device
CN101900907A (en) * 2009-05-29 2010-12-01 株式会社半导体能源研究所 The manufacture method of liquid crystal indicator
JP4550152B2 (en) * 2009-07-13 2010-09-22 シャープ株式会社 Display element
JP2009237584A (en) * 2009-07-13 2009-10-15 Sharp Corp Display device
KR20170117245A (en) 2009-08-28 2017-10-20 고쿠리쓰다이가쿠호진 규슈다이가쿠 Liquid-crystal display element and substrate used in same
CN102122104A (en) * 2009-12-01 2011-07-13 斯坦雷电气株式会社 Optical deflecting device
JP2011145571A (en) * 2010-01-18 2011-07-28 Stanley Electric Co Ltd Light deflector
US8760592B2 (en) 2010-03-26 2014-06-24 Stanley Electric Co., Ltd. Light deflecting apparatus
CN102250624A (en) * 2010-03-31 2011-11-23 索尼公司 Blue phase liquid crystal composition
US8648983B2 (en) 2010-04-22 2014-02-11 Au Optronics Corporation Blue phase liquid crystal display and method for fabricating the same
JP2013538249A (en) * 2010-07-22 2013-10-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymer stabilized liquid crystal media and displays
US8409468B2 (en) 2010-09-02 2013-04-02 Kabushiki Kaisha Toshiba Liquid crystal composition, liquid crystal panel using the same, and liquid crystal shutter glasses
US8911644B2 (en) 2010-09-27 2014-12-16 Jnc Corporation Optically isotropic liquid crystal medium and optical device
WO2012074081A1 (en) * 2010-11-30 2012-06-07 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal composition, polymer/liquid crystal composite, liquid crystal element, and liquid crystal display device
US9212308B2 (en) 2010-11-30 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal composition, polymer/liquid crystal composite, liquid crystal element, and liquid crystal display device
JP2017133038A (en) * 2010-11-30 2017-08-03 株式会社半導体エネルギー研究所 Polymer/liquid crystal composite
US8836909B2 (en) 2010-11-30 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing liquid crystal display device
JP2012131987A (en) * 2010-11-30 2012-07-12 Semiconductor Energy Lab Co Ltd Liquid crystal composition, polymer/liquid crystal composite, liquid crystal element, and liquid crystal display device
KR20140001892A (en) 2010-11-30 2014-01-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal composition, polymer/liquid crystal composite, liquid crystal element, and liquid crystal display device
JP2012251138A (en) * 2011-05-09 2012-12-20 Semiconductor Energy Lab Co Ltd Polymerizable monomer compound, liquid crystal composition, and liquid crystal display apparatus
CN102517035B (en) * 2011-10-05 2014-05-14 友达光电股份有限公司 Blue phase liquid crystal composition and blue phase liquid crystal panel
CN102517035A (en) * 2011-10-05 2012-06-27 友达光电股份有限公司 Blue phase liquid crystal composition and blue phase liquid crystal panel
US8609208B2 (en) 2011-11-01 2013-12-17 Jnc Corporation Optically isotropic liquid crystal medium and optical device
WO2013065622A1 (en) 2011-11-01 2013-05-10 Jnc株式会社 Optically isotropic liquid crystal medium and optical device
US9011989B2 (en) 2011-11-01 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal composition, composite of polymer and liquid crystal, and liquid crystal display device
US9116408B2 (en) 2011-11-11 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal element and method for manufacturing the same
WO2013080724A1 (en) 2011-11-30 2013-06-06 Jnc株式会社 Optically isotropic liquid crystal medium and optical element
US8858830B2 (en) 2011-11-30 2014-10-14 Jnc Corporation Optically isotropic liquid crystal medium and optical device
WO2013146923A1 (en) * 2012-03-28 2013-10-03 富士フイルム株式会社 Cholesteric liquid crystal mixture, film, infrared reflecting plate, laminated article, and laminated glass
US9175222B2 (en) 2012-05-28 2015-11-03 Jnc Corporation Optically isotropic liquid crystal medium and optical device
US9738831B2 (en) 2012-06-19 2017-08-22 Jnc Corporation Optically isotropic liquid crystal composition and optical device
WO2014097952A1 (en) 2012-12-17 2014-06-26 Jnc株式会社 Octahydro binaphthyl-based chiral compound-containing liquid-crystal composition and optical element
US9458125B2 (en) 2012-12-17 2016-10-04 Jnc Corporation Octahydro binaphthyl-based chiral compound-containing liquid-crystal composition and optical element
US9976081B2 (en) 2013-04-28 2018-05-22 East China University Of Science And Technology Polymer-stabilized dual frequency blue phase liquid crystals
CN105392864A (en) * 2013-04-28 2016-03-09 华东理工大学 Polymer-stabilized dual frequency blue phase liquid crystals
WO2014176717A1 (en) * 2013-04-28 2014-11-06 East China University Of Science And Technology Polymer-stabilized dual frequency blue phase liquid crystals
US9611429B2 (en) 2013-05-27 2017-04-04 Jnc Corporation Liquid crystal medium, optical device and liquid crystal compound
US10011773B2 (en) 2013-06-06 2018-07-03 Dic Corporation Liquid crystal display device
JP2016021066A (en) * 2013-06-06 2016-02-04 Dic株式会社 Liquid crystal display device
JP5825543B2 (en) * 2013-06-06 2015-12-02 Dic株式会社 Liquid crystal display
US10308870B2 (en) 2013-12-10 2019-06-04 Jnc Corporation Liquid crystal medium, optical device and liquid crystal compound
US9593094B2 (en) 2014-07-03 2017-03-14 Jnc Corporation Liquid crystal medium, optical device, and liquid crystal compound
US9701904B2 (en) 2014-12-25 2017-07-11 Jnc Corporation Optically isotropic liquid crystal medium and optical device
CN105093765A (en) * 2015-08-26 2015-11-25 上海交通大学 Method for electric control of polymerization process of polymer stabilized blue phase liquid crystal and device thereof
KR20190088501A (en) * 2016-12-01 2019-07-26 메르크 파텐트 게엠베하 Polymerizable liquid crystal media with flat optical dispersion and polymer films
KR102497292B1 (en) 2016-12-01 2023-02-07 메르크 파텐트 게엠베하 Polymerizable liquid crystal media and polymeric films with flat optical dispersion
JP2021500435A (en) * 2017-10-19 2021-01-07 ユニバーシティ オブ リーズ Oriented nematic elastomer
JP7467334B2 (en) 2017-10-19 2024-04-15 ユニバーシティ オブ リーズ Oriented Nematic Elastomer

Also Published As

Publication number Publication date
JP3779937B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
JP3779937B2 (en) Liquid crystal material for optical modulator
Lee et al. Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals
Zhang et al. Temperature‐responsive photonic devices based on cholesteric liquid crystals
Mucha Polymer as an important component of blends and composites with liquid crystals
Wang et al. Polymer-stabilized nanoparticle-enriched blue phase liquid crystals
CN102388013B (en) Chlorobenzene derivative, optically isotropic liquid crystal medium, and optical element
Inoue et al. Deformation‐Free, Microsecond Electro‐Optic Tuning of Liquid Crystals
JP2006348226A (en) Liquid crystal/polymer composite
KR20070003952A (en) Liquid crystal display device
KR20070006732A (en) Liquid crystal materials
JP2006348227A (en) Liquid crystal and liquid crystal/polymer composite
KR101531103B1 (en) A Composite Comprising a Polymer and a Blue Phase Liquid Crystal, a Method for Preparing the Composite, and a Liquid Crystal Display Device Comprising the Composite
JP2007308534A (en) Liquid crystal/polymer composite
Guo et al. Effect of network concentration on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band
WO2014192627A1 (en) Liquid crystal medium, optical element, and liquid crystal compound
Lee et al. Initiatorless photopolymerization of liquid crystal monomers
JP4317136B2 (en) Polymerizable mixture
JP7053451B2 (en) A method for obtaining a material containing a liquid crystal mixture having a stabilized blue phase and an optical article containing this material.
JP5378696B2 (en) Polymer / liquid crystal composite material and liquid crystal display element
Kakiuchida et al. Reverse-mode thermoresponsive light attenuators produced by optical anisotropic composites of nematic liquid crystals and reactive mesogens
JP5457048B2 (en) Polymer / liquid crystal composite material and method for producing the same
Zheng et al. Dichroic-dye-doped polymer stabilized optically isotropic chiral liquid crystals
Zheng et al. Low‐temperature‐applicable polymer‐stabilized blue‐phase liquid crystal and its Kerr effect
TWI614331B (en) Dichroic-dye-doped isotropic chiral liquid crystals
Broer Liquid crystalline networks formed by photoinitiated chain cross-linking

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060303

R150 Certificate of patent or registration of utility model

Ref document number: 3779937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term