JP2003326272A - Electric regenerative demineralizer - Google Patents

Electric regenerative demineralizer

Info

Publication number
JP2003326272A
JP2003326272A JP2002136605A JP2002136605A JP2003326272A JP 2003326272 A JP2003326272 A JP 2003326272A JP 2002136605 A JP2002136605 A JP 2002136605A JP 2002136605 A JP2002136605 A JP 2002136605A JP 2003326272 A JP2003326272 A JP 2003326272A
Authority
JP
Japan
Prior art keywords
chamber
desalting
desalination
chambers
exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002136605A
Other languages
Japanese (ja)
Other versions
JP3729349B2 (en
Inventor
Osayuki Inoue
修行 井上
Atsushi Aoyama
淳 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002136605A priority Critical patent/JP3729349B2/en
Publication of JP2003326272A publication Critical patent/JP2003326272A/en
Application granted granted Critical
Publication of JP3729349B2 publication Critical patent/JP3729349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric regenerative demineralizer which has a high removal perfor mance to a weak negative ion component and is relatively small-sized. <P>SOLUTION: The electric regenerative demineralizer is provided with a cathode chamber 2 having a cathode 1, an anode chamber 4 having an anode 3, one or more concentration chambers 8 constituted by disposing cation exchange membranes 6 on the anode 3 side and the anion exchange membranes 5 on the cathode 1 side between both electrodes, and the desalting chambers 7 in which a plurality of desalting chambers 7 among the following desalting chambers (a)-(e) are disposed and the ion exchange membranes are packed in the inside disposed with the following (a)-(e): (a) the desalting chamber 7 in which the cation exchange membrane 6 is disposed on the cathode 1 side and the anion exchange membrane 5 is disposed on the anode 3 side, (b) the desalting chamber 7 in which the cation exchange membranes 6 are disposed on both sides, c the desalting chamber 7 in which the anion exchange membranes 5 are disposed on both sides, (d) the desalting chamber 7 in which the cation exchange membrane 6 is disposed on the cathode 1 side and a bipolar membrane is disposed on the anode 3 side, and (e) the desalting chamber 7 in which the bipolar membrane is disposed on the cathode 1 side and the anion exchange membrane 5 is disposed on the anode 3 side. The electric regenerative demineralizer has the single desalting chamber 7 in which the concentration chambers 8, the anode chambers 4 or the cathode chambers 2 are disposed on both sides and a desalting chamber 7 group in which the desalting chambers 7 are plurality arranged in the adjacent relation respectively by one or more without interposing the concentration chamber 8. Therein, the outlets of the desalting chamber 7 group are connected with the inlet of the single desalting chamber 7 or the outlet of the single desalting chamber 7 is connected with the inlets of the desalting chamber 7 group. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気再生式脱塩装
置に係り、特に、弱陰イオン成分の除去能力が高い比較
的小型の電気再生式脱塩装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric regenerative desalination apparatus, and more particularly to a relatively small electric regenerative desalination apparatus having a high ability to remove weak anion components.

【0002】[0002]

【従来の技術】従来の純水製造方法としては、イオン交
換樹脂を充填した容器に脱塩室入口水を通過させ、脱塩
室入口水中のイオンをH+、OH-イオンに交換すること
により純水を製造するイオン交換法が知られている。し
かし、このイオン交換法では、イオン交換樹脂の交換能
力が飽和すると、イオン交換樹脂の種類に応じて、酸、
アルカリを用いてイオン交換能力の再生をする必要があ
る。イオン交換樹脂の再生操作は、煩雑で、多量の酸、
アルカリの貯蔵及び取り扱い、廃棄に細心の注意が必要
であると共に設備が大きくなる、という問題を有してい
る。それに対し、近年、電気によってイオン交換体を再
生し、連続的に純水を製造する電気再生式脱塩装置が開
発された。これは図4に示すように、脱塩室入口水10
中のイオン分を装置の両端に印可した直流電源により、
濃縮室出口水13及び陰極液、陽極液に移動させること
により除去する装置であり、陰極1を有する陰極室2と
陽極3を有する陽極室4、陰極室2と陽極室4の間に陰
イオン交換膜5と陽イオン交換膜6を配置することによ
り形成された脱塩室7と濃縮室8を備え、少なくとも脱
塩室7内にはイオン交換体9が充填されているものであ
る。
2. Description of the Related Art A conventional method for producing pure water is to pass water in an inlet of a desalting chamber through a container filled with an ion exchange resin and exchange the ions in the water in the inlet of the desalting chamber for H + and OH ions. An ion exchange method for producing pure water is known. However, in this ion exchange method, when the exchange capacity of the ion exchange resin is saturated, an acid,
It is necessary to regenerate the ion exchange capacity using alkali. The regeneration operation of the ion exchange resin is complicated, and a large amount of acid,
There is a problem in that careful storage and handling and disposal of the alkali are required and the equipment becomes large. On the other hand, in recent years, an electric regeneration type desalination apparatus has been developed which regenerates an ion exchanger by electricity and continuously produces pure water. This is as shown in FIG.
By the DC power supply with the ion content inside applied to both ends of the device,
A device for removing water by moving it to the outlet water 13 of the concentrating chamber and the catholyte and anolyte, and an anion between the cathode chamber 2 having the cathode 1 and the anode chamber 4 having the anode 3 and between the cathode chamber 2 and the anode chamber 4. A desalting chamber 7 and a concentrating chamber 8 formed by arranging an exchange membrane 5 and a cation exchange membrane 6 are provided, and at least the desalting chamber 7 is filled with an ion exchanger 9.

【0003】ここで、イオン交換体9は、イオン交換樹
脂、イオン交換繊維、グラフト重合法によりイオン交換
基を導入されたイオン交換不織布、スペーサ等のイオン
交換機能を持つ物であればどのようなイオン交換体でも
よく、陰イオン交換体、陽イオン交換体を単一もしくは
混合、もしくは複層状に充填してある。陰極室2に陰極
室入口水14を、陽極室4に陽極室入口水16を、濃縮
室8に濃縮室入口水12を、脱塩室7に脱塩室入口水1
0を導入し、陰極1と陽極3間に直流電流を印可するこ
とにより、脱塩室入口水10中に含まれているイオン分
は、イオン交換体9の表面を電位の方向に移動し、陰イ
オンは陰イオン交換膜5、陽イオンは陽イオン交換膜6
を透過して、濃縮室8中の濃縮水、陰極室2中の陰極液
及び陽極室4中の陽極液に移動し、脱塩室入口水10は
脱イオン処理され純水11が製造される。
The ion exchanger 9 may be any one having an ion exchange function such as an ion exchange resin, an ion exchange fiber, an ion exchange non-woven fabric having an ion exchange group introduced by a graft polymerization method, and a spacer. It may be an ion exchanger, and the anion exchanger and the cation exchanger are packed in a single or mixed form or in a multi-layer form. The cathode chamber inlet water 14 in the cathode chamber 2, the anode chamber inlet water 16 in the anode chamber 4, the concentration chamber inlet water 12 in the concentrating chamber 8, and the desalting chamber inlet water 1 in the desalting chamber 7.
By introducing 0 and applying a direct current between the cathode 1 and the anode 3, the ion component contained in the demineralization chamber inlet water 10 moves on the surface of the ion exchanger 9 in the direction of potential, Anions are anion exchange membrane 5 and cations are cation exchange membrane 6
Permeate to the concentrated water in the concentrating chamber 8, the catholyte in the cathode chamber 2 and the anolyte in the anode chamber 4, and the deionization chamber inlet water 10 is deionized to produce pure water 11. .

【0004】脱塩室7内に充填されたイオン交換体9
は、水解によって発生するH+、OH-により連続的に再
生されるため、酸あるいはアルカリによる再生作業は必
要なく、このようにして、純水11を連続的に製造する
ことが可能となる(特許第1782943、特許第27
51090、特許第2699256各号明細書、特願平
10−153697等)。最近では、脱塩室7を中間イ
オン交換膜で2つの脱塩室に分割し、片方の脱塩室の流
出水をもう片方の脱塩室に導入することで、脱塩性能を
改善した電気再生式脱塩装置も開発されている(特開2
001−239270、特開2001−327971各
公報)。
Ion exchanger 9 filled in the desalting chamber 7
Is continuously regenerated by H + and OH generated by hydrolyzing, so that it is not necessary to regenerate with acid or alkali, and in this way, the pure water 11 can be continuously produced ( Patent No. 1782943, Patent No. 27
51090, each specification of Japanese Patent No. 2699256, Japanese Patent Application No. 10-153697, etc.). Recently, the desalination chamber 7 is divided into two desalination chambers by an intermediate ion exchange membrane, and the effluent water of one desalination chamber is introduced into the other desalination chamber to improve the desalination performance. A regenerative desalination device has also been developed (Japanese Patent Application Laid-Open No. 2-212058).
001-239270, JP 2001-327971 A).

【0005】また、比較的小型の電気再生式脱塩装置に
おいては、図4の通水方法の他に、図5に示すように、
複数の脱塩室7に直列に脱塩室入口水10を通水するこ
とで脱塩面積を稼ぎ、脱塩能力を増加させる、という方
法も行われている。このような、比較的小型の電気再生
式脱塩装置においては、濃縮室入口水12も各濃縮室8
に直列に通水されたり、陰極室出口水15を濃縮室入口
水12や陽極室入口水16として用いることもある。こ
れらの電気再生式脱塩装置において、濃縮室入口水1
2、陰極室入口水14、陽極室入口水16、脱塩室入口
水10の通水方向は、それぞれ平行流でも、対向流でも
かまわなく、その通水方法には特に制限はない。また、
陰極室2、陽極室4とも、隣接する室が濃縮室8であっ
ても、脱塩室7であってもかまわない。
In a relatively small electric regenerative desalination apparatus, as shown in FIG. 5, in addition to the water flow method shown in FIG.
A method of increasing the desalination capacity by increasing the desalination area by passing deionization chamber inlet water 10 in series to a plurality of desalination chambers 7 is also performed. In such a relatively small-sized electric regenerative desalination apparatus, the concentration chamber inlet water 12 also includes the concentration chamber 8 water.
In some cases, the cathode chamber outlet water 15 is used as the concentrating chamber inlet water 12 or the anode chamber inlet water 16 in some cases. In these electric regeneration type desalination equipment,
2, the cathode chamber inlet water 14, the anode chamber inlet water 16, and the desalting chamber inlet water 10 may flow in parallel flow or in counter flow, and the water flow method is not particularly limited. Also,
Both the cathode chamber 2 and the anode chamber 4 may be adjacent to the concentrating chamber 8 or the desalting chamber 7.

【0006】前記の従来の電気再生式脱塩装置では、炭
酸、シリカなどの弱陰イオン成分の除去能力が、他のイ
オン分の除去能力に比べて劣っていることが一般に知ら
れている。これらの弱陰イオン成分は、電気再生式脱塩
装置に直流電流を過大に印可すればその除去率が多少改
善することも知られているが、その場合でも弱陰イオン
成分は十分には除去できなく、単位流量当りの消費電力
は大きくなってしまう。そのため、後段にイオン交換樹
脂によるカートリッジポリッシャを設置してイオン交換
させる、電気再生式脱塩装置を多段に構成し、第1の電
気再生式脱塩装置で脱塩を行った後、第2の電気再生式
脱塩装置でさらに脱塩処理を行う、などの処置が必要に
応じて行われている。しかし、このような処置を行う
と、設置面積の増大、機器数の増加、価格の上昇を招く
ことになる。
It is generally known that the conventional electric regenerative desalting apparatus described above is inferior in removing ability of weak anion components such as carbonic acid and silica as compared with removing ability of other ion components. It is also known that the removal rate of these weak anion components can be slightly improved by applying an excessive direct current to the electric regeneration type desalination device, but even in that case, the weak anion components are sufficiently removed. This is not possible, and the power consumption per unit flow rate will increase. Therefore, an electrically regenerative desalination apparatus in which a cartridge polisher made of an ion exchange resin is installed in the latter stage to perform ion exchange is configured in multiple stages, and after desalting with the first electrically regenerating desalination apparatus, the second Treatments such as further desalting with an electric regeneration type desalination device are performed as needed. However, such a treatment causes an increase in installation area, an increase in the number of devices, and an increase in price.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記従来技
術に鑑み、特に、比較的小型の電気再生式脱塩装置にお
いて、上述の弱陰イオン成分の除去性能を改善し、弱陰
イオン成分を十分に除去できる電気再生式脱塩装置を提
供することを課題とする。
In view of the above-mentioned prior art, the present invention improves the removal performance of the above-mentioned weak anion component in a relatively small-sized electric regenerative desalination apparatus, and weak anion component is improved. An object of the present invention is to provide an electric regenerative desalination apparatus capable of sufficiently removing water.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、陰極を有する陰極室と、陽極を有する
陽極室とを有し、該両極室間に、陽極側に陽イオン交換
膜、陰極側に陰イオン交換膜を配置して構成される1以
上の濃縮室と、次の(a)〜(e)の脱塩室、(a)陰
極側に陽イオン交換膜、陽極側に陰イオン交換膜を配置
し、内部にイオン交換体を充填した脱塩室、(b)両側
に陽イオン交換膜を配置し、内部にイオン交換体を充填
した脱塩室、(c)両側に陰イオン交換膜を配置し、内
部にイオン交換体を充填した脱塩室、(d)陰極側に陽
イオン交換膜、陽極側にバイポーラ膜を配置し、内部に
イオン交換体を充填した脱塩室、(e)陰極側にバイポ
ーラ膜、陽極側に陰イオン交換膜を配置し、内部にイオ
ン交換体を充填した脱塩室、のいずれか1種類以上の複
数の脱塩室とを有し、該脱塩室の両側に、濃縮室、陽極
室、又は陰極室のいずれかを配置した前記いずれかの単
一脱塩室と、間に濃縮室を介さずに前記いずれか1種類
以上の脱塩室を複数隣接して配置した脱塩室群とを、そ
れぞれ1以上を有する電気再生式脱塩装置であって、前
記脱塩室群の出口と前記単一脱塩室の入口、又は、前記
単一脱塩室の出口と前記脱塩室群の入口を接続すること
としたものである。
In order to solve the above-mentioned problems, the present invention has a cathode chamber having a cathode and an anode chamber having an anode, and cation exchange on the anode side between the both electrode chambers. Membrane, at least one concentrating chamber configured by arranging an anion exchange membrane on the cathode side, and a desalting chamber of the following (a) to (e), (a) cation exchange membrane on the cathode side, anode side Deionization chamber with anion exchange membrane inside and ion-exchanger filled inside, (b) Deionization chamber with cation-exchange membrane inside and inside, (c) both sides A deionization chamber with an anion exchange membrane placed inside, and (d) a cation exchange membrane on the cathode side and a bipolar membrane on the anode side, and a deionization chamber filled with an ion exchanger inside. A salt chamber, (e) a bipolar membrane on the cathode side, an anion exchange membrane on the anode side, and an ion exchanger filled inside A desalting chamber, and a plurality of desalting chambers of any one or more types, and either one of the concentrating chamber, the anode chamber or the cathode chamber is disposed on both sides of the desalting chamber. An electrically regenerative desalination apparatus having one or more desalting chambers and a group of desalting chambers in which a plurality of one or more desalting chambers are adjacently arranged without a concentrating chamber therebetween. Then, the outlet of the desalination chamber group and the inlet of the single desalination chamber, or the outlet of the single desalination chamber and the inlet of the desalination chamber group are connected.

【0009】前記電気再生式脱塩装置において、間に濃
縮室を介さずに配置した脱塩室群は、前記脱塩室群を構
成する第1の脱塩室に導入された被処理水が、第1の脱
塩室から前記脱塩室群を構成する最終の脱塩室まで、順
次直列で通水して脱塩処理されるように接続するのがよ
く、前記単一脱塩室と脱塩室群は、それぞれ複数配備さ
れ、それぞれ複数配備された単一脱塩室又は脱塩室群同
士は、それぞれ被処理水を並列又は直列に供給するよう
に接続され、また、複数配備された単一脱塩室と脱塩室
群との間の被処理水の接続は、それらのうち少なくとも
一つは直列に、その他は直列又は並列に供給するように
なされるのがよい。また、前記脱塩室において、(a)
の脱塩室に充填されるイオン交換体は、陰イオン交換
体、陽イオン交換体、又は陰イオン交換体と陽イオン交
換体のイオン交換体であり、前記(b)の脱塩室に充填
されるイオン交換体は、陽イオン交換体であり、前記
(c)の脱塩室に充填されるイオン交換体は、陰イオン
交換体であり、前記(d)の脱塩室に充填されるイン交
換体は、陽イオン交換体であり、前記(e)の脱塩室に
充填されるイオン交換体は、陰イオン交換体であるのが
よく、前記イオン交換体は、放射線グラフト重合法によ
りイオン交換基が導入されたイオン交換繊維からなるイ
オン交換体であり、該イオン交換繊維からなるイオン交
換体は、不織布又は織布、及び網目状のスペーサとする
ことができる。
In the electric regenerative desalination apparatus, the group of desalination chambers arranged without a concentrating chamber between the treated water introduced into the first desalination chamber constituting the group of desalination chambers. , From the first desalting chamber to the final desalting chambers constituting the desalting chamber group, it is preferable to connect so as to perform desalting treatment by sequentially passing water in series. A plurality of desalination chamber groups are respectively arranged, and a plurality of single desalination chambers or groups of desalination chambers respectively arranged are connected so as to supply water to be treated in parallel or in series, and a plurality of them are also arranged. The connection of the water to be treated between the single desalination chamber and the group of desalination chambers is preferably such that at least one of them is supplied in series and the others are supplied in series or in parallel. In the desalting chamber, (a)
The ion exchanger packed in the desalting chamber of is an anion exchanger, a cation exchanger, or an ion exchanger of an anion exchanger and a cation exchanger, and the desalting chamber of (b) is packed. The ion exchanger to be used is a cation exchanger, and the ion exchanger to be filled in the desalting chamber of (c) is an anion exchanger to be filled in the desalting chamber of (d). The in-exchanger may be a cation-exchanger, and the ion-exchanger filled in the desalting chamber of (e) may be an anion-exchanger, and the ion-exchanger may be prepared by a radiation graft polymerization method. An ion exchanger made of ion exchange fibers having an ion exchange group introduced therein, and the ion exchanger made of the ion exchange fibers may be a non-woven fabric or a woven fabric, and a mesh spacer.

【0010】[0010]

【発明の実施の形態】本発明によれば、両側に濃縮室、
もしくは極室を配置した単一脱塩室と、間に濃縮室を介
さずに複数の脱塩室を隣接して配置した脱塩室群を有す
る電気再生式脱塩装置において、単一脱塩室で処理され
た処理水を脱塩室群に通水するか又は、脱塩室群で脱塩
処理された処理水を単一脱塩室に通水し、さらに脱塩処
理を行うことによって、弱陰イオン成分の除去能力を高
めることができる電気再生式脱塩装置を提供することが
可能となる。さらに、脱塩室群を濃縮室を間に介さずに
隣接して配置するため、その分の濃縮室を省略すること
ができ、運転電圧の低減もはかるとともに、コスト、外
形の点でも従来の電気再生式脱塩装置よりも有利とな
る。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, a concentrating chamber on both sides,
Alternatively, in an electric regenerative desalination apparatus having a single desalination chamber in which polar chambers are arranged and a group of desalination chambers in which a plurality of desalting chambers are adjacently arranged without a concentrating chamber therebetween, By passing the treated water treated in the chamber to the desalination chamber group, or by passing the treated water desalted in the desalination chamber group to a single desalination chamber and then performing desalination treatment. Therefore, it is possible to provide an electric regenerative desalination apparatus capable of enhancing the ability to remove weak anion components. Furthermore, since the desalting chamber groups are arranged adjacent to each other without a concentrating chamber therebetween, the concentrating chamber can be omitted for that amount, the operating voltage can be reduced, and the cost and the external shape can be reduced. It is more advantageous than the electric regeneration type desalination device.

【0011】次に、本発明を図面を用いて詳細に説明す
る。図1は、本発明による電気再生式脱塩装置の一例を
示す概略構成図であり、先に説明した図4に示す構成と
同一構成を同一符号で示して説明する。陰極1を有する
陰極室2と、陽極3を有する陽極室4を対向して配置
し、この陰極室2と陽極室4の間に、陰極1側に陰イオ
ン交換膜5を、陽極3側に陽イオン交換膜6を配置する
ことで形成された濃縮室8と、陰極1側に陽イオン交換
膜6を、陽極2側に陰イオン交換膜5を配置し、内部に
陽イオン交換体と陰イオン交換体を充填して形成された
単一脱塩室7、及び第2の脱塩室72、両側に陰イオン
交換膜5を配置し、内部に陰イオン交換体を充填してな
る第1の脱塩室71からなり、単一脱塩室7は陰極1側
に陰極室2もしくは濃縮室8、陽極2側に陽極室3もし
くは濃縮室8を隣接して配置することにより形成され、
脱塩室群70は、第1の脱塩室71を陽極3側に、第2
の脱塩室72を陰極1側に、間に濃縮室を介さずに隣接
して配置することにより形成され、これらの単一脱塩室
7、脱塩室群70、濃縮室8、陰極1を有する陰極室
2、陽極3を有する陽極室4をもって本発明による電気
再生式脱塩装置が構成される。
Next, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an example of the electric regeneration type desalination apparatus according to the present invention, and the same configuration as the configuration shown in FIG. A cathode chamber 2 having a cathode 1 and an anode chamber 4 having an anode 3 are arranged so as to face each other, and between the cathode chamber 2 and the anode chamber 4, an anion exchange membrane 5 is provided on the cathode 1 side and on the anode 3 side. The concentrating chamber 8 formed by arranging the cation exchange membrane 6, the cation exchange membrane 6 on the cathode 1 side, the anion exchange membrane 5 on the anode 2 side, and the cation exchanger and anion inside. A single desalting chamber 7 formed by filling an ion exchanger, a second desalting chamber 72, an anion exchange membrane 5 arranged on both sides, and a first desalting chamber filled with an anion exchanger. The single desalting chamber 7 is formed by arranging the cathode chamber 2 or the concentrating chamber 8 on the cathode 1 side and the anode chamber 3 or the concentrating chamber 8 on the anode 2 side.
The deionization chamber group 70 includes a first deionization chamber 71 on the side of the anode 3 and a second deionization chamber 71.
Of the demineralization chamber 72, the demineralization chamber 7, the concentration chamber 8 and the cathode 1 An electric regenerative desalination apparatus according to the present invention is constituted by the cathode chamber 2 having the above and the anode chamber 4 having the anode 3.

【0012】脱塩室群70を形成する第1の脱塩室71
の出口は第2の脱塩室72の入口に接続され、脱塩室群
70の出口(本図では第2の脱塩室72の出口)は、単
一脱塩室7の入口に接続されている。この順番は特に制
限はなく、図2に示すように、単一脱塩室7の出口を脱
塩室群70を形成する第1、もしくは第2の脱塩室に接
続すること等も可能である。また、濃縮室入口水12、
陰極室入口水14、陽極室入口水16は、図1ではそれ
ぞれ別々に導入、排出されているが、脱塩室と同様に陽
極室出口水17を濃縮室入口水12や陰極室入口水14
として使用したり、複数の濃縮室を有する場合には、各
濃縮室に直列になるように通水することも可能であり、
その流し方については特に制限はない。
A first desalination chamber 71 forming a desalination chamber group 70.
Is connected to the inlet of the second desalting chamber 72, and the outlet of the group of desalting chambers 70 (the outlet of the second desalting chamber 72 in this figure) is connected to the inlet of the single desalting chamber 7. ing. This order is not particularly limited, and as shown in FIG. 2, it is also possible to connect the outlet of the single desalination chamber 7 to the first or second desalination chamber forming the desalination chamber group 70. is there. In addition, the concentration chamber inlet water 12,
Although the cathode chamber inlet water 14 and the anode chamber inlet water 16 are separately introduced and discharged in FIG. 1, the anode chamber outlet water 17 is the same as the desalting chamber, but the concentration chamber inlet water 12 and the cathode chamber inlet water 14 are the same.
It is also possible to pass water in series to each concentrating chamber when used as or as having multiple concentrating chambers.
There is no particular limitation on how to flow it.

【0013】ここで、図1では、脱塩室群70を構成す
る脱塩室として、両側に陰イオン交換膜を配置し内部に
陰イオン交換体を充填した脱塩室と、陰極1側に陽イオ
ン交換膜6、陽極3側に陰イオン交換膜5を配置し内部
に陰イオン交換体と陽イオン交換体を充填した脱塩室を
選択したが、脱塩室入口水10の水質、水量、純水11
の目標水質等により、適宜その組み合わせば変更するこ
とができる。単一脱塩室7と第2の脱塩室72に陰イオ
ン交換体と陽イオン交換体を、第1の脱塩室71に陰イ
オン交換体を充填しているが、これは陰イオン交換膜5
と陽イオン交換膜6を両側に配置してなる単一脱塩室
7、第2の脱塩室72の場合には、電極間に直流電流を
印可すると、脱塩室入口水10中の陰イオンは、陰イオ
ン交換膜5を通過して濃縮室8へ、陽イオンは、陽イオ
ン交換膜6を通過して濃縮室8へ移動するため、陰イオ
ン交換体と陽イオン交換体の両方を脱塩室に充填すると
脱イオン効果があるのに対し、両側に陰イオン交換膜を
配置した第1の脱塩室71の場合は、脱塩室入口水10
中の陽イオンは、陰イオン交換膜5を通過できないた
め、陽イオン交換体を内部に充填していても連続脱塩効
果が発揮できないためである。
Here, in FIG. 1, the desalting chambers constituting the group 70 of desalting chambers are a desalting chamber in which anion exchange membranes are arranged on both sides and an anion exchanger is filled therein, and a cathode 1 side. The cation exchange membrane 6 and the anion exchange membrane 5 on the side of the anode 3 were placed and a desalting chamber filled with an anion exchanger and a cation exchanger was selected, but the quality of the inlet water 10 and the amount of water , Pure water 11
Depending on the target water quality, etc., the combination can be changed as appropriate. The single desalting chamber 7 and the second desalting chamber 72 are filled with an anion exchanger and a cation exchanger, and the first desalting chamber 71 is filled with an anion exchanger. Membrane 5
In the case of the single desalting chamber 7 and the second desalting chamber 72 in which the cation exchange membrane 6 and the cation exchange membrane 6 are arranged on both sides, when a direct current is applied between the electrodes, the shadow in the desalting chamber inlet water 10 is increased. Since the ions pass through the anion exchange membrane 5 to the concentrating chamber 8 and the cations pass through the cation exchange membrane 6 to the concentrating chamber 8, both the anion exchanger and the cation exchanger are transferred. While filling the desalting chamber has a deionizing effect, in the case of the first desalting chamber 71 having anion exchange membranes arranged on both sides, the desalting chamber inlet water 10
This is because the cations inside cannot pass through the anion exchange membrane 5, so that the continuous desalting effect cannot be exhibited even when the cation exchanger is filled inside.

【0014】同様に、両側に陽イオン交換膜6を配置し
た脱塩室の場合は、陰イオンは、陽イオン交換膜6を通
過できないため、内部には陽イオン交換体のみを充填す
るのがよく、陽極3側にバイポーラ膜を、陰極1側に陽
イオン交換膜6を配置した脱塩室の場合は、バイポーラ
膜は陰イオン、陽イオンとも通過できないため、陽イオ
ン交換体を、陰極1側にバイポーラ膜を、陽極3側に陰
イオン交換膜5を配置した脱塩室の場合は、陰イオン交
換体を充填するのがよい。また、濃縮室8、及び両極室
2、4にも、イオン交換体9を充填することが望まし
く、このイオン交換体9は、その形状、種類に特に制限
はないが、濃縮室8には陽イオン交換体と陰イオン交換
体の両者を使用し、陽イオン交換膜側に陽イオン交換体
を、陰イオン交換膜側に陰イオン交換体を配置するのが
析出の防止に効果的である。
Similarly, in the case of a desalting chamber in which the cation exchange membranes 6 are arranged on both sides, anions cannot pass through the cation exchange membrane 6, so that it is necessary to fill only the cation exchanger inside. Of course, in the case of a desalting chamber in which a bipolar membrane is arranged on the side of the anode 3 and a cation exchange membrane 6 is arranged on the side of the cathode 1, both the anions and the cations cannot pass through the bipolar membrane, so that the cation exchanger is placed on the cathode 1 side. In the case of a desalting chamber in which a bipolar membrane is arranged on the side and an anion exchange membrane 5 is arranged on the side of the anode 3, it is preferable to fill the anion exchanger. Further, it is desirable to fill the concentrating chamber 8 and the bipolar chambers 2 and 4 with the ion exchanger 9. The ion exchanger 9 is not particularly limited in its shape and type, but the concentrating chamber 8 is not limited to the positive chamber. It is effective to prevent precipitation by using both an ion exchanger and an anion exchanger, and disposing a cation exchanger on the cation exchange membrane side and an anion exchanger on the anion exchange membrane side.

【0015】陰極室2には、脱塩室が隣接する場合には
陽イオン交換体を、濃縮室8が隣接する場合には陰イオ
ン交換体を充填するのがよく、陽極室4には、脱塩室が
隣接する場合には陰イオン交換体を、濃縮室8が隣接す
る場合には陽イオン交換体を充填するのがよい。濃縮室
8、両極室2、4には、一部にイオン交換体以外の、例
えばスペーサを充填することもできる。陰極室2に陰極
室入口水14を、陽極室4に陽極室入口水16を、濃縮
室8に濃縮室入口水12を、第1の脱塩室71に脱塩室
入口水10を導入し、陰極1と陽極3間に直流電流を印
可することにより、脱塩室入口水10中に含まれている
イオン分は、イオン交換体9の表面を電位の方向に移動
し、陰イオンは陰イオン交換膜5、陽イオンは陽イオン
交換膜6を透過して、濃縮室8中の濃縮水、陰極室2中
の陰極水、陽極室4中の陽極水に移動し系外に排出さ
れ、脱イオン処理された純水11が製造される。
The cathode chamber 2 is preferably filled with a cation exchanger when the desalting chamber is adjacent to it, and the anion exchanger when the concentrating chamber 8 is adjacent to the cathode chamber 2. It is preferable to fill the anion exchanger when the desalting chambers are adjacent to each other and the cation exchanger when the concentrating chambers 8 are adjacent to each other. The concentration chamber 8 and the bipolar chambers 2 and 4 can be partially filled with a spacer other than the ion exchanger, for example. The cathode chamber inlet water 14 is introduced into the cathode chamber 2, the anode chamber inlet water 16 is introduced into the anode chamber 4, the concentration chamber inlet water 12 is introduced into the concentration chamber 8, and the desalting chamber inlet water 10 is introduced into the first desalting chamber 71. By applying a direct current between the cathode 1 and the anode 3, the ion components contained in the demineralization chamber inlet water 10 move on the surface of the ion exchanger 9 in the direction of the potential, and the anions are negative. The ion exchange membrane 5 and the cations permeate the cation exchange membrane 6, move to the concentrated water in the concentrating chamber 8, the cathode water in the cathode chamber 2 and the anode water in the anode chamber 4 and are discharged out of the system, The deionized pure water 11 is produced.

【0016】脱塩室群70について詳しく説明すると、
第1の脱塩室71に導入された脱塩室入口水10中の陰
イオン分は、両極に印可された直流電流により陽極3側
に移動し、陰イオン交換膜5を透過して濃縮室8中に移
動する。陽イオン分は、陰極側に配置されている陰イオ
ン交換膜5を透過することができないため、第1の脱塩
室71に留まる。これにより、第1の脱塩室71内は陰
イオン分のみが減少するためpHが高くなり、弱陰イオ
ン成分もイオン化することで除去しやすくなる。陰極1
側に配置されているイオン交換膜5からは、第2の脱塩
室72で除去される残存陰イオン分とOH-が第1の脱
塩室71に移動してくる。このOH-の作用で、第1の
脱塩室71内に充填されている陰イオン交換体は再生さ
れ、再び脱塩室入口水10中の陰イオン分を除去できる
ようになる。第1の脱塩室71で上述の脱塩処理をされ
た処理水は、続いて第2の脱塩室72に導入される。第
2の脱塩室72には、陰イオン交換体と陽イオン交換体
が充填されており、陰極1側に陽イオン交換膜6、陽極
3側に陰イオン交換膜7が配置されているため、第2の
脱塩室72で脱塩できなかった残存陰イオン分と陽イオ
ン分の両方が脱塩され、濃縮室8に移動する。
The desalting chamber group 70 will be described in detail.
The anion component in the demineralization chamber inlet water 10 introduced into the first demineralization chamber 71 moves to the anode 3 side by the direct current applied to both electrodes, passes through the anion exchange membrane 5, and passes through the concentration chamber. Move into 8. Since the cation component cannot pass through the anion exchange membrane 5 arranged on the cathode side, it stays in the first deionization chamber 71. As a result, in the first desalting chamber 71, only the amount of anions is decreased, so that the pH is increased, and the weak anion component is ionized to be easily removed. Cathode 1
From the ion exchange membrane 5 disposed on the side, the residual anion component and OH removed in the second deionization chamber 72 move to the first deionization chamber 71. By the action of OH , the anion exchanger filled in the first desalting chamber 71 is regenerated, and the anion component in the desalting chamber inlet water 10 can be removed again. The treated water that has been desalted as described above in the first desalination chamber 71 is subsequently introduced into the second desalination chamber 72. The second deionization chamber 72 is filled with an anion exchanger and a cation exchanger, and the cation exchange membrane 6 is arranged on the cathode 1 side and the anion exchange membrane 7 is arranged on the anode 3 side. , Both the residual anion component and the cation component that could not be desalted in the second desalting chamber 72 are desalted and moved to the concentrating chamber 8.

【0017】脱塩室群70で脱塩処理された処理水は、
単一脱塩室7に導入され、最終的な脱塩処理が行われ
る。単一脱塩室7に導入された時点で、処理水中の陰イ
オン成分はほとんど除去されており、極微量のイオン成
分が除去の対象となる。単一脱塩室7には、陽イオン交
換体と陰イオン交換体が充填されており、残存する陽イ
オン分は、陽イオン交換体とイオン交換された後、陰極
1側に存在する陽イオン交換膜6を透過して濃縮室8に
移動し、残存する陰イオン成分は、陰イオン交換体とイ
オン交換した後、陽極3側にある陰イオン交換膜5を透
過して、濃縮室へ移動する。単一脱塩室7、及び第2の
脱塩室72では、イオン分の移動の他、水解によって水
がH+とOH-に分解されており、これが脱塩室中の陽イ
オン交換体、陰イオン交換体を再生するため、酸、アル
カリによるイオン交換体の再生作業は必要なく、このよ
うにして、脱塩室入口水10中のイオン分は十分に除去
され、連続的に純水11を得ることができる。
The treated water desalted in the desalting chamber group 70 is
It is introduced into the single desalting chamber 7 and a final desalting process is performed. By the time it is introduced into the single desalting chamber 7, most of the anion components in the treated water have been removed, and a very small amount of ionic components are to be removed. The single deionization chamber 7 is filled with a cation exchanger and an anion exchanger, and the remaining cation components are ion-exchanged with the cation exchanger, and then the cations present on the cathode 1 side. After passing through the exchange membrane 6 and moving to the concentrating chamber 8, the remaining anion component is ion-exchanged with the anion exchanger, then passes through the anion exchange membrane 5 on the side of the anode 3 and moves to the concentrating chamber. To do. In the single desalting chamber 7 and the second desalting chamber 72, water is decomposed into H + and OH by the movement of ions as well as the migration of ions, which is a cation exchanger in the desalting chamber. Since the anion exchanger is regenerated, it is not necessary to regenerate the ion exchanger with an acid or an alkali. In this way, the ion content in the desalting compartment inlet water 10 is sufficiently removed, and the pure water 11 is continuously supplied. Can be obtained.

【0018】また図1では、脱塩室群70は、陰極側を
陰イオン交換膜5と陽イオン交換膜6を両側に配置した
脱塩室で、陽極側を両側に陰イオン交換膜5を配置した
脱塩室の2種類2室の脱塩室で、形成しているが、この
配置方法、脱塩室の種類については特に制限はなく、脱
塩室群70を構成する脱塩室数も2室でなく3室以上で
あってもなんら問題はない。これは、被処理水中のイオ
ン成分、処理水の目的水質等により適宜選択することが
可能である。脱塩室群70を構成している脱塩室にバイ
ポーラ膜を使用する場合には、バイポーラ膜の特性か
ら、バイポーラ膜にて低電圧で効率的に水解による
+、OH-が発生し、H+は陽イオン交換体を、OH-
陰イオン交換体を再生させ、脱塩室入口水10中のイオ
ン分を除去することが可能となる。水解を効率的に発生
させられるため、バイポーラ膜を用いた場合は、さらに
運転電圧が低減することが期待される。電気再生式脱塩
装置においては、従来脱塩室の数±1の濃縮室が必要で
あったのが、上述のように、間に濃縮室を介さない複数
枚の脱塩室にて構成される脱塩室群を用いることで、従
来の形の電気再生式脱塩装置よりも濃縮室の室数を減ら
すことが可能になり、その分運転電圧を軽減することが
可能となる。
In FIG. 1, the desalting chamber group 70 is a desalting chamber having the anion exchange membrane 5 and the cation exchange membrane 6 on both sides on the cathode side, and the anion exchange membrane 5 on both sides on the anode side. Two types of deionization chambers are arranged, and two deionization chambers are formed. However, there are no particular restrictions on the arrangement method and the types of deionization chambers, and the number of deionization chambers constituting the deionization chamber group 70 is not limited. There is no problem even if there are more than two rooms instead of two rooms. This can be appropriately selected depending on the ionic component in the water to be treated, the target water quality of the treated water, and the like. When a bipolar membrane is used in the desalting chambers that constitute the desalting chamber group 70, due to the characteristics of the bipolar membrane, H + and OH are efficiently generated in the bipolar membrane at low voltage due to hydrolysis, H + regenerates the cation exchanger and OH regenerates the anion exchanger, and it becomes possible to remove the ion component in the desalting compartment inlet water 10. Since the hydrolyzation can be efficiently generated, it is expected that the operating voltage will be further reduced when the bipolar membrane is used. Conventionally, the electric regeneration type desalination apparatus required a concentration chamber of the number of deionization chambers of ± 1, but as described above, it is composed of a plurality of desalination chambers without a concentration chamber interposed between them. By using the desalination chamber group according to the present invention, it is possible to reduce the number of concentrating chambers as compared with the conventional electric regenerative desalination apparatus, and the operating voltage can be reduced accordingly.

【0019】[0019]

【実施例】以下、本発明を実施例により具体的に説明す
る。 実施例1 本発明の効果を比較例との対比の元で説明する。試験設
備は図3の試験装置のフロー図に示すように、脱塩室入
口水10、濃縮室入口水1、陰極室入口水14、陽極室
入口水16として、藤沢市水を活性炭濾過器保安フィル
タ、逆浸透膜装置で前処理したものを使用し、その水質
は、比抵抗0.25MΩ・cmであった。本実施例で
は、図3に示す試験装置中の電気再生式脱塩装置に、図
1に示す構成の電気再生式脱塩装置を用い、脱塩室入口
水10の流量を75L/h、濃縮室入口水12の流量を
10L/h、陰極室入口水14の流量及び陽極室入口水
16の流量をそれぞれ10L/hとして、0.4Aの直
流電流を陰極1と陽極3に印可して運転を行った。
EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 The effect of the present invention will be described in comparison with a comparative example. As the test equipment, as shown in the flow chart of the test equipment of FIG. 3, as the demineralization chamber inlet water 10, the concentration chamber inlet water 1, the cathode chamber inlet water 14, and the anode chamber inlet water 16, Fujisawa city water is used as the activated carbon filter safety. What was pretreated with a filter and a reverse osmosis device was used, and the water quality thereof was a specific resistance of 0.25 MΩ · cm. In this example, an electric regenerative desalination apparatus having the configuration shown in FIG. 1 was used as the electric regenerative desalination apparatus in the test apparatus shown in FIG. 3, and the flow rate of the demineralizing chamber inlet water 10 was 75 L / h and concentrated. The flow rate of the chamber inlet water 12 is 10 L / h, the flow rate of the cathode chamber inlet water 14 and the flow rate of the anode chamber inlet water 16 are 10 L / h, and a DC current of 0.4 A is applied to the cathode 1 and the anode 3 for operation. I went.

【0020】電気再生式脱塩装置は、電極面積640c
2、脱塩室は3室、濃縮室は1室とし、両端に陰極室
と陽極室を設け、脱塩室7及び脱塩室群70を形成して
いる第2の脱塩室72には、陽イオン交換不織布、陰イ
オン交換不織布、陽イオン交換スペーサ、陰イオン交換
スペーサを、両側を陰イオン交換膜5で形成された第1
の脱塩室71には、陰イオン交換不織布及び陰イオン交
換スペーサを充填した。また、濃縮室内部には陰イオン
交換体と陽イオン交換体を、陰極室には陽イオン交換体
と導電性をもたないスペーサを、陽極室には陰イオン交
換体と導電性を持たないスペーサを充填した。上記条件
で運転した結果、比抵抗17.6MΩ・cmの純水11
が連続して製造され、純水の水質も下記の比較例に比べ
大幅に向上したほか、運転電圧は58Vに低減され、さ
らに炭酸除去率、シリカ除去率とも99%以上と、弱陰
イオン分の除去率も大幅に向上された。
The electric regeneration type desalination apparatus has an electrode area of 640c.
m 2 , the desalting chamber is 3 chambers, the concentrating chamber is 1 chamber, the cathode chamber and the anode chamber are provided at both ends, and the desalting chamber 7 and the second desalting chamber 72 forming the desalting chamber group 70 are provided. Is a cation exchange non-woven fabric, an anion exchange non-woven fabric, a cation exchange spacer, an anion exchange spacer, the first formed with an anion exchange membrane 5 on both sides
The desalting chamber 71 was filled with an anion exchange nonwoven fabric and an anion exchange spacer. In addition, the anion exchanger and the cation exchanger are inside the concentrating chamber, the cathode chamber is a spacer that is not electrically conductive with the cation exchanger, and the anode chamber is not electrically conductive with the anion exchanger. Filled with spacers. As a result of operating under the above conditions, pure water with a specific resistance of 17.6 MΩ · cm 11
Was continuously produced, the water quality of pure water was significantly improved compared to the comparative example below, the operating voltage was reduced to 58 V, and the carbon dioxide removal rate and silica removal rate were 99% or more. The removal rate of was also greatly improved.

【0021】比較例1 比較例として、図5に示す構成の電気再生式脱塩装置を
用い、脱塩室入口水10の流量を75L/h、濃縮室入
口水12の流量を20L/h、陰極室入口水14の流量
及び陽極室入口水16の流量をそれぞれ10L/hとし
て、0.4Aの直流電流を陰極1と陽極3に印可して運
転を行った。電気再生式脱塩装置は、電極面積640c
2、脱塩室は3室、濃縮室は2室とし、両端に陰極室
と陽極室を設け、脱塩室、濃縮室内部には陰イオン交換
体と陽イオン交換体を陰極室には陽イオン交換体を陽極
室には陰イオン交換体を充填してある。上記条件で運転
した結果、比抵抗14.4MΩ・cm程度の純水11が
連続して製造された。この運転において、運転電圧は6
6V、炭酸除去率94%、シリカ除去率88%であっ
た。
COMPARATIVE EXAMPLE 1 As a comparative example, an electric regenerative desalting apparatus having the structure shown in FIG. 5 was used, the flow rate of the demineralizing chamber inlet water 10 was 75 L / h, and the flow rate of the concentrating chamber inlet water 12 was 20 L / h. The flow rate of the cathode chamber inlet water 14 and the anode chamber inlet water 16 was set to 10 L / h, and a DC current of 0.4 A was applied to the cathode 1 and the anode 3 for operation. The electric regeneration type desalination device has an electrode area of 640c.
m 2 , the desalting chamber is 3, the concentrating chamber is 2, and the cathode chamber and the anode chamber are provided at both ends, and the anion exchanger and the cation exchanger are provided in the desalting chamber and the concentrating chamber as the cathode chamber. The cation exchanger is filled in the anode chamber with the anion exchanger. As a result of operating under the above conditions, pure water 11 having a specific resistance of about 14.4 MΩ · cm was continuously produced. In this operation, the operating voltage is 6
6 V, carbon dioxide removal rate 94%, and silica removal rate 88%.

【0022】[0022]

【発明の効果】本発明の電気再生式脱塩装置によれば、
上述したように、被処理水中の弱陰イオン成分を除去す
る能力を高めると共に、運転電圧を低減することが可能
となる。
According to the electric regeneration type desalination apparatus of the present invention,
As described above, it becomes possible to enhance the ability to remove the weak anion component in the water to be treated and to reduce the operating voltage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電気再生式脱塩装置の一例を示す概略
構成図。
FIG. 1 is a schematic configuration diagram showing an example of an electric regeneration type desalination apparatus of the present invention.

【図2】本発明の電気再生式脱塩装置の他の例を示す概
略構成図。
FIG. 2 is a schematic configuration diagram showing another example of the electric regeneration type desalination apparatus of the present invention.

【図3】実施例に用いた試験装置のフロー図。FIG. 3 is a flow chart of the test apparatus used in the examples.

【図4】従来の電気再生式脱塩装置の一例を示す概略構
成図。
FIG. 4 is a schematic configuration diagram showing an example of a conventional electric regenerative desalination apparatus.

【図5】従来の電気再生式脱塩装置の他の例を示す概略
構成図。
FIG. 5 is a schematic configuration diagram showing another example of a conventional electric regeneration desalination apparatus.

【符号の説明】[Explanation of symbols]

1:陰極、2:陰極室、3:陽極、4:陽極室、5:陰
イオン交換膜、6:陽イオン交換膜、7:単一脱塩室、
8:濃縮室、9:イオン交換体、10:脱塩室入口水、
11:純水、12:濃縮室入口水、13:濃縮室出口
水、14:陰極室入口水、15:陰極室出口水、16:
陽極室入口水、17:陽極室出口水、70:脱塩室群、
71:第1の脱塩室、72:第2の脱塩室
1: Cathode, 2: Cathode chamber, 3: Anode, 4: Anode chamber, 5: Anion exchange membrane, 6: Cation exchange membrane, 7: Single desalting chamber,
8: Concentration chamber, 9: Ion exchanger, 10: Demineralization chamber inlet water,
11: Pure water, 12: Concentration chamber inlet water, 13: Concentration chamber outlet water, 14: Cathode chamber inlet water, 15: Cathode chamber outlet water, 16:
Anode chamber inlet water, 17: Anode chamber outlet water, 70: Desalination chamber group,
71: first desalination chamber, 72: second desalination chamber

フロントページの続き Fターム(参考) 4D006 GA17 HA43 HA44 HA47 JA30A JA30C JA44A JA58A MA03 MA13 MA14 MA15 PA01 PB06 4D061 DA03 DB13 EA09 EB04 EB13 EB17 FA08 Continued front page    F-term (reference) 4D006 GA17 HA43 HA44 HA47 JA30A                       JA30C JA44A JA58A MA03                       MA13 MA14 MA15 PA01 PB06                 4D061 DA03 DB13 EA09 EB04 EB13                       EB17 FA08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 陰極を有する陰極室と、陽極を有する陽
極室とを有し、該両極室間に、陽極側に陽イオン交換
膜、陰極側に陰イオン交換膜を配置して構成される1以
上の濃縮室と、次の(a)〜(e)の脱塩室、(a)陰
極側に陽イオン交換膜、陽極側に陰イオン交換膜を配置
し、内部にイオン交換体を充填した脱塩室、(b)両側
に陽イオン交換膜を配置し、内部にイオン交換体を充填
した脱塩室、(c)両側に陰イオン交換膜を配置し、内
部にイオン交換体を充填した脱塩室、(d)陰極側に陽
イオン交換膜、陽極側にバイポーラ膜を配置し、内部に
イオン交換体を充填した脱塩室、(e)陰極側にバイポ
ーラ膜、陽極側に陰イオン交換膜を配置し、内部にイオ
ン交換体を充填した脱塩室、のいずれか1種類以上の複
数の脱塩室とを有し、該脱塩室の両側に、濃縮室、陽極
室、又は陰極室のいずれかを配置した前記いずれかの単
一脱塩室と、間に濃縮室を介さずに前記いずれか1種類
以上の脱塩室を複数隣接して配置した脱塩室群とを、そ
れぞれ1以上を有する電気再生式脱塩装置であって、前
記脱塩室群の出口と前記単一脱塩室の入口、又は、前記
単一脱塩室の出口と前記脱塩室群の入口を接続してある
ことを特徴とする電気再生式脱塩装置。
1. A cathode chamber having a cathode and an anode chamber having an anode, wherein a cation exchange membrane is disposed on the anode side and an anion exchange membrane is disposed on the cathode side between the cathode chambers. One or more concentrating chambers, the following (a) to (e) desalting chambers, (a) a cation exchange membrane on the cathode side and an anion exchange membrane on the anode side, and an ion exchanger filled inside Deionization chamber, (b) cation exchange membranes are placed on both sides, and anion exchange membrane is placed inside (c) both sides, and anion exchange membrane is placed on both sides. Deionization chamber, (d) a cation exchange membrane on the cathode side, a bipolar membrane on the anode side, and a deionization chamber filled with an ion exchanger inside, (e) a bipolar membrane on the cathode side, and an anion side on the anode side. An ion exchange membrane is arranged, and a desalting chamber having an ion exchanger filled therein, and a plurality of desalting chambers of at least one type, On either side of the desalting chamber, any one of the above-mentioned single desalting chambers in which any one of a concentrating chamber, an anode chamber or a cathode chamber is arranged, and any one or more of the desalting chambers without a concentrating chamber therebetween. An electric regenerative desalination apparatus having one or more desalting chamber groups in which a plurality of salt chambers are arranged adjacent to each other, the outlet of the desalting chamber group and the inlet of the single desalting chamber, or An electric regenerative desalination apparatus, wherein an outlet of the single desalination chamber and an inlet of the desalination chamber group are connected.
【請求項2】 前記間に濃縮室を介さずに配置した脱塩
室群は、前記脱塩室群を構成する第1の脱塩室に導入さ
れた被処理水が、第1の脱塩室から前記脱塩室群を構成
する最終の脱塩室まで、順次直列で通水して脱塩処理さ
れるように接続されていることを特徴とする請求項1記
載の電気再生式脱塩装置。
2. In the desalination chamber group arranged without the concentration chamber, the treated water introduced into the first desalination chamber constituting the desalination chamber group is the first desalination chamber. 2. The electric regenerative desalination system according to claim 1, wherein the chamber is connected to the final desalination chambers constituting the group of desalination chambers so as to be desalted by sequentially passing water in series. apparatus.
【請求項3】 前記単一脱塩室と脱塩室群は、それぞれ
複数配備され、それぞれ複数配備された単一脱塩室又は
脱塩室群同士は、それぞれ被処理水を並列又は直列に供
給するように接続され、また、複数配備された単一脱塩
室と脱塩室群との間の被処理水の接続は、それらのうち
少なくとも一つは直列に、その他は直列又は並列に供給
するようになされることを特徴とする請求項1又は2記
載の電気再生式脱塩装置。
3. The single desalination chamber and the desalination chamber group are respectively provided in plurality, and the plurality of single desalination chambers or the desalination chamber groups are respectively provided with treated water in parallel or in series. At least one of them is connected in series, and the other is connected in series or in parallel. The electric regenerative desalination apparatus according to claim 1, wherein the desalination apparatus is supplied.
【請求項4】 前記(a)の脱塩室に充填されるイオン
交換体は、陰イオン交換体、陽イオン交換体、又は陰イ
オン交換体と陽イオン交換体のイオン交換体であり、前
記(b)の脱塩室に充填されるイオン交換体は、陽イオ
ン交換体であり、前記(c)の脱塩室に充填されるイオ
ン交換体は、陰イオン交換体であり、前記(d)の脱塩
室に充填されるイン交換体は、陽イオン交換体であり、
前記(e)の脱塩室に充填されるイオン交換体は、陰イ
オン交換体であることを特徴とする請求項1、2又は3
記載の電気再生式脱塩装置。
4. The ion exchanger filled in the desalting chamber of (a) is an anion exchanger, a cation exchanger, or an ion exchanger of an anion exchanger and a cation exchanger. The ion exchanger packed in the desalting chamber of (b) is a cation exchanger, the ion exchanger packed in the desalting chamber of (c) is an anion exchanger, and ), The in-exchanger packed in the desalting chamber is a cation exchanger,
The ion exchanger filled in the desalting chamber of (e) is an anion exchanger.
The electric regenerative desalination apparatus described.
【請求項5】 前記イオン交換体は、放射線グラフト重
合法によりイオン交換基が導入されたイオン交換繊維か
らなるイオン交換体であり、該イオン交換繊維からなる
イオン交換体は、不織布又は織布、及び網目状のスペー
サであことを特徴とする請求項1〜4のいずれか1項記
載の電気再生式脱塩装置。
5. The ion exchanger is an ion exchanger comprising ion exchange fibers having ion exchange groups introduced by a radiation graft polymerization method. The ion exchanger comprising the ion exchange fibers is a non-woven fabric or a woven fabric, And a mesh-shaped spacer, The electric regenerative desalination apparatus according to any one of claims 1 to 4, wherein:
JP2002136605A 2002-05-13 2002-05-13 Electric regenerative desalination equipment Expired - Fee Related JP3729349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002136605A JP3729349B2 (en) 2002-05-13 2002-05-13 Electric regenerative desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002136605A JP3729349B2 (en) 2002-05-13 2002-05-13 Electric regenerative desalination equipment

Publications (2)

Publication Number Publication Date
JP2003326272A true JP2003326272A (en) 2003-11-18
JP3729349B2 JP3729349B2 (en) 2005-12-21

Family

ID=29698575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002136605A Expired - Fee Related JP3729349B2 (en) 2002-05-13 2002-05-13 Electric regenerative desalination equipment

Country Status (1)

Country Link
JP (1) JP3729349B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203136A (en) * 2006-01-31 2007-08-16 Japan Organo Co Ltd Electric deionized water manufacturing device and demineralized water manufacturing method
CN100345615C (en) * 2005-09-12 2007-10-31 张贵清 Electric deionisation method and apparatus for producing superpure water using bipolar membrane
JP2011251266A (en) * 2010-06-03 2011-12-15 Japan Organo Co Ltd Apparatus for electrically producing deionized water
JP2013000723A (en) * 2011-06-21 2013-01-07 Japan Organo Co Ltd Electric deionized water production apparatus
JP2013000720A (en) * 2011-06-21 2013-01-07 Japan Organo Co Ltd Electric device for producing deionized water
JP2013000721A (en) * 2011-06-21 2013-01-07 Japan Organo Co Ltd Electric deionized water production apparatus
WO2013018818A1 (en) * 2011-08-04 2013-02-07 オルガノ株式会社 Electric deionized water production device
CN112456635A (en) * 2020-10-26 2021-03-09 山东光华纸业集团有限公司 Anaerobic biological treatment desalting device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100345615C (en) * 2005-09-12 2007-10-31 张贵清 Electric deionisation method and apparatus for producing superpure water using bipolar membrane
JP2007203136A (en) * 2006-01-31 2007-08-16 Japan Organo Co Ltd Electric deionized water manufacturing device and demineralized water manufacturing method
JP2011251266A (en) * 2010-06-03 2011-12-15 Japan Organo Co Ltd Apparatus for electrically producing deionized water
JP2013000723A (en) * 2011-06-21 2013-01-07 Japan Organo Co Ltd Electric deionized water production apparatus
JP2013000720A (en) * 2011-06-21 2013-01-07 Japan Organo Co Ltd Electric device for producing deionized water
JP2013000721A (en) * 2011-06-21 2013-01-07 Japan Organo Co Ltd Electric deionized water production apparatus
WO2013018818A1 (en) * 2011-08-04 2013-02-07 オルガノ株式会社 Electric deionized water production device
US9896357B2 (en) 2011-08-04 2018-02-20 Organo Corporation Electrodeionization apparatus for producing deionized water
CN112456635A (en) * 2020-10-26 2021-03-09 山东光华纸业集团有限公司 Anaerobic biological treatment desalting device

Also Published As

Publication number Publication date
JP3729349B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
CN1537078A (en) Electric demineralizer
WO2005075359A1 (en) Apparatus for forming ion-exchanged water and method for regenerating ion exchange resin therein
JP3956836B2 (en) Electrodeionization equipment
JP5295927B2 (en) Electric deionized water production equipment
JP4403621B2 (en) Electrodeionization equipment
JP3729349B2 (en) Electric regenerative desalination equipment
KR101526093B1 (en) Electric device for producing deionized water
JP4710176B2 (en) Ultrapure water production equipment
JP2012239965A (en) Electric deionized water producing apparatus
JP3788318B2 (en) Electrodeionization apparatus and electrodeionization method
JP5114307B2 (en) Electric deionized water production equipment
JP4481418B2 (en) Electric deionized water production equipment
JP3729347B2 (en) Electric regenerative desalination equipment
JP3729348B2 (en) Electric regenerative desalination equipment
JP2011121027A (en) Electric type deionized water producing apparatus
JP6752932B2 (en) Water treatment equipment and water treatment method
JP2003326269A (en) Electric regenerative demineralizer
JP3717147B2 (en) Electric regenerative desalination equipment
JP4599668B2 (en) Operation method of electrodeionization equipment
JP2002205071A (en) Electric deionized water manufacturing apparatus and method of manufacturing deionized water
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP3700244B2 (en) Pure water production equipment
JP6034736B2 (en) Electric deionized water production equipment
JP4193586B2 (en) Electric regenerative pure water production equipment
JP4090646B2 (en) Pure water production apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050928

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees