JP2003320248A - Method for preparing oxidation catalyst and method for manufacturing nitrile using the catalyst - Google Patents

Method for preparing oxidation catalyst and method for manufacturing nitrile using the catalyst

Info

Publication number
JP2003320248A
JP2003320248A JP2002124839A JP2002124839A JP2003320248A JP 2003320248 A JP2003320248 A JP 2003320248A JP 2002124839 A JP2002124839 A JP 2002124839A JP 2002124839 A JP2002124839 A JP 2002124839A JP 2003320248 A JP2003320248 A JP 2003320248A
Authority
JP
Japan
Prior art keywords
catalyst
temperature
niobium
preparing
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002124839A
Other languages
Japanese (ja)
Other versions
JP4162915B2 (en
Inventor
Akira Shima
暁 島
Satoru Komada
悟 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002124839A priority Critical patent/JP4162915B2/en
Publication of JP2003320248A publication Critical patent/JP2003320248A/en
Application granted granted Critical
Publication of JP4162915B2 publication Critical patent/JP4162915B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing a catalyst in which a selectivity of the corresponding unsaturated acid or unsaturated nitrile is high in a vapor phase catalytic oxidation or a vapor phase catalytic ammoxidation reaction of an alkane. <P>SOLUTION: In the catalyst preparation method, annealing is carried out at a lower temperature than the baking temperature after completion of the baking. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、プロパンまたはイ
ソブタンの気相接触アンモ酸化反応に用いる、テルルお
よびアンチモンから選ばれる少なくとも1種以上の元
素、モリブデン、バナジウムおよびニオブを含む酸化物
触媒の調製方法とその触媒を用いたニトリルの製法に関
する。
TECHNICAL FIELD The present invention relates to a method for preparing an oxide catalyst containing at least one element selected from tellurium and antimony, molybdenum, vanadium and niobium, which is used in a gas phase catalytic ammoxidation reaction of propane or isobutane. And a method for producing nitrile using the catalyst.

【0002】[0002]

【従来の技術】近年、不飽和酸または不飽和ニトリルを
製造するに当たって、アルケンに替わってアルカンを出
発原料にして、気相接触酸化または気相接触アンモ酸化
反応を行い、対応する不飽和酸または不飽和ニトリルを
製造する方法が着目されている。例えば、Mo−V−N
b−Teを含む酸化物触媒が、特開平2−257号公
報、特開平5−148212号公報、特開平5−208
136号公報、特開平5−279313号公報、特開平
6−228074号公報、特開平6−285372号公
報、特開平7―289907号公報、特開平8−573
19号公報、特開平8−141401号公報などに開示
されている。また、Mo−V−Nb−Sbを含む酸化物
触媒が、特開平10−28862号公報、特開2001
−58827号公報などに開示されている。
2. Description of the Related Art In recent years, in the production of unsaturated acids or nitriles, alkanes have been used as a starting material instead of alkenes to carry out gas phase catalytic oxidation or gas phase catalytic ammoxidation reactions to obtain the corresponding unsaturated acids or Attention has been focused on methods for producing unsaturated nitriles. For example, Mo-VN
An oxide catalyst containing b-Te is disclosed in JP-A-2-257, JP-A-5-148212, and JP-A-5-208.
No. 136, No. 5-279313, No. 6-228074, No. 6-285372, No. 7-289907, No. 8-573.
No. 19 and Japanese Patent Application Laid-Open No. 8-141401. Further, oxide catalysts containing Mo-V-Nb-Sb are disclosed in JP-A-10-28862 and JP-A-2001.
It is disclosed in Japanese Laid-Open Patent Publication No. 58827.

【0003】[0003]

【発明が解決しようとする課題】アルカンの気相接触ア
ンモ酸化反応に用いる、テルルおよびアンチモンから選
ばれる少なくとも1種以上の元素、モリブデン、バナジ
ウムおよびニオブを含む酸化物触媒の調製方法であっ
て、テルルまたはアンチモンから選ばれる少なくとも1
種以上の化合物、Mo化合物、V化合物、Nb化合物を
含む水溶液を乾燥し、焼成する触媒の調製方法は既に公
知である。焼成に関して特開平5−208136号公
報、特開平6−285372号公報などでは、焼成温
度、焼成時間が教示されている程度で詳細な記載はな
い。これらの公報で教示された触媒の性能は不十分であ
った。一方、特開平7―289907号公報では、焼成
工程において、流動焼成炉や回転焼成炉を用いてもよ
く、また静置状態で焼成ガスを流通させても良いとして
いる。前段焼成とは、触媒前駆体を酸素の実質的不存在
下で焼成することと定義している。また、後段焼成は、
酸素と接触させた焼成物を、次いで再び酸素の実質的不
存在下で焼成することと定義している。
A method for preparing an oxide catalyst containing at least one element selected from tellurium and antimony, molybdenum, vanadium and niobium, which is used in a gas phase catalytic ammoxidation reaction of alkane, comprising: At least one selected from tellurium or antimony
A method for preparing a catalyst in which an aqueous solution containing at least one compound, Mo compound, V compound, and Nb compound is dried and calcined is already known. Regarding calcination, in JP-A-5-208136 and JP-A-6-285372, the calcination temperature and the calcination time are taught, and there is no detailed description. The performance of the catalysts taught in these publications was inadequate. On the other hand, Japanese Patent Laid-Open No. 7-289907 discloses that a fluidized firing furnace or a rotary firing furnace may be used in the firing step, or the firing gas may be allowed to flow in a stationary state. The pre-stage calcination is defined as calcination of the catalyst precursor in the substantial absence of oxygen. Also, the latter firing is
It is defined that the calcined product contacted with oxygen is then calcined again in the substantial absence of oxygen.

【0004】実施例1では、焼成管に酸素約50ppm
を含む窒素ガスを流しながら、600℃に加熱して2時
間前段焼成している。窒素ガスを流しながら室温まで冷
却したのち、室温の空気を30分間流し、次いで前段焼
成と同様に窒素ガスを流しながら600℃・2時間の後
段焼成を行ない触媒としたと記載している。前段焼成と
後段焼成が同じ温度である上記の方法でも、その性能は
不十分であった。従って、本発明の目的は、焼成方法を
改良して、反応時の目的物の選択率が高い触媒を供給す
ることである。また、得られた酸化物触媒を用いて、ア
ルカンを気相接触酸化または気相接触アンモ酸化反応さ
せ、対応する不飽和酸または不飽和ニトリルを高い選択
率で製造することである。
In Example 1, about 50 ppm of oxygen was contained in the firing tube.
While flowing a nitrogen gas containing, the material is heated to 600 ° C. and pre-baked for 2 hours. It is described that after cooling to room temperature while flowing nitrogen gas, air at room temperature was allowed to flow for 30 minutes, and then post-calcining was performed at 600 ° C. for 2 hours while flowing nitrogen gas in the same manner as in the pre-calcination to obtain a catalyst. Even with the above method in which the first-stage firing and the second-stage firing have the same temperature, the performance was insufficient. Therefore, an object of the present invention is to improve the calcination method to supply a catalyst with a high selectivity of the target substance during the reaction. Further, the obtained oxide catalyst is used to subject an alkane to a gas phase catalytic oxidation or a gas phase catalytic ammoxidation reaction to produce a corresponding unsaturated acid or unsaturated nitrile with a high selectivity.

【0005】[0005]

【課題を解決するための手段】本発明者らはこの課題を
解決するため、アルカンの気相接触酸化反応または気相
接触アンモ酸化反応に用いる、テルルおよびアンチモン
から選ばれる少なくとも1種以上の元素、モリブデン、
バナジウムおよびニオブを含む酸化物触媒の調製方法に
ついて検討した結果、テルルまたはアンチモンから選ば
れる少なくとも1種以上の化合物、Mo化合物、V化合
物、Nb化合物およびシリカゾルを含む水溶液を乾燥
し、焼成する方法であって、本焼成終了後に、本焼成温
度より低い温度でアニーリングを行うことで、優れた性
能を発現することを見出し、本発明をなすに至った。
In order to solve this problem, the present inventors have used at least one or more elements selected from tellurium and antimony used in a gas-phase catalytic oxidation reaction or a gas-phase catalytic ammoxidation reaction of alkanes. ,molybdenum,
As a result of investigating a method for preparing an oxide catalyst containing vanadium and niobium, a method of drying and calcining an aqueous solution containing at least one compound selected from tellurium or antimony, a Mo compound, a V compound, a Nb compound and silica sol is used. Therefore, it was found that excellent performance is exhibited by performing annealing at a temperature lower than the main firing temperature after the completion of the main firing, and the present invention has been completed.

【0006】即ち、本発明は、 [1]アルカンの気相接触酸化反応または気相接触アン
モ酸化反応に用いるテルルおよびアンチモンから選ばれ
る少なくとも1種以上の元素、モリブデン、バナジウム
およびニオブを含む酸化物触媒において、テルルまたは
アンチモンから選ばれる少なくとも1種以上の化合物、
Mo化合物、V化合物、Nb化合物を含む水溶液を乾燥
し、焼成し、該焼成の内の本焼成終了後に、本焼成温度
より低い温度でアニーリングを行うことを特徴とする酸
化物触媒の調製方法。 [2]該アニーリングが、本焼成温度より10℃以上低
い温度で行われることを特徴とする上記「1」に記載の
触媒の調製方法。 [3]該アニーリングが、本焼成温度より50℃以上低
い温度で行われることを特徴とする上記「1」または
「2」のいずれかに記載の触媒の調製方法。 [4]該酸化物触媒が、下記の一般組成式(1)で示さ
れることを特徴とする上記「1」〜「3」のいずれかに
記載の触媒の調製方法。
That is, the present invention relates to [1] an oxide containing at least one element selected from tellurium and antimony used in a vapor-phase catalytic oxidation reaction or a vapor-phase catalytic ammoxidation reaction of alkane, molybdenum, vanadium and niobium. In the catalyst, at least one compound selected from tellurium and antimony,
A method for preparing an oxide catalyst, characterized in that an aqueous solution containing a Mo compound, a V compound and an Nb compound is dried and calcined, and after the main calcination of the calcination is completed, annealing is performed at a temperature lower than the main calcination temperature. [2] The method for preparing a catalyst according to the above [1], wherein the annealing is performed at a temperature lower than the main calcination temperature by 10 ° C. or more. [3] The method for preparing a catalyst according to any one of the above [1] or [2], wherein the annealing is performed at a temperature lower than the main calcination temperature by 50 ° C. or more. [4] The method for preparing a catalyst according to any one of the above [1] to [3], wherein the oxide catalyst is represented by the following general composition formula (1).

【0007】[化2] Mo1aNbbcn (1) (式中、成分Xはテルルまたはアンチモンから選ばれる
少なくとも1種以上の元素であり、a、b、c、nはM
o1原子当たりの原子比を表し、aは0.01≦a≦
1、bは0.01≦b≦1、cは0.01≦c≦1、そ
してnは構成金属の原子価によって決まる数である。)
[Formula 2] Mo 1 V a Nb b X c O n (1) (In the formula, the component X is at least one element selected from tellurium and antimony, and a, b, c and n are M
o represents the atomic ratio per atom, and a is 0.01 ≦ a ≦
1, b is 0.01 ≦ b ≦ 1, c is 0.01 ≦ c ≦ 1, and n is a number determined by the valence of the constituent metals. )

【0008】[5]該成分Xがアンチモンであることを
特徴とする上記「4」に記載の触媒の調製方法。 [6]該ニオブが、ジカルボン酸とニオブの化合物とを
含みジカルボン酸/ニオブのモル比が1〜4のニオブ含
有液を原料とすることを特徴とする上記「1」〜「5」
のいずれかに記載の触媒の調製方法。 [7]該酸化物触媒が、上記一般組成式(1)で表され
る触媒構成元素酸化物とこれを担持するシリカとからな
るものであって、該シリカの含有割合が、該触媒構成元
素酸化物と該シリカの全重量に対し、SiO2換算で2
0〜60重量%のシリカに担持されていることを特徴と
する、上記「1」〜「6」のいずれかに記載の酸化物触
媒の調製方法。
[5] The method for preparing a catalyst according to the above [4], wherein the component X is antimony. [6] The above-mentioned "1" to "5", wherein the niobium is made of a niobium-containing liquid having a dicarboxylic acid / niobium compound and a dicarboxylic acid / niobium molar ratio of 1 to 4.
The method for preparing the catalyst according to any one of 1. [7] The oxide catalyst comprises a catalyst-constituting element oxide represented by the general composition formula (1) and silica carrying the oxide, and the content ratio of the silica is the catalyst-constituting element. 2 in terms of SiO 2 based on the total weight of oxide and silica
The method for preparing an oxide catalyst according to any one of the above "1" to "6", which is supported on 0 to 60% by weight of silica.

【0009】[8]該アニーリングが、アニーリング段
階で温度低下がある場合、その平均温度低下速度が、2
℃/min以下であることを特徴とする上記「1」〜
「7」のいずれかに記載の触媒の調製方法、 [9]プロパンまたはイソブタンを気相接触酸化反応ま
たは気相接触アンモ酸化反応させて、対応する不飽和カ
ルボン酸または不飽和ニトリルを製造するに当たり、上
記「1」〜「8」のいずれかに記載の調製方法で調製さ
れた触媒を用いることを特徴とする不飽和酸または不飽
和ニトリルの製造方法。に関するものである。
[8] When the annealing has a temperature decrease at the annealing stage, the average temperature decrease rate is 2
C./min or less, the above “1” to
[9] A method for preparing a catalyst according to any one of [7], [9] for producing a corresponding unsaturated carboxylic acid or unsaturated nitrile by subjecting propane or isobutane to a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction. A method for producing an unsaturated acid or an unsaturated nitrile, which comprises using the catalyst prepared by the preparation method according to any one of the above "1" to "8". It is about.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の触媒は、テルルおよびアンチモンから選ばれる
少なくとも1種以上の元素、モリブデン、バナジウムお
よびニオブを含むことを特徴とするものであり、好まし
くは下記式(1)である。 [化3] Mo1aNbbcn (1) (式中、成分Xはテルルまたはアンチモンから選ばれる
少なくとも1種以上の元素であり、a、b、c、nはM
o1原子当たりの原子比を表し、aは0.01≦a≦
1、bは0.01≦b≦1、cは0.01≦c≦1、そ
してnは構成金属の原子価によって決まる数である。) また、Mo1原子当たりの原子比a、b、cは、それぞ
れ、0.01≦a≦0.5、0.01≦b≦0.5、
0.1≦c≦0.5であることが好ましい。更には、
0.2≦a≦0.3、0.05≦b≦0.2、0.2≦
c≦0.3が特に好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The catalyst of the present invention is characterized by containing at least one element selected from tellurium and antimony, molybdenum, vanadium and niobium, and preferably represented by the following formula (1). Formula 3] Mo in 1 V a Nb b X c O n (1) ( wherein component X represents at least one element selected from tellurium or antimony, a, b, c, n is M
o represents the atomic ratio per atom, and a is 0.01 ≦ a ≦
1, b is 0.01 ≦ b ≦ 1, c is 0.01 ≦ c ≦ 1, and n is a number determined by the valence of the constituent metals. ) Further, the atomic ratios a, b, and c per Mo atom are 0.01 ≦ a ≦ 0.5, 0.01 ≦ b ≦ 0.5, and
It is preferable that 0.1 ≦ c ≦ 0.5. Furthermore,
0.2 ≦ a ≦ 0.3, 0.05 ≦ b ≦ 0.2, 0.2 ≦
c ≦ 0.3 is particularly preferable.

【0011】本発明の製造方法により得られる酸化物触
媒は、シリカ担持触媒が好ましい。酸化物触媒がシリカ
担持触媒の場合、高い機械的強度を有するので、流動床
反応器を用いた気相接触酸化反応または気相接触アンモ
酸化反応に好適である。シリカ担体の含有量は、触媒構
成元素の酸化物とシリカ担体から成るシリカ担持酸化物
触媒の全重量に対して、SiO2換算で20〜60重量
%であることが好ましく、より好ましくは25〜55重
量%である。本発明の酸化物触媒を製造するための成分
金属の原料は特に限定されないが、例えば、下記の化合
物を用いることができる。Moの原料は、ヘプタモリブ
デン酸アンモニウム〔(NH46Mo724・4H2O〕
を好適に用いることができる。Vの原料は、メタバナジ
ン酸アンモニウム[NH4VO3]を好適に用いることが
できる。
The oxide catalyst obtained by the production method of the present invention is preferably a silica-supported catalyst. When the oxide catalyst is a silica-supported catalyst, it has high mechanical strength and is suitable for a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction using a fluidized bed reactor. The content of the silica carrier is preferably 20 to 60% by weight, and more preferably 25 to 60% by weight in terms of SiO 2 , with respect to the total weight of the silica-supported oxide catalyst composed of the oxide of the catalyst constituent elements and the silica carrier. 55% by weight. The raw materials of the component metals for producing the oxide catalyst of the present invention are not particularly limited, but the following compounds can be used, for example. Mo raw materials, ammonium heptamolybdate [(NH 4) 6 Mo 7 O 24 · 4H 2 O ]
Can be preferably used. As a raw material of V, ammonium metavanadate [NH 4 VO 3 ] can be preferably used.

【0012】Nbの原料としては、ニオブ酸、ニオブの
無機酸塩およびニオブの有機酸塩を用いることができ
る。特にニオブ酸が良い。ニオブ酸はNb25・nH2
Oで表され、ニオブ水酸化物または酸化ニオブ水和物と
も称される。更に、ジカルボン酸/ニオブのモル比が1
〜4、アンモニア/ニオブのモル比が2以下のNb原料
液を用いることが好ましい。ジカルボン酸/ニオブのモ
ル比を上記の値にすることにより、触媒構成金属の酸化
還元状態を調整し触媒性能を特に優れたものとすること
ができる。また、このジカルボン酸はシュウ酸が好まし
い。
As the raw material of Nb, niobic acid, an inorganic acid salt of niobium and an organic acid salt of niobium can be used. Niobate is particularly good. Niobate is Nb 2 O 5 · nH 2
It is represented by O and is also called niobium hydroxide or niobium oxide hydrate. Furthermore, the molar ratio of dicarboxylic acid / niobium is 1
~ 4, it is preferable to use a Nb raw material liquid having an ammonia / niobium molar ratio of 2 or less. By adjusting the molar ratio of dicarboxylic acid / niobium to the above value, the redox state of the metal constituting the catalyst can be adjusted and the catalyst performance can be made particularly excellent. Further, the dicarboxylic acid is preferably oxalic acid.

【0013】Sbの原料としては三酸化二アンチモン
〔Sb23〕が好ましい。更に、Sbの水性溶媒に対す
る溶解速度を向上させるためには、平均粒径が1μm以
下のSb23を用いることが好ましい。Teの原料とし
てはテルル酸〔H6TeO6〕が好ましい。担体シリカの
原料は、シリカゾルを好適に用いることができる。本発
明の触媒の調製は、例えば、下記の原料調合、乾燥およ
び焼成の3つの工程を経て行うことができる。
As a raw material of Sb, diantimony trioxide [Sb 2 O 3 ] is preferable. Further, in order to improve the dissolution rate of Sb in the aqueous solvent, it is preferable to use Sb 2 O 3 having an average particle size of 1 μm or less. As a raw material of Te, telluric acid [H 6 TeO 6 ] is preferable. As a raw material for the carrier silica, silica sol can be preferably used. The catalyst of the present invention can be prepared, for example, through the following three steps of raw material preparation, drying and calcination.

【0014】(原料調合工程)先に述べた原料を用い、
原料調合液を得る。以下に一例を示す。ヘプタモリブデ
ン酸アンモニウム、メタバナジン酸アンモニウム、三酸
化二アンチモンを水に添加し、70℃以上に加熱して混
合液(A)を調製する。三酸化二アンチモンに代えテル
ル酸を用いても良いし、同時に使用しても良い。この
時、容器内は窒素雰囲気でもよい。ニオブ酸とシュウ酸
を水中で加熱撹拌してニオブ含有液(B0)を調製す
る。含有液(B0)は特開平11−253801号公報
に教示されている方法で得られる含有液を用いることが
できる。更に、含有液(B0)の少なくとも一部に、過
酸化水素、三酸化二アンチモンを添加し、ニオブ混合液
(B)を調製する。この時、H22/Nb(モル比)は
0.5〜20、特に、1〜10が好ましく、Sb/Nb
(モル比)は0〜5、特に0.01〜2が好ましい。混
合液(B)にはシュウ酸を加えることもできる。
(Raw material mixing step) Using the above-mentioned raw materials,
A raw material preparation liquid is obtained. An example is shown below. Ammonium heptamolybdate, ammonium metavanadate, and diantimony trioxide are added to water and heated to 70 ° C. or higher to prepare a mixed solution (A). Telluric acid may be used instead of diantimony trioxide, or may be used simultaneously. At this time, the inside of the container may be a nitrogen atmosphere. Niobic acid and oxalic acid are heated and stirred in water to prepare a niobium-containing liquid (B 0 ). As the containing liquid (B 0 ), the containing liquid obtained by the method taught in JP-A No. 11-253801 can be used. Further, hydrogen peroxide and diantimony trioxide are added to at least a part of the contained liquid (B 0 ) to prepare a niobium mixed liquid (B). At this time, H 2 O 2 / Nb (molar ratio) is preferably 0.5 to 20, particularly preferably 1 to 10, and Sb / Nb
The (molar ratio) is preferably 0 to 5, particularly preferably 0.01 to 2. Oxalic acid may be added to the mixed solution (B).

【0015】目的とする組成に合わせて、混合液
(A)、混合液(B)、含有液(B0)を好適に混合し
て、原料調合液を得る。この時、通常はスラリーにな
る。本発明のアンモ酸化用触媒がシリカ担持触媒の場
合、シリカゾルを含むように原料調合液が調製される。
シリカゾルは適宜添加することができる。また、成分X
としてアンチモンを用いる場合は、混合液(A)、また
は、調合途中の混合液(A)の成分を含む液に、過酸化
水素を添加することが好ましい。この時、H22/Sb
(モル比)は0.01〜5、特に、1〜3が好ましい。
また、この時、30℃〜70℃で、30分〜2時間攪拌
を続けることが好ましい。
The mixed solution (A), the mixed solution (B) and the containing solution (B 0 ) are suitably mixed in accordance with the desired composition to obtain a raw material preparation liquid. At this time, it usually becomes a slurry. When the ammoxidation catalyst of the present invention is a silica-supported catalyst, the raw material preparation liquid is prepared so as to contain silica sol.
Silica sol can be added as appropriate. Also, the component X
When antimony is used as above, it is preferable to add hydrogen peroxide to the mixed solution (A) or a solution containing the components of the mixed solution (A) in the process of preparation. At this time, H 2 O 2 / Sb
The (molar ratio) is preferably 0.01 to 5, and particularly preferably 1 to 3.
At this time, it is preferable to continue stirring at 30 ° C to 70 ° C for 30 minutes to 2 hours.

【0016】(乾燥工程)原料調合工程で得られた原料
調合液を噴霧乾燥法によって乾燥させ、乾燥粉体を得
る。その乾燥粉体とは、原料の混合物が主と考えられ
る。噴霧乾燥法における噴霧化は遠心方式、二流体ノズ
ル方式または高圧ノズル方式を採用することができる。
乾燥熱源は、スチーム、電気ヒーターなどによって加熱
された空気を用いることができる。熱風の乾燥機入口温
度は150〜300℃が好ましい。
(Drying Step) The raw material mixed solution obtained in the raw material mixing step is dried by a spray drying method to obtain a dry powder. It is considered that the dry powder is mainly a mixture of raw materials. For the atomization in the spray drying method, a centrifugal system, a two-fluid nozzle system or a high pressure nozzle system can be adopted.
As the dry heat source, air heated by steam, an electric heater or the like can be used. The dryer inlet temperature of hot air is preferably 150 to 300 ° C.

【0017】(焼成工程)乾燥工程で得られた乾燥粉体
を焼成に供することによって酸化物触媒を得る。その酸
化物触媒とは、テルルおよびアンチモンから選ばれる少
なくとも1種以上の元素、モリブデン、バナジウムおよ
びニオブを含む複合酸化物等が、生成していると考えら
れる。焼成は窒素ガス、アルゴンガス、ヘリウムガスな
どの実質的に酸素を含まない不活性ガス雰囲気下、好ま
しくは、不活性ガスを流通させながら、流動焼成炉また
はロータリーキルンなどで実施することが可能である。
必要に応じては、不活性ガス中に微量の酸素を含んでい
ても良い。
(Calcination step) The oxide powder is obtained by subjecting the dry powder obtained in the drying step to calcination. It is considered that the oxide catalyst is a composite oxide containing at least one element selected from tellurium and antimony, molybdenum, vanadium, and niobium. The firing can be carried out in an atmosphere of an inert gas substantially free of oxygen such as nitrogen gas, argon gas and helium gas, preferably in a fluidized firing furnace or a rotary kiln while circulating an inert gas. .
If necessary, the inert gas may contain a trace amount of oxygen.

【0018】乾燥粉体は静置して焼成すると、均一に焼
成されず性能が悪化するとともに、割れ、ひびなどが生
じる原因となる。不活性ガスの流通量は乾燥粉体1Kg
当たり、50〜2000Nリットル/Hr、好ましくは
50〜1500Nリットル/Hrである。ロータリーキ
ルンによる連続流通式の場合は、乾燥粉体1Kg/Hr
当たり、50〜2000Nリットル/Hr、好ましくは
50〜1500Nリットル/Hrである。この時、不活
性ガスと乾燥粉体は向流でも並流でも問題ないが、乾燥
粉体から生成するガス成分や、乾燥粉体とともに微量混
入する空気を考慮すると、向流接触が好ましい。
If the dry powder is allowed to stand and is baked, it will not be evenly baked and the performance will be deteriorated, and it may cause cracks and cracks. The amount of inert gas flowing is 1 kg of dry powder
Per 50 to 2000 Nl / Hr, preferably 50 to 1500 Nl / Hr. In the case of a continuous flow system using a rotary kiln, dry powder 1 kg / hr
Per 50 to 2000 Nl / Hr, preferably 50 to 1500 Nl / Hr. At this time, the inert gas and the dry powder may be counter-currently or co-currently flowed, but considering the gas component produced from the dry powder and the air mixed in a small amount together with the dry powder, countercurrent contact is preferable.

【0019】本発明では、本焼成の前に前段焼成を実施
することが可能である。前段焼成は、不活性ガス流通
下、250℃〜450℃、好ましくは300℃〜400
℃で、一旦保持することをいう。保持時間は、30分以
上、3〜8時間が好ましい。また、前段焼成が数段に分
かれていてもよい。連続流通式焼成の場合、乾燥粉体と
ともに空気が混入する可能性があるが、不活性ガスを向
流で流通すれば問題ない。本焼成とは、触媒とするため
に焼成された過程の中で最も高い温度で保持することを
いう。本焼成は、酸素不存在下、450℃〜700℃、
好ましくは550℃〜670℃で実施することができ
る。焼成時間は0.1時間以上、好ましくは0.5〜2
0時間、特に好ましくは1〜8時間である。連続流通式
焼成で、一旦前段焼成を終了し、改めて本焼成するよう
な場合には、前段焼成された粉体とともに空気が混入す
る可能性があるが、不活性ガスを向流で流通すれば問題
ない。
In the present invention, it is possible to carry out the pre-stage firing before the main firing. The first-stage firing is carried out under an inert gas flow at 250 ° C to 450 ° C, preferably 300 ° C to 400 ° C.
It means holding once at ℃. The holding time is preferably 30 minutes or more and 3 to 8 hours. Further, the pre-stage firing may be divided into several stages. In the case of continuous flow type firing, air may be mixed with the dry powder, but there is no problem if the inert gas is passed in a counterflow. The main calcination refers to holding at the highest temperature in the process of calcination to obtain a catalyst. The main firing is 450 ° C. to 700 ° C. in the absence of oxygen,
It can be preferably carried out at 550 ° C to 670 ° C. The firing time is 0.1 hours or more, preferably 0.5 to 2
0 hours, particularly preferably 1 to 8 hours. In the case of continuous flow type calcination, if the former calcination is finished and the main calcination is carried out again, air may be mixed with the powder calcinated in the former stage, but if the inert gas is circulated in countercurrent no problem.

【0020】アニーリングは、本焼成終了後に、本焼成
より低い温度で保持することをいう。通常は、本焼成温
度より5℃以上低い温度で、好ましくは本焼成温度より
10℃以上低い温度で、更に好ましくは本焼成温度より
30℃以上低い温度で、特に好ましくは本焼成温度より
50℃以上低い温度で実施する。又、保持時間は、0.
5時間以上、好ましくは1時間以上、更に好ましくは3
時間以上、特に好ましくは10時間以上である。本焼成
段階からアニーリング段階までの降温速度は、0.01
〜1000℃/minで、好ましくは0.05〜100
℃/min、更に好ましくは0.1〜50℃/min、
特に好ましくは0.5〜10℃/minである。
Annealing refers to holding at a temperature lower than in the main firing after the main firing is completed. Usually, the temperature is lower than the main calcination temperature by 5 ° C or more, preferably lower than the main calcination temperature by 10 ° C or higher, more preferably lower than the main calcination temperature by 30 ° C or higher, and particularly preferably 50 ° C lower than the main calcination temperature. The above is performed at a low temperature. The holding time is 0.
5 hours or more, preferably 1 hour or more, more preferably 3
It is at least hours, particularly preferably at least 10 hours. The temperature decrease rate from the main calcination stage to the annealing stage is 0.01
~ 1000 ° C / min, preferably 0.05-100
C / min, more preferably 0.1-50 C / min,
Particularly preferably, it is 0.5 to 10 ° C./min.

【0021】アニーリングは、通常一定温度で保持され
るが、変動しても構わない。また、本焼成温度を一時的
に超えても構わない。一方、アニーリング段階で温度低
下がある場合、その平均温度低下速度が、5℃/min
以下、好ましくは2℃/min以下、更に好ましくは1
℃/min以下である。本焼成、アニーリングを連続し
て実施しても良いし、本焼成を一旦完了してからあらた
めてアニーリングしても良い。焼成は反復することもで
きる。又、本焼成とアニーリングを組み合わせて繰り返
しても良い。又、本焼成終了後、300℃以下に冷却し
てから、本焼成された粉体が、空気に触れてからアニー
リングしても構わない。
Annealing is usually held at a constant temperature, but may vary. Further, the main firing temperature may be temporarily exceeded. On the other hand, when there is a temperature decrease in the annealing stage, the average temperature decrease rate is 5 ° C / min.
Or less, preferably 2 ° C./min or less, more preferably 1
C / min or less. The main calcination and the annealing may be continuously performed, or the main calcination may be once completed and then annealed again. The firing can be repeated. Further, the main firing and the annealing may be combined and repeated. In addition, after the main calcination is finished, it may be cooled to 300 ° C. or lower, and then the main calcined powder may be annealed after contact with air.

【0022】アニーリングは、酸素不存在下で実施する
ことが可能である。必要に応じては、不活性ガス中に微
量の酸素を含んでいても良い。連続流通式焼成で、一旦
本焼成を終了し、改めてアニーリングするような場合に
は、本焼成された粉体とともに空気が混入する可能性が
あるが、不活性ガスを向流で流通すれば問題ない。この
ようにして製造された酸化物触媒の存在下、アルカンを
気相接触酸化または気相接触アンモ酸化反応させて、対
応する不飽和酸または不飽和ニトリルを製造する。
Annealing can be carried out in the absence of oxygen. If necessary, the inert gas may contain a trace amount of oxygen. In the case of continuous flow-type firing, when main firing is finished and annealing is performed again, air may be mixed with the finely fired powder, but it is a problem if the inert gas is passed in countercurrent. Absent. The alkane is subjected to a gas phase catalytic oxidation or a gas phase catalytic ammoxidation reaction in the presence of the oxide catalyst thus produced to produce a corresponding unsaturated acid or unsaturated nitrile.

【0023】アルカンとアンモニアの供給原料は必ずし
も高純度である必要はなく、90重量%以上の純度があ
れば良い。供給酸素源として空気、酸素を富化した空気
または純酸素を用いることができる。更に、希釈ガスと
してヘリウム、アルゴン、炭酸ガス、水蒸気、窒素など
を供給してもよい。アルカンの気相接触酸化は以下の条
件で行うことが出来る。反応に供給する酸素のアルカン
に対するモル比は0.1〜6、好ましくは0.5〜4で
ある。反応温度は300℃〜500℃、好ましくは35
0℃〜450℃である。反応圧力は5×104〜5×1
5Pa、好ましくは1×105〜3×105Paであ
る。
The feed materials for the alkane and ammonia do not necessarily have to be highly pure, and may have a purity of 90% by weight or more. Air, oxygen-enriched air or pure oxygen can be used as the supply oxygen source. Further, helium, argon, carbon dioxide gas, steam, nitrogen or the like may be supplied as a diluent gas. The vapor phase catalytic oxidation of alkane can be performed under the following conditions. The molar ratio of oxygen supplied to the reaction to alkane is 0.1 to 6, preferably 0.5 to 4. The reaction temperature is 300 ° C to 500 ° C, preferably 35 ° C.
It is 0 ° C to 450 ° C. Reaction pressure is 5 × 10 4 to 5 × 1
It is 0 5 Pa, preferably 1 × 10 5 to 3 × 10 5 Pa.

【0024】接触時間は0.1〜10(sec・g/c
c)、好ましくは0.5〜5(sec・g/cc)であ
る。本発明において、接触時間は次式で決定される。 接触時間(sec・g/cc)=(W/F)×273/
(273+T) ここで W=充填触媒量(g) F=標準状態(0℃、1.013×105Pa)での原
料混合ガス流量(Ncc/sec) T=反応温度(℃) である。
The contact time is 0.1 to 10 (sec · g / c
c), preferably 0.5 to 5 (sec · g / cc). In the present invention, the contact time is determined by the following equation. Contact time (sec · g / cc) = (W / F) × 273 /
(273 + T) Here, W = filled catalyst amount (g) F = raw material mixed gas flow rate (Ncc / sec) in standard state (0 ° C., 1.013 × 10 5 Pa) T = reaction temperature (° C.)

【0025】アルカンの気相接触アンモ酸化は以下の条
件で行うことが出来る。反応に供給する酸素のアルカン
に対するモル比は0.1〜6、好ましくは0.5〜4で
ある。反応に供給するアンモニアのアルカンに対するモ
ル比は0.3〜1.5、好ましくは0.6〜1.2であ
る。反応温度は350℃〜500℃、好ましくは380
℃〜470℃である。反応圧力は5×104〜5×105
Pa、好ましくは1×105〜3×105Paである。接
触時間は0.1〜10(sec・g/cc)、好ましく
は0.5〜5(sec・g/cc)である。反応方式
は、固定床、流動床、移動床など従来の方式を採用でき
るが、反応熱の除去が容易な流動床反応器が好ましい。
また、本発明の反応は、単流式であってもリサイクル式
であってもよい。
Gas phase catalytic ammoxidation of alkanes can be carried out under the following conditions. The molar ratio of oxygen supplied to the reaction to alkane is 0.1 to 6, preferably 0.5 to 4. The molar ratio of ammonia fed to the reaction to alkane is 0.3 to 1.5, preferably 0.6 to 1.2. The reaction temperature is 350 ° C to 500 ° C, preferably 380
C to 470C. Reaction pressure is 5 × 10 4 to 5 × 10 5
Pa, preferably 1 × 10 5 to 3 × 10 5 Pa. The contact time is 0.1 to 10 (sec · g / cc), preferably 0.5 to 5 (sec · g / cc). As a reaction system, a conventional system such as a fixed bed, a fluidized bed or a moving bed can be adopted, but a fluidized bed reactor which can easily remove reaction heat is preferable.
Further, the reaction of the present invention may be a single flow type or a recycle type.

【0026】[0026]

【発明の実施の形態】以下に本発明の製造方法により得
られた酸化物触媒について、触媒の調製実施例およびプ
ロパンの気相接触アンモ酸化反応によるアクリロニトリ
ルの製造実施例を用いて説明する。プロパンのアンモ酸
化反応の成績は反応ガスを分析した結果を基に、次式で
定義されるプロパン転化率およびアクリロニトリル選択
率を指標として評価した。 プロパン転化率(%)=(反応したプロパンのモル数)
/(供給したプロパンのモル数)×100 アクリロニトリル選択率(%)=(生成したアクリロニ
トリルのモル数)/(反応したプロパンのモル数)×1
00
BEST MODE FOR CARRYING OUT THE INVENTION The oxide catalyst obtained by the production method of the present invention will be described below with reference to a catalyst preparation example and an acrylonitrile production example by a gas phase catalytic ammoxidation reaction of propane. The results of the ammoxidation reaction of propane were evaluated based on the results of analysis of the reaction gas using the propane conversion rate and acrylonitrile selectivity defined by the following equations as indexes. Propane conversion rate (%) = (number of moles of reacted propane)
/ (Mol number of propane supplied) × 100 acrylonitrile selectivity (%) = (mol number of acrylonitrile produced) / (mol number of reacted propane) × 1
00

【0027】(ニオブ含有液の調製)特開平11−25
3801号公報に倣って、以下の方法でニオブ含有液を
調製した。水11280gにNb25として80.2重
量%を含有するニオブ酸1700gとシュウ酸二水和物
〔H224・2H2O〕6560gを混合した。仕込み
のシュウ酸/ニオブのモル比は5.08、仕込みのニオ
ブ濃度は0.525(mol−Nb/Kg−液)であ
る。この混合液を95℃で1時間加熱撹拌することによ
って、ニオブが溶解した水溶液を得た。この水溶液を静
置、氷冷後、固体を吸引濾過によって濾別し、均一なニ
オブ含有液を得た。このニオブ含有液のシュウ酸/ニオ
ブのモル比は下記の分析により2.40であった。
(Preparation of Niobium-Containing Liquid) JP-A-11-25
A niobium-containing liquid was prepared by the following method in accordance with Japanese Patent No. 3801. 11700 g of water was mixed with 1700 g of niobic acid containing 80.2% by weight as Nb 2 O 5 and 6560 g of oxalic acid dihydrate [H 2 C 2 O 4 .2H 2 O]. The charged oxalic acid / niobium molar ratio was 5.08, and the charged niobium concentration was 0.525 (mol-Nb / Kg-liquid). This mixed solution was heated and stirred at 95 ° C. for 1 hour to obtain an aqueous solution in which niobium was dissolved. The aqueous solution was allowed to stand and cooled with ice, and then the solid was filtered off by suction filtration to obtain a uniform niobium-containing liquid. The oxalic acid / niobium molar ratio of this niobium-containing liquid was 2.40 according to the following analysis.

【0028】るつぼにこのニオブ含有液10gを精秤し
て、95℃で一夜乾燥後、600℃で1時間熱処理し、
Nb250.853gを得た。この結果から、ニオブ濃
度は0.642(mol−Nb/Kg−液)であった。
300mlのガラスビーカーにこのニオブ含有液3gを
精秤して、約80℃の熱水200mlを加え、続いて
1:1硫酸10mlを加えた。得られた溶液をホットス
ターラー上で液温70℃に保ちながら、攪拌下、1/4
規定KMnO4を用いて滴定した。KMnO4によるかす
かな淡桃色が約30秒以上続く点を終点とした。シュウ
酸の濃度は、滴定量から次式に従って計算した結果、
1.540(mol−シュウ酸/Kg)であった。 2KMnO4+3H2SO4+5H224→K2SO4+2
MnSO4+10CO2+8H2O 得られたニオブ含有液を、下記の触媒調製のニオブ含有
液(B0)として用いた。
10 g of this niobium-containing liquid was precisely weighed in a crucible, dried overnight at 95 ° C., and then heat-treated at 600 ° C. for 1 hour.
0.853 g of Nb 2 O 5 was obtained. From this result, the niobium concentration was 0.642 (mol-Nb / Kg-solution).
3 g of this niobium-containing liquid was precisely weighed in a 300 ml glass beaker, 200 ml of hot water at about 80 ° C. was added, and subsequently 10 ml of 1: 1 sulfuric acid was added. While maintaining the solution temperature at 70 ° C. on a hot stirrer, with stirring, 1/4
Titrated with normal KMnO 4 . The end point was a point where a faint light pink color due to KMnO 4 continued for about 30 seconds or longer. The concentration of oxalic acid was calculated from the titer according to the following formula,
It was 1.540 (mol-oxalic acid / Kg). 2KMnO 4 + 3H 2 SO 4 + 5H 2 C 2 O 4 → K 2 SO 4 +2
MnSO 4 + 10CO 2 + 8H 2 O The obtained niobium-containing solution was used as a niobium-containing solution (B 0 ) in the following catalyst preparation.

【0029】[0029]

【実施例1】(触媒の調製)仕込み組成式がMo1
0.23Nb0.08Sb0.27n/45.0wt%−SiO2
示される酸化物触媒を次のようにして製造した。水49
60gにヘプタモリブデン酸アンモニウム〔(NH46
Mo724・4H2O〕を904.0g、メタバナジン酸
アンモニウム〔NH4VO3〕を137.8g、三酸化二
アンチモン〔Sb23〕を164.2g加え、容器内に
窒素ガスを流通させ、攪拌しながら90℃で2時間30
分間加熱して混合液A−1を得た。ニオブ含有液
(B0)638.0gに、H22として30wt%を含
有する過酸化水素水を92.9g添加し、さらに少量ず
つ三酸化二アンチモン〔Sb23〕を37.3g加え、
室温で10分間攪拌混合して、混合液B−1を調製し
た。得られた溶液A−1を70℃に冷却した後にSiO
2として30.6wt%を含有するシリカゾル1960
gを添加し、更にH22として30wt%を含有する過
酸化水素水235.1gを添加し、45℃で1時間攪拌
を続けた。次に混合液B−1を添加して原料調合液を得
た。
Example 1 (Preparation of catalyst) The composition formula was Mo 1 V
Was prepared oxide catalyst represented by the 0.23 Nb 0.08 Sb 0.27 O n /45.0wt%-SiO 2 as follows. Water 49
60 g of ammonium heptamolybdate [(NH 4 ) 6
Mo 7 O 24 · 4H 2 O] was 904.0g, 137.8g of ammonium metavanadate [NH 4 VO 3], adding 164.2g of diantimony trioxide [Sb 2 O 3], a nitrogen gas into the container Circulate and stir at 90 ° C for 2 hours 30
Mixing liquid A-1 was obtained by heating for a minute. To 638.0 g of the niobium-containing liquid (B 0 ), 92.9 g of hydrogen peroxide containing 30 wt% as H 2 O 2 was added, and 37.3 g of diantimony trioxide [Sb 2 O 3 ] was added little by little. In addition,
Mixing liquid B-1 was prepared by stirring and mixing at room temperature for 10 minutes. After cooling the obtained solution A-1 to 70 ° C., SiO
Silica sol 1960 containing 30.6 wt% as 2
g, and then 235.1 g of hydrogen peroxide containing 30 wt% as H 2 O 2 was added, and stirring was continued at 45 ° C. for 1 hour. Next, the mixed liquid B-1 was added to obtain a raw material preparation liquid.

【0030】得られた原料調合液を、遠心式噴霧乾燥器
に供給して乾燥し、微小球状の乾燥粉体を得た。乾燥機
の入口温度は210℃、そして出口温度は120℃であ
った。上記操作を4回繰り返し、乾燥粉体を集めて焼成
を実施した。得られた乾燥粉体480gを直径3インチ
のSUS製焼成管に充填し、5.0NL/minの窒素
ガス流通下、管を回転させながら、370℃まで1時間
で昇温し、370℃で4時間前段焼成した。引き続き、
640℃まで1時間で昇温し、640℃で2時間本焼成
した。更に引き続き、370℃まで約1.2℃/min
の降温速度で降温し、370℃で12時間アニーリング
して触媒を得た。
The obtained raw material preparation liquid was supplied to a centrifugal spray dryer and dried to obtain a fine spherical dry powder. The dryer inlet temperature was 210 ° C and the outlet temperature was 120 ° C. The above operation was repeated four times, and the dried powder was collected and fired. 480 g of the obtained dry powder was filled in a SUS baking tube having a diameter of 3 inches, and the temperature was raised to 370 ° C. in 1 hour while rotating the tube under a nitrogen gas flow of 5.0 NL / min, and at 370 ° C. It was pre-baked for 4 hours. Continuing,
The temperature was raised to 640 ° C. in 1 hour, and main firing was performed at 640 ° C. for 2 hours. Continuing, up to 370 ℃, approx. 1.2 ℃ / min
The temperature was lowered at a temperature lowering rate of, and the catalyst was obtained by annealing at 370 ° C. for 12 hours.

【0031】(プロパンのアンモ酸化反応)内径25m
mのバイコールガラス流動床型反応管に調製して得られ
た触媒を45g充填し、反応温度440℃、反応圧力常
圧下にプロパン:アンモニア:酸素:ヘリウム=1:
0.6:1.5:5.6のモル比の混合ガスを供給し、
プロパン転化率が50%となるように供給量を調節し
た。この時、アクリロニトリル選択率68.3%であっ
た。
(Propane ammoxidation reaction) Inner diameter 25 m
m of Vycor glass fluidized bed type reaction tube was filled with 45 g of the obtained catalyst, and the reaction temperature was 440 ° C. and the reaction pressure was normal pressure. Propane: ammonia: oxygen: helium = 1: 1.
A mixed gas having a molar ratio of 0.6: 1.5: 5.6 is supplied,
The feed rate was adjusted so that the propane conversion was 50%. At this time, the acrylonitrile selectivity was 68.3%.

【0032】[0032]

【比較例1】(触媒の調製)仕込み組成式がMo1
0.23Nb0.08Sb0.27n/45.0wt%−SiO2
示される実施例1の乾燥粉体を用い、実施例1でアニー
リングしなかった以外は実施例1と同様に焼成した。 (プロパンのアンモ酸化反応)得られた触媒を用いて、
実施例1と同様に反応を実施したところ、プロパン転化
率50%でアクリロニトリル選択率66.4%であっ
た。
[Comparative Example 1] (Preparation of catalyst) The composition formula was Mo 1 V.
With dry powder of Example 1 represented by the 0.23 Nb 0.08 Sb 0.27 O n /45.0wt%-SiO 2, except that no annealing in Example 1 was calcined in the same manner as in Example 1. (Propane ammoxidation reaction) Using the obtained catalyst,
When the reaction was carried out in the same manner as in Example 1, the propane conversion was 50% and the acrylonitrile selectivity was 66.4%.

【0033】[0033]

【実施例2】(触媒の調製)仕込み組成式がMo1
0.23Nb0.08Sb0.27n/45.0wt%−SiO2
示される実施例1の乾燥粉体を用い、370℃の代わり
に470℃でアニーリングした以外は実施例1と同様に
焼成した。 (プロパンのアンモ酸化反応)得られた触媒を用いて、
実施例1と同様に反応を実施したところ、プロパン転化
率50%でアクリロニトリル選択率68.9%であっ
た。
[Example 2] (Preparation of catalyst) The composition formula was Mo 1 V.
With dry powder of Example 1 represented by the 0.23 Nb 0.08 Sb 0.27 O n /45.0wt%-SiO 2, it was fired in the same manner as in Example 1 except that annealing at 470 ° C. instead of 370 ° C.. (Propane ammoxidation reaction) Using the obtained catalyst,
When the reaction was carried out in the same manner as in Example 1, the propane conversion was 50% and the acrylonitrile selectivity was 68.9%.

【0034】[0034]

【実施例3】(触媒の調製)仕込み組成式がMo1
0.23Nb0.08Sb0.27n/45.0wt%−SiO2
示される実施例1の乾燥粉体を用い、370℃の代わり
に520℃でアニーリングした以外は実施例1と同様に
焼成した。 (プロパンのアンモ酸化反応)得られた触媒を用いて、
実施例1と同様に反応を実施したところ、プロパン転化
率50%でアクリロニトリル選択率69.1%であっ
た。
[Example 3] (Preparation of catalyst) The composition formula was Mo 1 V.
With dry powder of Example 1 represented by the 0.23 Nb 0.08 Sb 0.27 O n /45.0wt%-SiO 2, it was fired in the same manner as in Example 1 except that annealing at 520 ° C. instead of 370 ° C.. (Propane ammoxidation reaction) Using the obtained catalyst,
When the reaction was carried out in the same manner as in Example 1, the propane conversion was 50% and the acrylonitrile selectivity was 69.1%.

【0035】[0035]

【実施例4】(触媒の調製)仕込み組成式がMo1
0.23Nb0.08Sb0.27n/45.0wt%−SiO2
示される実施例1の乾燥粉体を用い、370℃の代わり
に570℃でアニーリングした以外は実施例1と同様に
焼成した。 (プロパンのアンモ酸化反応)得られた触媒を用いて、
実施例1と同様に反応を実施したところ、プロパン転化
率50%でアクリロニトリル選択率68.9%であっ
た。
[Example 4] (Preparation of catalyst) The composition formula was Mo 1 V.
With dry powder of Example 1 represented by the 0.23 Nb 0.08 Sb 0.27 O n /45.0wt%-SiO 2, it was fired in the same manner as in Example 1 except that annealing at 570 ° C. instead of 370 ° C.. (Propane ammoxidation reaction) Using the obtained catalyst,
When the reaction was carried out in the same manner as in Example 1, the propane conversion was 50% and the acrylonitrile selectivity was 68.9%.

【0036】[0036]

【実施例5】(触媒の調製)仕込み組成式がMo1
0.23Nb0.08Sb0.27n/45.0wt%−SiO2
示される実施例1の乾燥粉体を用い、370℃で12時
間の代わりに520℃で3時間アニーリングした以外は
実施例1と同様に焼成した。 (プロパンのアンモ酸化反応)得られた触媒を用いて、
実施例1と同様に反応を実施したところ、プロパン転化
率50%でアクリロニトリル選択率68.5%であっ
た。
[Example 5] (Preparation of catalyst) The composition formula was Mo 1 V.
With dry powder of Example 1 represented by the 0.23 Nb 0.08 Sb 0.27 O n /45.0wt%-SiO 2, except that 3 hours annealing at 520 ° C. instead of 12 hours at 370 ° C. as in Example 1 Baked. (Propane ammoxidation reaction) Using the obtained catalyst,
When the reaction was carried out in the same manner as in Example 1, the propane conversion was 50% and the acrylonitrile selectivity was 68.5%.

【0037】[0037]

【実施例6】(触媒の調製)仕込み組成式がMo1
0.23Nb0.08Sb0.27n/45.0wt%−SiO2
示される実施例1の乾燥粉体を用い、370℃で12時
間の代わりに520℃で24時間アニーリングした以外
は実施例1と同様に焼成した。 (プロパンのアンモ酸化反応)得られた触媒を用いて、
実施例1と同様に反応を実施したところ、プロパン転化
率50%でアクリロニトリル選択率69.3%であっ
た。
[Example 6] (Preparation of catalyst) The composition formula was Mo 1 V.
With dry powder of Example 1 represented by the 0.23 Nb 0.08 Sb 0.27 O n /45.0wt%-SiO 2, except 24 hours of annealing at 520 ° C. instead of 12 hours at 370 ° C. as in Example 1 Baked. (Propane ammoxidation reaction) Using the obtained catalyst,
When the reaction was carried out in the same manner as in Example 1, the propane conversion was 50% and the acrylonitrile selectivity was 69.3%.

【0038】[0038]

【実施例7】(触媒の調製)仕込み組成式がMo1
0.23Nb0.08Sb0.27n/45.0wt%−SiO2
示される実施例1の乾燥粉体を用い、370℃で12時
間の代わりに520℃で48時間アニーリングした以外
は実施例1と同様に焼成した。 (プロパンのアンモ酸化反応)得られた触媒を用いて、
実施例1と同様に反応を実施したところ、プロパン転化
率50%でアクリロニトリル選択率69.2%であっ
た。
[Example 7] (Preparation of catalyst) The composition formula was Mo 1 V.
With dry powder of Example 1 represented by the 0.23 Nb 0.08 Sb 0.27 O n /45.0wt%-SiO 2, except that 48 hours annealing at 520 ° C. instead of 12 hours at 370 ° C. as in Example 1 Baked. (Propane ammoxidation reaction) Using the obtained catalyst,
When the reaction was carried out in the same manner as in Example 1, the propane conversion was 50% and the acrylonitrile selectivity was 69.2%.

【0039】[0039]

【実施例8】(触媒の調製)仕込み組成式がMo1
0.19Nb0.07Sb0.24n/45.0wt%−SiO2
示される酸化物触媒を次のようにして製造した。水42
84gにヘプタモリブデン酸アンモニウム〔(NH46
Mo724・4H2O〕を945.1g、メタバナジン酸
アンモニウム〔NH4VO3〕を119.0g、三酸化二
アンチモン〔Sb23〕を148.2g加え、容器内に
窒素ガスを流通させ、攪拌しながら90℃で2時間30
分間加熱して混合液A−2を得た。
[Embodiment 8] (Preparation of catalyst) The composition formula is Mo 1 V.
Was prepared oxide catalyst represented by the 0.19 Nb 0.07 Sb 0.24 O n /45.0wt%-SiO 2 as follows. Water 42
84 g of ammonium heptamolybdate [(NH 4 ) 6
Mo 7 O 24 · 4H 2 O] was 945.1g, 119.0g of ammonium metavanadate [NH 4 VO 3], adding 148.2g of diantimony trioxide [Sb 2 O 3], a nitrogen gas into the container Circulate and stir at 90 ° C for 2 hours 30
Mixing liquid A-2 was obtained by heating for a minute.

【0040】ニオブ含有液(B0)583.6gに、H2
2として30wt%を含有する過酸化水素水を85.
0g添加し、さらに少量ずつ三酸化二アンチモン〔Sb
23〕を39.0g加え、室温で10分間攪拌混合し
て、混合液B−2を調製した。得られた溶液A−2を7
0℃に冷却した後にSiO2として30.6wt%を含
有するシリカゾル1960gを添加し、更にH22とし
て30wt%を含有する過酸化水素水218.5gを添
加し、45℃で1時間攪拌を続けた。次に混合液B−2
を添加して原料調合液を得た。得られた原料調合液を、
遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉
体を得た。乾燥機の入口温度は210℃、そして出口温
度は120℃であった。
583.6 g of the niobium-containing liquid (B 0 ) was added with H 2
85% hydrogen peroxide solution containing 30 wt% as O 2 .
0 g was added, and diantimony trioxide [Sb was added little by little.
2 O 3 ] was added thereto, and the mixture was stirred and mixed at room temperature for 10 minutes to prepare a mixed solution B-2. The resulting solution A-2 was 7
After cooling to 0 ° C., 1960 g of silica sol containing 30.6 wt% as SiO 2 was added, and 218.5 g of hydrogen peroxide solution containing 30 wt% as H 2 O 2 was further added and stirred at 45 ° C. for 1 hour. Continued. Next, mixed solution B-2
Was added to obtain a raw material preparation liquid. The obtained raw material preparation liquid,
The powder was supplied to a centrifugal spray dryer and dried to obtain a fine spherical dry powder. The dryer inlet temperature was 210 ° C and the outlet temperature was 120 ° C.

【0041】上記操作を2回繰り返し、乾燥粉体を集め
て焼成を実施した。得られた乾燥粉体480gを直径3
インチのSUS製焼成管に充填し、5.0NL/min
の窒素ガス流通下、管を回転させながら、370℃まで
1時間で昇温し、370℃で4時間前段焼成した。引き
続き、640℃まで1時間で昇温し、640℃で2時間
本焼成した。更に引き続き、520℃まで約1.2℃/
minの降温速度で降温し、520℃で12時間アニー
リングして触媒を得た。 (プロパンのアンモ酸化反応)得られた触媒を用いて、
実施例1と同様に反応を実施したところ、プロパン転化
率50%でアクリロニトリル選択率69.3%であっ
た。
The above operation was repeated twice, and dry powder was collected and fired. Diameter 480g of the obtained dry powder 480g
5.0 NL / min filled in inch SUS firing tube
Under nitrogen gas flow, the temperature was raised to 370 ° C. in 1 hour while rotating the tube, and pre-baking was performed at 370 ° C. for 4 hours. Then, it heated up to 640 degreeC in 1 hour, and main-baked at 640 degreeC for 2 hours. Continue to about 1.2 ℃ / up to 520 ℃
The temperature was decreased at a temperature decrease rate of min, and annealing was performed at 520 ° C. for 12 hours to obtain a catalyst. (Propane ammoxidation reaction) Using the obtained catalyst,
When the reaction was carried out in the same manner as in Example 1, the propane conversion was 50% and the acrylonitrile selectivity was 69.3%.

【0042】[0042]

【比較例2】(触媒の調製)仕込み組成式がMo1
0.19Nb0.07Sb0.24n/45.0wt%−SiO2
示される実施例8の乾燥粉体を用い、実施例8でアニー
リングしなかった以外は実施例8と同様に焼成した。 (プロパンのアンモ酸化反応)得られた触媒を用いて、
実施例1と同様に反応を実施したところ、プロパン転化
率50%でアクリロニトリル選択率67.8%であっ
た。
[Comparative Example 2] (Preparation of catalyst) The composition formula was Mo 1 V.
With dry powder of Example 8 represented by 0.19 Nb 0.07 Sb 0.24 O n /45.0wt%-SiO 2, except that no annealing in Example 8 was calcined in the same manner as in Example 8. (Propane ammoxidation reaction) Using the obtained catalyst,
When the reaction was carried out in the same manner as in Example 1, the propane conversion was 50% and the acrylonitrile selectivity was 67.8%.

【0043】[0043]

【発明の効果】アルカンの気相接触酸化または気相接触
アンモ酸化に用いる酸化物触媒の製造方法において、反
応時の目的物の選択率が高い触媒を調製できる。また、
本発明により調製された触媒は、アルカンを気相接触酸
化または気相接触アンモ酸化反応において、高い選択率
で目的物を製造することができる。
INDUSTRIAL APPLICABILITY In a method for producing an oxide catalyst used for vapor phase catalytic oxidation or vapor phase catalytic ammoxidation of alkane, it is possible to prepare a catalyst having a high selectivity of a target substance at the time of reaction. Also,
The catalyst prepared according to the present invention can produce a target compound with high selectivity in a gas phase catalytic oxidation or a gas phase catalytic ammoxidation reaction of an alkane.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 255/08 C07C 255/08 // C07B 61/00 300 C07B 61/00 300 Fターム(参考) 4G069 AA02 AA03 AA08 BA02A BA02B BB06A BB06B BC21C BC26A BC26B BC54A BC54B BC55A BC55B BC55C BC59A BC59B BD10A BE08C CB07 CB53 CB54 CB76 EA01Y FA01 FB05 FB29 FB30 FB57 FC02 FC07 FC08 4H006 AA02 AC54 BA12 BA13 BA14 BA15 BA30 BC10 BC11 BC13 BC32 BE14 BE30 QN24 4H039 CA70 CL50 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C07C 255/08 C07C 255/08 // C07B 61/00 300 C07B 61/00 300 F term (reference) 4G069 AA02 AA03 AA08 BA02A BA02B BB06A BB06B BC21C BC26A BC26B BC54A BC54B BC55A BC55B BC55C BC59A BC59B BD10A BE08C CB07 CB53 CB54 CB76 EA01Y FA01 BC30 BA32 BA30 BA12 BA30 BA12BA30 BA12BA13BA13 BA12BA13BA12BA13BA32BA30B

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 アルカンの気相接触酸化反応または気相
接触アンモ酸化反応に用いるテルルおよびアンチモンか
ら選ばれる少なくとも1種以上の元素、モリブデン、バ
ナジウムおよびニオブを含む水溶液を乾燥し、焼成し、
該焼成の内の本焼成終了後に、本焼成温度より低い温度
でアニーリングを行うことを特徴とする酸化物触媒の調
製方法。
1. An aqueous solution containing at least one element selected from tellurium and antimony used for vapor-phase catalytic oxidation reaction or vapor-phase catalytic ammoxidation reaction of alkane, molybdenum, vanadium and niobium is dried and calcined,
A method for preparing an oxide catalyst, characterized in that annealing is performed at a temperature lower than the main calcination temperature after completion of the main calcination in the calcination.
【請求項2】 該アニーリングが、本焼成温度より10
℃以上低い温度で行われることを特徴とする請求項1に
記載の触媒の調製方法。
2. The annealing is performed at a temperature higher than the firing temperature of 10 times.
The method for preparing a catalyst according to claim 1, wherein the method is carried out at a temperature lower than 0 ° C.
【請求項3】 該アニーリングが、本焼成温度より50
℃以上低い温度で行われることを特徴とする請求項1ま
たは請求項2のいずれかに記載の触媒の調製方法。
3. The annealing is performed at a temperature higher than the firing temperature of 50.
3. The method for preparing a catalyst according to claim 1 or 2, which is performed at a temperature lower than or equal to ℃.
【請求項4】 該酸化物触媒が、下記の一般組成式
(1)で示されることを特徴とする請求項1〜3のいず
れか1項に記載の触媒の調製方法。 [化1] Mo1aNbbcn (1) (式中、成分Xはテルルまたはアンチモンから選ばれる
少なくとも1種以上の元素であり、a、b、c、nはM
o1原子当たりの原子比を表し、aは0.01≦a≦
1、bは0.01≦b≦1、cは0.01≦c≦1、そ
してnは構成金属の原子価によって決まる数である。)
4. The method for preparing a catalyst according to any one of claims 1 to 3, wherein the oxide catalyst is represented by the following general composition formula (1). Formula 1] Mo in 1 V a Nb b X c O n (1) ( wherein component X represents at least one element selected from tellurium or antimony, a, b, c, n is M
o represents the atomic ratio per atom, and a is 0.01 ≦ a ≦
1, b is 0.01 ≦ b ≦ 1, c is 0.01 ≦ c ≦ 1, and n is a number determined by the valence of the constituent metals. )
【請求項5】 該成分Xがアンチモンであることを特徴
とする請求項4に記載の触媒の調製方法。
5. The method for preparing a catalyst according to claim 4, wherein the component X is antimony.
【請求項6】 該ニオブが、ジカルボン酸とニオブの化
合物を含み、ジカルボン酸/ニオブのモル比が1〜4の
ニオブ含有液を原料とすることを特徴とする請求項1〜
5のいずれか1項に記載の触媒の調製方法。
6. The niobium contains a compound of dicarboxylic acid and niobium, and a niobium-containing liquid having a dicarboxylic acid / niobium molar ratio of 1 to 4 is used as a raw material.
6. The method for preparing the catalyst according to any one of 5 above.
【請求項7】 該酸化物触媒が、上記一般組成式(1)
で表される触媒構成元素酸化物とこれを担持するシリカ
とからなるものであって、該シリカの含有割合が、該触
媒構成元素酸化物と該シリカの全重量に対し、SiO2
換算で20〜60重量%のシリカに担持されていること
を特徴とする、請求項1〜6のいずれか1項に記載の酸
化物触媒の調製方法。
7. The oxide composition according to the above general composition formula (1)
Which is composed of a catalyst-constituting element oxide represented by and silica supporting the same, and the content of the silica is SiO 2 with respect to the total weight of the catalyst-constituting element oxide and the silica.
The method for preparing an oxide catalyst according to claim 1, wherein the oxide catalyst is supported on 20 to 60% by weight of silica.
【請求項8】 該アニーリングが、アニーリング段階で
温度低下がある場合、その平均温度低下速度が、2℃/
min以下であることを特徴とする請求項1〜7のいず
れか1項に記載の酸化物触媒の調製方法。
8. If the annealing has a temperature decrease in the annealing stage, the average temperature decrease rate is 2 ° C. /
It is below min, The preparation method of the oxide catalyst of any one of Claims 1-7 characterized by the above-mentioned.
【請求項9】 プロパンまたはイソブタンを気相接触酸
化反応または気相接触アンモ酸化反応させて、対応する
不飽和カルボン酸または不飽和ニトリルを製造するに当
たり、請求項1〜8のいずれかに記載の調製方法で調製
された触媒を用いることを特徴とする不飽和酸または不
飽和ニトリルの製造方法。
9. The method according to claim 1, wherein propane or isobutane is subjected to a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction to produce a corresponding unsaturated carboxylic acid or unsaturated nitrile. A method for producing an unsaturated acid or an unsaturated nitrile, which comprises using the catalyst prepared by the preparation method.
JP2002124839A 2002-04-25 2002-04-25 Preparation method of oxidation catalyst and production method of nitrile using the catalyst Expired - Lifetime JP4162915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002124839A JP4162915B2 (en) 2002-04-25 2002-04-25 Preparation method of oxidation catalyst and production method of nitrile using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002124839A JP4162915B2 (en) 2002-04-25 2002-04-25 Preparation method of oxidation catalyst and production method of nitrile using the catalyst

Publications (2)

Publication Number Publication Date
JP2003320248A true JP2003320248A (en) 2003-11-11
JP4162915B2 JP4162915B2 (en) 2008-10-08

Family

ID=29539781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002124839A Expired - Lifetime JP4162915B2 (en) 2002-04-25 2002-04-25 Preparation method of oxidation catalyst and production method of nitrile using the catalyst

Country Status (1)

Country Link
JP (1) JP4162915B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090979A1 (en) * 2010-12-27 2012-07-05 旭化成ケミカルズ株式会社 Composite oxide catalyst and method for producing same
WO2014050615A1 (en) * 2012-09-27 2014-04-03 旭化成ケミカルズ株式会社 Composite oxide catalyst, method for producing same, and method for producing unsaturated nitrile
WO2016159085A1 (en) * 2015-03-31 2016-10-06 旭化成株式会社 Method for producing oxide catalyst, and method for producing unsaturated nitrile

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090979A1 (en) * 2010-12-27 2012-07-05 旭化成ケミカルズ株式会社 Composite oxide catalyst and method for producing same
US9855546B2 (en) 2010-12-27 2018-01-02 Asahi Kasei Chemicals Corporation Composite oxide catalyst and method for producing the same
JP5694379B2 (en) * 2010-12-27 2015-04-01 旭化成ケミカルズ株式会社 Composite oxide catalyst and method for producing the same
JP2016215187A (en) * 2012-09-27 2016-12-22 旭化成株式会社 Composite oxide catalyst, method for producing the same and method for producing unsaturated nitrile
US10343146B2 (en) 2012-09-27 2019-07-09 Asahi Kasei Chemicals Corporation Composite oxide catalyst, method for producing the same, and method for producing unsaturated nitrile
JPWO2014050615A1 (en) * 2012-09-27 2016-08-22 旭化成株式会社 Composite oxide catalyst, method for producing the same, and method for producing unsaturated nitrile
CN110026183A (en) * 2012-09-27 2019-07-19 旭化成株式会社 The manufacturing method of composite oxide catalysts and the manufacturing method of unsaturated nitrile
RU2601990C1 (en) * 2012-09-27 2016-11-10 Асахи Касеи Кемикалз Корпорейшн Multicomponent oxide catalyst, method of making and same method of producing unsaturated nitrile
CN104661745A (en) * 2012-09-27 2015-05-27 旭化成化学株式会社 Composite oxide catalyst, method for producing same, and method for producing unsaturated nitrile
KR101741888B1 (en) * 2012-09-27 2017-05-30 아사히 가세이 케미칼즈 가부시키가이샤 Composite oxide catalyst, method for producing same, and method for producing unsaturated nitrile
EP2902105A4 (en) * 2012-09-27 2016-02-17 Asahi Kasei Chemicals Corp Composite oxide catalyst, method for producing same, and method for producing unsaturated nitrile
WO2014050615A1 (en) * 2012-09-27 2014-04-03 旭化成ケミカルズ株式会社 Composite oxide catalyst, method for producing same, and method for producing unsaturated nitrile
JPWO2016159085A1 (en) * 2015-03-31 2017-10-26 旭化成株式会社 Method for producing oxide catalyst and method for producing unsaturated nitrile
KR101850670B1 (en) 2015-03-31 2018-04-19 아사히 가세이 가부시키가이샤 Method for producing oxide catalyst, and method for producing unsaturated nitrile
RU2661196C1 (en) * 2015-03-31 2018-07-13 Асахи Касеи Кабусики Кайся Method for the preparation of an oxide catalyst and method for the preparation of unsaturated nitril
CN107530682A (en) * 2015-03-31 2018-01-02 旭化成株式会社 The manufacture method of oxide catalyst and the manufacture method of unsaturated nitrile
WO2016159085A1 (en) * 2015-03-31 2016-10-06 旭化成株式会社 Method for producing oxide catalyst, and method for producing unsaturated nitrile

Also Published As

Publication number Publication date
JP4162915B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
KR100999983B1 (en) Oxidation or ammoxydation catalyst and method of preparing the same
JP4166334B2 (en) Method for preparing oxidation catalyst
JP4081824B2 (en) Acrylic acid production method
JP2000070714A (en) Production of catalyst for production of unsaturated nitrile
JP4209007B2 (en) Catalyst for acrylonitrile or methacrylonitrile production
US20080139844A1 (en) Method Of Preparing Acrylic Acid From Propane In The Absence
JPH1147598A (en) Preparation of catalyst
JP4049363B2 (en) Alkane oxidation catalyst, production method thereof, and production method of unsaturated oxygen-containing compound
JP2003320248A (en) Method for preparing oxidation catalyst and method for manufacturing nitrile using the catalyst
JP4791203B2 (en) Method for producing oxide catalyst
JPH11114426A (en) Catalyst and production of unsaturated nitrile using it
JP2003170044A (en) Catalyst preparation method
JP2001276618A (en) Catalyst for oxidation or ammoxidation
JP4647858B2 (en) Oxidation or ammoxidation oxide catalyst and method for producing the same
JP4311842B2 (en) Catalyst for acrylonitrile or methacrylonitrile production
JP4067316B2 (en) Catalyst preparation method
JP4667674B2 (en) Method for producing oxidation or ammoxidation catalyst
JP4535608B2 (en) Catalyst and method for producing unsaturated nitrile using the catalyst
JP4212139B2 (en) Method for preparing catalyst for ammoxidation
JP4050904B2 (en) Method for producing oxidation or ammoxidation catalyst
JP2000202293A (en) Catalyst and production of unsaturated nitrile using same
JP4014863B2 (en) Method for producing oxidation or ammoxidation catalyst
JP4111715B2 (en) Method for producing ammoxidation catalyst
JP5078222B2 (en) Composite oxide catalyst
JP2007326036A (en) Oxide catalyst for oxidation or amm oxidation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4162915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term