JP2003318452A - Thermoelectric device and storage house - Google Patents

Thermoelectric device and storage house

Info

Publication number
JP2003318452A
JP2003318452A JP2002123995A JP2002123995A JP2003318452A JP 2003318452 A JP2003318452 A JP 2003318452A JP 2002123995 A JP2002123995 A JP 2002123995A JP 2002123995 A JP2002123995 A JP 2002123995A JP 2003318452 A JP2003318452 A JP 2003318452A
Authority
JP
Japan
Prior art keywords
heat
exchange means
thermoelectric
thermoelectric device
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002123995A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ueda
啓裕 上田
Osao Kido
長生 木戸
Hideo Nishibatake
秀男 西畠
Mitsunori Taniguchi
光▲のり▼ 谷口
Noriyuki Miyaji
法幸 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2002123995A priority Critical patent/JP2003318452A/en
Publication of JP2003318452A publication Critical patent/JP2003318452A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/023Mounting details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0251Removal of heat by a gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0252Removal of heat by liquids or two-phase fluids

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the cooling efficiency of a thermoelectric device and to facilitate setting of the thermoelectric device in a storage house by making compact the structure thereof. <P>SOLUTION: The thermoelectric device comprises a thermoelectric module 6 having a heat dissipation surface 6a and a heat absorbing surface 6b facing each other, a heat dissipation heat sink 9 bonded to the heat dissipation surface 6a and exchanging heat therewith, and a cooling heat sink 10 bonded to the heat absorbing surface 6b and exchanging heat therewith wherein a space surrounded by the outer circumferential surface of the thermoelectric module 6, the bonding face of the heat dissipation heat sink 9 and the bonding face of the cooling heat sink 10 is filled with one planar vacuum heat insulating material 7 having a hole 8 for containing the thermoelectric module 6. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ペルチェ効果を有
する熱電モジュールを使用した熱電装置とその熱電装置
を使った貯蔵庫に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric device using a thermoelectric module having a Peltier effect and a storage using the thermoelectric device.

【0002】[0002]

【従来の技術】近年、フロンガスのオゾン層破壊作用が
地球的な問題となり、フロンガスを使用しない貯蔵庫等
の開発が急がれている。そしてフロンガスを使用しない
貯蔵庫等の一つとして、熱電モジュールを使用した貯蔵
庫が注目されている。
2. Description of the Related Art In recent years, the ozone layer depleting action of chlorofluorocarbon has become a global problem, and there has been an urgent need to develop storages and the like that do not use chlorofluorocarbon. As one of the storages that does not use CFCs, a storage that uses a thermoelectric module is drawing attention.

【0003】ここで熱電モジュールとは、ペルチェ(P
eltier)モジュール、サーモモジュール、又は熱
電子チップ、熱電素子として知られているものであり、
二つの伝熱面を有し、電流を流す(所定の電圧をかけ
る)ことにより一方の伝熱面が加熱され、他方の伝熱面
が冷却される機能を持つ部材である。すなわち熱電モジ
ュールでは、一方の面が放熱面として機能し、他方が吸
熱面として機能する。
Here, the thermoelectric module is a Peltier (P
known as an electronic module, a thermo module, or a thermoelectric chip, a thermoelectric element,
It is a member that has two heat transfer surfaces and has a function of heating one heat transfer surface and cooling the other heat transfer surface by passing an electric current (applying a predetermined voltage). That is, in the thermoelectric module, one surface functions as a heat radiation surface and the other surface functions as a heat absorption surface.

【0004】熱電モジュールを使用した熱電装置として
は、例えば特開平7−176796号公報に示されてい
るものがある。
An example of a thermoelectric device using a thermoelectric module is disclosed in Japanese Patent Laid-Open No. 176796/1995.

【0005】以下、図面を参照にしながら上記従来の熱
電装置について説明する。
The conventional thermoelectric device will be described below with reference to the drawings.

【0006】図8は、従来の熱電装置の断面図を示して
いる。
FIG. 8 shows a sectional view of a conventional thermoelectric device.

【0007】図8において、1は熱電モジュールで、対
向する2平面の一方に放熱面1a、他方に吸熱面1bを
有する。2は片面に複数のフィン2aを備えた放熱用ヒ
ートシンクで、フィン2aの背面側が熱電モジュール1
の放熱面1aと熱的に接合されている。3は片面に複数
のフィン3aを備えた冷却用ヒートシンクで、フィン3
aの背面側がブロック4を介して熱電モジュール1の吸
熱面1bと熱的に接合されている。
In FIG. 8, reference numeral 1 denotes a thermoelectric module, which has a heat radiating surface 1a on one of two opposing flat surfaces and a heat absorbing surface 1b on the other. Reference numeral 2 is a heat sink for heat dissipation, which has a plurality of fins 2a on one side, and the back side of the fins 2a is the thermoelectric module 1
Is thermally bonded to the heat radiation surface 1a. 3 is a cooling heat sink having a plurality of fins 3a on one side.
The back side of a is thermally joined to the heat absorbing surface 1b of the thermoelectric module 1 via the block 4.

【0008】以上のように構成された従来の熱電装置を
冷蔵庫等に用いる一般的な場合には、庫内側と庫外側を
分ける断熱壁の一部に貫通孔を設け、放熱用ヒートシン
ク2が庫外側に、また冷却用ヒートシンク3が庫内側に
位置するように貫通孔を挟んで取り付けられる。
In the general case where the conventional thermoelectric device configured as described above is used in a refrigerator or the like, a through hole is provided in a part of a heat insulating wall that separates the inside and the outside of the refrigerator, and the heat sink 2 for heat dissipation is provided. The cooling heat sink 3 is attached so as to be located on the outer side and the inner side of the refrigerator with a through hole interposed therebetween.

【0009】図8において、5は断熱壁であり、断熱壁
5に設けられた貫通部分に熱電モジュール1とブロック
4が挿入され、断熱壁5の両側に放熱用ヒートシンク2
と冷却用ヒートシンク3が突出している。
In FIG. 8, reference numeral 5 is a heat insulating wall. The thermoelectric module 1 and the block 4 are inserted into the penetrating portion provided in the heat insulating wall 5, and the heat sinks 2 for heat radiation are provided on both sides of the heat insulating wall 5.
And the heat sink 3 for cooling projects.

【0010】[0010]

【発明が解決しようとする課題】しかしながら上記従来
の技術は、庫外側から庫内側への熱侵入量を抑えるため
に、断熱壁5に設ける貫通孔を最小限に抑える必要があ
る。また、放熱用ヒートシンク2や冷却用ヒートシンク
3は、熱交換する気流の熱伝達率の低さから、伝熱面積
を拡大するために平面方向の大きさを熱電モジュール1
よりも大きくする必要があり、さらに熱電モジュール1
への電気入力の分だけ冷却量よりも放熱量のほうが大き
くなるので、通常は冷却用ヒートシンク3よりも放熱用
ヒートシンク2のほうがさらに大きい。
However, in the above conventional technique, it is necessary to minimize the through holes provided in the heat insulating wall 5 in order to suppress the amount of heat entering from the outside to the inside of the refrigerator. In addition, the heat sink 2 for heat dissipation and the heat sink 3 for cooling have a size in the planar direction in order to expand the heat transfer area due to the low heat transfer coefficient of the airflow for heat exchange.
Need to be larger than the thermoelectric module 1
Since the amount of heat radiation is larger than the amount of cooling by the amount of electric input to the heat sink 2, the heat sink 2 for heat radiation is usually larger than the heat sink 3 for cooling.

【0011】これらを満足するため、放熱用ヒートシン
ク2と冷却用ヒートシンク3は断熱壁5を挟んで取り付
けられる構造となり、断熱壁5の厚さと熱電モジュール
1の厚さとの差をブロック4で補うこととなる。
In order to satisfy these requirements, the heat sink 2 for heat radiation and the heat sink 3 for cooling are mounted with the heat insulating wall 5 sandwiched therebetween, and the block 4 compensates for the difference between the thickness of the heat insulating wall 5 and the thickness of the thermoelectric module 1. Becomes

【0012】そのため、接合部の増加による接触熱抵抗
の増加とブロック4内部の熱抵抗の発生によって、庫内
側の気流と熱電モジュール1との間の冷却側の全熱抵抗
が大きくなり、熱電モジュール1の放熱面1aと吸熱面
1bとの温度差が大きくなって熱電モジュール1の冷却
効率が低くなるという課題を有していた。
Therefore, due to an increase in contact thermal resistance due to an increase in the number of joints and a thermal resistance inside the block 4, the total thermal resistance on the cooling side between the air flow inside the refrigerator and the thermoelectric module 1 becomes large, and the thermoelectric module is increased. There is a problem that the temperature difference between the heat radiation surface 1a and the heat absorption surface 1b of No. 1 becomes large and the cooling efficiency of the thermoelectric module 1 becomes low.

【0013】また前述のように放熱用ヒートシンク2や
冷却用ヒートシンク3が断熱壁5から突出することとな
り、断熱壁5の厚さ方向に熱電装置をコンパクトにでき
ないという課題を有していた。
Further, as described above, the heat sink 2 for heat dissipation and the heat sink 3 for cooling are projected from the heat insulating wall 5, so that the thermoelectric device cannot be made compact in the thickness direction of the heat insulating wall 5.

【0014】さらに放熱用ヒートシンク2や冷却用ヒー
トシンク3の大きさが断熱壁5の貫通孔よりも大きいた
めに、放熱用ヒートシンク2や冷却用ヒートシンク3の
少なくともいずれか一方は、熱電モジュール1とブロッ
ク4を断熱壁5の貫通孔に挿入後、それらと接合する必
要があり、熱電装置としてユニット化できずに組み立て
工程が複雑になるという課題を有していた。
Further, since the size of the heat sink 2 for cooling and the size of the heat sink 3 for cooling are larger than the through holes of the heat insulating wall 5, at least one of the heat sink 2 for cooling and the heat sink 3 for cooling is blocked from the thermoelectric module 1 and the block. Since it was necessary to insert 4 into the through hole of the heat insulating wall 5 and then to join them, there was a problem that the thermoelectric device could not be unitized and the assembly process became complicated.

【0015】そこで本発明は、従来技術の上記したよう
な課題を解決するもので、ブロックなど熱抵抗を増加さ
せる部品を使用せずに熱電装置を貯蔵庫等に取り付ける
ことを可能にして、熱電装置の冷却効率を高めることを
目的とする。また熱電装置をコンパクトにすることを目
的とする。さらに熱電装置の貯蔵庫等への組み込みを容
易にすることを目的とする。
Therefore, the present invention solves the above-mentioned problems of the prior art, and enables the thermoelectric device to be attached to a storage or the like without using a component such as a block that increases the thermal resistance, and the thermoelectric device can be attached. The purpose is to improve the cooling efficiency of. Another object is to make the thermoelectric device compact. Furthermore, it aims at facilitating the incorporation of the thermoelectric device into a storage or the like.

【0016】[0016]

【課題を解決するための手段】この目的を達成するため
本発明の請求項1記載の熱電装置の発明は、放熱面と吸
熱面とが対向し所定の電圧をかけると放熱面から放熱し
吸熱面から吸熱する熱電モジュールと、前記放熱面より
大きい接合面が前記放熱面を完全に覆うように前記放熱
面に接合され前記放熱面と熱交換する放熱側熱交換手段
と、前記吸熱面より大きい接合面が前記吸熱面を完全に
覆うように前記吸熱面に接合され前記吸熱面と熱交換す
る吸熱側熱交換手段と、前記熱電モジュールの外周面の
少なくとも一つの面と前記放熱側熱交換手段の前記接合
面と前記吸熱側熱交換手段の前記接合面とで囲まれた空
間を埋めるように設けられた真空断熱材とから熱電装置
を構成するものである。
In order to achieve this object, the invention of a thermoelectric device according to claim 1 of the present invention is such that when a heat radiating surface and a heat absorbing surface face each other and a predetermined voltage is applied, the heat is radiated from the heat radiating surface. A thermoelectric module that absorbs heat from a surface, a heat-radiating side heat exchange means that is joined to the heat-dissipating surface so that a joint surface that is larger than the heat-dissipating surface completely exchanges heat with the heat-dissipating surface, and that is larger than the heat-absorbing surface Endothermic side heat exchange means joined to the endothermic surface so that the joint surface completely covers the endothermic surface and exchanging heat with the endothermic surface, and at least one outer peripheral surface of the thermoelectric module and the heat radiating side heat exchanging means. A thermoelectric device is constituted by a vacuum heat insulating material provided so as to fill a space surrounded by the joint surface of (1) and the joint surface of the heat absorption side heat exchange means.

【0017】請求項1記載の発明は、熱電モジュールの
外周面と放熱側熱交換手段の接合面と吸熱側熱交換手段
の接合面とで囲まれた空間を埋めるように真空断熱材を
設けるものであり、真空断熱材は、発泡断熱材より断熱
性能が高いため、発泡断熱材より断熱材を薄くできるの
で、放熱側熱交換手段と吸熱側熱交換手段との間隔を狭
くでき、厚み調整用の部品であるブロックを介在させず
に直接、熱電モジュールの伝熱面(放熱面と吸熱面)に
放熱側熱交換手段と吸熱側熱交換手段とを接合すること
が可能になり、熱電装置の冷却効率を高めることができ
る。
According to the first aspect of the present invention, a vacuum heat insulating material is provided so as to fill a space surrounded by the outer peripheral surface of the thermoelectric module, the joint surface of the heat radiation side heat exchange means, and the joint surface of the heat absorption side heat exchange means. Since the vacuum heat insulating material has a higher heat insulating performance than the foam heat insulating material, the heat insulating material can be thinner than the foam heat insulating material, so that the interval between the heat radiating side heat exchanging means and the heat absorbing side heat exchanging means can be narrowed to adjust the thickness. It becomes possible to directly join the heat radiation side heat exchange means and the heat absorption side heat exchange means to the heat transfer surface (heat radiation surface and heat absorption surface) of the thermoelectric module without interposing the block which is the component of the thermoelectric device. The cooling efficiency can be increased.

【0018】また、放熱側熱交換手段と吸熱側熱交換手
段との間隔を狭くできるため、熱電装置をコンパクトに
でき、熱電モジュールの外周面と放熱側熱交換手段の接
合面と吸熱側熱交換手段の接合面とで囲まれた空間を埋
めるように真空断熱材を設けたため、放熱側熱交換手段
と吸熱側熱交換手段のどちらか接合面が大きい方の熱交
換手段を除く熱電装置の大きさに合わせた貫通孔を形成
した断熱壁(断熱箱体)に対して、その貫通孔に挿入嵌
合させることにより、一動作で簡単に熱電装置を貯蔵庫
等に取付け(組み込み)でき、そのため、熱電装置のユ
ニット化が可能である。
Further, since the distance between the heat radiation side heat exchange means and the heat absorption side heat exchange means can be narrowed, the thermoelectric device can be made compact, and the outer peripheral surface of the thermoelectric module and the joint surface of the heat radiation side heat exchange means and the heat absorption side heat exchange. Since the vacuum heat insulating material is provided so as to fill the space surrounded by the joint surface of the means, the size of the thermoelectric device excluding the heat exchange means having the larger joint surface between the heat radiation side heat exchange means and the heat absorption side heat exchange means. By inserting and fitting the heat insulation wall (heat insulation box body) with the through hole formed according to the height into the through hole, the thermoelectric device can be easily attached (built-in) to the storage or the like in one operation. The thermoelectric device can be unitized.

【0019】また、請求項2記載の熱電装置の発明は、
請求項1記載の発明における熱電モジュールを、放熱側
熱交換手段または吸熱側熱交換手段の接合面に平行に並
べられた複数の熱電モジュール単体で構成するものであ
り、放熱側熱交換手段または吸熱側熱交換手段と熱電モ
ジュールとの接触面積が増えることにより、放熱側熱交
換手段または吸熱側熱交換手段と熱電モジュールとの熱
交換量が増え、熱電装置の冷却能力を高めることができ
る。また、複数の熱電モジュール単体を放熱側熱交換手
段または吸熱側熱交換手段の接合面に平行に並べること
により、熱電モジュールの外周面と放熱側熱交換手段の
接合面と吸熱側熱交換手段の接合面とで囲まれた空間が
小さくなり、その空間を埋めるために設けられる真空断
熱材の量を少なくできる。
The invention of a thermoelectric device according to claim 2 is
The thermoelectric module in the invention according to claim 1 is configured by a plurality of thermoelectric modules alone arranged in parallel to the joint surface of the heat radiation side heat exchange means or the heat absorption side heat exchange means, and the heat radiation side heat exchange means or the heat absorption side. By increasing the contact area between the side heat exchanging means and the thermoelectric module, the amount of heat exchange between the heat radiating side heat exchanging means or the heat absorbing side heat exchanging means and the thermoelectric module increases, and the cooling capacity of the thermoelectric device can be increased. Further, by arranging a plurality of thermoelectric modules alone in parallel with the joint surface of the heat radiation side heat exchange means or the heat absorption side heat exchange means, the outer peripheral surface of the thermoelectric module and the joint surface of the heat radiation side heat exchange means and the heat absorption side heat exchange means The space surrounded by the joint surface becomes smaller, and the amount of vacuum heat insulating material provided to fill the space can be reduced.

【0020】また、請求項3記載の熱電装置の発明は、
請求項1記載の発明における熱電モジュールを、放熱側
熱交換手段または吸熱側熱交換手段の接合面に垂直に重
ねた複数の熱電モジュール単体で構成するものであり、
積層された(重ねた)熱電モジュール両端の放熱面の温
度差を大きくすることによって、冷却温度を下げること
ができる。また、真空断熱材の厚みを熱電モジュールの
厚みに合わせる場合に、一つの熱電モジュール(単体)
に合わせた厚みの真空断熱材では充分な断熱性能が得ら
れない場合であっても、複数の熱電モジュール単体を重
ねて熱電モジュールを厚くすると、真空断熱材の厚みを
厚くできるため、真空断熱材の断熱性能が向上し、放熱
側熱交換手段と吸熱側熱交換手段との間の熱の移動量が
少なくなって、熱電装置の冷却効率を高めることができ
る。
The invention of a thermoelectric device according to claim 3 is
The thermoelectric module according to the invention of claim 1 is composed of a plurality of thermoelectric modules alone which are vertically stacked on the joint surface of the heat radiation side heat exchange means or the heat absorption side heat exchange means.
The cooling temperature can be lowered by increasing the temperature difference between the heat radiation surfaces at both ends of the stacked (overlapping) thermoelectric modules. Also, when adjusting the thickness of the vacuum insulation material to the thickness of the thermoelectric module, one thermoelectric module (single unit)
Even if sufficient vacuum insulation cannot be obtained with a vacuum insulation having a thickness that matches the above, the thickness of the vacuum insulation can be increased by stacking multiple thermoelectric modules to make the thermoelectric module thicker. The heat insulation performance is improved, the amount of heat transfer between the heat radiation side heat exchange means and the heat absorption side heat exchange means is reduced, and the cooling efficiency of the thermoelectric device can be increased.

【0021】また、請求項4記載の熱電装置の発明は、
請求項1から3のいずれか一項記載の発明における放熱
側熱交換手段と吸熱側熱交換手段の一方または両方を、
反接合面側に空気と熱交換するための複数のフィンを備
えたヒートシンクとするものであり、請求項1から3の
いずれか一項記載の発明は、放熱側熱交換手段と吸熱側
熱交換手段の一方または両方をヒートシンクとした熱電
装置に適用することができる。
Further, the invention of a thermoelectric device according to claim 4 is
One or both of the heat radiation side heat exchange means and the heat absorption side heat exchange means in the invention according to any one of claims 1 to 3;
A heat sink is provided with a plurality of fins for heat exchange with air on the side opposite to the joint surface, and the invention according to any one of claims 1 to 3, the heat radiation side heat exchange means and the heat absorption side heat exchange. It can be applied to a thermoelectric device using one or both of the means as a heat sink.

【0022】また、請求項5記載の熱電装置の発明は、
請求項1から3のいずれか一項記載の発明における放熱
側熱交換手段と吸熱側熱交換手段の少なくとも一方を、
内部を液体が流れる熱交換器とするものであり、請求項
1から3のいずれか一項記載の発明は、放熱側熱交換手
段と吸熱側熱交換手段の少なくとも一方を、内部を液体
が流れる熱交換器とした熱電装置に適用することができ
る。
The invention of a thermoelectric device according to claim 5 is
At least one of the heat radiation side heat exchange means and the heat absorption side heat exchange means in the invention according to any one of claims 1 to 3,
A heat exchanger through which a liquid flows is provided. The invention according to any one of claims 1 to 3, wherein the liquid flows through at least one of the heat radiation side heat exchange means and the heat absorption side heat exchange means. It can be applied to a thermoelectric device as a heat exchanger.

【0023】また、請求項6記載の熱電装置の発明は、
請求項1から3のいずれか一項記載の発明における放熱
側熱交換手段と吸熱側熱交換手段の少なくとも一方を、
ヒートパイプとするものであり、請求項1から3のいず
れか一項記載の発明は、放熱側熱交換手段と吸熱側熱交
換手段の少なくとも一方を、ヒートパイプとした熱電装
置に適用することができる。
The invention of a thermoelectric device according to claim 6 is
At least one of the heat radiation side heat exchange means and the heat absorption side heat exchange means in the invention according to any one of claims 1 to 3,
A heat pipe is used, and the invention according to any one of claims 1 to 3 can be applied to a thermoelectric device in which at least one of the heat radiation side heat exchange means and the heat absorption side heat exchange means is a heat pipe. it can.

【0024】また、請求項7記載の熱電装置の発明は、
請求項1から6のいずれか一項記載の発明における真空
断熱材を、熱電モジュールと略同一の厚みを有し、前記
熱電モジュールの大きさに合わせた前記熱電モジュール
を収納可能な孔または切り欠きを有する板状としたもの
であり、熱電モジュールの外周面と放熱側熱交換手段の
接合面と吸熱側熱交換手段の接合面とで囲まれた空間を
埋める真空断熱材として、孔または切り欠きを有する一
つの板状の真空断熱材を使用することにより、複数の板
状の真空断熱材を組み合わせて熱電モジュールを取り囲
む場合よりも、高い断熱性能が得られ、熱電装置の冷却
効率を高めることができる。また、孔または切り欠きを
有する一つの板状の真空断熱材を使用することにより、
複数の板状の真空断熱材を組み合わせて熱電モジュール
を取り囲む場合よりも、熱電装置の組み立てが簡単であ
る。
The invention of a thermoelectric device according to claim 7 is
A hole or notch having the vacuum heat insulating material according to any one of claims 1 to 6, which has substantially the same thickness as the thermoelectric module and accommodates the thermoelectric module according to the size of the thermoelectric module. A hole or a notch as a vacuum heat insulating material filling the space surrounded by the outer peripheral surface of the thermoelectric module, the joint surface of the heat radiation side heat exchange means, and the joint surface of the heat absorption side heat exchange means. By using a single plate-shaped vacuum heat insulating material having a plurality of plate-shaped vacuum heat insulating materials, higher heat insulation performance can be obtained and the cooling efficiency of the thermoelectric device can be improved, compared with the case where a plurality of plate-shaped vacuum heat insulating materials are combined to surround the thermoelectric module. You can Also, by using one plate-shaped vacuum heat insulating material with holes or notches,
It is easier to assemble the thermoelectric device than when a plurality of plate-shaped vacuum heat insulating materials are combined to surround the thermoelectric module.

【0025】また、請求項8記載の熱電装置の発明は、
請求項1から6のいずれか一項記載の発明における真空
断熱材を、熱電モジュールより厚みが厚く、前記熱電モ
ジュールの大きさに合わせた前記熱電モジュールを収納
可能な孔または切り欠きを有する板状とし、請求項1か
ら6のいずれか一項記載の発明における放熱側熱交換手
段と吸熱側熱交換手段の少なくとも一方が、接合面に前
記孔または切り欠きと係合し前記真空断熱材に対する前
記熱電モジュールの厚み不足を補う突起を有するもので
ある。
The invention of a thermoelectric device according to claim 8 is
A plate shape having a hole or a cutout in which the vacuum heat insulating material according to any one of claims 1 to 6 is thicker than the thermoelectric module and accommodates the thermoelectric module according to the size of the thermoelectric module. At least one of the heat radiation side heat exchange means and the heat absorption side heat exchange means in the invention according to any one of claims 1 to 6 is engaged with the hole or the notch in the joint surface, and It has a protrusion that compensates for the insufficient thickness of the thermoelectric module.

【0026】請求項8記載の発明では、請求項7記載の
発明と同様に、孔または切り欠きを有する一つの板状の
真空断熱材を使用することにより、高い断熱性能が得ら
れ、熱電装置の冷却効率を高めることができ、また、熱
電装置の組み立てが簡単である。また、断熱性能を確保
するために真空断熱材の厚みを熱電モジュールの厚みが
より厚くした場合でも、放熱側熱交換手段と吸熱側熱交
換手段の少なくとも一方の接合面に、真空断熱材の孔ま
たは切り欠きと係合し真空断熱材に対する熱電モジュー
ルの厚み不足を補う突起を設けることにより、厚み調整
用の部品であるブロックを介在させずに直接、熱電モジ
ュールの伝熱面(放熱面と吸熱面)に放熱側熱交換手段
と吸熱側熱交換手段とを接合することが可能になり、熱
電装置の冷却効率を高めることができる。
In the invention described in claim 8, as in the invention described in claim 7, by using one plate-shaped vacuum heat insulating material having holes or notches, high heat insulating performance can be obtained, and the thermoelectric device can be obtained. The cooling efficiency can be improved and the thermoelectric device can be easily assembled. Further, even if the thickness of the vacuum heat insulating material is made thicker in order to ensure the heat insulating performance, the hole of the vacuum heat insulating material is formed on the joint surface of at least one of the heat radiation side heat exchange means and the heat absorption side heat exchange means. Alternatively, by providing a protrusion that engages with the notch and compensates for the lack of thickness of the thermoelectric module with respect to the vacuum heat insulating material, the heat transfer surface (heat dissipation surface and heat absorption surface) of the thermoelectric module can be directly inserted without interposing a block that is a component for adjusting the thickness. The heat radiation side heat exchange means and the heat absorption side heat exchange means can be joined to the surface), and the cooling efficiency of the thermoelectric device can be improved.

【0027】また、請求項9記載の熱電装置の発明は、
請求項1から8のいずれか一項記載の発明において、厚
み寸法を除く真空断熱材の外形寸法を、放熱側熱交換手
段と吸熱側熱交換手段のどちらか接合面が小さい方の接
合面の寸法と略同一にするものであり、放熱側熱交換手
段と吸熱側熱交換手段のどちらか接合面が小さい方の接
合面の寸法と略同一の貫通孔を形成した断熱壁(断熱箱
体)に対して、その貫通孔に挿入嵌合させることによ
り、一動作で簡単に熱電装置を貯蔵庫等に取付け(組み
込み)でき、孔の貫通方向に対して貫通孔の大きさが変
化しないので貫通孔を形成が容易であり、断熱壁(断熱
箱体)の貫通孔に熱電装置を取付け(組み込み)後は真
空断熱材が外から見えないため、真空断熱材を損傷から
保護でき、真空断熱材の長期にわたる信頼性を確保でき
る。
The invention of a thermoelectric device according to claim 9 is
In the invention according to any one of claims 1 to 8, the outer dimensions of the vacuum heat insulating material excluding the thickness dimension are the same as those of the heat radiation side heat exchange means or the heat absorption side heat exchange means, whichever has the smaller joint surface. The heat insulating wall (adiabatic box body), which has substantially the same size as that of the heat radiating side heat exchanging means or the heat absorbing side heat exchanging means, has a through hole having substantially the same size as the joint surface having the smaller joint surface. On the other hand, by inserting and fitting the through hole into the through hole, the thermoelectric device can be easily attached (assembled) to the storage or the like in one operation, and the size of the through hole does not change in the through direction of the hole. Is easy to form, and the vacuum insulation cannot be seen from the outside after the thermoelectric device is attached (assembled) to the through hole of the insulation wall (insulation box), so the vacuum insulation can be protected from damage and the vacuum insulation You can secure long-term reliability.

【0028】また、請求項10記載の貯蔵庫の発明は、
請求項1から9のいずれか一項記載の熱電装置の大きさ
に合わせて形成された貫通孔を有する断熱箱体と、前記
貫通孔に挿入嵌合され取付けられた前記熱電装置とを備
えたものであり、組み立て(製造)、分解(メンテナン
ス)が容易で、冷却効率が高く、省エネであり、熱電装
置が小型軽量化されたことにより、貯蔵庫の軽量化が図
れる。
The invention of the storage according to claim 10 is
It provided with the heat insulation box which has a through-hole formed according to the size of the thermoelectric device as described in any one of Claim 1 to 9, and the said thermoelectric device inserted and fitted in the said through-hole. In addition, assembling (manufacturing) and disassembling (maintenance) are easy, cooling efficiency is high, energy saving is achieved, and the thermoelectric device is reduced in size and weight, so that the weight of the storage can be reduced.

【0029】また、放熱側熱交換手段(庫外側の熱交換
手段)の接合面が吸熱側熱交換手段(庫内側の熱交換手
段)の接合面より大きくて断熱箱体の外側(庫外側)か
ら熱電装置が取り付けられている場合は、吸熱側熱交換
手段(庫内側の熱交換手段)の庫内側への突出量を少な
くでき、突出量が少なくなった分だけ庫内の有効スペー
スを拡大できる。逆に吸熱側熱交換手段(庫内側の熱交
換手段)の接合面が放熱側熱交換手段(庫外側の熱交換
手段)の接合面より大きくて断熱箱体の内側(庫内側)
から熱電装置が取り付けられている場合は、放熱側熱交
換手段(庫外側の熱交換手段)の庫外側(放熱室または
放熱空間)への突出量を少なくでき、突出量が少なくな
った分だけ貯蔵庫の外形寸法(通常は奥行き寸法)を小
さくできる。
The joint surface of the heat radiating side heat exchange means (heat exchange means on the outside of the cabinet) is larger than the joint surface of the heat absorbing side heat exchange means (heat exchange means on the inside of the cabinet) and is outside the heat insulating box (outside the cabinet). If a thermoelectric device is installed from the inside, the amount of protrusion of the heat absorption side heat exchange means (heat exchange means on the inside of the refrigerator) to the inside of the refrigerator can be reduced, and the effective space inside the refrigerator is expanded by the amount of protrusion. it can. On the contrary, the joint surface of the heat absorption side heat exchange means (heat exchange means inside the cabinet) is larger than the joint surface of the heat radiation side heat exchange means (heat exchange means outside the cabinet) and inside the heat insulation box (chamber interior).
If a thermoelectric device is attached from the heat sink to the heat sink side, the amount of heat radiation on the heat radiation side (heat exchange means on the outer side) can be reduced to the outside (heat radiation chamber or heat radiation space). The external dimensions (usually the depth dimension) of the storage can be reduced.

【0030】また、請求項11記載の貯蔵庫の発明は、
請求項7または8記載の熱電装置の真空断熱材が、放熱
側熱交換手段と吸熱側熱交換手段の両方の接合面より広
く、断熱箱体の少なくとも一部の断熱壁を構成するもの
であり、熱電装置の真空断熱材を、断熱箱体の少なくと
も一部の断熱壁として、熱電装置を取り付ける前の未完
成の断熱箱体に取り付けることにより、断熱箱体が完成
すると同時に、断熱箱体に熱電装置を取り付けることが
できる。このとき、真空断熱材の表面が補強されていれ
ば、真空断熱材をそのまま断熱箱体の少なくとも一部の
断熱壁として使用することが可能である。また、断熱箱
体の少なくとも一部の断熱壁を真空断熱材で構成する場
合、真空断熱材は発泡断熱材より断熱性能が高く、その
ため、発泡断熱材より断熱壁の厚みを薄くできるので、
断熱壁を薄くした分だけ、貯蔵庫の庫内を広くしたり、
貯蔵庫の外形寸法を小さくしたりできる。
Further, the invention of the storage according to claim 11 is
The vacuum heat insulating material of the thermoelectric device according to claim 7 or 8, which is wider than a joint surface of both the heat radiating side heat exchanging means and the heat absorbing side heat exchanging means, and constitutes at least a part of the heat insulating wall of the heat insulating box. By attaching the vacuum insulation material of the thermoelectric device to the unfinished insulation box before attaching the thermoelectric device as an insulation wall of at least a part of the insulation box, the insulation box is completed and at the same time A thermoelectric device can be attached. At this time, if the surface of the vacuum heat insulating material is reinforced, the vacuum heat insulating material can be used as it is as the heat insulating wall of at least a part of the heat insulating box. When at least a part of the heat insulating wall of the heat insulating box is formed of a vacuum heat insulating material, the vacuum heat insulating material has a higher heat insulating performance than the foam heat insulating material, and therefore, the thickness of the heat insulating wall can be made thinner than the foam heat insulating material.
By making the heat insulation wall thin, the inside of the storage can be widened,
The external dimensions of the storage can be reduced.

【0031】[0031]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0032】(実施の形態1)図1は、本発明の実施の
形態1による熱電装置を、貯蔵庫の断熱箱体を構成する
断熱壁の貫通孔に挿入嵌合させて取付けた状態を示す縦
断面図である。
(Embodiment 1) FIG. 1 is a vertical cross-sectional view showing a state in which a thermoelectric device according to Embodiment 1 of the present invention is inserted and fitted into a through hole of a heat insulating wall which constitutes a heat insulating box of a storage. It is a side view.

【0033】図1において、6は熱電モジュールで、両
側に放熱面6aと吸熱面6bとをほぼ平行に有する。7
aは非通気性の外被材であり、外被材7aの内部には芯
材7bが収容され、外被材7aの内部が減圧状態に保た
れて、真空断熱材7を構成している。真空断熱材7は、
1.3〜133Paの真空度で製造可能であり、従来の
発泡ウレタン等の断熱材と比べて約2〜3倍の断熱性能
を示すことが知られている。
In FIG. 1, reference numeral 6 denotes a thermoelectric module, which has a heat radiating surface 6a and a heat absorbing surface 6b on both sides substantially in parallel. 7
Reference numeral a denotes a non-air-permeable outer jacket material. A core material 7b is housed inside the outer jacket material 7a, and the inside of the outer jacket material 7a is kept in a decompressed state to form a vacuum heat insulating material 7. . The vacuum heat insulating material 7 is
It is known that it can be manufactured at a vacuum degree of 1.3 to 133 Pa and exhibits a heat insulating performance about 2 to 3 times that of a conventional heat insulating material such as urethane foam.

【0034】ここで、外被材7aは、ガスバリヤ性に優
れたプラスチックラミネート袋であり、最外層がナイロ
ン(15μm)、その内側がポリエチレンテレフタレー
ト(12μm)、中間層がアルミ箔(6μm)、最内層
が熱溶着層であり低密度ポリエチレン(100μm)か
らなる4層構成である。最外層およびその内側は、外部
からの耐衝撃性、耐摩耗性に優れた材料で、上記の他、
二軸延伸ポリプロピレンなどが使用でき、これら3種の
材料の少なくとも1種類が含まれることが好ましい。中
間層はガスバリヤ性に優れた材料で、アルミ箔の他、ア
ルミ蒸着層を有するガスバリヤ性材料等も使用できる。
最内層が熱溶着性材料であり、上記の他、高密度ポリエ
チレン、非晶質ポリプロピレン、アモルファスポリエチ
レンテレフタレート、エチレンビニルアルコール共重合
体等が使用でき、シール安定性の点から融点の低いもの
が好ましい。
Here, the jacket material 7a is a plastic laminate bag having excellent gas barrier properties. The outermost layer is nylon (15 μm), the inner side is polyethylene terephthalate (12 μm), the intermediate layer is aluminum foil (6 μm), and the outermost layer is The inner layer is a heat-welding layer and has a four-layer structure made of low density polyethylene (100 μm). The outermost layer and its inside are materials with excellent external impact resistance and abrasion resistance.
Biaxially oriented polypropylene or the like can be used, and it is preferable to include at least one of these three materials. The intermediate layer is a material having an excellent gas barrier property, and in addition to aluminum foil, a gas barrier material having an aluminum vapor deposition layer can be used.
The innermost layer is a heat-welding material, and in addition to the above, high density polyethylene, amorphous polypropylene, amorphous polyethylene terephthalate, ethylene vinyl alcohol copolymer and the like can be used, and those having a low melting point are preferable from the viewpoint of sealing stability. .

【0035】また、芯材7bは、外被材7aによって減
圧密封される空間が大気圧力によって潰されるのを防止
するためのものであり、完全連通構造の多孔質体が使用
でき、好ましくは、低真空でも高い断熱性能を発揮する
微細孔のものが良い。例えば、非晶質シリカ粉末、連続
気泡構造のウレタンフォーム、微細繊維グラスウール等
があり、特に微細繊維グラスウールは、優れた断熱性能
を有し、真空断熱容器を形成したときに可撓性を有する
点から好ましい。また、シリカ粉末に限定されるもので
はなく、パーライト粉末や珪酸カルシウム板、連通フォ
ーム、グラスウールなどの公知材料を使用しても良い。
The core material 7b is for preventing the space sealed under reduced pressure by the outer covering material 7a from being crushed by atmospheric pressure, and a porous body having a completely communicating structure can be used. Fine pores that exhibit high heat insulation performance even in low vacuum are preferable. For example, there are amorphous silica powder, urethane foam having an open cell structure, fine fiber glass wool, and the like. In particular, fine fiber glass wool has excellent heat insulation performance and has flexibility when a vacuum heat insulation container is formed. Is preferred. Further, it is not limited to silica powder, and known materials such as perlite powder, calcium silicate plate, continuous foam, and glass wool may be used.

【0036】主要構成材料は以上であるが、特に高温で
使用される場合、あるいは、要求性能および耐用寿命が
厳しい場合、補助的に水分吸着剤、あるいは空気吸着物
質として常温活性型ゲッター等を用いることが好まし
い。水分吸着剤としてはゼオライトに限定されるもので
はなく、水酸化カルシウムや塩化カルシウム、塩化リチ
ウム、活性炭やシリカゲルなど、一般公知の水分吸着剤
を使用できる。吸着能力的には、水酸化カルシウムや塩
化カルシウム、塩化リチウムなどの化学吸着が優れてい
るが、取り扱い性を考慮すると物理吸着であるゼオライ
ト活性炭などが適している。
Although the main constituent materials are as described above, especially when used at high temperature or when required performance and service life are severe, a room temperature active type getter or the like is used as a water adsorbent or an air adsorbent as an auxiliary. It is preferable. The water adsorbent is not limited to zeolite, and generally known water adsorbents such as calcium hydroxide, calcium chloride, lithium chloride, activated carbon and silica gel can be used. Chemical adsorption of calcium hydroxide, calcium chloride, lithium chloride, etc. is excellent in terms of adsorption ability, but zeolite activated carbon, which is physical adsorption, is suitable in view of handleability.

【0037】また、真空断熱材7には貫通口(孔)8が
備えられており、貫通口(孔)8に熱電モジュール6の
放熱面6aと吸熱面6bが貫通口(孔)8の孔形成方向
に対して垂直に配置している。9は複数のフィン9aを
備えた放熱用ヒートシンクで、フィン9aの背面側は熱
電モジュール6の放熱面6aと直接または間接的に熱的
に接合されている。10は複数のフィン10aを備えた
冷却用ヒートシンクで、フィン10aの背面側は熱電モ
ジュール6の吸熱面6bと直接または間接的に熱的に接
合されている。
Further, the vacuum heat insulating material 7 is provided with a through hole (hole) 8, and the heat radiating surface 6a and the heat absorbing surface 6b of the thermoelectric module 6 are provided in the through hole (hole) 8 through the through hole (hole) 8. It is arranged perpendicular to the forming direction. Reference numeral 9 denotes a heat sink for heat dissipation, which has a plurality of fins 9a, and the back side of the fins 9a is thermally bonded directly or indirectly to the heat dissipation surface 6a of the thermoelectric module 6. Reference numeral 10 denotes a cooling heat sink having a plurality of fins 10a, and the back surface side of the fins 10a is thermally bonded directly or indirectly to the heat absorption surface 6b of the thermoelectric module 6.

【0038】放熱用ヒートシンク9と冷却用ヒートシン
ク10は、アルミニウム等の熱伝導性に優れた素材によ
って作られたものである。放熱用ヒートシンク9と冷却
用ヒートシンク10は、いずれもベースとなる熱電モジ
ュール6から熱を拡散する板状部を持ち、その表面側に
多数のフィン9a,10aが設けられたものである。
The heat sink 9 for heat dissipation and the heat sink 10 for cooling are made of a material having excellent thermal conductivity such as aluminum. Each of the heat radiation heat sink 9 and the cooling heat sink 10 has a plate-shaped portion that diffuses heat from the thermoelectric module 6 serving as a base, and a large number of fins 9a and 10a are provided on the surface side thereof.

【0039】また放熱用ヒートシンク9と冷却用ヒート
シンク10は、フィン9a,10aの形状を板状部の表
面を薄く削り、削り部を起立させたものや、フィン9
a,10aが略L字型または略I字型の薄い板状の部材
であり、放熱用ヒートシンク9と冷却用ヒートシンク1
0の板状部の表面側にカシメあるいは超音波溶接等の加
工を行い、接合したものがある。
The heat sink 9 for heat dissipation and the heat sink 10 for cooling have fins 9a, 10a formed by thinly scraping the surface of a plate-like portion and raising the scraped portion, or the fin 9a.
a and 10a are thin plate-shaped members having a substantially L shape or a substantially I shape, and the heat sink 9 for heat dissipation and the heat sink 1 for cooling 1
There is one in which the surface side of the plate-shaped portion of No. 0 is joined by performing processing such as caulking or ultrasonic welding.

【0040】以上のように構成された熱電装置を貯蔵庫
等に用いる場合には、庫内側と庫外側を分ける断熱壁の
一部に貫通孔を設けて、放熱用ヒートシンクが庫外側
に、また冷却用ヒートシンクが庫内側に向くように貫通
孔に熱電装置が取り付けられる。
When the thermoelectric device configured as described above is used for a storage or the like, a through hole is provided in a part of a heat insulating wall that separates the inside and the outside of the refrigerator so that the heat sink for heat radiation is outside and the cooling is performed. The thermoelectric device is attached to the through hole so that the heat sink for the interior faces the inside of the refrigerator.

【0041】図1において、11は貯蔵庫の断熱箱体を
構成する断熱壁であり、断熱壁11に設けられた貫通部
分に熱電モジュール6を真空断熱材7に備えた貫通口
(孔)8内に収容し、冷却用ヒートシンク10と放熱用
ヒートシンク9とが既に接合された状態で挿入される。
そして、放熱用ヒートシンク9のみが断熱壁11の庫外
側に突出し、冷却用ヒートシンク10は、真空断熱材7
とともに断熱壁11の貫通孔に挿入された状態となる。
一般的には断熱壁11は、表裏面に薄い鋼板または真空
成形されたプラスチック部材が使用され、その内部に発
泡ウレタン等の断熱材が充填されたものである。
In FIG. 1, reference numeral 11 denotes an adiabatic wall which constitutes an adiabatic box of a storage, and inside a through hole (hole) 8 provided with a thermoelectric module 6 in a vacuum adiabatic material 7 at a penetrating portion provided in the adiabatic wall 11. The heat sink 10 for cooling and the heat sink 9 for heat dissipation are already joined and inserted.
Then, only the heat radiation heat sink 9 projects to the outside of the heat insulating wall 11, and the cooling heat sink 10 is the vacuum heat insulating material 7.
At the same time, the heat insulating wall 11 is inserted into the through hole.
Generally, the heat insulating wall 11 is made of a thin steel plate or a vacuum formed plastic member on the front and back surfaces, and is filled with a heat insulating material such as urethane foam.

【0042】熱電モジュール6に所定の電流を流す(電
圧をかける)と、放熱面6aが加熱され、吸熱面6bが
冷却される。庫内側では、吸熱面6bが冷却されると冷
却用ヒートシンク10は吸熱面6bによってほぼ直接冷
却され、さらに庫内側の気流が冷却用ヒートシンク10
によって冷却される。この過程により、熱電モジュール
6によって庫内側の気流が効率良く冷却されることにな
る。
When a predetermined current is applied (voltage is applied) to the thermoelectric module 6, the heat radiating surface 6a is heated and the heat absorbing surface 6b is cooled. In the inside of the refrigerator, when the heat absorbing surface 6b is cooled, the cooling heat sink 10 is almost directly cooled by the heat absorbing surface 6b, and the air flow inside the refrigerator heats the heat sink 10 for cooling.
Cooled by. Through this process, the air flow inside the refrigerator is efficiently cooled by the thermoelectric module 6.

【0043】また庫外側では、放熱面6aが加熱される
と放熱用ヒートシンク9は放熱面6aによってほぼ直接
加熱され、さらに庫外側の気流が放熱用ヒートシンク9
によって加熱される。この過程により、熱電モジュール
6からの熱が庫外側の気流に効率良く排熱されることに
なる。さらに熱電モジュール6の周囲が真空断熱材7に
保持されるため、熱電モジュール6内部での対流や熱伝
導による熱移動を抑え、熱電モジュール6の効率が向上
する。
On the outside of the refrigerator, when the heat radiating surface 6a is heated, the heat radiating heat sink 9 is directly heated by the heat radiating surface 6a, and the air flow outside the refrigerator is radiated by the heat sink 9.
Heated by. Through this process, the heat from the thermoelectric module 6 is efficiently exhausted to the air flow outside the refrigerator. Furthermore, since the periphery of the thermoelectric module 6 is held by the vacuum heat insulating material 7, heat transfer due to convection and heat conduction inside the thermoelectric module 6 is suppressed, and the efficiency of the thermoelectric module 6 is improved.

【0044】以上のように本発明の実施の形態1の熱電
装置は、吸熱面6bと放熱面6aとを有し電流を流す
(電圧をかける)ことにより放熱面6aが加熱され吸熱
面6bが冷却される熱電モジュール6と、真空断熱材7
が少なくとも非通気性の外被材7aと断熱性を有する芯
材7bで構成され、かつ外被材7a内部が減圧状態に保
たれていて、真空断熱材7に貫通口(孔)8を備え、熱
電モジュール6が貫通口(孔)8内に熱電モジュール6
の冷却面6bまたは放熱面6aを貫通口(孔)8の穴形
成方向に対して垂直に配置していることにより、優れた
断熱性能を有する真空断熱材7が熱電モジュール6の周
囲に一体で構成するので、従来熱電装置周囲における断
熱性を確保するため必要であった壁厚を小さくすること
ができる。また、熱電モジュール6周囲からの熱リーク
をコンパクトな領域で抑えて、従来必要であった厚さ調
整用のブロックなどの熱抵抗やその接合部で生じる接触
熱抵抗の増加を抑制することができ、熱電装置の冷却効
率を高めることができる。
As described above, the thermoelectric device according to the first embodiment of the present invention has the heat absorbing surface 6b and the heat radiating surface 6a, and the current is applied (voltage is applied) to heat the heat radiating surface 6a. Thermoelectric module 6 to be cooled and vacuum heat insulating material 7
Is composed of at least a non-breathable outer covering material 7a and a core material 7b having a heat insulating property, the inside of the outer covering material 7a is kept in a reduced pressure state, and the vacuum heat insulating material 7 is provided with a through hole (hole) 8. , The thermoelectric module 6 is inserted into the through hole (hole) 8
By arranging the cooling surface 6b or the heat radiating surface 6a of the above in a direction perpendicular to the hole forming direction of the through hole (hole) 8, the vacuum heat insulating material 7 having excellent heat insulating performance is integrally formed around the thermoelectric module 6. Since it is configured, it is possible to reduce the wall thickness that was conventionally required to secure heat insulation around the thermoelectric device. In addition, it is possible to suppress heat leakage from the periphery of the thermoelectric module 6 in a compact area, and to suppress an increase in the thermal resistance of the block for adjusting the thickness or the like, which has been conventionally required, and the contact thermal resistance generated at the joint portion. The cooling efficiency of the thermoelectric device can be improved.

【0045】さらに熱電モジュール6の放熱面6aと吸
熱面6bが直接または間接的に熱的に放熱用ヒートシン
ク9または冷却用ヒートシンク10と接合することによ
り、熱電装置に気流と熱交換する機能を追加するととも
に、放熱用ヒートシンク9や冷却用ヒートシンク10の
背面で熱電モジュール6の周囲を真空断熱材7で完全に
断熱することができ、さらに放熱用ヒートシンク9や冷
却用ヒートシンク10を含めた熱電装置をコンパクト化
し、冷却用ヒートシンク10を庫内側に突出させずに庫
内容積を拡げることができる。
Further, the heat radiation surface 6a and the heat absorption surface 6b of the thermoelectric module 6 are directly or indirectly thermally joined to the heat radiation heat sink 9 or the cooling heat sink 10 to add a function of exchanging heat with the airflow to the thermoelectric device. At the same time, the periphery of the thermoelectric module 6 can be completely insulated with the vacuum heat insulating material 7 on the back surfaces of the heat sink 9 for heat dissipation and the heat sink 10 for cooling, and a thermoelectric device including the heat sink 9 for heat dissipation and the heat sink 10 for cooling can be provided. It is possible to make it compact, and to expand the internal volume of the cooling heat sink 10 without projecting it inside.

【0046】また放熱用ヒートシンク9と冷却用ヒート
シンク10の両方を熱電モジュール6に接合した状態で
断熱壁11に取り付けが可能となり、熱電装置としての
ユニット化により組み込み工程が単純化できる。熱電モ
ジュールを使用しているので軽量である。また、設置姿
勢に制約を受けない。
Further, both the heat sink 9 for heat radiation and the heat sink 10 for cooling can be attached to the heat insulating wall 11 in a state of being joined to the thermoelectric module 6, and the assembling process can be simplified by making it a unit as a thermoelectric device. It is lightweight because it uses a thermoelectric module. In addition, there is no restriction on the installation posture.

【0047】また、本発明の実施の形態1では、放熱用
ヒートシンク9が庫外側に、また冷却用ヒートシンク1
0が庫内側に向くように貯蔵庫に熱電装置が取り付けら
れるが、放熱用ヒートシンク9が庫内側に、また冷却用
ヒートシンク10が庫外側に向くように熱電装置を取り
付けて、庫内側を加温庫として使用することもできる。
Further, in the first embodiment of the present invention, the heat radiation heat sink 9 is located outside the cabinet, and the cooling heat sink 1 is also provided.
The thermoelectric device is attached to the storage so that 0 faces the inside of the cabinet, but the heat sink 9 for heat dissipation is attached to the inside of the cabinet, and the thermosink 10 for cooling is attached to the outside of the cabinet so that the inside of the cabinet is heated. Can also be used as

【0048】また、本発明の実施の形態1では、放熱用
ヒートシンク9が庫外側に、また冷却用ヒートシンク1
0が庫内側に向くように貯蔵庫に熱電装置が取り付けら
れ、庫内側が冷蔵庫また冷凍庫としているが、熱電装置
を本発明の実施の形態1のように取り付けても、熱電モ
ジュール6へ供給する電流方向を切り替えられる電流供
給装置を使用することにより冷温蔵庫として使用するこ
とができる。
Further, in the first embodiment of the present invention, the heat radiation heat sink 9 is placed outside the refrigerator, and the cooling heat sink 1 is used.
Although the thermoelectric device is attached to the storage so that 0 faces the inside of the refrigerator and the inside of the refrigerator is a refrigerator or a freezer, even if the thermoelectric device is attached as in the first embodiment of the present invention, the current supplied to the thermoelectric module 6 It can be used as a cold storage by using a current supply device whose direction can be switched.

【0049】以上、整理すると本実施の形態の熱電装置
は、放熱面6aと吸熱面6bとが対向し所定の電圧をか
けると放熱面6aから放熱し吸熱面6bから吸熱する熱
電モジュール6と、放熱面6aより大きい接合面が放熱
面6aを完全に覆うように放熱面6aに接合され放熱面
6aと熱交換する放熱用ヒートシンク(放熱側熱交換手
段)9と、吸熱面6bより大きい接合面が吸熱面6bを
完全に覆うように吸熱面6bに接合され吸熱面6bと熱
交換する冷却用ヒートシンク(吸熱側熱交換手段)10
と、熱電モジュール6の外周面(放熱面6aと吸熱面6
bに垂直な四面)と放熱用ヒートシンク(放熱側熱交換
手段)9の接合面と冷却用ヒートシンク(吸熱側熱交換
手段)10の接合面とで囲まれた空間を埋めるように設
けられた真空断熱材7とから熱電装置を構成するもので
ある。
In summary, the thermoelectric device of this embodiment has the thermoelectric module 6 in which the heat radiating surface 6a and the heat absorbing surface 6b face each other, and when a predetermined voltage is applied, the heat radiating surface 6a radiates heat and the heat absorbing surface 6b absorbs heat. A heat dissipating heat sink (heat dissipating side heat exchanging means) 9 that is joined to the heat dissipating surface 6a so that the joint surface larger than the heat dissipating surface 6a completely covers the heat dissipating surface 6a, and a joint surface larger than the heat absorbing surface 6b. Is joined to the heat absorbing surface 6b so as to completely cover the heat absorbing surface 6b and exchanges heat with the heat absorbing surface 6b (heat absorbing side heat exchange means) 10
And the outer peripheral surface of the thermoelectric module 6 (heat dissipation surface 6a and heat absorption surface 6
A vacuum provided so as to fill a space surrounded by the bonding surface of the heat sink for heat dissipation (heat exchange means on the heat dissipation side) 9 and the bonding surface of the heat sink for heat dissipation (heat exchange means on the heat absorption side) 10. A thermoelectric device is composed of the heat insulating material 7.

【0050】本実施の形態は、熱電モジュール6の外周
面(四面)と放熱用ヒートシンク(放熱側熱交換手段)
9の接合面と冷却用ヒートシンク(吸熱側熱交換手段)
10の接合面とで囲まれた空間を埋めるように真空断熱
材7を設けるものであり、真空断熱材7は、発泡断熱材
より断熱性能が高いため、発泡断熱材より断熱材を薄く
できるので、放熱用ヒートシンク(放熱側熱交換手段)
9と冷却用ヒートシンク(吸熱側熱交換手段)10との
間隔を狭くでき、厚み調整用の部品であるブロックを介
在させずに直接、熱電モジュール6の伝熱面(放熱面6
aと吸熱面6b)に放熱用ヒートシンク(放熱側熱交換
手段)9と冷却用ヒートシンク(吸熱側熱交換手段)1
0とを接合することが可能になり、熱電装置の冷却効率
を高めることができる。
In the present embodiment, the outer peripheral surfaces (four surfaces) of the thermoelectric module 6 and a heat sink for heat dissipation (heat dissipation side heat exchange means).
9 joint surface and cooling heat sink (heat absorption side heat exchange means)
The vacuum heat insulating material 7 is provided so as to fill the space surrounded by the joint surface of 10. Since the vacuum heat insulating material 7 has a higher heat insulating performance than the foam heat insulating material, the heat insulating material can be thinner than the foam heat insulating material. , Heat sink for heat radiation (heat exchange means on the heat radiation side)
The gap between the heat sink 9 for cooling and the heat sink (heat exchange means for heat absorption) 10 can be narrowed, and the heat transfer surface (heat dissipation surface 6) of the thermoelectric module 6 can be directly applied without interposing a block which is a component for adjusting the thickness.
a and a heat absorbing surface 6b), a heat sink for heat radiation (heat radiation side heat exchange means) 9 and a heat sink for cooling (heat radiation side heat exchange means) 1
It is possible to join with 0, and the cooling efficiency of the thermoelectric device can be improved.

【0051】また、放熱用ヒートシンク(放熱側熱交換
手段)9と冷却用ヒートシンク(吸熱側熱交換手段)1
0との間隔を狭くできるため、熱電装置をコンパクトに
でき、熱電モジュール6の外周面と放熱用ヒートシンク
(放熱側熱交換手段)9の接合面と冷却用ヒートシンク
(吸熱側熱交換手段)10の接合面とで囲まれた空間を
埋めるように真空断熱材7を設けたため、放熱用ヒート
シンク(放熱側熱交換手段)9と冷却用ヒートシンク
(吸熱側熱交換手段)10のどちらか接合面が大きい方
の熱交換手段を除く熱電装置の大きさに合わせた貫通孔
を形成した断熱壁(断熱箱体)11に対して、その貫通
孔に挿入嵌合させることにより、一動作で簡単に熱電装
置を貯蔵庫等に取付け(組み込み)でき、そのため、熱
電装置のユニット化が可能である。
A heat sink for heat radiation (heat exchange means on the heat radiation side) 9 and a heat sink for cooling (heat exchange means on the heat absorption side) 1
Since the distance from 0 can be narrowed, the thermoelectric device can be made compact, and the outer peripheral surface of the thermoelectric module 6 and the joint surface of the heat dissipation heat sink (heat dissipation side heat exchange means) 9 and the cooling heat sink (heat absorption side heat exchange means) 10 can be made. Since the vacuum heat insulating material 7 is provided so as to fill the space surrounded by the joint surface, either the heat sink for heat radiation (heat radiation side heat exchange means) 9 or the heat sink for cooling (heat absorption side heat exchange means) 10 has a larger joint surface. The heat insulating wall (heat insulating box) 11 having a through hole formed in accordance with the size of the thermoelectric device excluding the heat exchanging means is inserted into and fitted into the through hole, so that the thermoelectric device can be easily operated in one operation. Can be attached (assembled) to a storage or the like, and therefore, the thermoelectric device can be unitized.

【0052】なお、本実施の形態では、冷却用ヒートシ
ンク10(放熱側熱交換手段9と吸熱側熱交換手段10
のうちの小さい方)の接合面の中央部に、熱電モジュー
ル6を配置しているため、真空断熱材7が熱電モジュー
ル6の外周面の全て(四面)を囲んでいるが、熱電モジ
ュール6が冷却用ヒートシンク(吸熱側熱交換手段)1
0の接合面の角部を除く一辺に合わせて配置する場合
は、真空断熱材7が熱電モジュール6の外周面の3面を
覆う。また、熱電モジュール6が冷却用ヒートシンク
(吸熱側熱交換手段)10の接合面の角部に合わせて配
置する場合は、真空断熱材7が熱電モジュール6の外周
面の2面を覆う。また、熱電モジュール6の一辺が冷却
用ヒートシンク(吸熱側熱交換手段)10の接合面の一
辺と同じ長さで、熱電モジュール6が冷却用ヒートシン
ク(吸熱側熱交換手段)10の接合面の片側を覆うよう
に配置する場合は、真空断熱材7が熱電モジュール6の
隣に位置して熱電モジュール6の外周面の1面を覆う。
In this embodiment, the cooling heat sink 10 (heat radiation side heat exchange means 9 and heat absorption side heat exchange means 10) is used.
Since the thermoelectric module 6 is arranged at the center of the joint surface (the smaller one of the two), the vacuum heat insulating material 7 surrounds all the outer peripheral surfaces (four surfaces) of the thermoelectric module 6, but the thermoelectric module 6 Cooling heat sink (heat absorption side heat exchange means) 1
When arranging in accordance with one side of the bonding surface of 0 except the corners, the vacuum heat insulating material 7 covers the three outer peripheral surfaces of the thermoelectric module 6. Further, when the thermoelectric module 6 is arranged in accordance with the corner portion of the joint surface of the cooling heat sink (heat absorption side heat exchange means) 10, the vacuum heat insulating material 7 covers the two outer peripheral surfaces of the thermoelectric module 6. Also, one side of the thermoelectric module 6 has the same length as one side of the joint surface of the cooling heat sink (heat absorption side heat exchange means) 10, and the thermoelectric module 6 has one side of the joint surface of the cooling heat sink (heat absorption side heat exchange means) 10. , The vacuum heat insulating material 7 is located next to the thermoelectric module 6 and covers one surface of the outer peripheral surface of the thermoelectric module 6.

【0053】また、本実施の形態は、熱電モジュール6
の伝熱面(放熱面6aと吸熱面6b)に接合する放熱側
熱交換手段と吸熱側熱交換手段の両方を、反接合面側に
空気と熱交換するための複数のフィン9a,10aを備
えたヒートシンクとするものであり、熱電モジュール6
に所定の電圧をかけた(所定の電流を流した)時に、放
熱用ヒートシンク9を介して放熱用ヒートシンク9のフ
ィン9aの周囲の空気と熱電モジュール6の放熱面6a
とで熱交換を行い、熱電モジュール6の放熱面6aで発
生する熱を放熱用ヒートシンク9のフィン9aの周囲の
空気に放熱する。また、冷却用ヒートシンク10を介し
て冷却用ヒートシンク10のフィン10aの周囲の空気
と熱電モジュール6の吸熱面6bとで熱交換を行い、冷
却用ヒートシンク10のフィン10aの周囲の空気の熱
が熱電モジュール6の吸熱面6bに伝導し、それによ
り、冷却用ヒートシンク10のフィン10aの周囲の空
気が冷却される。
In addition, the thermoelectric module 6 is used in this embodiment.
Both the heat radiation side heat exchange means and the heat absorption side heat exchange means that are joined to the heat transfer surface (heat radiation surface 6a and heat absorption surface 6b) of the above are provided with a plurality of fins 9a and 10a for heat exchange with air on the opposite joint surface side. The heat sink is equipped with the thermoelectric module 6
When a predetermined voltage is applied (a predetermined current is applied) to the air, the air around the fins 9a of the heat sink 9 for heat dissipation and the heat dissipation surface 6a of the thermoelectric module 6 are passed through the heat sink 9 for heat dissipation.
And heat exchange with each other, and the heat generated on the heat radiation surface 6a of the thermoelectric module 6 is radiated to the air around the fin 9a of the heat sink 9 for heat radiation. In addition, heat is exchanged between the air around the fins 10a of the cooling heat sink 10 and the heat absorbing surface 6b of the thermoelectric module 6 via the cooling heat sink 10, so that the heat of the air around the fins 10a of the cooling heat sink 10 becomes thermoelectric. The heat is conducted to the heat absorption surface 6b of the module 6, whereby the air around the fins 10a of the cooling heat sink 10 is cooled.

【0054】そして、放熱用ヒートシンク9が庫外側
に、また冷却用ヒートシンク10が庫内側に向くように
貯蔵庫に熱電装置を取り付けた場合には、冷却用ヒート
シンク10と熱電モジュール6と放熱用ヒートシンク9
とを介して、庫内の空気の熱が庫外の空気に放熱され、
結果として、庫内が冷却される。換言すれば、庫内の空
気の温度が庫外の空気の温度より所定温度(熱電モジュ
ール6の放熱面6aと吸熱面6bとの温度差に近い温
度)だけ低くなる。
When the thermoelectric device is attached to the storage so that the heat sink 9 for heat dissipation faces the outside and the heat sink 10 for cooling faces the inside, the heat sink 10 for cooling, the thermoelectric module 6, and the heat sink 9 for heat dissipation.
The heat of the air inside the cabinet is radiated to the air outside the cabinet via
As a result, the inside of the refrigerator is cooled. In other words, the temperature of the air inside the refrigerator is lower than the temperature of the air outside the refrigerator by a predetermined temperature (a temperature close to the temperature difference between the heat radiating surface 6a and the heat absorbing surface 6b of the thermoelectric module 6).

【0055】また、本実施の形態は、熱電モジュール6
と略同一の厚みを有し、熱電モジュール6の大きさに合
わせた熱電モジュール6を収納可能な孔8を有する板状
の真空断熱材7を、熱電装置に使用したものである。
In addition, the thermoelectric module 6 is used in this embodiment.
The plate-shaped vacuum heat insulating material 7 having substantially the same thickness as the above and having the hole 8 capable of accommodating the thermoelectric module 6 according to the size of the thermoelectric module 6 is used for the thermoelectric device.

【0056】熱電モジュール6の外周面と放熱用ヒート
シンク(放熱側熱交換手段)9の接合面と冷却用ヒート
シンク(吸熱側熱交換手段)10の接合面とで囲まれた
空間を埋める真空断熱材7として、孔8を有する一つの
板状の真空断熱材を使用することにより、複数の板状の
真空断熱材を組み合わせて熱電モジュール6を取り囲む
場合よりも、高い断熱性能が得られ、熱電装置の冷却効
率を高めることができる。
A vacuum heat insulating material filling a space surrounded by the outer peripheral surface of the thermoelectric module 6, the joint surface of the heat sink for heat dissipation (heat exchange means on the heat dissipation side) 9 and the joint surface of the heat sink for cooling (heat exchange means on the heat absorption side) 10. By using one plate-shaped vacuum heat insulating material having holes 8 as 7, a higher heat insulating performance can be obtained than when a plurality of plate-shaped vacuum heat insulating materials are combined to surround the thermoelectric module 6. The cooling efficiency can be increased.

【0057】また、孔8を有する一つの板状の真空断熱
材7を使用することにより、複数の板状の真空断熱材を
組み合わせて熱電モジュール6を取り囲む場合よりも、
熱電装置の組み立てが簡単である。
Further, by using one plate-shaped vacuum heat insulating material 7 having the holes 8, as compared with the case where a plurality of plate-shaped vacuum heat insulating materials are combined to surround the thermoelectric module 6,
The thermoelectric device is easy to assemble.

【0058】なお、真空断熱材7で、熱電モジュール6
の外周面の3面または2面を覆う場合は、切り欠きを有
する一つの板状の真空断熱材7を使用する。
The thermoelectric module 6 is provided with the vacuum heat insulating material 7.
When covering three or two outer peripheral surfaces, one plate-shaped vacuum heat insulating material 7 having a notch is used.

【0059】また、本実施の形態は、厚み寸法を除く真
空断熱材7の外形寸法を、放熱用ヒートシンク(放熱側
熱交換手段)9と冷却用ヒートシンク(吸熱側熱交換手
段)10のうちの接合面が小さい方の冷却用ヒートシン
ク(吸熱側熱交換手段)10の接合面の寸法と略同一に
するものである。
Further, in the present embodiment, the external dimensions of the vacuum heat insulating material 7 excluding the thickness dimension are selected from among the heat radiation heat sink (heat radiation side heat exchange means) 9 and the cooling heat sink (heat absorption side heat exchange means) 10. The size of the joint surface of the cooling heat sink (heat absorption side heat exchange means) 10 having the smaller joint surface is substantially the same.

【0060】放熱用ヒートシンク(放熱側熱交換手段)
9と冷却用ヒートシンク(吸熱側熱交換手段)10のう
ちの接合面が小さい方の冷却用ヒートシンク(吸熱側熱
交換手段)10の接合面の寸法と略同一の貫通孔を形成
した断熱壁(断熱箱体)11に対して、その貫通孔に挿
入嵌合させることにより、一動作で簡単に熱電装置を貯
蔵庫等に取付け(組み込み)でき、孔の貫通方向に対し
て貫通孔の大きさが変化しないので貫通孔を形成が容易
であり、断熱壁(断熱箱体)11の貫通孔に熱電装置を
取付け(組み込み)後は真空断熱材7が外から見えない
ため、真空断熱材7を損傷から保護でき、真空断熱材7
の長期にわたる信頼性を確保できる。
Heat sink for heat dissipation (heat dissipation side heat exchange means)
9 and the cooling heat sink (heat absorption side heat exchange means) 10, which has a smaller joint surface, has a through hole having substantially the same size as the joint surface of the cooling heat sink (heat absorption side heat exchange means) 10 ( By inserting and fitting the heat insulating box 11 into the through hole, the thermoelectric device can be easily attached (assembled) to a storage or the like in one operation, and the size of the through hole in the through direction of the hole can be increased. Since it does not change, it is easy to form a through hole, and since the vacuum heat insulating material 7 cannot be seen from the outside after the thermoelectric device is attached (installed) to the through hole of the heat insulating wall (heat insulating box body) 11, the vacuum heat insulating material 7 is damaged. Vacuum insulation 7
The long-term reliability of can be secured.

【0061】また、本実施の形態の貯蔵庫は、熱電装置
の大きさに合わせて形成された貫通孔を有する断熱箱体
と、貫通孔に挿入嵌合され取付けられた熱電装置とを備
えたものであり、組み立て(製造)、分解(メンテナン
ス)が容易で、冷却効率が高く、省エネであり、熱電装
置が小型軽量化されたことにより、貯蔵庫の軽量化が図
れる。
Further, the storage according to the present embodiment is provided with a heat insulating box having a through hole formed in accordance with the size of the thermoelectric device and a thermoelectric device inserted and fitted into the through hole. The assembly (manufacturing) and the disassembly (maintenance) are easy, the cooling efficiency is high, the energy is saved, and the thermoelectric device is small and lightweight, so that the weight of the storage can be reduced.

【0062】また、本実施の形態は、庫外側の熱交換手
段である放熱用ヒートシンク(放熱側熱交換手段)9の
接合面が、庫内側の熱交換手段である冷却用ヒートシン
ク(吸熱側熱交換手段)10の接合面より大きいため、
断熱箱体の外側(庫外側)から熱電装置を取り付けてい
るので、庫内側の熱交換手段である冷却用ヒートシンク
(吸熱側熱交換手段)10の庫内側への突出量を少なく
でき、突出量が少なくなった分だけ庫内の有効スペース
を拡大できる。
Further, in the present embodiment, the joint surface of the heat radiation heat sink (heat radiation side heat exchange means) 9 which is the heat exchange means on the outside of the refrigerator is such that the heat sink for cooling (heat absorption side heat) which is the heat exchange means on the inside of the refrigerator. Exchange means) 10 is larger than the joint surface,
Since the thermoelectric device is attached from the outside (outside of the cabinet) of the heat insulating box, the amount of protrusion of the cooling heat sink (heat absorption side heat exchange means) 10 that is the heat exchange means inside the cabinet can be reduced, and the amount of protrusion can be reduced. The effective space in the refrigerator can be expanded by the amount that has decreased.

【0063】もし、逆に、庫内側の熱交換手段である冷
却用ヒートシンク(吸熱側熱交換手段)10の接合面が
庫外側の熱交換手段である放熱用ヒートシンク(放熱側
熱交換手段)9の接合面より大きくて断熱箱体の内側
(庫内側)から熱電装置が取り付けられる場合は、庫外
側の熱交換手段である放熱用ヒートシンク(放熱側熱交
換手段)9の庫外側(放熱室または放熱空間)への突出
量を少なくでき、突出量が少なくなった分だけ貯蔵庫の
外形寸法(通常は奥行き寸法)を小さくできる。
On the contrary, if the joint surface of the cooling heat sink (heat absorbing side heat exchanging means) 10 which is the heat exchanging means inside the cabinet is the heat radiating heat sink (radiating side heat exchanging means) 9 that is the heat exchanging means outside the cabinet. When the thermoelectric device is attached from the inside of the heat-insulating box (the inside of the cabinet), which is larger than the joint surface, the outside of the cabinet of the heat sink for heat radiation (heat exchange means on the radiating side) 9 that is the heat exchange means on the outside of the cabinet (radiation chamber or The amount of protrusion to the heat radiation space) can be reduced, and the outer dimension (usually the depth dimension) of the storage can be reduced by the amount of protrusion.

【0064】(実施の形態2)以下、本発明の実施の形
態2による熱電装置について、図2を参照しながら説明
するが、実施の形態1と同一構成については同一符号を
付してその詳細な説明は省略する。
(Second Embodiment) Hereinafter, a thermoelectric device according to a second embodiment of the present invention will be described with reference to FIG. 2. The same components as those of the first embodiment are designated by the same reference numerals and their details will be described. Detailed description is omitted.

【0065】図2は、本発明の実施の形態2による熱電
装置の縦断面図である。
FIG. 2 is a vertical sectional view of a thermoelectric device according to the second embodiment of the present invention.

【0066】実施の形態1の熱電装置では、真空断熱材
7に備えた貫通口(孔)8に収容された熱電モジュール
6は1個としたが、実施の形態2では、図2に示すよう
に、熱電モジュール6は真空断熱材7の貫通口(孔)8
の穴形成方向に対して垂直な平面方向に複数個配置して
いる。
In the thermoelectric device of the first embodiment, the thermoelectric module 6 is accommodated in the through hole (hole) 8 provided in the vacuum heat insulating material 7, but in the second embodiment, as shown in FIG. In addition, the thermoelectric module 6 has a through hole (hole) 8 for the vacuum heat insulating material 7.
A plurality of them are arranged in a plane direction perpendicular to the hole forming direction.

【0067】実施の形態2による熱電装置は、熱電モジ
ュール6を、放熱用ヒートシンク(放熱側熱交換手段)
9または冷却用ヒートシンク(吸熱側熱交換手段)10
の接合面に平行に並べられた複数の熱電モジュール単体
6で構成するものであり、その他の構成は、実施の形態
1の熱電装置と同一である。
In the thermoelectric device according to the second embodiment, the thermoelectric module 6 is provided with a heat sink for heat radiation (heat radiation side heat exchange means).
9 or cooling heat sink (heat exchange means on the heat absorption side) 10
The thermoelectric module is composed of a plurality of thermoelectric modules alone 6 arranged in parallel to the joint surface of the above.

【0068】本実施の形態では、放熱用ヒートシンク
(放熱側熱交換手段)9または冷却用ヒートシンク(吸
熱側熱交換手段)10と熱電モジュール6との接触面積
が増えることにより、放熱用ヒートシンク(放熱側熱交
換手段)9または冷却用ヒートシンク(吸熱側熱交換手
段)10と熱電モジュール6との熱交換量が増え、熱電
装置の冷却能力を高めることができる。また、複数の熱
電モジュール単体6を放熱用ヒートシンク(放熱側熱交
換手段)9または冷却用ヒートシンク(吸熱側熱交換手
段)10の接合面に平行に並べることにより、熱電モジ
ュール6の外周面と放熱用ヒートシンク(放熱側熱交換
手段)9の接合面と冷却用ヒートシンク(吸熱側熱交換
手段)10の接合面とで囲まれた空間が小さくなり、そ
の空間を埋めるために設けられる真空断熱材7の量を少
なくできる。
In this embodiment, the contact area between the heat sink for heat dissipation (heat exchanging side heat exchanging means) 9 or the cooling heat sink (heat absorbing side heat exchanging means) 10 and the thermoelectric module 6 is increased, so that the heat sink for heat dissipation (heat dissipation side) The heat exchange amount between the thermoelectric module 6 and the side heat exchange means 9) or the cooling heat sink (heat absorption side heat exchange means) 10 is increased, and the cooling capacity of the thermoelectric device can be enhanced. Further, by arranging the plurality of thermoelectric module units 6 in parallel with the joint surface of the heat sink for heat dissipation (heat dissipation side heat exchange means) 9 or the cooling heat sink (heat absorption side heat exchange means) 10, heat radiation from the outer peripheral surface of the thermoelectric module 6 is performed. The space enclosed by the joint surface of the heat sink (heat radiation side heat exchange means) 9 and the joint surface of the cooling heat sink (heat absorption side heat exchange means) 10 becomes small, and the vacuum heat insulating material 7 provided to fill the space is provided. The amount of can be reduced.

【0069】(実施の形態3)以下、本発明の実施の形
態3による熱電装置について、図3を参照しながら説明
するが、実施の形態1と同一構成については同一符号を
付してその詳細な説明は省略する。
(Third Embodiment) Hereinafter, a thermoelectric device according to a third embodiment of the present invention will be described with reference to FIG. 3. The same components as those of the first embodiment are designated by the same reference numerals and their details will be described. Detailed description is omitted.

【0070】図3は、本発明の実施の形態3による熱電
装置の縦断面図である。
FIG. 3 is a vertical sectional view of a thermoelectric device according to a third embodiment of the present invention.

【0071】実施の形態1の熱電装置では、真空断熱材
7に備えた貫通口(孔)8に収容された熱電モジュール
6は1段としたが、実施の形態3では、図3に示すよう
に、熱電モジュール6は真空断熱材7の貫通口(孔)8
の穴形成方向に複数段積層している。
In the thermoelectric device of the first embodiment, the thermoelectric module 6 housed in the through hole (hole) 8 provided in the vacuum heat insulating material 7 has one stage, but in the third embodiment, as shown in FIG. In addition, the thermoelectric module 6 has a through hole (hole) 8 for the vacuum heat insulating material 7.
A plurality of layers are stacked in the hole forming direction.

【0072】これにより、真空断熱材7の貫通口(孔)
8の穴形成方向両端の放熱面6aと吸熱面6bの温度差
を大きくすることによって、冷却用ヒートシンク10の
温度をさらに下げ、庫内の気流の冷却温度をさらに下げ
ることができる。
As a result, the through hole (hole) of the vacuum heat insulating material 7 is formed.
By increasing the temperature difference between the heat radiating surface 6a and the heat absorbing surface 6b at both ends of the hole forming direction of 8, the temperature of the cooling heat sink 10 can be further lowered, and the cooling temperature of the air flow inside the refrigerator can be further lowered.

【0073】実施の形態3による熱電装置は、熱電モジ
ュール6を、放熱用ヒートシンク(放熱側熱交換手段)
9または冷却用ヒートシンク(吸熱側熱交換手段)10
の接合面に垂直に重ねた複数(2つ)の熱電モジュール
単体6で構成するものであり、積層された(重ねた)熱
電モジュール6両端の放熱面の温度差を大きくすること
によって、冷却温度を下げることができる。
In the thermoelectric device according to the third embodiment, the thermoelectric module 6 is provided with a heat sink for heat radiation (heat radiation side heat exchange means).
9 or cooling heat sink (heat exchange means on the heat absorption side) 10
Is composed of a plurality (two) of thermoelectric module units 6 that are vertically stacked on the joint surface of, and the cooling temperature is increased by increasing the temperature difference between the heat dissipation surfaces at both ends of the stacked (superposed) thermoelectric modules 6. Can be lowered.

【0074】また、真空断熱材7の厚みを熱電モジュー
ル6の厚みに合わせる場合に、一つの熱電モジュール
(単体)6に合わせた厚みの真空断熱材7では充分な断
熱性能が得られない場合であっても、複数の熱電モジュ
ール単体6を重ねて熱電モジュール6を厚くすると、真
空断熱材7の厚みを厚くできるため、真空断熱材7の断
熱性能が向上し、放熱用ヒートシンク(放熱側熱交換手
段)9と冷却用ヒートシンク(吸熱側熱交換手段)10
との間の熱の移動量が少なくなって、熱電装置の冷却効
率を高めることができる。
Further, when the thickness of the vacuum heat insulating material 7 is adjusted to the thickness of the thermoelectric module 6, when the vacuum heat insulating material 7 having a thickness suitable for one thermoelectric module (single unit) 6 cannot provide sufficient heat insulating performance. Even if there is a plurality of thermoelectric module single bodies 6 and the thermoelectric module 6 is thickened, the thickness of the vacuum heat insulating material 7 can be increased, so that the heat insulating performance of the vacuum heat insulating material 7 is improved and the heat sink for heat radiation (heat radiation side heat exchange). Means) 9 and cooling heat sink (heat absorption side heat exchange means) 10
The amount of transfer of heat between and can be reduced, and the cooling efficiency of the thermoelectric device can be improved.

【0075】(実施の形態4)以下、本発明の実施の形
態4による熱電装置について、図4を参照しながら説明
するが、実施の形態1と同一構成については同一符号を
付してその詳細な説明は省略する。
(Fourth Embodiment) Hereinafter, a thermoelectric device according to a fourth embodiment of the present invention will be described with reference to FIG. 4. The same components as those in the first embodiment are designated by the same reference numerals and their details will be described. Detailed description is omitted.

【0076】図4は、本発明の実施の形態4による熱電
装置の縦断面図である。
FIG. 4 is a vertical sectional view of a thermoelectric device according to the fourth embodiment of the present invention.

【0077】実施の形態1の熱電装置では、熱電モジュ
ール6の放熱面6aに放熱用ヒートシンク9を接合して
いるが、実施の形態4では、図4に示すように、熱電モ
ジュール6の放熱面6aに流体流路を構成するパイプ1
2を接合している。
In the thermoelectric device of the first embodiment, the heat sink 9 for heat dissipation is joined to the heat dissipation surface 6a of the thermoelectric module 6, but in the fourth embodiment, as shown in FIG. Pipe 1 forming a fluid flow path in 6a
Two are joined.

【0078】これにより、熱電装置に液体と熱交換する
機能を追加し、熱電装置と離れたところとの熱移動を可
能にすることができる。
As a result, a function of exchanging heat with the liquid can be added to the thermoelectric device, and heat transfer between the thermoelectric device and a remote place can be enabled.

【0079】実施の形態4による熱電装置は、放熱側熱
交換手段と吸熱側熱交換手段のうちの放熱側熱交換手段
を、流体流路を構成するパイプ(内部を液体が流れる熱
交換器)12とするものであり、パイプ(放熱側熱交換
手段)12以外の構成は、実施の形態1の熱電装置と同
一である。
In the thermoelectric device according to the fourth embodiment, of the heat radiation side heat exchange means and the heat radiation side heat exchange means, the heat radiation side heat exchange means is a pipe (a heat exchanger through which a liquid flows) which constitutes a fluid flow path. The configuration other than the pipe (heat radiation side heat exchange means) 12 is the same as that of the thermoelectric device of the first embodiment.

【0080】(実施の形態5)以下、本発明の実施の形
態5による熱電装置について、図5を参照しながら説明
するが、実施の形態1と同一構成については同一符号を
付してその詳細な説明は省略する。
(Embodiment 5) Hereinafter, a thermoelectric device according to Embodiment 5 of the present invention will be described with reference to FIG. 5. The same components as those in Embodiment 1 are designated by the same reference numerals and their details will be described. Detailed description is omitted.

【0081】図5は、本発明の実施の形態5による熱電
装置の縦断面図である。
FIG. 5 is a vertical sectional view of a thermoelectric device according to the fifth embodiment of the present invention.

【0082】実施の形態1の熱電装置では、熱電モジュ
ール6の放熱面6aに放熱用ヒートシンク9を接合して
いるが、実施の形態5では、図5に示すように、熱電モ
ジュール6の放熱面6aにヒートパイプ13を接合して
いる。
In the thermoelectric device of the first embodiment, the heat sink 9 for heat dissipation is joined to the heat dissipation surface 6a of the thermoelectric module 6, but in the fifth embodiment, as shown in FIG. The heat pipe 13 is joined to 6a.

【0083】これにより、 熱電装置に熱電装置と離れ
たところとの熱移動を可能にすることができる。
This enables the thermoelectric device to transfer heat to and away from the thermoelectric device.

【0084】実施の形態5による熱電装置は、放熱側熱
交換手段と吸熱側熱交換手段のうちの放熱側熱交換手段
を、ヒートパイプ13とするものであり、ヒートパイプ
(放熱側熱交換手段)13以外の構成は、実施の形態1
の熱電装置と同一である。
In the thermoelectric device according to the fifth embodiment, the heat radiating side heat exchanging means among the heat radiating side heat exchanging means and the heat absorbing side heat exchanging means is the heat pipe 13. ) Configurations other than 13 are the same as in the first embodiment.
Same as the thermoelectric device.

【0085】(実施の形態6)以下、本発明の実施の形
態6による熱電装置について、図6を参照しながら説明
するが、実施の形態1と同一構成については同一符号を
付してその詳細な説明は省略する。
(Sixth Embodiment) Hereinafter, a thermoelectric device according to a sixth embodiment of the present invention will be described with reference to FIG. 6. The same components as those of the first embodiment are designated by the same reference numerals and their details will be described. Detailed description is omitted.

【0086】図6は、本発明の実施の形態6による熱電
装置の縦断面図である。
FIG. 6 is a vertical sectional view of a thermoelectric device according to a sixth embodiment of the present invention.

【0087】実施の形態6による熱電装置は、真空断熱
材7を、熱電モジュール6より厚みが厚く、熱電モジュ
ール6の大きさに合わせた熱電モジュール6を収納可能
な孔8を有する板状とし、放熱用ヒートシンク(放熱側
熱交換手段)9と冷却用ヒートシンク(吸熱側熱交換手
段)10のうちの冷却用ヒートシンク(吸熱側熱交換手
段)10が、接合面に孔8と係合し真空断熱材7に対す
る熱電モジュール6の厚み不足を補う突起10bを有し
ている。
In the thermoelectric device according to the sixth embodiment, the vacuum heat insulating material 7 is in the form of a plate having a hole 8 which is thicker than the thermoelectric module 6 and can accommodate the thermoelectric module 6 according to the size of the thermoelectric module 6. Of the heat sinks for heat dissipation (heat dissipation side heat exchange means) 9 and the heat sinks for cooling (heat absorption side heat exchange means) 10, the heat sinks for cooling (heat absorption side heat exchange means) 10 engage with the holes 8 on the joint surface and vacuum heat insulation is performed. It has a protrusion 10b for compensating for the insufficient thickness of the thermoelectric module 6 with respect to the material 7.

【0088】実施の形態6による熱電装置では、孔8を
有する一つの板状の真空断熱材7を使用することによ
り、高い断熱性能が得られ、熱電装置の冷却効率を高め
ることができ、また、熱電装置の組み立てが簡単であ
る。また、断熱性能を確保するために真空断熱材7の厚
みを熱電モジュール6の厚みがより厚くした場合でも、
放熱用ヒートシンク(放熱側熱交換手段)9と冷却用ヒ
ートシンク(吸熱側熱交換手段)10のうちの冷却用ヒ
ートシンク(吸熱側熱交換手段)10の接合面に、孔8
と係合し真空断熱材7に対する熱電モジュール6の厚み
不足を補う突起10bを設けることにより、厚み調整用
の部品であるブロックを介在させずに直接、熱電モジュ
ール6の伝熱面(放熱面6aと吸熱面6b)に放熱用ヒ
ートシンク(放熱側熱交換手段)9と冷却用ヒートシン
ク(吸熱側熱交換手段)10とを接合することが可能に
なり、熱電装置の冷却効率を高めることができる。
In the thermoelectric device according to the sixth embodiment, by using the single plate-shaped vacuum heat insulating material 7 having the holes 8, high heat insulating performance can be obtained, and the cooling efficiency of the thermoelectric device can be improved. Assembling the thermoelectric device is easy. Further, even if the thickness of the vacuum heat insulating material 7 is made thicker in order to ensure the heat insulating performance,
The heat sink (heat radiation side heat exchange means) 9 and the cooling heat sink (heat absorption side heat exchange means) 10 of the heat radiation heat sink (heat radiation side heat exchange means) 9 have holes 8 at the joint surface.
By providing a protrusion 10b that engages with the vacuum heat insulating material 7 to compensate for the insufficient thickness of the thermoelectric module 6, the heat transfer surface (heat dissipation surface 6a) of the thermoelectric module 6 can be directly inserted without interposing a block that is a component for adjusting the thickness. The heat sink (radiation side heat exchange means) 9 and the cooling heat sink (heat absorption side heat exchange means) 10 can be joined to the heat absorption surface 6b), and the cooling efficiency of the thermoelectric device can be improved.

【0089】なお、冷却用ヒートシンク(吸熱側熱交換
手段)10の接合面に、孔8と係合し真空断熱材7に対
する熱電モジュール6の厚み不足を補う突起10bを設
ける代わりに、冷却用ヒートシンク(吸熱側熱交換手
段)10の接合面に厚み調整用の部品であるブロックを
接合する場合は、熱電モジュール6の吸熱面6bに、冷
却用ヒートシンク(吸熱側熱交換手段)10が、直接接
合されていないため、多少冷却性能は低下するが、真空
断熱材7を使用していない場合に較べて、ブロックの厚
みが薄いため、冷却性能の低下は少なく、突起10bを
設ける場合より、製造コストを低減できる。
It should be noted that instead of providing the projection 10b that engages with the hole 8 and compensates for the insufficient thickness of the thermoelectric module 6 with respect to the vacuum heat insulating material 7 on the joint surface of the cooling heat sink (heat absorption side heat exchange means) 10, the cooling heat sink is used. When a block, which is a component for adjusting the thickness, is joined to the joint surface of the (heat absorption side heat exchange means) 10, the cooling heat sink (heat absorption side heat exchange means) 10 is directly joined to the heat absorption surface 6b of the thermoelectric module 6. However, the cooling performance is somewhat deteriorated, but the cooling performance is less deteriorated because the thickness of the block is smaller than that when the vacuum heat insulating material 7 is not used, and the manufacturing cost is lower than when the protrusion 10b is provided. Can be reduced.

【0090】冷却用ヒートシンク(吸熱側熱交換手段)
10の接合面に厚み調整用の部品であるブロックを接合
する場合は、冷却用ヒートシンク(吸熱側熱交換手段)
10とブロックとの接合面での熱伝達が充分に行われる
ように、冷却用ヒートシンク(吸熱側熱交換手段)10
とブロックとを、予め、しっかりと接着しておくことが
好ましい。
Cooling heatsink (heat absorption side heat exchange means)
When a block, which is a component for adjusting the thickness, is joined to the joint surface of 10, a heat sink for cooling (heat absorption side heat exchange means)
A heat sink for cooling (heat absorption side heat exchange means) 10 so that heat can be sufficiently transferred at the joint surface between 10 and the block.
It is preferable that the block and the block are firmly bonded in advance.

【0091】(実施の形態7)以下、本発明の実施の形
態7による熱電装置について、図7を参照しながら説明
するが、実施の形態1と同一構成については同一符号を
付してその詳細な説明は省略する。
(Embodiment 7) Hereinafter, a thermoelectric device according to Embodiment 7 of the present invention will be described with reference to FIG. 7. The same components as those in Embodiment 1 are designated by the same reference numerals and their details will be described. Detailed description is omitted.

【0092】図7は、本発明の実施の形態7による熱電
装置の縦断面図である。
FIG. 7 is a vertical sectional view of a thermoelectric device according to the seventh embodiment of the present invention.

【0093】実施の形態1の貯蔵庫では、断熱箱体を構
成する断熱壁11は発泡ウレタン等の発泡断熱材で構成
されているが、実施の形態7では、図7に示すように、
熱電装置に使用した貫通口(孔)8を備えた真空断熱材
7が断熱箱体を構成する断熱壁11の一部を構成してい
る。
In the storage according to the first embodiment, the heat insulating wall 11 forming the heat insulating box is made of a foamed heat insulating material such as urethane foam, but in the seventh embodiment, as shown in FIG.
The vacuum heat insulating material 7 having the through hole (hole) 8 used for the thermoelectric device constitutes a part of the heat insulating wall 11 forming the heat insulating box.

【0094】実施の形態7による熱電装置では、真空断
熱材7が、放熱用ヒートシンク(放熱側熱交換手段)9
と冷却用ヒートシンク(吸熱側熱交換手段)10の両方
の接合面より広く、断熱箱体の少なくとも一部の断熱壁
を構成するものであり、熱電装置の真空断熱材7を、断
熱箱体の少なくとも一部の断熱壁として、熱電装置を取
り付ける前の未完成の断熱箱体に取り付けることによ
り、断熱箱体が完成すると同時に、断熱箱体に熱電装置
を取り付けることができる。このとき、予め真空断熱材
7の表面を補強しておけば、真空断熱材7をそのまま断
熱箱体の少なくとも一部の断熱壁として使用することが
可能である。また、断熱箱体の少なくとも一部の断熱壁
を真空断熱材7で構成する場合、真空断熱材7は発泡断
熱材より断熱性能が高く、そのため、発泡断熱材より断
熱壁の厚みを薄くできるので、断熱壁を薄くした分だ
け、貯蔵庫の庫内を広くしたり、貯蔵庫の外形寸法を小
さくしたりできる。
In the thermoelectric device according to the seventh embodiment, the vacuum heat insulating material 7 is a heat sink for heat radiation (heat radiation side heat exchange means) 9
The heat insulating wall is wider than the joint surface of both the heat sink (cooling side) and the heat sink for cooling (heat absorption side heat exchange means) 10 and constitutes at least a part of the heat insulating wall of the heat insulating box. By attaching at least a part of the heat insulating wall to an incomplete heat insulating box before the thermoelectric device is attached, the heat insulating box can be completed and the thermoelectric device can be attached to the heat insulating box at the same time. At this time, if the surface of the vacuum heat insulating material 7 is reinforced in advance, the vacuum heat insulating material 7 can be used as it is as a heat insulating wall of at least a part of the heat insulating box. When at least a part of the heat insulating wall of the heat insulating box is formed of the vacuum heat insulating material 7, the vacuum heat insulating material 7 has a higher heat insulating performance than the foam heat insulating material, and therefore, the thickness of the heat insulating wall can be made thinner than the foam heat insulating material. The inside of the storage can be widened or the external dimensions of the storage can be reduced by the amount of thinning the heat insulating wall.

【0095】[0095]

【発明の効果】以上、説明したように請求項1記載の発
明は、熱電モジュールの外周面の少なくとも一つの面と
放熱側熱交換手段の接合面と吸熱側熱交換手段の接合面
とで囲まれた空間を埋めるように真空断熱材を設けたの
で、放熱側熱交換手段と吸熱側熱交換手段との間隔を狭
くでき、厚み調整用の部品であるブロックを介在させず
に直接、熱電モジュールの伝熱面(放熱面と吸熱面)に
放熱側熱交換手段と吸熱側熱交換手段とを接合すること
が可能になり、熱電装置の冷却効率を高めることができ
る。
As described above, the invention according to claim 1 is surrounded by at least one outer peripheral surface of the thermoelectric module, the joint surface of the heat radiation side heat exchange means, and the joint surface of the heat absorption side heat exchange means. Since the vacuum heat insulating material is provided so as to fill the space provided, the gap between the heat radiation side heat exchange means and the heat absorption side heat exchange means can be narrowed, and the thermoelectric module can be directly connected without interposing a block which is a component for thickness adjustment. It is possible to join the heat radiation side heat exchange means and the heat absorption side heat exchange means to the heat transfer surface (heat radiation surface and heat absorption surface) of, and the cooling efficiency of the thermoelectric device can be improved.

【0096】また、熱電装置をコンパクトにでき、熱電
装置の大きさに合わせた貫通孔を形成した断熱壁(断熱
箱体)に対して、その貫通孔に挿入嵌合させることによ
り、一動作で簡単に熱電装置を貯蔵庫等に取付け(組み
込み)でき、そのため、熱電装置のユニット化が可能で
ある。
Further, the thermoelectric device can be made compact, and by inserting and fitting the heat insulating wall (heat insulating box) in which the through hole is formed according to the size of the thermoelectric device into the through hole, one operation can be performed. The thermoelectric device can be easily attached (assembled) to a storage or the like, and therefore, the thermoelectric device can be unitized.

【0097】また、請求項2記載の発明は、請求項1記
載の発明における熱電モジュールを、放熱側熱交換手段
または吸熱側熱交換手段の接合面に平行に並べられた複
数の熱電モジュール単体で構成したので、熱電装置の冷
却能力を高めることができ、また、その空間を埋めるた
めに設けられる真空断熱材の量を少なくできる。
According to a second aspect of the present invention, the thermoelectric module according to the first aspect is a plurality of thermoelectric modules alone arranged in parallel to the joint surface of the heat radiation side heat exchange means or the heat absorption side heat exchange means. Since it is configured, the cooling capacity of the thermoelectric device can be increased, and the amount of vacuum heat insulating material provided to fill the space can be reduced.

【0098】また、請求項3記載の発明は、請求項1記
載の発明における熱電モジュールを、放熱側熱交換手段
または吸熱側熱交換手段の接合面に垂直に重ねた複数の
熱電モジュール単体で構成したので、積層された(重ね
た)熱電モジュール両端の放熱面の温度差を大きくし
て、冷却温度を下げることができる。
According to a third aspect of the invention, the thermoelectric module according to the first aspect of the invention is composed of a plurality of thermoelectric modules that are vertically stacked on the joint surface of the heat radiation side heat exchange means or the heat absorption side heat exchange means. Therefore, the cooling temperature can be lowered by increasing the temperature difference between the heat radiation surfaces at both ends of the stacked (overlapping) thermoelectric modules.

【0099】また、真空断熱材の厚みを熱電モジュール
の厚みに合わせる場合に、真空断熱材の厚みを厚くでき
るため、真空断熱材の断熱性能が向上し、放熱側熱交換
手段と吸熱側熱交換手段との間の熱の移動量が少なくな
って、熱電装置の冷却効率を高めることができる。
Further, when the thickness of the vacuum heat insulating material is adjusted to the thickness of the thermoelectric module, the thickness of the vacuum heat insulating material can be increased, so that the heat insulating performance of the vacuum heat insulating material is improved and the heat radiating side heat exchanging means and the heat absorbing side heat exchanging means. The amount of heat transferred to and from the means is reduced, and the cooling efficiency of the thermoelectric device can be improved.

【0100】また、請求項4記載の発明では、請求項1
から3のいずれか一項記載の発明における放熱側熱交換
手段と吸熱側熱交換手段の一方または両方を、反接合面
側に空気と熱交換するための複数のフィンを備えたヒー
トシンクとすることができる。
According to the invention described in claim 4,
5. One or both of the heat radiation side heat exchange means and the heat absorption side heat exchange means in the invention described in any one of 1 to 3 are heat sinks provided with a plurality of fins for heat exchange with air on the side opposite to the joint surface. You can

【0101】また、請求項5記載の発明では、請求項1
から3のいずれか一項記載の発明における放熱側熱交換
手段と吸熱側熱交換手段の少なくとも一方を、内部を液
体が流れる熱交換器とすることができる。
According to the invention of claim 5, claim 1
At least one of the heat radiation side heat exchange means and the heat absorption side heat exchange means in the invention described in any one of 1 to 3 can be a heat exchanger through which a liquid flows.

【0102】また、請求項6記載の発明では、請求項1
から3のいずれか一項記載の発明における放熱側熱交換
手段と吸熱側熱交換手段の少なくとも一方を、ヒートパ
イプとすることができる。
Further, according to the invention of claim 6,
At least one of the heat radiation side heat exchange means and the heat absorption side heat exchange means in the invention described in any one of 1 to 3 can be a heat pipe.

【0103】また、請求項7記載の発明は、熱電モジュ
ールの外周面と放熱側熱交換手段の接合面と吸熱側熱交
換手段の接合面とで囲まれた空間を埋める真空断熱材と
して、孔または切り欠きを有する一つの板状の真空断熱
材を使用したことにより、高い断熱性能が得られ、熱電
装置の冷却効率を高めることができ、また、熱電装置の
組み立てが簡単である。
Further, according to the invention of claim 7, as a vacuum heat insulating material filling a space surrounded by the outer peripheral surface of the thermoelectric module, the joint surface of the heat radiation side heat exchange means and the joint surface of the heat absorption side heat exchange means Alternatively, by using one plate-shaped vacuum heat insulating material having a notch, a high heat insulating performance can be obtained, the cooling efficiency of the thermoelectric device can be improved, and the thermoelectric device can be easily assembled.

【0104】また、請求項8記載の発明では、請求項7
記載の発明の効果に加えて、断熱性能を確保するために
真空断熱材の厚みを熱電モジュールの厚みがより厚くし
た場合でも、放熱側熱交換手段と吸熱側熱交換手段の少
なくとも一方の接合面に、真空断熱材の孔または切り欠
きと係合し真空断熱材に対する熱電モジュールの厚み不
足を補う突起を設けることにより、厚み調整用の部品で
あるブロックを介在させずに直接、熱電モジュールの伝
熱面(放熱面と吸熱面)に放熱側熱交換手段と吸熱側熱
交換手段とを接合することが可能になり、熱電装置の冷
却効率を高めることができる。
Further, in the invention described in claim 8,
In addition to the effects of the invention described, even if the thickness of the vacuum heat insulating material is made thicker in order to secure the heat insulating performance, the joining surface of at least one of the heat radiation side heat exchange means and the heat absorption side heat exchange means By providing a protrusion that engages with the hole or notch of the vacuum heat insulating material and compensates for the lack of thickness of the thermoelectric module with respect to the vacuum heat insulating material, it is possible to directly transfer the thermoelectric module without interposing a block that is a component for thickness adjustment. The heat radiating side heat exchanging means and the heat absorbing side heat exchanging means can be joined to the heat surface (heat radiating surface and heat absorbing surface), and the cooling efficiency of the thermoelectric device can be improved.

【0105】また、請求項9記載の発明では、放熱側熱
交換手段と吸熱側熱交換手段のどちらか接合面が小さい
方の接合面の寸法と略同一の貫通孔を形成した断熱壁
(断熱箱体)に対して、その貫通孔に挿入嵌合させるこ
とにより、一動作で簡単に熱電装置を貯蔵庫等に取付け
(組み込み)でき、貫通孔を形成が容易であり、真空断
熱材を損傷から保護でき、真空断熱材の長期にわたる信
頼性を確保できる。
Further, in the invention according to claim 9, the heat insulating wall (heat insulating wall) in which the through hole having substantially the same size as the size of the joint surface of the heat radiating side heat exchanging means or the heat absorbing side heat exchanging means, whichever is smaller, is formed. By inserting and fitting the box into the through hole, the thermoelectric device can be easily attached (assembled) to the storage etc. in one operation, the through hole can be easily formed, and the vacuum heat insulating material can be protected from damage. Can protect and ensure long-term reliability of vacuum insulation.

【0106】また、請求項10記載の発明は、請求項1
から9のいずれか一項記載の熱電装置の大きさに合わせ
て形成された貫通孔を有する断熱箱体と、前記貫通孔に
挿入嵌合され取付けられた前記熱電装置とを備えたもの
であり、組み立て(製造)、分解(メンテナンス)が容
易で、冷却効率が高く、省エネであり、熱電装置が小型
軽量化されたことにより、貯蔵庫の軽量化が図れる。ま
た、庫内の有効スペースの拡大、または、貯蔵庫の外形
寸法の短縮が図れ、容積効率が向上する。
The invention according to claim 10 is the same as claim 1
10. A heat insulating box having a through hole formed in accordance with the size of the thermoelectric device according to any one of items 1 to 9, and the thermoelectric device inserted and fitted into the through hole. It is easy to assemble (manufacture) and disassemble (maintenance), has high cooling efficiency, saves energy, and the thermoelectric device is small and lightweight, so that the weight of the storage can be reduced. In addition, the effective space in the refrigerator can be expanded or the external dimensions of the storage can be shortened, and the volumetric efficiency can be improved.

【0107】また、請求項11記載の発明は、熱電装置
の真空断熱材を、断熱箱体の少なくとも一部の断熱壁と
して、熱電装置を取り付ける前の未完成の断熱箱体に取
り付けることにより、断熱箱体が完成すると同時に、断
熱箱体に熱電装置を取り付けることができる。また、断
熱壁を薄くした分だけ、貯蔵庫の庫内を広くしたり、貯
蔵庫の外形寸法を小さくしたりでき、容積効率が向上す
る。
According to the eleventh aspect of the present invention, the vacuum heat insulating material of the thermoelectric device is attached to the uncompleted heat insulating box body before attaching the thermoelectric device as a heat insulating wall of at least a part of the heat insulating box body. At the same time when the heat insulating box is completed, the thermoelectric device can be attached to the heat insulating box. Moreover, the interior of the storage can be widened or the external dimensions of the storage can be reduced by the amount corresponding to the reduction in the thickness of the heat insulating wall, thereby improving the volumetric efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1による熱電装置を断熱壁
に取付けた状態を示す縦断面図
FIG. 1 is a vertical cross-sectional view showing a state in which a thermoelectric device according to Embodiment 1 of the present invention is attached to a heat insulating wall.

【図2】本発明の実施の形態2による熱電装置の縦断面
FIG. 2 is a vertical sectional view of a thermoelectric device according to a second embodiment of the present invention.

【図3】本発明の実施の形態3による熱電装置の縦断面
FIG. 3 is a vertical sectional view of a thermoelectric device according to a third embodiment of the present invention.

【図4】本発明の実施の形態4による熱電装置の縦断面
FIG. 4 is a vertical sectional view of a thermoelectric device according to a fourth embodiment of the present invention.

【図5】本発明の実施の形態5による熱電装置の縦断面
FIG. 5 is a vertical sectional view of a thermoelectric device according to a fifth embodiment of the present invention.

【図6】本発明の実施の形態6による熱電装置の縦断面
FIG. 6 is a vertical sectional view of a thermoelectric device according to a sixth embodiment of the present invention.

【図7】本発明の実施の形態7による熱電装置の縦断面
FIG. 7 is a vertical sectional view of a thermoelectric device according to a seventh embodiment of the present invention.

【図8】従来の熱電装置の縦断面図FIG. 8 is a vertical sectional view of a conventional thermoelectric device.

【符号の説明】[Explanation of symbols]

6 熱電モジュール 6a 放熱面 6b 吸熱面 7 真空断熱材 8 貫通口(孔) 9 放熱用ヒートシンク 9a フィン 10 冷却用ヒートシンク 10a フィン 10b 突起 11 断熱壁 12 パイプ 13 ヒートパイプ 6 thermoelectric module 6a Heat dissipation surface 6b Endothermic surface 7 vacuum insulation 8 through holes 9 Heat sink for heat dissipation 9a fin 10 Cooling heat sink 10a fin 10b protrusion 11 heat insulation wall 12 pipes 13 heat pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西畠 秀男 滋賀県草津市野路東2丁目3番1−2号 松下冷機株式会社内 (72)発明者 谷口 光▲のり▼ 滋賀県草津市野路東2丁目3番1−2号 松下冷機株式会社内 (72)発明者 宮地 法幸 滋賀県草津市野路東2丁目3番1−2号 松下冷機株式会社内 Fターム(参考) 3L045 AA06 BA01 CA02 DA04 PA04   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideo Nishihata             2-3-3 Nojihigashi, Kusatsu City, Shiga Prefecture             Within Matsushita Cold Machinery Co., Ltd. (72) Inventor Hikaru Taniguchi ▲ Nori ▼             2-3-3 Nojihigashi, Kusatsu City, Shiga Prefecture             Within Matsushita Cold Machinery Co., Ltd. (72) Inventor Noriyuki Miyaji             2-3-3 Nojihigashi, Kusatsu City, Shiga Prefecture             Within Matsushita Cold Machinery Co., Ltd. F-term (reference) 3L045 AA06 BA01 CA02 DA04 PA04

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 放熱面と吸熱面とが対向し所定の電圧を
かけると放熱面から放熱し吸熱面から吸熱する熱電モジ
ュールと、 前記放熱面より大きい接合面が前記放熱面を完全に覆う
ように前記放熱面に接合され前記放熱面と熱交換する放
熱側熱交換手段と、 前記吸熱面より大きい接合面が前記吸熱面を完全に覆う
ように前記吸熱面に接合され前記吸熱面と熱交換する吸
熱側熱交換手段と、 前記熱電モジュールの外周面の少なくとも一つの面と前
記放熱側熱交換手段の前記接合面と前記吸熱側熱交換手
段の前記接合面とで囲まれた空間を埋めるように設けら
れた真空断熱材とからなる熱電装置。
1. A thermoelectric module in which a heat dissipation surface and a heat absorption surface are opposed to each other and a predetermined voltage is applied, heat is dissipated from the heat dissipation surface and is absorbed from the heat absorption surface, and a joint surface larger than the heat dissipation surface completely covers the heat dissipation surface. A heat radiation side heat exchange means joined to the heat radiation surface and exchanging heat with the heat radiation surface; and a joint surface larger than the heat absorption surface joined to the heat absorption surface so as to completely cover the heat absorption surface and heat exchange with the heat absorption surface. A heat absorption side heat exchange means, and a space surrounded by at least one surface of the outer peripheral surface of the thermoelectric module, the joint surface of the heat radiation side heat exchange means, and the joint surface of the heat absorption side heat exchange means. A thermoelectric device comprising a vacuum heat insulating material provided in the.
【請求項2】 熱電モジュールを、放熱側熱交換手段ま
たは吸熱側熱交換手段の接合面に平行に並べられた複数
の熱電モジュール単体で構成した請求項1記載の熱電装
置。
2. The thermoelectric device according to claim 1, wherein the thermoelectric module is composed of a plurality of thermoelectric modules alone arranged in parallel to the joint surface of the heat radiation side heat exchange means or the heat absorption side heat exchange means.
【請求項3】 熱電モジュールを、放熱側熱交換手段ま
たは吸熱側熱交換手段の接合面に垂直に重ねた複数の熱
電モジュール単体で構成した請求項1記載の熱電装置。
3. The thermoelectric device according to claim 1, wherein the thermoelectric module is composed of a plurality of thermoelectric modules that are vertically stacked on the joint surface of the heat radiation side heat exchange means or the heat absorption side heat exchange means.
【請求項4】 放熱側熱交換手段と吸熱側熱交換手段の
一方または両方は、反接合面側に空気と熱交換するため
の複数のフィンを備えたヒートシンクである請求項1か
ら3のいずれか一項記載の熱電装置。
4. One of or both of the heat radiating side heat exchanging means and the heat absorbing side heat exchanging means is a heat sink having a plurality of fins for heat exchange with air on the side opposite to the joint surface. The thermoelectric device according to claim 1.
【請求項5】 放熱側熱交換手段と吸熱側熱交換手段の
少なくとも一方は、内部を液体が流れる熱交換器である
請求項1から3のいずれか一項記載の熱電装置。
5. The thermoelectric device according to claim 1, wherein at least one of the heat radiation side heat exchange means and the heat absorption side heat exchange means is a heat exchanger through which a liquid flows.
【請求項6】 放熱側熱交換手段と吸熱側熱交換手段の
少なくとも一方は、ヒートパイプである請求項1から3
のいずれか一項記載の熱電装置。
6. A heat pipe according to claim 1, wherein at least one of the heat radiation side heat exchange means and the heat absorption side heat exchange means is a heat pipe.
The thermoelectric device according to claim 1.
【請求項7】 真空断熱材は、熱電モジュールと略同一
の厚みを有し、前記熱電モジュールの大きさに合わせた
前記熱電モジュールを収納可能な孔または切り欠きを有
する板状である請求項1から6のいずれか一項記載の熱
電装置。
7. The vacuum heat insulating material has a thickness substantially the same as that of the thermoelectric module, and has a plate shape having a hole or a cutout that can accommodate the thermoelectric module according to the size of the thermoelectric module. 7. The thermoelectric device according to claim 6.
【請求項8】 真空断熱材は、熱電モジュールより厚み
が厚く、前記熱電モジュールの大きさに合わせた前記熱
電モジュールを収納可能な孔または切り欠きを有する板
状であり、放熱側熱交換手段と吸熱側熱交換手段の少な
くとも一方は、接合面に前記孔と係合し前記真空断熱材
に対する前記熱電モジュールの厚み不足を補う突起を有
する請求項1から6のいずれか一項記載の熱電装置。
8. The vacuum heat insulating material is thicker than the thermoelectric module and has a plate shape having a hole or a cutout that can accommodate the thermoelectric module according to the size of the thermoelectric module. The thermoelectric device according to any one of claims 1 to 6, wherein at least one of the heat absorption side heat exchange means has a protrusion on a joint surface that engages with the hole and compensates for the insufficient thickness of the thermoelectric module with respect to the vacuum heat insulating material.
【請求項9】 厚み寸法を除く真空断熱材の外形寸法
を、放熱側熱交換手段と吸熱側熱交換手段のどちらか接
合面が小さい方の接合面の寸法と略同一にした請求項1
から8のいずれか一項記載の熱電装置。
9. The vacuum heat insulating material, except for the thickness, has an outer dimension which is substantially the same as a dimension of a joint surface of either the heat radiation side heat exchange means or the heat absorption side heat exchange means, whichever has the smaller joint surface.
9. The thermoelectric device according to claim 8.
【請求項10】 請求項1から9のいずれか一項記載の
熱電装置の大きさに合わせて形成された貫通孔を有する
断熱箱体と、前記貫通孔に挿入嵌合され取付けられた前
記熱電装置とを備えた貯蔵庫。
10. An adiabatic box body having a through hole formed in accordance with the size of the thermoelectric device according to claim 1, and the thermoelectric device inserted and fitted into the through hole. Storage with equipment.
【請求項11】 請求項7または8記載の熱電装置の真
空断熱材が、放熱側熱交換手段と吸熱側熱交換手段の両
方の接合面より広く、断熱箱体の少なくとも一部の断熱
壁を構成する貯蔵庫。
11. The vacuum heat insulating material for a thermoelectric device according to claim 7, wherein the vacuum heat insulating material is wider than the joint surface of both the heat radiating side heat exchanging means and the heat absorbing side heat exchanging means, and at least a part of the heat insulating wall of the heat insulating box is provided. The constituent storage.
JP2002123995A 2002-04-25 2002-04-25 Thermoelectric device and storage house Withdrawn JP2003318452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002123995A JP2003318452A (en) 2002-04-25 2002-04-25 Thermoelectric device and storage house

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002123995A JP2003318452A (en) 2002-04-25 2002-04-25 Thermoelectric device and storage house

Publications (1)

Publication Number Publication Date
JP2003318452A true JP2003318452A (en) 2003-11-07

Family

ID=29539126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002123995A Withdrawn JP2003318452A (en) 2002-04-25 2002-04-25 Thermoelectric device and storage house

Country Status (1)

Country Link
JP (1) JP2003318452A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180795A (en) * 2003-12-19 2005-07-07 Matsushita Electric Ind Co Ltd Heat insulating panel with electronic cooling unit
KR200447536Y1 (en) 2009-09-10 2010-02-03 주식회사 아맥스 A cooling packaging using thermoelectric element
WO2014007444A1 (en) * 2012-07-03 2014-01-09 한국식품연구원 Transportation and delivery device for agricultural food provided with thermoelectric elements
CN105300001A (en) * 2015-10-30 2016-02-03 康姆德润达(无锡)测量技术有限公司 Filter film low temperature preservation device
JPWO2016031667A1 (en) * 2014-08-29 2017-04-27 三菱電機株式会社 Honeycomb sandwich structure and manufacturing method thereof
CN106662375A (en) * 2014-06-16 2017-05-10 利勃海尔-家用电器利恩茨有限责任公司 Vacuum damping element with thermoelectric element
EP3187815A1 (en) * 2009-02-11 2017-07-05 Bae Systems Hägglunds Aktiebolag Device for thermal adaption
CN110036494A (en) * 2016-12-07 2019-07-19 松下知识产权经营株式会社 Thermoelectric conversion arrangement and printing machine
JP2019140182A (en) * 2018-02-07 2019-08-22 国立大学法人東京工業大学 Thermoelectric conversion device
WO2019220483A1 (en) * 2018-05-14 2019-11-21 三菱電機株式会社 Ignition coil device for internal combustion engine
FR3105821A1 (en) * 2019-12-31 2021-07-02 Altran Prototypes Automobiles Thermal heating and cooling device.

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180795A (en) * 2003-12-19 2005-07-07 Matsushita Electric Ind Co Ltd Heat insulating panel with electronic cooling unit
EP3187815A1 (en) * 2009-02-11 2017-07-05 Bae Systems Hägglunds Aktiebolag Device for thermal adaption
US9891024B2 (en) 2009-02-11 2018-02-13 BAE Systems Hägglunds Aktiebolag Device for thermal adaption
KR200447536Y1 (en) 2009-09-10 2010-02-03 주식회사 아맥스 A cooling packaging using thermoelectric element
WO2014007444A1 (en) * 2012-07-03 2014-01-09 한국식품연구원 Transportation and delivery device for agricultural food provided with thermoelectric elements
CN104428214A (en) * 2012-07-03 2015-03-18 韩国食品研究院 Transportation and delivery device for agricultural food provided with thermoelectric elements
CN104428214B (en) * 2012-07-03 2016-10-26 韩国食品研究院 Apply the agricultural product transport dispenser of thermoelement
CN106662375B (en) * 2014-06-16 2019-09-13 利勃海尔-家用电器利恩茨有限责任公司 Refrigeration and/or freezing equipment
CN106662375A (en) * 2014-06-16 2017-05-10 利勃海尔-家用电器利恩茨有限责任公司 Vacuum damping element with thermoelectric element
JPWO2016031667A1 (en) * 2014-08-29 2017-04-27 三菱電機株式会社 Honeycomb sandwich structure and manufacturing method thereof
CN105300001A (en) * 2015-10-30 2016-02-03 康姆德润达(无锡)测量技术有限公司 Filter film low temperature preservation device
CN110036494A (en) * 2016-12-07 2019-07-19 松下知识产权经营株式会社 Thermoelectric conversion arrangement and printing machine
JP2019140182A (en) * 2018-02-07 2019-08-22 国立大学法人東京工業大学 Thermoelectric conversion device
JP7116465B2 (en) 2018-02-07 2022-08-10 国立研究開発法人科学技術振興機構 thermoelectric converter
WO2019220483A1 (en) * 2018-05-14 2019-11-21 三菱電機株式会社 Ignition coil device for internal combustion engine
FR3105821A1 (en) * 2019-12-31 2021-07-02 Altran Prototypes Automobiles Thermal heating and cooling device.

Similar Documents

Publication Publication Date Title
JP2632597B2 (en) Thermoelectric assembly, super-insulated panel having the same attached, and method of coupling thermo-electric assembly to super-insulated panel
JP4695663B2 (en) refrigerator
US5522216A (en) Thermoelectric refrigerator
US5605047A (en) Enclosure for thermoelectric refrigerator and method
WO1995021361A1 (en) Cold/hot/storage and method of production thereof
JP2013050242A (en) Refrigerator, method of manufacturing the same, and freezer
JP2003318452A (en) Thermoelectric device and storage house
JP2009024922A (en) Refrigerator
JP6272113B2 (en) refrigerator
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP2005180795A (en) Heat insulating panel with electronic cooling unit
US20140157815A1 (en) Monolithically Integrated Bi-Directional Heat Pump
JP2002100816A (en) Thermoelectric cooling system
JP2004233030A (en) Cooling device
JPH10141583A (en) Heat insulating wall body
JP3482404B2 (en) Vacuum heat insulating material and manufacturing method, and equipment using the vacuum heat insulating material
JP2007040592A (en) Adsorber
WO2020100847A1 (en) Heat exchanger
JP3210546U (en) Plate-like cooling body and cooling unit
JP2005083666A (en) Storage
JPH10148455A (en) Refrigerator
JP3172502B2 (en) Thermoelectric converters such as coolers, heaters, temperature regulators, and generators using Peltier modules, coolers using Peltier modules, heaters using Peltier modules, and generators using Peltier modules
JP4038373B2 (en) Refrigerator and thermoelectric module mounting device
CN104421577A (en) Vacuum insulating material and cooling thermal device using the same
JP3364589B2 (en) Manifold, refrigerator and cooling device with built-in thermoelectric module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050425

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070730