JP2003315424A - Apparatus and method for evaluation of electrical characteristic - Google Patents
Apparatus and method for evaluation of electrical characteristicInfo
- Publication number
- JP2003315424A JP2003315424A JP2002121991A JP2002121991A JP2003315424A JP 2003315424 A JP2003315424 A JP 2003315424A JP 2002121991 A JP2002121991 A JP 2002121991A JP 2002121991 A JP2002121991 A JP 2002121991A JP 2003315424 A JP2003315424 A JP 2003315424A
- Authority
- JP
- Japan
- Prior art keywords
- light
- measurement site
- electro
- electrical characteristic
- electromagnetic wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Tests Of Electronic Circuits (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】半導体ウェハ等の被検体の表
層の構造や材質等によって定まる電気的特性を高い空間
分解能でかつ非接触で評価する電気的特性評価装置及び
その方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric characteristic evaluation apparatus and method for evaluating the electric characteristics determined by the structure and material of the surface layer of an object such as a semiconductor wafer with a high spatial resolution and in a non-contact manner.
【0002】[0002]
【従来の技術】従来,導電性膜がプリントされた半導体
ウェハ等の被検体の表層の電気的特性を非接触で評価す
るものとして,特開平2001−343205号公報
(公報1)に,高周波電流をコイルに通電することによ
り被検体に渦電流を励起し,その渦電流損失を前記コイ
ルで測定することによって被検体表層の電気的特性を評
価する方法及び装置が示されている。これは,前記渦電
流損失と,被検体表層の構造や材質,例えば,被検体表
層にプリントされた導電性膜の膜の厚みや欠陥,ウェハ
の材質や導電性膜の材料純度によって定まる電気的特性
(抵抗率等)とが一定の相関を有するため,予め基準と
なる被検体について測定した前記渦電流損失の基準値と
測定値との比較によって,被検体表層の電気的特性を評
価するものである。これにより,被検体表層の導電性膜
の膜厚評価等,電気的特性の評価を非接触で行うことが
可能である。一方,特開2001−305039号公報
(公報2)には,マイクロ波を用いた走査型マイクロ波
顕微鏡が示されている。これは,電磁波(マイクロ波)
により励振されている同軸共振器の一端の開口部を被検
体の表層に近接させると,前記同軸共振器の開口部から
局所的に漏れた電磁波が,被検体の電気的特性により変
化し,その開口部のインピーダンス(電気的カップリン
グ状態)が変化する結果,前記同軸共振器の共振周波数
やQ値が変化するため,この共振周波数やQ値の変化を
コントラストとして画像化するものである。この公報2
の技術によれば,被検体表層の凸凹に沿ってより高い空
間分解能でその電気インピーダンスを測定することが可
能である。2. Description of the Related Art Conventionally, Japanese Patent Laid-Open No. 2001-343205 (publication 1) discloses a high-frequency current as a noncontact evaluation of the electrical characteristics of the surface layer of an object such as a semiconductor wafer having a conductive film printed thereon. There is disclosed a method and apparatus for exciting an eddy current in a subject by energizing the coil and measuring the eddy current loss in the coil to evaluate the electrical characteristics of the surface layer of the subject. This is an electrical parameter determined by the eddy current loss and the structure and material of the surface layer of the test object, for example, the thickness and defects of the conductive film printed on the surface layer of the test object, the material of the wafer and the material purity of the conductive film. Since the characteristics (resistivity, etc.) have a certain correlation, the electrical characteristics of the surface layer of the subject are evaluated by comparing the reference value of the eddy current loss previously measured for the reference subject and the measured value. Is. As a result, it is possible to evaluate the electrical characteristics such as the film thickness of the conductive film on the surface layer of the subject without contact. On the other hand, Japanese Patent Laid-Open No. 2001-305039 (publication 2) discloses a scanning microwave microscope using microwaves. This is an electromagnetic wave (microwave)
When the opening at the one end of the coaxial resonator excited by is brought close to the surface layer of the object, the electromagnetic wave locally leaked from the opening of the coaxial resonator changes due to the electrical characteristics of the object. As the impedance (electrical coupling state) of the opening changes, the resonance frequency and the Q value of the coaxial resonator change. Therefore, the change of the resonance frequency and the Q value is imaged as a contrast. This publication 2
According to this technique, it is possible to measure the electric impedance along the unevenness of the surface layer of the subject with higher spatial resolution.
【0003】[0003]
【発明が解決しようとする課題】しかしながら,前記公
報1の技術では,前記コイルを細線導体で形成するた
め,前記公報1にも示されるように前記コイルの大きさ
は数mm程度になり,それよりも高い空間分解能で被検
体表層の電気的特性を評価することができないという問
題点があった。また,前記公報2の技術では,前記同軸
共振器の開口部から局所的に漏れた電磁波の変化は極め
て微小であるため,これを感度良く検出するためには,
極めて高いQ値(高い加工精度と低損失の部材)を持つ
共振系が必要となる。このため,前記公報2の技術で
は,共振系の製造コストが高くなる上,定期的に厳格な
校正を必要とする等,その取り扱いに多大な手間と注意
を要するという問題点があった。従って,本発明は上記
事情に鑑みてなされたものであり,その目的とするとこ
ろは,被検体表層の電気的特性を低コストかつ高い空間
分解能で評価でき,かつ取り扱いが容易な電気的特性評
価装置及びその方法を提供することにある。However, according to the technique of the publication 1, since the coil is formed of a thin wire conductor, the size of the coil is about several mm as shown in the publication 1, There is a problem that the electrical characteristics of the surface layer of the subject cannot be evaluated with higher spatial resolution. Further, in the technique of the above-mentioned publication 2, since the change of the electromagnetic wave locally leaked from the opening of the coaxial resonator is extremely small, in order to detect this with high sensitivity,
A resonance system having an extremely high Q value (a member with high processing accuracy and low loss) is required. For this reason, the technique of the above-mentioned publication 2 has a problem that the manufacturing cost of the resonance system is high and that rigorous calibration is required on a regular basis. Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is to evaluate the electrical characteristics of the surface layer of a subject at low cost with high spatial resolution and to easily handle the electrical characteristics. An apparatus and a method thereof are provided.
【0004】[0004]
【課題を解決するための手段】上記目的を達成するため
に本発明は,被検体表層の測定部位の電気的特性を測定
する電気的特性評価装置であって,前記測定部位に近接
して設けられる電気光学素子と,所定の電磁波を出力す
る電磁波出力手段と,前記測定部位近傍に前記電磁波を
導く導波手段と,前記電気光学素子に光を照射する光照
射手段と,前記電気光学素子に照射された光の反射光及
び/又は透過光を検出する光検出手段と,前記光検出手
段の検出結果に基づいて前記測定部位の電気的特性を評
価する特性評価手段と,を具備してなることを特徴とす
る電気的特性評価装置である。ここで,前記光検出手段
としては,例えば,前記反射光及び/又は透過光の偏光
度合いを検出する偏光度合い検出手段や,干渉計等によ
り前記電気光学素子への照射光と前記反射光及び/又は
透過光との位相差を検出する手段等が考えられる。これ
により,測定部位の電気的特性(表層の導電膜の膜厚や
材料等)に応じて,電磁波によって測定部位近傍に生じ
る電界の電界強度が変化するとともに,いわゆる電気光
学効果により測定部位に近接した前記電気光学素子での
反射光や透過光の特性,例えば,偏光度合いや位相等の
特性が前記電界強度の変化に応じて変わるので,前記反
射光や透過光を検出することによって測定部位の電気的
特性を評価することが可能となる。さらに,測定部位の
電気的特性を検出する検出端が電気光学素子(電気光学
結晶)であるので,これを微細にすることにより,非常
に高い空間分解能かつ高感度で被検体表層の電気的特性
を評価できる。In order to achieve the above object, the present invention is an electrical characteristic evaluation apparatus for measuring the electrical characteristics of a measurement site on the surface layer of an object, which is provided near the measurement site. An electro-optical element, an electromagnetic wave output means for outputting a predetermined electromagnetic wave, a waveguide means for guiding the electromagnetic wave in the vicinity of the measurement site, a light irradiation means for irradiating the electro-optical element with light, and the electro-optical element. It is provided with light detection means for detecting reflected light and / or transmitted light of the emitted light, and characteristic evaluation means for evaluating the electrical characteristics of the measurement site based on the detection result of the light detection means. It is an electrical characteristic evaluation device characterized by the above. Here, as the light detecting means, for example, a polarization degree detecting means for detecting the polarization degree of the reflected light and / or the transmitted light, irradiation light to the electro-optical element by an interferometer, etc., and the reflected light and / or Alternatively, a means for detecting the phase difference from the transmitted light may be considered. As a result, the electric field strength of the electric field generated in the vicinity of the measurement site by electromagnetic waves changes according to the electrical characteristics of the measurement site (film thickness and material of the surface conductive film), and the so-called electro-optical effect causes the proximity of the measurement site. Since the characteristics of the reflected light or the transmitted light in the electro-optical element, for example, the characteristics such as the degree of polarization and the phase change according to the change of the electric field strength, the measurement of the measurement site by detecting the reflected light or the transmitted light. It is possible to evaluate the electrical characteristics. Furthermore, since the detection end that detects the electrical characteristics of the measurement site is an electro-optical element (electro-optic crystal), by making it fine, the electrical characteristics of the surface layer of the subject with extremely high spatial resolution and high sensitivity can be obtained. Can be evaluated.
【0005】また,前記導波手段が,前記測定部位に近
接させたその先端部から前記電磁波を前記測定部位近傍
に照射するもの(例えば,導波管やマイクロストリップ
線路等)であり,前記電気光学素子が前記導波手段の先
端部に設けらたものが考えられる。Further, the waveguide means is a means for irradiating the electromagnetic wave to the vicinity of the measurement site from the tip end thereof which is close to the measurement site (for example, a waveguide or a microstrip line), and It is conceivable that an optical element is provided at the tip of the waveguide means.
【0006】また,前記光照射手段が,前記電磁波の周
期に同期したパルス光を照射するものが考えられる。こ
れにより,前記光検出手段により検出される光は,前記
電磁波が一定の出力となっているタイミングで前記電気
光学素子に反射及び/又は透過した光となるので,前記
電磁波の周期が短く(即ち,周波数が高い),前記光検
出手段の検出速度(応答速度)がこれに十分追従できな
い場合であっても,前記測定部位近傍に生じる前記電界
強度が前記電磁波と同周期で変化することの影響を無く
して正しい前記電界強度を測定できる。Further, it is conceivable that the light irradiating means irradiates pulsed light synchronized with the cycle of the electromagnetic wave. As a result, the light detected by the light detecting means becomes light reflected and / or transmitted through the electro-optical element at the timing when the electromagnetic wave has a constant output, so that the cycle of the electromagnetic wave is short (that is, , The frequency is high), even if the detection speed (response speed) of the photodetector cannot sufficiently follow this, the influence of the electric field strength generated in the vicinity of the measurement site changing at the same period as the electromagnetic wave. Therefore, the correct electric field strength can be measured by eliminating.
【0007】また,前記電気光学素子と前記測定部位と
の距離を変化させる位置変更手段を具備し,前記特性評
価手段が,前記距離の変化に応じた前記光検出手段の検
出結果の変化に基づいて前記測定部位の電気的特性を評
価するものも考えられる。例えば,前記特性評価手段
が,前記位置変更手段により前記電気光学素子と前記測
定部位との距離を周期的に変化させたときの前記光検出
手段の検出結果における,前記距離の変化周期と同周期
の成分に基づいて前記測定部位の電気的特性を評価する
もの等である。これにより,前記電気光学素子と前記測
定部位との絶対距離を高精度に位置決めしなくても,例
えば,被検体についての前記光検出手段の検出結果(前
記電界強度を表す指標)の時系列データと予め測定した
基準となる被検体についての時系列データとに基づいて
波形フィッティング等を行うことにより,被測定物の電
気的特性を評価することが可能となる。同様に,前記電
磁波の周波数を変化させる電磁波周波数変更手段を具備
し,前記特性評価手段が,前記電磁波の周波数変化に応
じた前記光検出手段の検出結果の変化に基づいて前記測
定部位の電気的特性を評価するものであってもよい。ま
た,前記偏光度合い検出手段としては,前記電気光学素
子に照射された光の反射光及び/又は透過光を偏光板に
通過させた後の光強度を検出するものが考えられる。Further, it is provided with a position changing means for changing a distance between the electro-optical element and the measurement site, and the characteristic evaluation means is based on a change in a detection result of the light detecting means according to a change in the distance. It is also conceivable that the electrical characteristics of the measurement site are evaluated. For example, the characteristic evaluation means has the same cycle as the distance change cycle in the detection result of the photodetector when the distance between the electro-optical element and the measurement site is periodically changed by the position changing means. For example, the electrical characteristics of the measurement site are evaluated based on the component of. Thereby, even if the absolute distance between the electro-optical element and the measurement site is not positioned with high accuracy, for example, the time-series data of the detection result (index indicating the electric field intensity) of the photodetection means for the subject. By performing waveform fitting and the like on the basis of the time-series data of the reference object that has been measured in advance, it becomes possible to evaluate the electrical characteristics of the object to be measured. Similarly, an electromagnetic wave frequency changing means for changing the frequency of the electromagnetic wave is provided, and the characteristic evaluation means electrically changes the electrical characteristics of the measurement site based on the change in the detection result of the photodetection means according to the frequency change of the electromagnetic wave. It may be one for evaluating characteristics. Further, as the polarization degree detecting means, a means for detecting the light intensity after the reflected light and / or the transmitted light of the light applied to the electro-optical element is passed through the polarizing plate can be considered.
【0008】また,前記電気的特性評価装置による評価
方法を,電気的特性評価方法として捉えたものであって
もよい。即ち,被検体表層の所定の測定部位の電気的特
性を測定する電気的特性評価方法であって,前記測定部
位近傍に所定の導波手段を用いて電磁波を導くとともに
前記測定部位に近接して設けられた電気光学素子に光を
照射し,照射した光の反射光及び/又は透過光を検出
し,その検出結果に基づいて前記測定部位の電気的特性
を評価してなることを特徴とする電気的特性評価方法で
ある。さらに,前記電気光学素子に照射する光が,前記
電磁波の周期に同期したパルス光であるものが考えられ
る。また,前記電気光学素子と前記測定部位との距離を
変化させ,該距離の変化に応じた前記反射光及び/又は
透過光の検出結果の変化に基づいて前記測定部位の電気
的特性を評価するものや,前記電磁波の周波数を変化さ
せ,前記電磁波の周波数変化に応じた前記反射光及び/
又は透過光の検出結果の変化に基づいて前記測定部位の
電気的特性を評価するものであってもよい。The evaluation method by the electric characteristic evaluation device may be regarded as an electric characteristic evaluation method. That is, it is an electrical characteristic evaluation method for measuring the electrical characteristics of a predetermined measurement site on the surface layer of an object, in which electromagnetic waves are guided near the measurement site by using a predetermined waveguide means and close to the measurement site. It is characterized in that the provided electro-optical element is irradiated with light, reflected light and / or transmitted light of the irradiated light is detected, and the electrical characteristics of the measurement site are evaluated based on the detection result. It is an electrical characteristic evaluation method. Further, it is conceivable that the light applied to the electro-optical element is pulsed light synchronized with the cycle of the electromagnetic wave. Further, the distance between the electro-optical element and the measurement site is changed, and the electrical characteristic of the measurement site is evaluated based on the change in the detection result of the reflected light and / or the transmitted light according to the change in the distance. Or the reflected light and / or the frequency of the electromagnetic wave, and the reflected light and / or
Alternatively, the electrical characteristics of the measurement site may be evaluated based on changes in the detection result of transmitted light.
【0009】[0009]
【発明の実施の形態】以下添付図面を参照しながら,本
発明の実施の形態及び実施例について説明し,本発明の
理解に供する。尚,以下の実施の形態及び実施例は,本
発明を具体化した一例であって,本発明の技術的範囲を
限定する性格のものではない。ここに,図1は本発明の
実施の形態に係る電気的特性評価装置Xの構成を表す
図,図2は本発明の実施例に係る電気的特性評価装置に
おいて用いられる低周波数のマイクロ波を被測定試料表
面に導くマイクロストリップ線路の平面図及び側面図で
ある。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments and examples of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. It should be noted that the following embodiments and examples are merely examples embodying the present invention and are not of the nature to limit the technical scope of the present invention. Here, FIG. 1 is a diagram showing a configuration of an electrical characteristic evaluation apparatus X according to an embodiment of the present invention, and FIG. 2 shows a low frequency microwave used in the electrical characteristic evaluation apparatus according to an example of the present invention. 3A and 3B are a plan view and a side view of a microstrip line guided to the surface of a sample to be measured.
【0010】以下,図1を用いて本発明の実施の形態に
係る電気的特性評価装置Xについて説明する。ここで
は,被検体として,その表層に導電性膜がプリントされ
た半導体ウェハ6(以下,ウェハという)表層の電気的
特性を評価する場合について説明する。本電気的特性評
価装置Xは,図1(a)に示すように,所定のマイクロ
波(即ち,電磁波)を出力するマイクロ波発振器1と,
出力されたマイクロ波を2分岐する分岐回路1aと,分
岐された1方のマイクロ波を整合する整合器2と,整合
されたマイクロ波をウェハ6表層の測定部位に導く導波
管3と,所定のパルス光を出力するパルスレーザ7と,
分岐されたもう1方の前記マイクロ波を検出するマイク
ロ波検出器16と,該マイクロ波検出器16による検出
信号を分周することにより前記マイクロ波の発振周期に
同期した同期信号を出力する分周回路11と,前記導波
管3とウェハ6との距離(以下,近接距離という)を検
出する変位センサ12と,前記導波管3を上下に駆動す
ることにより該導波管3の先端部とウェハ6の測定部位
との距離を調節する上下駆動装置13と,各種信号処理
及び前記上下駆動装置13の制御を行う信号処理/制御
回路17とを具備している。The electrical characteristic evaluation apparatus X according to the embodiment of the present invention will be described below with reference to FIG. Here, a case will be described in which the electrical characteristics of a surface layer of a semiconductor wafer 6 (hereinafter, referred to as a wafer) having a conductive film printed on the surface layer is evaluated as an object. As shown in FIG. 1A, the electric characteristic evaluation apparatus X includes a microwave oscillator 1 that outputs a predetermined microwave (that is, an electromagnetic wave),
A branching circuit 1a for branching the output microwaves into two, a matching unit 2 for matching the branched microwaves, a waveguide 3 for guiding the matched microwaves to a measurement site on the surface layer of the wafer 6, A pulse laser 7 that outputs a predetermined pulsed light,
A microwave detector 16 for detecting the other branched microwave, and a component for outputting a synchronization signal synchronized with the oscillation cycle of the microwave by dividing the detection signal by the microwave detector 16. Circular circuit 11, displacement sensor 12 for detecting the distance between waveguide 3 and wafer 6 (hereinafter referred to as proximity distance), and tip of waveguide 3 by vertically driving waveguide 3. It is provided with a vertical drive unit 13 for adjusting the distance between the unit and the measurement site of the wafer 6, and a signal processing / control circuit 17 for performing various kinds of signal processing and controlling the vertical drive unit 13.
【0011】前記導波管3の内径は10mm×23mm
程度であり,該導波管3のウェハ6に近接する先端部に
は,図1(b)に示すように幅0.1mm程度,長さ
0.5mm程度のスリット4(開口部)が設けられてい
る。該スリット4から前記マイクロ波が漏れてウェハ6
表面の測定部位に局所的に照射される(導かれる)。ま
た,前記スリット4には,0.1mm角程度のタンタル
酸リチウム(LiTaO 3)やKTP(KTiOPO4)
等の電気光学効果を有する電気光学結晶5(前記電気光
学素子に相当)が設けられている。このように,誘電率
の高い(例えば,比誘電率>40)前記電気光学結晶5
が前記測定部位に近接するので,該測定部位に照射され
た前記マイクロ波により生じる電界が前記電気光学結晶
5近傍に集中する。この電気光学結晶5近傍(即ち,前
記測定部位の近傍)に生じる電界の電界強度が,前記測
定部位の電気的特性及び前記近接距離によって変化する
ことは周知である。従って,前記電界強度を測定すれ
ば,ウェハ6表層の電気的特性を評価することが可能で
ある。The inside diameter of the waveguide 3 is 10 mm × 23 mm
And the tip of the waveguide 3 close to the wafer 6
Is about 0.1 mm in width and length as shown in Fig. 1 (b).
A slit 4 (opening) of about 0.5 mm is provided
It The microwave leaks from the slit 4 and the wafer 6
The measurement site on the surface is locally irradiated (guided). Well
In addition, the slit 4 has tantalum of about 0.1 mm square.
Lithium acid (LiTaO 3) And KTP (KTiOPOFour)
Electro-optic crystal 5 having the electro-optic effect such as
Equivalent to the science element) is provided. Thus, the dielectric constant
Of high electro-optic crystal (eg, relative permittivity> 40) 5
Is close to the measurement site,
The electric field generated by the microwave is the electro-optic crystal
Focus on 5 neighborhoods. The vicinity of this electro-optic crystal 5 (that is, the front
The electric field strength of the electric field generated in the vicinity of the
Varies depending on the electrical characteristics of the fixed part and the proximity distance
This is well known. Therefore, when measuring the electric field strength
Thus, it is possible to evaluate the electrical characteristics of the surface layer of the wafer 6.
is there.
【0012】本電気的特性評価装置Xでは,前記電界強
度をコイル等により電気的に測定するのではなく,前記
電気光学結晶5の電気光学効果を利用して測定する。電
気光学結晶を用いて電界強度を測定する装置及び方法に
ついては,例えば,特開平5−240884号公報や,
特開平5−267407号公報等に示されている。本電
気的特性評価装置Xにおいては,前記パルスレーザ7に
よるレーザ光が,波長板14a,ビームスプリッタ1
5,ミラー18等により,前記導波管3に設けられた導
光穴8を通って前記電気光学結晶5に照射されるよう導
かれ,さらに,前記レーザ光が前記電気光学結晶5に反
射した光と,前記電気光学結晶5を透過してウェハ6に
反射した光とが,再度,前記導光穴8を通って前記ミラ
ー18,前記ビームスプリッタ15,波長板14b,偏
光板10を経由して光検出器9により受光される。そし
て,前記光検出器10により受光された光が光電変換さ
れ,その光の強度信号が前記信号処理/制御回路17に
入力される。ここで,前記電気光学結晶5に反射及び透
過した光は,電気光学効果により,元の前記レーザ光と
は異なる偏光面を有する。その偏光度合い(偏光面の角
度)は,前記電気光学結晶5近傍の電界強度に応じて変
わる。従って,前記偏光板10を通過後の光の強度は,
前記偏光度合いに対応したものとなる。即ち,前記偏光
板10を通過後の光の強度が,前記電気光学結晶5近傍
(即ち,前記測定部位近傍)の電界強度を表すことにな
る。また,前記電気光学結晶5を,前述したように0.
1mm角程度と微細なものとしているのは,導電性薄膜
の厚みのバラツキ等によって生じる前記電界強度の変化
は非常に微小であるので,この微小な変化を高感度で検
出するためである。このように,前記測定部位の電界強
度を検出するための検出端(前記電気光学結晶5)を微
細にできるため,非常に高い空間分解能で被検体表層の
電気的特性を評価できる。もちろん前記電気光学結晶5
の大きさや形状は,評価対象となる電気的特性の変化レ
ンジや被検体表層の形状等に応じて決定すればよい。In this electrical characteristic evaluation apparatus X, the electric field strength is not measured electrically by a coil or the like, but is measured by utilizing the electro-optical effect of the electro-optical crystal 5. For the apparatus and method for measuring the electric field strength using an electro-optic crystal, see, for example, JP-A-5-240884 and
It is disclosed in Japanese Patent Laid-Open No. 5-267407. In the electrical characteristic evaluation apparatus X, the laser light from the pulse laser 7 is transmitted through the wave plate 14a and the beam splitter 1.
5, guided by the mirror 18 or the like so as to irradiate the electro-optical crystal 5 through the light guide hole 8 provided in the waveguide 3, and further, the laser light is reflected by the electro-optical crystal 5. The light and the light transmitted through the electro-optic crystal 5 and reflected by the wafer 6 again pass through the light guide hole 8 and the mirror 18, the beam splitter 15, the wave plate 14b, and the polarizing plate 10. The light is received by the photodetector 9. The light received by the photodetector 10 is photoelectrically converted, and the intensity signal of the light is input to the signal processing / control circuit 17. Here, the light reflected and transmitted by the electro-optic crystal 5 has a polarization plane different from that of the original laser light due to the electro-optic effect. The degree of polarization (angle of polarization plane) changes depending on the electric field strength near the electro-optic crystal 5. Therefore, the intensity of light after passing through the polarizing plate 10 is
It corresponds to the degree of polarization. That is, the intensity of light after passing through the polarizing plate 10 represents the electric field intensity in the vicinity of the electro-optical crystal 5 (that is, in the vicinity of the measurement site). In addition, the electro-optic crystal 5 is made to have a thickness of 0.
The reason why the size is as small as about 1 mm square is that the change in the electric field strength caused by variations in the thickness of the conductive thin film is very small, and therefore this minute change is detected with high sensitivity. In this way, the detection end (the electro-optic crystal 5) for detecting the electric field strength of the measurement site can be made fine, so that the electrical characteristics of the surface layer of the subject can be evaluated with a very high spatial resolution. Of course, the electro-optic crystal 5
The size and shape of the object may be determined according to the change range of the electrical characteristics to be evaluated and the shape of the surface layer of the subject.
【0013】しかしながら,前記電界強度は,前記マイ
クロ波の発振周期と同周期で変動するので,例えば,前
記マイクロ波の周波数が10GHzである場合,前記電
界強度は,0.1nsの周期で変化することになる。一
方,通常の前記光検出器9(光電変換器)の応答性は1
ns程度であるため,前記レーザ光を連続照射しながら
では前記電界強度を正しく測定できない(値が0となる
等)。そこで,前記分周回路11によって生成された前
記同期信号(前記マイクロ波の周期に同期した信号)を
前記パルスレーザ7に入力することにより,前記マイク
ロ波の周期に同期したパルス光(例えば,パルス幅1p
s以下)を前記電気光学結晶5に照射する。これによ
り,前記光検出器9により検出される光は,前記マイク
ロ波が一定の出力となっているタイミングで前記電気光
学結晶5に反射及び透過した光となるので,前記電界強
度が前記マイクロ波と同周期で変化することの影響を無
くして正しい前記電界強度を測定できる。However, since the electric field strength fluctuates in the same cycle as the microwave oscillation cycle, for example, when the frequency of the microwave is 10 GHz, the electric field strength changes in a cycle of 0.1 ns. It will be. On the other hand, the response of the ordinary photodetector 9 (photoelectric converter) is 1
Since it is about ns, the electric field strength cannot be correctly measured while continuously irradiating the laser light (value becomes 0, etc.). Therefore, by inputting the synchronizing signal (signal synchronized with the cycle of the microwave) generated by the frequency dividing circuit 11 to the pulse laser 7, pulsed light (for example, pulse) synchronized with the cycle of the microwave is input. Width 1p
s or less) is applied to the electro-optic crystal 5. As a result, the light detected by the photodetector 9 becomes the light reflected and transmitted by the electro-optic crystal 5 at the timing when the microwave has a constant output, so that the electric field strength is the microwave. The correct electric field strength can be measured without the influence of the change in the same period.
【0014】以下に,前記電界強度(前記光検出器9で
検出された光の強度により代用測定される前記電界強
度)に基づいて前記測定部位の電気的特性を評価する方
法の例を示す。その一つの例は,前記導波管3の先端部
と前記測定部位との距離(近接距離)を固定して測定し
た前記電界強度に基づいて評価する方法である。この方
法では,まず,予め,前記上下駆動装置13により,前
記近接距離を所定の距離(例えば,100μm以下)に
固定させた状態で,基準となる電気的特性を有するウェ
ハ6(例えば,ウェハ6表層の導電性膜の厚み(既知)
が異なる複数のウェハ等,以下,基準ウェハ6という)
について前記電界強度を測定しておき,その測定値に基
づいて前記電界強度と評価対象となる電気的特性(又は
その評価値)との関係を表す評価テーブルや評価式等を
求めて前記信号処理/制御回路17に記憶させておく。
その上で,前記近接距離を前記所定の距離と同じ距離に
固定した状態で,被検体となるウェハ6について前記電
界強度を測定し,その測定値を前記評価テーブル等に適
用することにより被検体となるウェハ6の電気的特性を
定量的に評価する。The following is an example of a method for evaluating the electrical characteristics of the measurement site based on the electric field intensity (the electric field intensity measured by the intensity of the light detected by the photodetector 9 instead of the electric field intensity). One example thereof is a method of performing evaluation based on the electric field strength measured by fixing the distance (close distance) between the tip portion of the waveguide 3 and the measurement site. In this method, first, in the state where the proximity distance is fixed to a predetermined distance (for example, 100 μm or less) by the vertical drive device 13 in advance, a wafer 6 (for example, the wafer 6) having a reference electric characteristic is provided. Thickness of surface conductive film (known)
A plurality of wafers with different numbers, etc., hereinafter referred to as reference wafer 6)
The electric field strength is measured in advance, and based on the measured value, an evaluation table or an evaluation formula representing the relationship between the electric field strength and the electrical characteristic to be evaluated (or its evaluation value) is obtained to perform the signal processing. / Stored in the control circuit 17.
Then, with the proximity distance fixed to the same distance as the predetermined distance, the electric field strength of the wafer 6 to be inspected is measured, and the measured value is applied to the evaluation table or the like to detect the object. The electrical characteristics of the wafer 6 to be the following are quantitatively evaluated.
【0015】別の例は,前記近接距離を周期的に変化さ
せて測定した前記電界強度に基づいて評価する方法であ
る。この方法では,予め,前記上下駆動装置13によ
り,前記近接距離を所定の周期で周期的に変化させなが
ら,前記基準ウェハ6について前記電界強度の時系列デ
ータ(波形データ)を測定しておき,これを前記信号処
理/制御回路17に記憶させておく。その上で,前記近
接距離を前記と同周期で周期的に変化させながら,被検
体となるウェハ6について前記電界強度の時系列データ
を測定し,該時系列データと前記基準ウェハについての
前記時系列データとに基づいて波形フィッティングを行
うことによって被検体となるウェハ6の電気的特性を評
価する。例えば,前記電界強度Eが,E=c・EXP
(−βd)(c,βは被検体の電気的特性等に依存する
定数,dは前記近接距離)で表される場合,前記近接距
離dの絶対値が不明であっても,被検体となるウェハ6
及び前記基準ウェハそれぞれの時系列データについて波
形フィッティングを行い,被検体の電気的特性を表す
c,βと前記基準ウェハについてのc,βとを比較する
ことにより,被検体の電気的特性を評価できる。同様の
ことは,前記マイクロ波発振器1によりマイクロ波の出
力周波数を変化させ,そのときのマイクロ波の周波数変
化に応じた前記電界強度の変化(時系列データ)に基づ
いて前記測定部位の電気的特性を評価する場合にも適用
できる。Another example is a method of evaluating based on the electric field strength measured by periodically changing the proximity distance. In this method, the vertical drive device 13 measures the time series data (waveform data) of the electric field intensity of the reference wafer 6 while changing the proximity distance periodically at a predetermined cycle. This is stored in the signal processing / control circuit 17. Then, while the proximity distance is periodically changed at the same cycle as the above, the time-series data of the electric field intensity is measured for the wafer 6 to be inspected, and the time-series data and the time for the reference wafer are measured. The electrical characteristics of the wafer 6 to be inspected are evaluated by performing waveform fitting based on the series data. For example, the electric field strength E is E = c · EXP
(−βd) (c and β are constants that depend on the electrical characteristics of the subject, d is the proximity distance), and the absolute value of the proximity distance d is unknown, Wafer 6
Further, waveform fitting is performed on the time-series data of each of the reference wafers, and the electrical characteristics of the subject are evaluated by comparing c and β representing the electrical characteristics of the subject with c and β of the reference wafer. it can. Similarly, the microwave oscillator 1 changes the output frequency of the microwave, and the electric field strength is changed based on the change of the electric field strength (time series data) according to the change of the microwave frequency at that time. It can also be applied when evaluating characteristics.
【0016】[0016]
【実施例】前記電気的特性評価装置Xでは,マイクロ波
をウェハ6の前記測定部位に導く導波手段として前記導
波管3を用いるものであったが,これに限らず,例え
ば,マイクロ波ストリップ線路を用いるものであっても
よい。図2は,前記導波手段として用いられる前記マイ
クロ波ストリップ線路20の平面及び側面を表す図であ
る。図2に示すように,前記マイクロ波ストリップ線路
20は,1方の面の導電体である伝送路21,もう1方
の面の導電体である接地板23,及びそれらの間に挟ま
れた誘電体(絶縁体)22からなり,さらに,その先端
部(ウェハ6の前記測定部位に近接する部分)に前記電
気光学結晶5が設けられている。前記マイクロ波発振器
1によるマイクロ波は,前記伝送路21に出力される。
これにより,マイクロ波は前記伝送路21を伝って前記
測定部位へ導かれる。また,前記マイクロ波ストリップ
ライン20の前記先端部には,前記電気光学結晶5に照
射するレーザ光を通過させるための導光穴24が設けら
れている。図4の平面図においては,便宜上,前記電気
光学結晶5が透明であるように図示している(先端部に
おいて前記電気光学結晶5を貫通する穴が設けられてい
るわけではない)。[Embodiment] In the electrical characteristic evaluation apparatus X, the waveguide 3 is used as the waveguide means for guiding the microwave to the measurement portion of the wafer 6, but the invention is not limited to this. A strip line may be used. FIG. 2 is a diagram showing a plane and a side surface of the microwave strip line 20 used as the waveguide unit. As shown in FIG. 2, the microwave strip line 20 is sandwiched between a transmission line 21, which is a conductor on one side, a ground plate 23, which is a conductor on the other side, and between them. A dielectric (insulator) 22 is provided, and the electro-optic crystal 5 is provided at the tip (the portion of the wafer 6 close to the measurement site). The microwave generated by the microwave oscillator 1 is output to the transmission line 21.
As a result, the microwave is guided to the measurement site through the transmission path 21. In addition, a light guide hole 24 for passing a laser beam with which the electro-optic crystal 5 is irradiated is provided at the tip of the microwave strip line 20. In the plan view of FIG. 4, for the sake of convenience, the electro-optic crystal 5 is illustrated as being transparent (a hole penetrating the electro-optic crystal 5 is not provided at the tip portion).
【0017】前記測定部位に導くマイクロ波(電磁波)
として数GHz以上の周波数のものを用いる場合には,
前記マイクロ波ストリップ線路20のように誘電体を有
する伝送路では誘電体損失が大きくなり,マイクロ波を
効率的に伝送できないため,中空の前記導波管3を用い
る必要がある。しかし,それより低い周波数(例えば,
数100MHz以下)のマイクロ波を用いる場合は,前
記導波手段として前記マイクロ波ストリップライン20
や同軸ケーブル等を用いることが可能となる。この場
合,測定される前記電界強度の変化周期が長くなり(例
えば,10ns程度),前記光検出器9が応答可能な範
囲となる。従って,低周波数のマイクロ波,及びその導
波手段として前記マイクロ波ストリップライン20等を
用いれば,前記電気光学結晶5に照射する光(レーザ
光)を,マイクロ波の周期に同期させたパルス光とする
必要がなく,連続光を用いて前記電界強度を測定するこ
とが可能となる。このような実施例も本発明の範囲であ
る。Microwave (electromagnetic wave) guided to the measurement site
When using a frequency of several GHz or more,
In the transmission line having a dielectric such as the microwave strip line 20, the dielectric loss becomes large and the microwave cannot be transmitted efficiently, so that the hollow waveguide 3 needs to be used. However, lower frequencies (eg,
When a microwave of several hundred MHz or less) is used, the microwave strip line 20 is used as the waveguide means.
It is possible to use a coaxial cable or the like. In this case, the change period of the measured electric field intensity becomes long (for example, about 10 ns), and the photodetector 9 is in a responseable range. Therefore, if the microwave of low frequency and the microwave strip line 20 or the like is used as the waveguide means thereof, the pulsed light in which the light (laser light) with which the electro-optic crystal 5 is irradiated is synchronized with the cycle of the microwave is used. Therefore, it is possible to measure the electric field intensity using continuous light. Such embodiments are also within the scope of the present invention.
【0018】また,前述した電気的特性評価装置Xは,
前記電気光学結晶5に照射された光の反射光及び/又は
透過光の偏光度合いを検出するものであったが,前記電
気光学結晶5の電気光学効果によって前記反射光及び/
又は透過光の位相も変化するので,前記電気光学結晶5
への照射光とその反射光及び/又は透過光との位相差を
検出するものであってもよい。これは,例えば,前記パ
ルスレーザ7によるレーザ光を分岐させ,一方を前記電
気光学結晶5へ照射してその反射光及び/又は透過光を
測定光とし,もう一方を参照光として干渉縞画像を形成
する干渉計を用い,前記干渉縞画像の画像データに所定
のアンラップ処理を施すことによって前記位相差を求め
ればよい。このようにして求めた位相差データ,即ち,
予め測定した基準となる被検体についての位相差データ
と,特性評価する被検体についての位相差データとに基
づいて,被検体の測定部位の電気的特性を評価する方法
は,前述した偏光度合いに基づいて評価する場合と同様
である。Further, the above-mentioned electrical characteristic evaluation device X is
Although the degree of polarization of the reflected light and / or the transmitted light radiated to the electro-optic crystal 5 is detected, the reflected light and / or the reflected light may be detected by the electro-optic effect of the electro-optic crystal 5.
Alternatively, since the phase of the transmitted light also changes, the electro-optic crystal 5
It is also possible to detect the phase difference between the light irradiating the light and the reflected light and / or the transmitted light. This is, for example, to split the laser light from the pulse laser 7, irradiate the electro-optic crystal 5 with one of them, and use its reflected light and / or transmitted light as measurement light, and the other as reference light to form an interference fringe image. The phase difference may be obtained by subjecting the image data of the interference fringe image to a predetermined unwrap process using an interferometer to be formed. Phase difference data obtained in this way, that is,
The method of evaluating the electrical characteristics of the measurement site of the object based on the phase difference data of the object to be measured which is a reference measured in advance and the phase difference data of the object to be characterized is It is similar to the case based on the evaluation.
【0019】[0019]
【発明の効果】以上説明したように,本発明によれば,
測定部位の電界強度を検出するための検出端が電気光学
結晶であるので,これを微細にすることにより,非常に
高い空間分解能かつ高感度で被検体表層の電気的特性を
評価できる。しかも,前記電気光学結晶や,マイクロ波
及びレーザ光の出力装置等は,維持管理や取り扱いに特
段の手間や注意を要するものでなく,高いQ値を持つ共
振系を用いる場合に比べて低コストであり,かつ取り扱
いが容易である。As described above, according to the present invention,
Since the detection end for detecting the electric field intensity at the measurement site is an electro-optic crystal, by making it fine, the electrical characteristics of the surface layer of the subject can be evaluated with extremely high spatial resolution and high sensitivity. Moreover, the electro-optic crystal, the microwave and laser light output device, and the like do not require special labor and care for maintenance and handling, and are low in cost as compared with the case where a resonance system having a high Q value is used. And is easy to handle.
【図1】本発明の実施の形態に係る電気的特性評価装置
Xの構成を表す図。FIG. 1 is a diagram showing a configuration of an electrical characteristic evaluation apparatus X according to an embodiment of the present invention.
【図2】本発明の実施例に係る電気的特性評価装置にお
いて用いられる低周波数のマイクロ波を被測定試料表面
に導くマイクロストリップ線路の平面図及び側面図。2A and 2B are a plan view and a side view of a microstrip line for guiding a low-frequency microwave to the surface of a sample to be measured, which is used in the electrical characteristic evaluation apparatus according to the embodiment of the present invention.
【符号の説明】 1…マイクロ波発振器 2…整合器 3…導波管 4…スリット 5…電気光学結晶 6…半導体ウェハ(被検体) 7…パルスレーザ 8…導光穴 9…光検出器 10…偏光板 11…分周回路 12…変位センサ 13…上下駆動装置 14a,14b…波長板 15…ビームスプリッタ 16…マイクロ波検出器 17…信号処理/制御回路 18…ミラー 20…マイクロ波ストリップ線路 21…マイクロはの伝送路 22…誘電体(絶縁体) 23…接地板 24…導光穴[Explanation of symbols] 1. Microwave oscillator 2 ... Matching device 3 ... Waveguide 4 ... slit 5 ... Electro-optic crystal 6 ... Semiconductor wafer (subject) 7 ... Pulse laser 8 ... Light guide hole 9 ... Photodetector 10 ... Polarizing plate 11 ... Divider circuit 12 ... Displacement sensor 13 ... Vertical drive device 14a, 14b ... Wave plate 15 ... Beam splitter 16 ... Microwave detector 17 ... Signal processing / control circuit 18 ... Mirror 20 ... Microwave strip line 21 ... Micro transmission line 22 ... Dielectric (insulator) 23 ... Ground plate 24 ... Light guide hole
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G132 AA00 AD01 AD03 AE22 AF15 AL11 4M106 AA01 AA02 BA05 BA06 BA09 CA05 CA08 DE30 ─────────────────────────────────────────────────── ─── Continued front page F term (reference) 2G132 AA00 AD01 AD03 AE22 AF15 AL11 4M106 AA01 AA02 BA05 BA06 BA09 CA05 CA08 DE30
Claims (12)
定する電気的特性評価装置であって,前記測定部位に近
接して設けられる電気光学素子と,所定の電磁波を出力
する電磁波出力手段と,前記測定部位近傍に前記電磁波
を導く導波手段と,前記電気光学素子に光を照射する光
照射手段と,前記電気光学素子に照射された光の反射光
及び/又は透過光を検出する光検出手段と,前記光検出
手段の検出結果に基づいて前記測定部位の電気的特性を
評価する特性評価手段と,を具備してなることを特徴と
する電気的特性評価装置。1. An electrical characteristic evaluation device for measuring an electrical characteristic of a measurement site on a surface layer of an object, the electro-optical element being provided in proximity to the measurement site, and an electromagnetic wave output means for outputting a predetermined electromagnetic wave. A wave guide means for guiding the electromagnetic wave to the vicinity of the measurement site, a light irradiating means for irradiating the electro-optical element with light, and a reflected light and / or a transmitted light of the light with which the electro-optical element is irradiated. An electrical characteristic evaluation device comprising: a light detecting means; and a characteristic evaluating means for evaluating an electrical characteristic of the measurement site based on a detection result of the light detecting means.
は透過光の偏光度合いを検出する偏光度合い検出手段で
ある請求項1に記載の電気的特性評価装置。2. The electrical characteristic evaluation apparatus according to claim 1, wherein the light detection unit is a polarization degree detection unit that detects the polarization degree of the reflected light and / or the transmitted light.
せたその先端部から前記電磁波を前記測定部位近傍に照
射するものであり,前記電気光学素子が前記導波手段の
先端部に設けられてなる請求項1又は2のいずれかに記
載の電気的特性評価装置。3. The wave guide means irradiates the electromagnetic wave to the vicinity of the measurement site from a tip part thereof close to the measurement site, and the electro-optical element is provided at the tip part of the wave guide means. The electrical characteristic evaluation apparatus according to claim 1, wherein the electrical characteristic evaluation apparatus comprises:
同期したパルス光を照射するものである請求項1〜3の
いずれかに記載の電気的特性評価装置。4. The electrical characteristic evaluation apparatus according to claim 1, wherein the light irradiating means irradiates pulsed light synchronized with the cycle of the electromagnetic wave.
離を変化させる位置変更手段を具備し,前記特性評価手
段が,前記距離の変化に応じた前記光検出手段の検出結
果の変化に基づいて前記測定部位の電気的特性を評価す
るものである請求項1〜4のいずれかに記載の電気的特
性評価装置。5. A position changing means for changing a distance between the electro-optical element and the measurement site is provided, and the characteristic evaluation means is based on a change in a detection result of the light detecting means in response to a change in the distance. The electrical characteristic evaluation device according to claim 1, wherein the electrical characteristic of the measurement site is evaluated.
により前記電気光学素子と前記測定部位との距離を周期
的に変化させたときの前記光検出手段の検出結果におけ
る,前記距離の変化周期と同周期の成分に基づいて前記
測定部位の電気的特性を評価するものである請求項5に
記載の電気的特性評価装置。6. The change cycle of the distance in the detection result of the photodetecting means when the characteristic evaluating means cyclically changes the distance between the electro-optical element and the measurement site by the position changing means. The electrical characteristic evaluation device according to claim 5, wherein the electrical characteristic of the measurement site is evaluated based on a component of the same period as the above.
周波数変更手段を具備し,前記特性評価手段が,前記電
磁波の周波数変化に応じた前記光検出手段の検出結果の
変化に基づいて前記測定部位の電気的特性を評価するも
のである請求項1〜6のいずれかに記載の電気的特性評
価装置。7. An electromagnetic wave frequency changing means for changing the frequency of the electromagnetic wave is provided, wherein the characteristic evaluating means changes the detection result of the photodetecting means in response to a change in the frequency of the electromagnetic wave. The electrical characteristic evaluation device according to claim 1, which is for evaluating electrical characteristics.
学素子に照射された光の反射光及び/又は透過光を偏光
板に通過させた後の光強度を検出するものである請求項
2〜7のいずれかに記載の電気的特性評価装置。8. The polarization degree detecting means detects the light intensity after the reflected light and / or the transmitted light of the light irradiated on the electro-optical element has passed through a polarizing plate. 7. The electrical characteristic evaluation device according to any one of 7.
性を測定する電気的特性評価方法であって,前記測定部
位近傍に所定の導波手段を用いて電磁波を導くとともに
前記測定部位に近接して設けられた電気光学素子に光を
照射し,照射した光の反射光及び/又は透過光を検出
し,その検出結果に基づいて前記測定部位の電気的特性
を評価してなることを特徴とする電気的特性評価方法。9. A method for evaluating electrical characteristics of a predetermined measurement site on a surface layer of an object, the method comprising: guiding an electromagnetic wave in the vicinity of the measurement site by using a predetermined wave guide means to the measurement site. Irradiating light to an electro-optical element provided in close proximity, detecting reflected light and / or transmitted light of the irradiated light, and evaluating the electrical characteristics of the measurement site based on the detection result. Characteristic electrical property evaluation method.
記電磁波の周期に同期したパルス光である請求項9に記
載の電気的特性評価方法。10. The electrical characteristic evaluation method according to claim 9, wherein the light with which the electro-optical element is irradiated is pulsed light synchronized with the period of the electromagnetic wave.
距離を変化させ,該距離の変化に応じた前記反射光及び
/又は透過光の検出結果の変化に基づいて前記測定部位
の電気的特性を評価するものである請求項9又は10の
いずれかに記載の電気的特性評価方法。11. The electrical characteristic of the measurement site is changed based on a change in the detection result of the reflected light and / or the transmitted light in response to a change in the distance between the electro-optical element and the measurement site. The electrical characteristic evaluation method according to claim 9, which is for evaluating
電磁波の周波数変化に応じた前記反射光及び/又は透過
光の検出結果の変化に基づいて前記測定部位の電気的特
性を評価するものである請求項9又は10のいずれかに
記載の電気的特性評価方法。12. The electric characteristic of the measurement site is evaluated based on a change in the detection result of the reflected light and / or transmitted light according to a change in the frequency of the electromagnetic wave, by changing the frequency of the electromagnetic wave. The electrical characteristic evaluation method according to claim 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002121991A JP3853248B2 (en) | 2002-04-24 | 2002-04-24 | Electrical characteristic evaluation apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002121991A JP3853248B2 (en) | 2002-04-24 | 2002-04-24 | Electrical characteristic evaluation apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003315424A true JP2003315424A (en) | 2003-11-06 |
JP3853248B2 JP3853248B2 (en) | 2006-12-06 |
Family
ID=29537727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002121991A Expired - Fee Related JP3853248B2 (en) | 2002-04-24 | 2002-04-24 | Electrical characteristic evaluation apparatus and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3853248B2 (en) |
-
2002
- 2002-04-24 JP JP2002121991A patent/JP3853248B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3853248B2 (en) | 2006-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7397596B2 (en) | Surface and subsurface detection sensor | |
JP4732201B2 (en) | Sensing device using electromagnetic waves | |
JP4546326B2 (en) | Sensing device | |
JP6245600B2 (en) | Polarization sensitive terahertz wave detector | |
JP5341488B2 (en) | Apparatus and method for measuring terahertz waves | |
KR101788450B1 (en) | Apparatus and method for inspecting thickness of transparent thin film using terahertz wave | |
EP1417450B1 (en) | Method and apparatus for increasing signal to noise ratio in a photoacoustic film thickness measurement system | |
EP0850419B1 (en) | Near-field resistivity microscope | |
JP2006132970A (en) | System and method for measuring specific absorption rate | |
WO2016132452A1 (en) | Terahertz wave measurement device, terahertz wave measurement method, and computer program | |
US20150069246A1 (en) | Information obtaining apparatus and information obtaining method | |
JP2007333640A (en) | Apparatus and method for measuring semiconductor electrical characteristic | |
US6573737B1 (en) | Method and apparatus for non-contact measurement of electrical properties of materials | |
JP2012185116A (en) | Optical characteristics evaluation device and optical characteristics evaluation method | |
US20110310379A1 (en) | Apparatus and method for measuring terahertz-absorption characteristics of samples | |
JP3776073B2 (en) | Semiconductor carrier lifetime measurement method and apparatus | |
JP3853248B2 (en) | Electrical characteristic evaluation apparatus and method | |
US20040130341A1 (en) | Method and apparatus for measuring three-dimensional distribution of electric field | |
JP5389586B2 (en) | Semiconductor thin film crystallinity evaluation method and crystallinity evaluation apparatus | |
JP5301770B2 (en) | Thin film semiconductor crystallinity measuring apparatus and method | |
JP4859250B2 (en) | Distance adjustment apparatus and method for inspection object, inspection apparatus and method | |
RU2318218C1 (en) | Device for measuring lifetime of minority charge carriers in semiconductors | |
JPH11166952A (en) | High-frequency characteristic measurement method of dielectric material | |
KR100337642B1 (en) | Millimeterwave generation system using optical near-feild scanning heterodyne probe techinique | |
JP2009080018A (en) | Electrical characteristic evaluation apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041022 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060810 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060905 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3853248 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090915 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100915 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100915 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110915 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110915 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120915 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120915 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130915 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |