JP5301770B2 - Thin film semiconductor crystallinity measuring apparatus and method - Google Patents

Thin film semiconductor crystallinity measuring apparatus and method Download PDF

Info

Publication number
JP5301770B2
JP5301770B2 JP2006229803A JP2006229803A JP5301770B2 JP 5301770 B2 JP5301770 B2 JP 5301770B2 JP 2006229803 A JP2006229803 A JP 2006229803A JP 2006229803 A JP2006229803 A JP 2006229803A JP 5301770 B2 JP5301770 B2 JP 5301770B2
Authority
JP
Japan
Prior art keywords
thin film
intensity
microwave
excitation light
crystallinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006229803A
Other languages
Japanese (ja)
Other versions
JP2008051719A (en
Inventor
弘行 高松
尚和 迫田
太 尾嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kobelco Research Institute Inc
Original Assignee
Kobe Steel Ltd
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kobelco Research Institute Inc filed Critical Kobe Steel Ltd
Priority to JP2006229803A priority Critical patent/JP5301770B2/en
Publication of JP2008051719A publication Critical patent/JP2008051719A/en
Application granted granted Critical
Publication of JP5301770B2 publication Critical patent/JP5301770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure an index value for evaluating the crystallinity of the extremely fine region of a thin-film sample comprising a semiconductor such as polysilicon or the like in a non-destructive and non-contact state with high precision in a short time. <P>SOLUTION: The thin-film sample 6 comprising the semiconductor is irradiated with a microwave and exciting light of energy with the band gap of the sample 6 or above is modulated in its intensity at a predetermined cycle by a modulator 14 and condensed by a lens 9 to irradiate the thin-film sample 6. The intensity of the reflected microwave from the sample 6 changed by irradiation with the exciting light is detected by a microwave detector 10 and the cyclic component synchronized to the intensity modulation of the exciting light is extracted from the detected intensity by a lock-in amplifier 15. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、ポリシリコンや単結晶シリコン等の半導体からなる薄膜試料の結晶性評価のための測定を行う薄膜半導体の結晶性測定装置及びその方法に関するものである。   The present invention relates to a thin-film semiconductor crystallinity measuring apparatus and method for measuring a crystallinity of a thin-film sample made of a semiconductor such as polysilicon or single crystal silicon.

液晶表示装置などのフラットパネルディスプレイの技術分野において、厚さ数十nm(ナノメートル)程度のTFT素子をガラス基板上に形成させるSOG(System On Glass)技術が注目されている。
従来、液晶表示装置のガラスパネルに形成されるTFT素子は、主としてアモルファスシリコン(a−Si)薄膜で構成されている。しかしながら、昨今、液晶表示装置の表示映像の高精細化、高画質化、大画面化及び応答速度の向上に対応するため、液晶表示装置のガラスパネル(ガラス基板上)に、電界効果移動度の高いポリシリコン(p−Si)薄膜で構成されたTFT素子を形成させる技術が進展してきている。
ガラス基板上にp−Si薄膜を形成させる方法は、高温プロセス法と低温プロセス法とに大別される。
高温プロセス法は、約1000℃の高温処理工程を有するため、ガラス基板の材料として、耐熱性の高い石英ガラスなどを採用する必要がある。しかしながら、高耐熱性の石英ガラスなどは高価であり、コスト的に採用し難い。
一方、低温プロセス法は、a−Si部材にパルスレーザを照射するレーザアニールにより、そのa−Siを結晶化させてp−Si薄膜を生成する。このため、ガラス基板の材料として、比較的耐熱性の低い安価なガラスを採用できる。
しかしながら、レーザアニ−ルによる結晶化によって得られたp−Si薄膜は、レーザ光の強度や照射時間などの条件変動により、その結晶性がばらつきやすい。ここでいう結晶性とは、ダングリングボンドに起因する試料中の欠陥の量(欠陥の存在度合い)や結晶粒径のことである。この結晶性のばらつきは、ガラス基板上のTFT素子の性能に大きな悪影響を及ぼす。このため、p−Si薄膜の結晶性を評価することが重要となる。また、p−Si薄膜の結晶性評価を、p−Si薄膜(TFT素子)が形成されたガラスパネルの製品検査工程で行うためには、非接触及び非破壊で、かつ短時間で結晶性評価を行う必要がある。
さらに、近年、ガラス基板上の各TFT素子の結晶性のばらつきを抑えるため、TFT素子を形成させる領域だけを局所的に結晶化させる技術の開発が盛んである。このため、p−Si薄膜の結晶性評価では、局所的な(微小な)領域の結晶性を評価することが非常に重要である。
一方、従来の薄膜試料の結晶性の評価手法としては、ラマン分光による結晶性評価、X線回析法、ラザフォード後方散乱法、透過電子回析法及び走査式電子顕微鏡を用いた結晶性評価などが知られている。
例えば、特許文献1には、ラマン分光によりアモルファス結晶シリコンのラマンシフトを測定することにより、薄膜試料の結晶化の過程を評価する技術が示されている。
特開2002−176009号公報
In the technical field of flat panel displays such as liquid crystal display devices, SOG (System On Glass) technology for forming TFT elements with a thickness of several tens of nanometers on a glass substrate has attracted attention.
Conventionally, TFT elements formed on a glass panel of a liquid crystal display device are mainly composed of an amorphous silicon (a-Si) thin film. However, in recent years, in order to cope with high definition, high image quality, large screen, and improvement in response speed of the display image of the liquid crystal display device, the field effect mobility is applied to the glass panel (on the glass substrate) of the liquid crystal display device. A technique for forming a TFT element composed of a high polysilicon (p-Si) thin film has been developed.
Methods for forming a p-Si thin film on a glass substrate are roughly classified into a high temperature process method and a low temperature process method.
Since the high-temperature process method has a high-temperature processing step of about 1000 ° C., it is necessary to employ quartz glass having high heat resistance as a material for the glass substrate. However, high heat-resistant quartz glass and the like are expensive and difficult to adopt in terms of cost.
On the other hand, in the low temperature process method, the a-Si member is crystallized by laser annealing that irradiates the a-Si member with a pulsed laser to produce a p-Si thin film. For this reason, cheap glass with relatively low heat resistance can be adopted as the material of the glass substrate.
However, the p-Si thin film obtained by crystallization with laser annealing is likely to vary in crystallinity due to fluctuations in conditions such as laser light intensity and irradiation time. The term “crystallinity” as used herein refers to the amount of defects (defect existence degree) and crystal grain size in the sample due to dangling bonds. This variation in crystallinity has a significant adverse effect on the performance of the TFT element on the glass substrate. For this reason, it is important to evaluate the crystallinity of the p-Si thin film. Moreover, in order to evaluate the crystallinity of the p-Si thin film in the product inspection process of the glass panel on which the p-Si thin film (TFT element) is formed, the crystallinity evaluation is performed in a non-contact and non-destructive manner in a short time. Need to do.
Furthermore, in recent years, in order to suppress the variation in crystallinity of each TFT element on the glass substrate, development of a technique for locally crystallizing only a region where the TFT element is formed has been active. For this reason, in evaluating the crystallinity of a p-Si thin film, it is very important to evaluate the crystallinity of a local (small) region.
On the other hand, as a conventional method for evaluating crystallinity of a thin film sample, crystallinity evaluation by Raman spectroscopy, X-ray diffraction method, Rutherford backscattering method, transmission electron diffraction method, and crystallinity evaluation using a scanning electron microscope, etc. It has been known.
For example, Patent Document 1 discloses a technique for evaluating the crystallization process of a thin film sample by measuring the Raman shift of amorphous crystalline silicon by Raman spectroscopy.
JP 2002-176209 A

しかしながら、ラマン分光による結晶性評価や、X線解析法、ラザフォード後方散乱法及び透過電子回析法による結晶性評価は、いずれも測定装置が高価であり、測定に要する時間も長いことから、生産プロセスでの製品検査への適用には不向きであるという問題点があった。
また、走査式電子顕微鏡を用いた結晶性評価も、これは本質的に破壊試験であり、さらに、測定時間も長時間を要することから、生産プロセスでの製品検査への適用には不向きであるという問題点があった。
従って、本発明は上記事情に鑑みてなされたものであり、その目的とするところは、ポリシリコン等の半導体からなる薄膜試料のごく微小領域の結晶性を評価するための指標値を、非破壊及び非接触で、かつ短時間及び高精度で測定できる薄膜半導体の結晶性測定装置及びその方法を提供することにある。
However, crystallinity evaluation by Raman spectroscopy, crystallinity evaluation by X-ray analysis method, Rutherford backscattering method and transmission electron diffraction method are all expensive because the measuring equipment is expensive and the time required for measurement is long. There was a problem that it was unsuitable for application to product inspection in the process.
In addition, crystallinity evaluation using a scanning electron microscope is not suitable for application to product inspection in a production process because this is essentially a destructive test and also requires a long measurement time. There was a problem.
Therefore, the present invention has been made in view of the above circumstances, and the object of the present invention is to provide an index value for evaluating the crystallinity of a very small region of a thin film sample made of a semiconductor such as polysilicon and the like, and nondestructively Another object of the present invention is to provide a thin film semiconductor crystallinity measuring apparatus and method capable of measuring in a non-contact manner in a short time and with high accuracy.

上記目的を達成するために本発明は、基板上に形成されたシリコンまたは単結晶シリコンの表層シリコン層からなる薄膜試料の結晶性評価のための測定を行う薄膜半導体の結晶性測定装置として構成されるものであり、次の(1)〜(5)に示す各手段を備えることを特徴とする。
(1)前記薄膜試料に対しマイクロ波を照射するマイクロ波照射手段。
(2)前記薄膜試料のバンドキャップ以上のエネルギーの励起光を所定周期で強度変調する励起光強度変調手段。
(3)前記励起光強度変調手段により強度変調された励起光を、前記マイクロ波の波長より小さい局所的な領域に制限するために集光して前記薄膜試料に照射する励起光照射手段。
(4)前記励起光の照射により変化する、前記薄膜試料からの前記マイクロ波の反射波の強度を検出するマイクロ波強度検出手段。
(5)ノイズを除去するために、前記マイクロ波強度検出手段による検出強度から前記励起光の強度変調に同期した周期成分(励起光の強度変調周波数と同じ周波数成分といってもよい)を抽出する変調周期成分抽出手段。
(6)前記変調周期成分抽出手段により抽出された前記周期成分に基づいて得られた前記マイクロ波の反射波の強度の変化成分における強度値に基づいて前記薄膜試料の結晶性の評価指標値を算出する計算手段。
ここで、前記マイクロ波照射手段が、導波管アンテナを備えていることが考えられる。この場合、その導波管アンテナの前記薄膜試料に近接する端部において、前記マイクロ波を前記薄膜試料に放射するとともにそのマイクロ波の反射波を捕捉する。
また、前記励起光照射手段が、前記導波管アンテナの前記薄膜試料に近接する端部を通じて前記励起光を前記薄膜試料に照射するものであることが考えられる。
そして、好ましくは、前記基板上に形成されたシリコンは、ガラス基板上に形成されたポリシリコンであり、前記単結晶シリコンの表層シリコン層は、エピウェハにおける表層シリコン層またはSOIウェハにおける表層シリコン層である。より好ましくは、前記基板上に形成されたシリコンの厚みは、数nm〜数十nmであり、前記単結晶シリコンの表層シリコン層の厚みは、数μm以下である。
In order to achieve the above object, the present invention is configured as a thin film semiconductor crystallinity measuring apparatus that performs measurement for crystallinity evaluation of a thin film sample formed of a surface silicon layer of silicon or single crystal silicon formed on a substrate. It is characterized by comprising each means shown in the following (1) to (5).
(1) microwave irradiation means for irradiating the microwaves the thin film sample to.
(2) Excitation light intensity modulation means for intensity-modulating excitation light having energy equal to or higher than the band cap of the thin film sample in a predetermined cycle.
(3) Excitation light irradiation means for condensing and irradiating the thin film sample with the excitation light whose intensity has been modulated by the excitation light intensity modulation means in order to limit it to a local region smaller than the wavelength of the microwave .
(4) Microwave intensity detection means for detecting the intensity of the reflected wave of the microwave from the thin film sample, which changes due to the irradiation of the excitation light.
To remove (5) noise, the detection intensity of the microwave intensity detecting means, the periodic component synchronous with the intensity modulation of the excitation light (which may be referred to as a same frequency component as the intensity modulation frequency of the excitation light) Modulation period component extraction means for extracting.
(6) The crystallinity evaluation index value of the thin film sample is calculated based on the intensity value in the change component of the intensity of the reflected wave of the microwave obtained based on the periodic component extracted by the modulation periodic component extracting means. Calculation means for calculating.
Here, the microwave irradiation means, it is conceivable that includes a waveguide antenna. In this case, at the end adjacent to the thin film sample of the waveguide antenna, it captures the reflected wave of the microwave while emitting the microwaves into the thin film sample.
Further, it is conceivable that the excitation light irradiation means irradiates the thin film sample with the excitation light through an end portion of the waveguide antenna close to the thin film sample.
Preferably, the silicon formed on the substrate is polysilicon formed on a glass substrate, and the surface silicon layer of the single crystal silicon is a surface silicon layer in an epi wafer or a surface silicon layer in an SOI wafer. is there. More preferably, the thickness of the silicon formed on the substrate is several nanometers to several tens of nanometers, and the thickness of the surface silicon layer of the single crystal silicon is several micrometers or less.

半導体試料に電磁波を照射すると、半導体試料中の自由電子が、その電磁波の電界により運動(移動)するが、その運動状態は、試料中の不純物、欠陥等の存在によって影響を受ける。このため、半導体試料に照射した電磁波の反射波の強度(照射波の強度に対する変化)は、試料の結晶性の指標となる。しかもその反射波の強度の検出(測定)は、非破壊かつ非接触で、ごく短時間のうちに行うことができる。
しかしながら、電磁波(マイクロ波)の波長は数ミリ以上と長いため、薄膜試料における微小領域の結晶性を評価できない。さらに、前記半導体試料が、数nm〜数十nm程度のポリシリコンや、数μm以下の単結晶シリコン等である場合のように、前記半導体試料の厚みが薄い(薄膜試料である)場合、電磁波の照射波に対する反射波の強度の変化(半導体試料の結晶性に起因する反射波の強度変化)はごく微小となり、十分な測定感度が得られない結果、十分な測定精度が確保されない。また、測定感度を高めるために励起光の強度を強くし過ぎると、試料の損傷の原因となり、さらに、励起光の光源のコスト増にもつながる。
これに対し、本発明のように、前記薄膜試料にそのバンドキャップ以上のエネルギーの励起光を集光して微小領域に照射することにより、試料中の微小領域に光励起キャリアが発生し、その光励起キャリアが電磁波の電界によって運動する。従って、前記励起光の照射により変化する前記反射波の強度を検出すれば、その検出強度は、試料の微小領域(励起光照射領域)の結晶性を表す指標となる。
ここで、励起光の照射領域が微小領域であるため、前記反射波の強度変化は小さく、その測定はノイズの影響を受けやすい。
これに対し、本発明のように、所定周期で強度変調した励起光を試料に照射し、前記反射光の強度から励起高の強度変調に同期した成分を抽出することにより、測定値から不要な周波数成分(ノイズ)が除去される。
When a semiconductor sample is irradiated with an electromagnetic wave, free electrons in the semiconductor sample move (move) by the electric field of the electromagnetic wave, but the movement state is affected by the presence of impurities, defects, and the like in the sample. For this reason, the intensity of the reflected wave of the electromagnetic wave irradiated to the semiconductor sample (change with respect to the intensity of the irradiated wave) is an index of the crystallinity of the sample. In addition, the detection (measurement) of the intensity of the reflected wave is nondestructive and noncontact, and can be performed in a very short time.
However, since the wavelength of electromagnetic waves (microwaves) is as long as several millimeters or more, the crystallinity of a minute region in a thin film sample cannot be evaluated. Further, when the semiconductor sample is thin (thin film sample), as in the case where the semiconductor sample is polysilicon of several nm to several tens of nm, single crystal silicon of several μm or less, etc., The change in the intensity of the reflected wave with respect to the irradiated wave (the change in the intensity of the reflected wave due to the crystallinity of the semiconductor sample) is extremely small, and sufficient measurement sensitivity cannot be obtained, so that sufficient measurement accuracy cannot be ensured. In addition, if the intensity of the excitation light is increased too much in order to increase the measurement sensitivity, the sample may be damaged, and further, the cost of the excitation light source may be increased.
On the other hand, as in the present invention, when the thin film sample is condensed with excitation light having an energy higher than the band cap and irradiated to the minute region, photoexcited carriers are generated in the minute region in the sample, and the optical excitation is performed. The carrier moves by the electromagnetic field. Therefore, if the intensity of the reflected wave that changes due to the irradiation of the excitation light is detected, the detected intensity becomes an index that represents the crystallinity of a minute region (excitation light irradiation region) of the sample.
Here, since the irradiation region of the excitation light is a minute region, the intensity change of the reflected wave is small, and the measurement is easily affected by noise.
On the other hand, as in the present invention, the sample is irradiated with excitation light whose intensity is modulated at a predetermined period, and a component synchronized with the intensity modulation of excitation height is extracted from the intensity of the reflected light. The frequency component (noise) is removed.

本発明によれば、励起光を集光して試料の微小領域に照射し、その励起光の照射により変化する反射電磁波の強度を検出することにより、その検出値は、電磁波照射領域における励起光照射領域以外の領域の影響を受けにくいが、全く影響がないわけではない。
そこで、前記電磁波照射手段が備える前記導波管アンテナの前記薄膜試料に近接する端部に、電磁波を遮蔽する電磁波遮蔽部が形成され、その電磁波遮蔽部に、前記電磁波を前記薄膜試料に放射するとともにその電磁波の反射波を捕捉する微小開口が形成されたものが考えられる。
これにより、試料に対する電磁波の照射領域を比較的微小な領域に制限でき、試料における励起光照射領域の周辺の領域の状態が測定値(前記反射波の強度)に与える影響を極力小さくすることができる。
一方、前記電磁波照射手段が、内部で前記電磁波を共振させる空洞共振器を具備し、その空洞共振器の前記薄膜試料に近接する端部に形成された微小開口において、前記電磁波を前記薄膜試料に放射するとともにその電磁波の反射波を捕捉するものが考えられる。
このような構成によっても、試料における励起光照射領域の周辺の領域の状態が測定値(前記反射波の強度)に与える影響を極力小さくすることができる。さらに、前記空洞共振器に供給する電磁波のパワーが小さくても、パワーのロスを抑えて効率的に電磁波を試料に照射できる。
なお、本発明は、以上に示した薄膜半導体の結晶性測定装置を用いて、半導体からなる薄膜試料の結晶性評価のための測定を行う薄膜半導体の結晶性測定方法として捉えることもできる。
According to the present invention, the excitation light is condensed and irradiated to a micro area of the sample, and the intensity of the reflected electromagnetic wave that changes due to the irradiation of the excitation light is detected. Although it is difficult to be affected by areas other than the irradiation area, it is not completely free of influence.
Therefore, an electromagnetic wave shielding part that shields electromagnetic waves is formed at an end portion of the waveguide antenna provided in the electromagnetic wave irradiation means that is close to the thin film sample, and the electromagnetic waves are radiated to the thin film sample at the electromagnetic wave shielding part. At the same time, it is conceivable that a minute opening for capturing the reflected wave of the electromagnetic wave is formed.
Thereby, the irradiation region of the electromagnetic wave on the sample can be limited to a relatively small region, and the influence of the state of the region around the excitation light irradiation region on the sample on the measured value (the intensity of the reflected wave) can be minimized. it can.
On the other hand, the electromagnetic wave irradiation means includes a cavity resonator that resonates the electromagnetic wave therein, and the electromagnetic wave is applied to the thin film sample at a minute opening formed at an end portion of the cavity resonator close to the thin film sample. One that radiates and captures the reflected wave of the electromagnetic wave can be considered.
Even with such a configuration, the influence of the state of the region around the excitation light irradiation region in the sample on the measurement value (the intensity of the reflected wave) can be minimized. Furthermore, even if the power of the electromagnetic wave supplied to the cavity resonator is small, the sample can be efficiently irradiated with the electromagnetic wave while suppressing power loss.
Note that the present invention can also be understood as a method for measuring the crystallinity of a thin film semiconductor in which the above-described thin film semiconductor crystallinity measuring apparatus is used for measuring the crystallinity of a thin film sample made of a semiconductor.

本発明によれば、ポリシリコン等の半導体からなる薄膜試料について、結晶性評価の指標となる測定値(反射電磁波の強度)を、高い空間分解能で(ごく微小な領域を)、非破壊及び非接触で、かつ短時間及び高精度で測定できる。
特に、試料に近接する位置において、導波管アンテナの端部に設けられた電磁波遮蔽部や、電磁波を内部で共振させる空洞共振器の端部から、微小開口を通じて電磁波を試料に放射する構成を備えることにより、試料における励起光照射領域の周辺の領域の状態が測定値(前記反射波の強度)に与える影響を極力小さくすることができる。その結果、さらに高い空間分解能で高精度の測定が可能となる。
According to the present invention, with respect to a thin film sample made of a semiconductor such as polysilicon, a measured value (intensity of reflected electromagnetic wave) as an index for crystallinity evaluation is obtained with high spatial resolution (very small area), nondestructive and non-destructive. It can be measured in contact, in a short time and with high accuracy.
In particular, at a position close to the sample, an electromagnetic wave is radiated to the sample through a minute opening from the electromagnetic wave shielding unit provided at the end of the waveguide antenna or the end of the cavity resonator that resonates the electromagnetic wave inside. By providing, the influence of the state of the region around the excitation light irradiation region in the sample on the measurement value (the intensity of the reflected wave) can be minimized. As a result, it is possible to perform highly accurate measurement with higher spatial resolution.

以下添付図面を参照しながら、本発明の実施の形態について説明し、本発明の理解に供する。尚、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。
ここに、図1は本発明の第1実施形態に係る薄膜半導体の結晶性測定装置X1の概略構成を表す図、図2は薄膜半導体の結晶性測定装置X1による測定手順を表すフローチャート、図3は薄膜半導体の結晶性測定装置X1における励起光及び反射マイクロ波の各強度の変化を表す図、図4は本発明の第2実施形態に係る薄膜半導体の結晶性測定装置X2の特徴部の概略構成を表す図、図5は本発明の第3実施形態に係る薄膜半導体の結晶性測定装置X3の特徴部の概略構成を表す図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings for understanding of the present invention. In addition, the following embodiment is an example which actualized this invention, Comprising: It is not the thing of the character which limits the technical scope of this invention.
FIG. 1 is a diagram showing a schematic configuration of the thin film semiconductor crystallinity measuring apparatus X1 according to the first embodiment of the present invention, FIG. 2 is a flowchart showing a measurement procedure by the thin film semiconductor crystallinity measuring apparatus X1, and FIG. FIG. 4 is a diagram showing changes in the intensity of excitation light and reflected microwave in the thin film semiconductor crystallinity measuring apparatus X1, and FIG. 4 is an outline of the characteristic part of the thin film semiconductor crystallinity measuring apparatus X2 according to the second embodiment of the present invention. FIG. 5 is a diagram showing a schematic configuration of a characteristic part of a crystallinity measuring apparatus X3 for a thin film semiconductor according to a third embodiment of the present invention.

[第1実施形態]
まず、図1に示す概略構成図を参照しつつ、本発明の第1実施形態に係る薄膜半導体の結晶性測定装置X1(以下、結晶性測定装置X1と記載する)について説明する。
結晶性測定装置X1は、半導体からなる薄膜試料6(以下、試料6という)の結晶性評価に用いる測定値を取得するための装置である。ここで、前記試料6としては、ガラス等からなる基板上に形成された数nm〜数十nm程度の厚みのポリシリコン(p−Si)や、エピウェハやSOIウェハにおける表層シリコン層等が考えられる。
結晶性測定装置X1は、図1に示すように、マイクロ波発振器1、サーキュレータ2、導波管3、E−Hチューナ4、導波管アンテナ5、試料台7、ミラー8、レンズ9、マイクロ波検出器10、増幅器11、励起レーザ光源12、発振器13、変調器14、ロックインアンプ15及び計算機16を備えて構成されている。
[First Embodiment]
First, a thin film semiconductor crystallinity measuring apparatus X1 (hereinafter referred to as crystallinity measuring apparatus X1) according to a first embodiment of the present invention will be described with reference to the schematic configuration diagram shown in FIG.
The crystallinity measuring apparatus X1 is an apparatus for acquiring measurement values used for crystallinity evaluation of a thin film sample 6 (hereinafter referred to as a sample 6) made of a semiconductor. Here, examples of the sample 6 include polysilicon (p-Si) formed on a substrate made of glass or the like and having a thickness of several nanometers to several tens of nanometers, or a surface silicon layer in an epi wafer or SOI wafer. .
As shown in FIG. 1, the crystallinity measuring apparatus X1 includes a microwave oscillator 1, a circulator 2, a waveguide 3, an E-H tuner 4, a waveguide antenna 5, a sample stage 7, a mirror 8, a lens 9, and a micro A wave detector 10, an amplifier 11, an excitation laser light source 12, an oscillator 13, a modulator 14, a lock-in amplifier 15, and a computer 16 are provided.

励起レーザ光源12は、前記試料6に照射する励起光を出力する光源であり、例えば、波長375nm、パワー20mWの励起光を出射する半導体レーザ等である。励起レーザ光源12の出力光(励起光)は、前記試料6のバンドキャップ以上のエネルギーを有する。ここで、励起光が前記試料6のバンドキャップ以上のエネルギーを有することは、前記試料6の導電率を変化させるための条件である。
励起レーザ光源12から出射された励起光は、音響光学変調器やチョッパにより構成される変調器14(励起光強度変調手段の一例)によって一定周期(一定の周波数)で強度変調される。この強度変調の周波数は、発振器13から出力される一定周期(一定周波数:例えば、1kHz〜数MHz程度)の同期信号により制御される。さらに、発振器13の同期信号(即ち、変調器14による強度変調に同期した信号)は、ロックインアンプ15にも伝送される。
また、前記変調器14によって強度変調が施された励起光は、ミラー8で反射されるとともに、レンズ9(集光手段)によって集光され、導波管3に設けられた微小開口3aを通過し、導波管アンテナ5の前記試料6に近接する端部(開口部)を通じて、試料台7に載置された前記試料6の表面の微小な測定部位(例えば、直径5〜10μm程度のスポット)に対して照射される。これにより、前記試料6における微小な励起光照射領域(測定部位)において、励起キャリアが発生する。
なお、励起レーザ光源12から出力された励起光を集光して前記試料6へ導く光学機器(ミラー8及びレンズ9)が、励起光照射手段の一例である。
The excitation laser light source 12 is a light source that outputs excitation light that irradiates the sample 6, and is, for example, a semiconductor laser that emits excitation light having a wavelength of 375 nm and a power of 20 mW. The output light (excitation light) of the excitation laser light source 12 has energy higher than the band cap of the sample 6. Here, the fact that the excitation light has energy higher than the band cap of the sample 6 is a condition for changing the conductivity of the sample 6.
The excitation light emitted from the excitation laser light source 12 is intensity-modulated at a constant period (a constant frequency) by a modulator 14 (an example of excitation light intensity modulation means) constituted by an acousto-optic modulator or a chopper. The frequency of this intensity modulation is controlled by a synchronization signal output from the oscillator 13 with a constant period (a constant frequency: for example, about 1 kHz to several MHz). Further, the synchronization signal of the oscillator 13 (that is, the signal synchronized with the intensity modulation by the modulator 14) is also transmitted to the lock-in amplifier 15.
Further, the excitation light that has been intensity-modulated by the modulator 14 is reflected by the mirror 8, condensed by the lens 9 (condensing means), and passes through the minute aperture 3 a provided in the waveguide 3. Then, a minute measurement site (for example, a spot having a diameter of about 5 to 10 μm) on the surface of the sample 6 placed on the sample table 7 through the end (opening) of the waveguide antenna 5 close to the sample 6. ). Thereby, excitation carriers are generated in a minute excitation light irradiation region (measurement site) in the sample 6.
The optical device (mirror 8 and lens 9) that collects the excitation light output from the excitation laser light source 12 and guides it to the sample 6 is an example of the excitation light irradiation means.

マイクロ波発振器1は、励起光により励起された前記試料6に照射する電磁波であるマイクロ波を出力するものである。このマイクロ波発振器1には、例えば、周波数26GHzのガンダイオード等を採用することができる。
導波管アンテナ5は、図1に示すように、その端部(開口部)が前記試料6に近接配置され、マイクロ波を伝送する。この導波管アンテナ5は、導波管3を経由してくるマイクロ波(電磁波)を前記試料6側へ導き、前記試料6に近接する端部(開口部)においてマイクロ波を前記試料6に放射するとともに、その試料6に反射したマイクロ波(以下、反射マイクロ波という)を捕捉して、再び導波管3に導く。
マイクロ波発振器1から出射されたマイクロ波は、サーキュレータ2により導波管3に伝送され、さらにその導波管3の途中に設けられたE−Hチューナ4を経由し、導波管3と連通する導波管アンテナ5を通じて、励起光により励起された前記試料6に照射される。
なお、マイクロ波発振器1、サーキュレータ2、導波管3及び導波管アンテナ5が、前記試料6にマイクロ波(電磁波)を照射する電磁波照射手段の一例である。
そして、導波管アンテナ5により捕捉された反射マイクロ波は、今度は導波管アンテナ5からE−Hチューナ4を経てサーキュレータ2に到達し、さらに、このサーキュレータ2によりマイクロ波検出器10に伝送される。
マイクロ波検出器10は、反射マイクロ波を入力し、その反射マイクロ波の強度に応じた電気信号(電流或いは電圧)を生成して出力する検波器である(マイクロ波強度検出手段の一例)。このマイクロ波検出器10により検出される反射マイクロ波の強度は、後述するように、前記試料6に対する励起光の照射により変化する。
The microwave oscillator 1 outputs a microwave that is an electromagnetic wave applied to the sample 6 excited by excitation light. For the microwave oscillator 1, for example, a Gunn diode having a frequency of 26 GHz can be employed.
As shown in FIG. 1, the waveguide antenna 5 has an end (opening) disposed close to the sample 6 and transmits microwaves. The waveguide antenna 5 guides the microwave (electromagnetic wave) passing through the waveguide 3 to the sample 6 side, and transmits the microwave to the sample 6 at an end portion (opening portion) close to the sample 6. While radiating, the microwave reflected on the sample 6 (hereinafter referred to as reflected microwave) is captured and guided again to the waveguide 3.
Microwaves emitted from the microwave oscillator 1 are transmitted to the waveguide 3 by the circulator 2 and further communicated with the waveguide 3 via the EH tuner 4 provided in the middle of the waveguide 3. The sample 6 excited by the excitation light is irradiated through the waveguide antenna 5.
The microwave oscillator 1, the circulator 2, the waveguide 3, and the waveguide antenna 5 are examples of electromagnetic wave irradiation means for irradiating the sample 6 with microwaves (electromagnetic waves).
Then, the reflected microwave captured by the waveguide antenna 5 reaches the circulator 2 from the waveguide antenna 5 through the EH tuner 4 and is further transmitted to the microwave detector 10 by the circulator 2. Is done.
The microwave detector 10 is a detector that receives a reflected microwave and generates and outputs an electric signal (current or voltage) corresponding to the intensity of the reflected microwave (an example of a microwave intensity detecting means). The intensity of the reflected microwave detected by the microwave detector 10 changes as the sample 6 is irradiated with excitation light, as will be described later.

ロックインアンプ15(変調周期成分抽出手段の一例)は、発振器13から得た同期信号(励起光の強度変調に同期した信号)に基いて、増幅器11により増幅されたマイクロ波検出器10の検出信号(反射マイクロ波の強度信号)から、励起光の強度変調に同期した成分を抽出し、その抽出信号を計算機16へ伝送する。
図3は、当該結晶性測定装置X1における励起光及び反射マイクロ波の各強度の変化を模式的に表した図である。
図3に示すように、前記試料6に照射される励起光が、一定周期での強度変調が施されている場合、マイクロ波検出器10により検出される反射マイクロ波の強度も、励起光の強度変調に同期して(同じ周期で)変化する。
ここで、ロックインアンプ15により、励起光の照射によって変化する反射マイクロ波の強度(マイクロ波検出器10の検出強度)から、励起光の強度変調に用いている周期信号(発振器13が出力する一定周期の信号)に基づいて、その信号に同期した周期成分(励起光の強度変調に同期した周期成分)を抽出すれば、励起光による反射マイクロ波の強度の変化成分が得られる。このロックインアンプ15により、例えば、励起光の強度変調周波数が1MHz程度である場合に、10Hz程度の測定周波数帯域(即ち、概ね1MHz±5Hzの帯域)で反射マイクロ波の強度(励起光の強度変調に同期した周期成分)を測定できる。これにより、例えば電源ノイズ(約50Hz或いは約60Hzのノイズ)等の不要なノイズ成分を除去して測定できる。 なお、図3には、正弦波状に強度変調を行った励起光の例を示しているが、方形波状(ON/OFF)に強度変調を行った励起光を前記試料6に照射することも考えられる。

The lock-in amplifier 15 (an example of a modulation period component extracting unit) detects the microwave detector 10 amplified by the amplifier 11 based on the synchronization signal obtained from the oscillator 13 (a signal synchronized with the intensity modulation of the excitation light). A component synchronized with the intensity modulation of the excitation light is extracted from the signal (intensity signal of the reflected microwave), and the extracted signal is transmitted to the computer 16.
FIG. 3 is a diagram schematically showing changes in the intensity of the excitation light and the reflected microwave in the crystallinity measuring apparatus X1.
As shown in FIG. 3, when the excitation light applied to the sample 6 has been subjected to intensity modulation at a constant period, the intensity of the reflected microwave detected by the microwave detector 10 is also the same as that of the excitation light. It changes in synchronism with the intensity modulation (with the same period).
Here, the periodic signal used by the intensity modulation of the excitation light (output from the oscillator 13) is output from the intensity of the reflected microwave (detection intensity of the microwave detector 10) changed by the irradiation of the excitation light by the lock- in amplifier 15. If a periodic component synchronized with the signal (periodic component synchronized with the intensity modulation of the excitation light) is extracted on the basis of the signal having a constant period, a component that changes the intensity of the reflected microwave due to the excitation light can be obtained. With this lock-in amplifier 15, for example, when the intensity modulation frequency of the excitation light is about 1 MHz, the intensity of the reflected microwave (the intensity of the excitation light) in the measurement frequency band of about 10 Hz (that is, the band of about 1 MHz ± 5 Hz). Periodic component synchronized with modulation) can be measured. Thereby, unnecessary noise components such as power supply noise (about 50 Hz or about 60 Hz) can be removed and measured. FIG. 3 shows an example of excitation light that has been intensity-modulated in a sine wave shape, but it is also conceivable that the sample 6 is irradiated with excitation light that has been intensity-modulated in a square wave shape (ON / OFF). It is done.

ここで、励起光をパルス光とし、その励起光(パルス光)照射により変化する反射マイクロ波の強度について、そのピーク値や、ピークが生じてから所定レベルまで減衰までの時間(減衰時間)も、前記試料6の結晶性を評価する指標値となる。
しかしながら、パルス状の励起光(例えば、パルス幅10ns)を照射した場合、反射マイクロ波の強度変化の時定数は1μs以下となる場合がある。このため、そのような反射マイクロ波の強度のピーク値や減衰時間を検出するためには、マイクロ波検出器10及びその検出信号を取り込む機器は、10MHz以上の測定周波数帯域での測定が必要となる。
一方、結晶性測定装置X1では、前述したように、例えば10Hz程度の測定周波数帯域での測定が可能である。
一般に、ノイズは、測定周波数帯域の平方根に比例するので、結晶性測定装置X1によれば、パルス状の励起光を用いる場合に比べ、S/N比を1000倍以上((10×106/10)1/2以上)に高めることができる。その結果、レンズ9によって前記試料6に対する励起光の照射スポットをごく小さくしても、励起光の照射により変化する反射マイクロ波の強度を十分な感度で(低ノイズで)測定できる。
計算機16は、CPU、記憶部、入出力信号のインターフェース等を備え、CPUが所定のプログラムを実行することにより、ロックインアンプ15の出力信号(反射マイクロ波の強度の励起光変調周期成分の信号)の取り込み処理や、マイクロ波発振器1、励起レーザ光源12、発振器13、変調器14及び試料台7等の制御を行う。
ロックインアンプ15の出力信号は、計算機16に取り込まれ、計算機16が備える記憶部に記憶される。
試料台7は、例えばX−Yステージ等により構成され、前記試料6の二次元方向の位置決めを行うものである。この試料台7により、前記試料6における測定部位(励起光の照射位置)の位置決めがなされる。
Here, the excitation light is pulsed light, and the intensity of the reflected microwave that changes due to the irradiation of the excitation light (pulsed light), the peak value, and the time (attenuation time) from when the peak occurs until attenuation is reached. This is an index value for evaluating the crystallinity of the sample 6.
However, when pulsed excitation light (for example, pulse width 10 ns) is irradiated, the time constant of the intensity change of the reflected microwave may be 1 μs or less. For this reason, in order to detect the peak value and the decay time of the intensity of such reflected microwaves, the microwave detector 10 and the device that captures the detection signal need to be measured in a measurement frequency band of 10 MHz or more. Become.
On the other hand, as described above, the crystallinity measuring apparatus X1 can perform measurement in a measurement frequency band of about 10 Hz, for example.
In general, noise is proportional to the square root of the measurement frequency band. Therefore, according to the crystallinity measuring apparatus X1, the S / N ratio is 1000 times or more ((10 × 10 6 / 10) More than 1/2 ). As a result, even if the irradiation spot of the excitation light on the sample 6 is made very small by the lens 9, the intensity of the reflected microwave that changes due to the irradiation of the excitation light can be measured with sufficient sensitivity (with low noise).
The computer 16 includes a CPU, a storage unit, an input / output signal interface, and the like. When the CPU executes a predetermined program, the output signal of the lock-in amplifier 15 (the signal of the excitation light modulation period component of the intensity of the reflected microwave) is obtained. ) And the control of the microwave oscillator 1, the excitation laser light source 12, the oscillator 13, the modulator 14, the sample stage 7, and the like.
The output signal of the lock-in amplifier 15 is taken into the computer 16 and stored in a storage unit provided in the computer 16.
The sample stage 7 is constituted by, for example, an XY stage or the like, and performs positioning of the sample 6 in a two-dimensional direction. The sample stage 7 positions the measurement site (excitation light irradiation position) in the sample 6.

次に、図2に示すフローチャートを参照しつつ、結晶性測定装置X1による前記試料6の測定手順について説明する。以下、ステップS1、S2、…は処理手順(ステップ)の識別符号を表す。また、計算機16が実行する処理は、計算機16のCPU(プロセッサ)が所定のプログラムを実行することにより実現される。
まず、計算機16は、試料台7を制御することにより、前記試料6の測定位置(励起光の照射位置)を設定する(S1)。
次に、計算機16は、マイクロ波発振器1を動作させ、前記試料6にマイクロ波を照射させる(S2、電磁波照射手順の一例)。
次に、計算機16は、励起レーザ光源12、発振器13及び変調器14を動作させることにより、励起光を前記変調器14により所定周期で強度変調し、強度変調後の励起光を前記試料6に照射させるとともに、ロックインアンプ15の検出信号(マイクロ波検出器10で検出された反射マイクロ波の強度信号から、励起光強度変調に同期する成分を抽出した信号)を取り込み、その信号値を記憶部に記憶させる(S3、励起光強度変調手順、励起光照射手順、電磁波強度検出手順及び変調周期成分抽出手順の一例)。
次に、計算機16は、予め定められた測定位置全てについて、当該試料6の測定部位の測定が終了したか否かを判別する(S4)。
Next, the measurement procedure of the sample 6 by the crystallinity measuring apparatus X1 will be described with reference to the flowchart shown in FIG. Hereinafter, steps S1, S2,... Represent identification codes of processing procedures (steps). Further, the processing executed by the computer 16 is realized by the CPU (processor) of the computer 16 executing a predetermined program.
First, the computer 16 sets the measurement position (excitation light irradiation position) of the sample 6 by controlling the sample stage 7 (S1).
Next, the calculator 16 operates the microwave oscillator 1 to irradiate the sample 6 with microwaves (S2, an example of an electromagnetic wave irradiation procedure).
Next, the calculator 16 operates the excitation laser light source 12, the oscillator 13, and the modulator 14 to modulate the intensity of the excitation light at a predetermined period by the modulator 14, and the intensity-modulated excitation light is applied to the sample 6. At the same time, the detection signal of the lock-in amplifier 15 (a signal obtained by extracting a component synchronized with the excitation light intensity modulation from the intensity signal of the reflected microwave detected by the microwave detector 10) is captured and the signal value is stored. (S3, an example of an excitation light intensity modulation procedure, an excitation light irradiation procedure, an electromagnetic wave intensity detection procedure, and a modulation period component extraction procedure).
Next, the computer 16 determines whether or not the measurement of the measurement site of the sample 6 has been completed for all the predetermined measurement positions (S4).

以降、計算機16は、全測定位置についての測定が終了したと判別するまで、前述したステップS1〜S4の処理を繰り返す。
そして、計算機16は、全測定位置についての測定が終了したと判別した場合、ステップS3で得た反射マイクロ波の強度値(励起光強度変調に同期した周期成分)に基づいて、前記試料6の結晶性の評価指標値を算出し、その算出結果を計算機16の記憶部に記録するとともに、所定の外部装置(例えば、表示装置等)に出力し(S5)、測定処理を終了させる。
ここで、結晶性の評価指標値は、例えば、ステップS3で得た各測定位置における反射マイクロ波の強度値の最大値や平均値等が考えられる。
このように、結晶性測定装置X1によれば、半導体からなる前記試料6(例えば、膜厚50nm程度のポリシリコン等)について、結晶性評価の指標となる測定値(反射電磁波の強度)を、高い空間分解能で(ごく微小な領域を)、非破壊及び非接触で、かつ短時間及び高精度で測定できる。
Thereafter, the computer 16 repeats the processes of steps S1 to S4 described above until it is determined that the measurement has been completed for all measurement positions.
When the calculator 16 determines that the measurement has been completed for all measurement positions, the calculator 16 determines the sample 6 based on the intensity value of the reflected microwave obtained in step S3 (periodic component synchronized with excitation light intensity modulation). A crystallinity evaluation index value is calculated, and the calculation result is recorded in the storage unit of the computer 16 and is output to a predetermined external device (for example, a display device) (S5), and the measurement process is terminated.
Here, as the crystallinity evaluation index value, for example, the maximum value or the average value of the intensity value of the reflected microwave at each measurement position obtained in step S3 can be considered.
Thus, according to the crystallinity measuring apparatus X1, the measured value (intensity of the reflected electromagnetic wave) serving as an index for evaluating the crystallinity of the sample 6 made of a semiconductor (for example, polysilicon having a film thickness of about 50 nm) is obtained. It can measure with high spatial resolution (very small area), non-destructive and non-contact, and in a short time and with high accuracy.

[第2実施形態]
次に、図4に示す概略構成図を参照しつつ、本発明の第2実施形態に係る薄膜半導体の結晶性測定装置X2(結晶性測定装置X2と記載する)について説明する。
図4は、結晶性測定装置X2の特徴部である導波管アンテナ5'の構成を表した図である。なお、結晶性測定装置X2は、前述した結晶性測定装置X1における導波管アンテナ5の部分を、図4に示す導波管アンテナ5'の部分に置き換えたものであり、その他の構成及び測定処理の内容は、前記結晶性測定装置X1と同じである。なお、図4に示す結晶性測定装置X2の構成要素のうち、前述の結晶性評価装置X1と同じものについては、図1と同じ符号を付している。
結晶性測定装置X2では、導波管3に連通する導波管アンテナ5'の前記試料6に近接する端部に、マイクロ波を遮蔽する導体からなる遮蔽部5'c(電磁波遮蔽部の一例)が形成され、その遮蔽部5'cには、マイクロ波を前記試料6に放射するとともに、そのマイクロ波の反射波(反射マイクロ波)を捕捉する微小開口5'bが形成されている。
さらに、励起光は、第1レンズ9aと第2レンズ9bとにより集光され、前記試料6の微小領域に照射される。第1レンズ9aは、励起光を導波管3に設けられた微小開口3aに通過させるために集光するレンズである。
また、第2レンズ9bは、導波管アンテナ5'内に設けられ、励起光を前記遮蔽部5'cに設けられた微小開口5'bに通過させるとともに、前記試料6の微小領域(測定部位)に照射させるために集光するレンズである。なお、第2レンズ9bは、その厚みが2〜3mm程度であり、マイクロ波の反射や吸収についてそれほど大きな影響を与えない。
これにより、前記試料6に対するマイクロ波の照射領域を比較的微小な領域に制限でき、前記試料6における励起光照射領域の周辺の領域の状態が測定値(反射マイクロ波の強度)に与える影響を極力小さくすることができる。その結果、さらに高い空間分解能で高精度の測定が可能となる。
ここで、微小開口5'bは、その大きさを、例えば、1mm(縦)×2mm(横)程度にする。
[Second Embodiment]
Next, a thin film semiconductor crystallinity measuring apparatus X2 (referred to as a crystallinity measuring apparatus X2) according to a second embodiment of the present invention will be described with reference to the schematic configuration diagram shown in FIG.
FIG. 4 is a diagram showing a configuration of a waveguide antenna 5 ′ that is a characteristic part of the crystallinity measuring apparatus X2. The crystallinity measuring apparatus X2 is obtained by replacing the portion of the waveguide antenna 5 in the crystallinity measuring apparatus X1 described above with the portion of the waveguide antenna 5 ′ shown in FIG. The content of the processing is the same as that of the crystallinity measuring apparatus X1. Of the constituent elements of the crystallinity measuring apparatus X2 shown in FIG. 4, the same reference numerals as those in FIG.
In the crystallinity measuring apparatus X2, a shield portion 5′c (an example of an electromagnetic wave shield portion) made of a conductor that shields microwaves is provided at an end portion of the waveguide antenna 5 ′ communicating with the waveguide 3 in the vicinity of the sample 6. ) Is formed, and in the shielding portion 5′c, a microscopic aperture 5′b that radiates the microwave to the sample 6 and captures the reflected wave (reflected microwave) of the microwave is formed.
Further, the excitation light is condensed by the first lens 9 a and the second lens 9 b and is irradiated on a minute region of the sample 6. The first lens 9 a is a lens that collects the excitation light so as to pass through the minute opening 3 a provided in the waveguide 3.
The second lens 9b is provided in the waveguide antenna 5 ′, and allows excitation light to pass through the minute opening 5′b provided in the shielding part 5′c. It is a lens that collects light to irradiate a part. Note that the second lens 9b has a thickness of about 2 to 3 mm, and does not significantly affect the reflection and absorption of the microwave.
Thereby, the microwave irradiation area | region with respect to the said sample 6 can be restrict | limited to a comparatively minute area | region, and the influence of the state of the area | region around the excitation light irradiation area | region in the said sample 6 has on the measured value (intensity of a reflected microwave). It can be made as small as possible. As a result, it is possible to perform highly accurate measurement with higher spatial resolution.
Here, the size of the minute opening 5′b is, for example, about 1 mm (vertical) × 2 mm (horizontal).

[第3実施形態]
次に、図5に示す概略構成図を参照しつつ、本発明の第3実施形態に係る薄膜半導体の結晶性測定装置X3(以下、結晶性測定装置X3と記載する)について説明する。
図5は、結晶性測定装置X3の特徴部である空洞共振器50の構成を表した図である。なお、結晶性測定装置X3は、前述した結晶性測定装置X1における導波管アンテナ5の部分を、図5に示す空洞共振器50の部分に置き換えたものであり、その他の構成及び測定処理の内容は、前記結晶性測定装置X1と同じである。なお、図5に示す結晶性測定装置X3の構成要素のうち、前述の結晶性評価装置X1及びX2と同じものについては、図1及び図4と同じ符号を付している。
空洞共振器50は、その内部で所定の共振条件を満たす特定の周波数をもったマイクロ波のみを共振させる(存在させる)ものである。
結晶性測定装置X3では、マイクロ波は、サーキュレータ2(図1参照)から同軸ケーブル30を通じて空洞共振器50に伝送され、同軸ケーブル30と空洞共振器50とを結合する結合器60を通じて、空洞共振器50内に入射される。
空洞共振器50の両端(マイクロ波の入射側と前記試料6に近接する側)には、それぞれ微小開口51、52が設けられている。そして、空洞共振器50内のマイクロ波は、空洞共振器50の前記試料6に近接する端部に設けられた微小開口52を通じて前記試料6に放射される。また、その反射波(反射マイクロ波)は、同じ微小開口52で捕捉されて空洞共振器50内に入り、結合器60を通じて同軸ケーブル30に入り、サーキュレータ2(図1参照)へ伝送される。
一方、励起光は、結晶性測定装置X2(図4)と同様に、第1レンズ9aと第2レンズ9bとにより集光され、前記試料6の微小領域に照射される。第1レンズ9aは、励起光を空洞共振器50の一端に設けられた微小開口51に通過させるために集光するレンズである。
また、第2レンズ9bは、空洞共振器50内に設けられ、励起光を、前記試料6に近接する側の端部に設けられた微小開口52に通過させるとともに、前記試料6の微小領域(測定部位)に照射させるために集光するレンズである。
このような構成によっても、前記試料6に対するマイクロ波の照射領域を比較的微小な領域に制限でき、さらに高い空間分解能で高精度の測定が可能となる。
また、前記試料6に対するマイクロ波の照射手段として空洞共振器50を用いることにより、マイクロ波発振器1が出力するマイクロ波のパワーが小さくても、パワーのロスを抑えて効率的にマイクロ波を前記試料6に照射できる。
[Third Embodiment]
Next, a thin film semiconductor crystallinity measuring apparatus X3 (hereinafter referred to as a crystallinity measuring apparatus X3) according to a third embodiment of the present invention will be described with reference to the schematic configuration diagram shown in FIG.
FIG. 5 is a diagram showing the configuration of the cavity resonator 50 that is a characteristic part of the crystallinity measuring apparatus X3. The crystallinity measuring device X3 is obtained by replacing the portion of the waveguide antenna 5 in the above-described crystallinity measuring device X1 with the portion of the cavity resonator 50 shown in FIG. The content is the same as that of the crystallinity measuring apparatus X1. Of the constituent elements of the crystallinity measuring apparatus X3 shown in FIG. 5, the same components as those of the crystallinity evaluation apparatuses X1 and X2 described above are denoted by the same reference numerals as those in FIGS.
The cavity resonator 50 resonates (exists) only a microwave having a specific frequency that satisfies a predetermined resonance condition.
In the crystallinity measuring apparatus X 3, the microwave is transmitted from the circulator 2 (see FIG. 1) to the cavity resonator 50 through the coaxial cable 30, and through the coupler 60 that couples the coaxial cable 30 and the cavity resonator 50. Incident into the vessel 50.
Micro openings 51 and 52 are provided at both ends of the cavity resonator 50 (the microwave incident side and the side close to the sample 6), respectively. Then, the microwave in the cavity 50 is radiated to the sample 6 through a minute opening 52 provided at the end of the cavity 50 close to the sample 6. The reflected wave (reflected microwave) is captured by the same minute opening 52 and enters the cavity resonator 50, enters the coaxial cable 30 through the coupler 60, and is transmitted to the circulator 2 (see FIG. 1).
On the other hand, the excitation light is condensed by the first lens 9a and the second lens 9b and irradiated onto a minute region of the sample 6 as in the crystallinity measuring apparatus X2 (FIG. 4). The first lens 9 a is a lens that condenses the excitation light so as to pass through a minute opening 51 provided at one end of the cavity resonator 50.
The second lens 9b is provided in the cavity resonator 50, and allows excitation light to pass through a minute opening 52 provided at an end portion on the side close to the sample 6, and a minute region of the sample 6 ( It is a lens that collects light to irradiate the measurement site.
Even with such a configuration, the microwave irradiation area on the sample 6 can be limited to a relatively small area, and high-precision measurement can be performed with higher spatial resolution.
In addition, by using the cavity resonator 50 as the microwave irradiation means for the sample 6, even if the microwave power output from the microwave oscillator 1 is small, the microwave is efficiently transmitted while suppressing power loss. The sample 6 can be irradiated.

ポリシリコンや単結晶シリコン等の半導体からなる薄膜試料の結晶性を評価するための測定装置に利用可能である。   The present invention can be used in a measuring apparatus for evaluating the crystallinity of a thin film sample made of a semiconductor such as polysilicon or single crystal silicon.

本発明の第1実施形態に係る薄膜半導体の結晶性測定装置X1の概略構成を表す図。The figure showing schematic structure of the crystallinity measuring apparatus X1 of the thin film semiconductor which concerns on 1st Embodiment of this invention. 薄膜半導体の結晶性測定装置X1による測定手順を表すフローチャート。The flowchart showing the measurement procedure by the crystallinity measuring apparatus X1 of a thin film semiconductor. 薄膜半導体の結晶性測定装置X1における励起光及び反射マイクロ波の各強度の変化を表す図。The figure showing the change of each intensity | strength of the excitation light and reflected microwave in the crystallinity measuring apparatus X1 of a thin film semiconductor. 本発明の第2実施形態に係る薄膜半導体の結晶性測定装置X2の特徴部の概略構成を表す図。The figure showing schematic structure of the characteristic part of the crystallinity measuring apparatus X2 of the thin film semiconductor which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る薄膜半導体の結晶性測定装置X3の特徴部の概略構成を表す図。The figure showing schematic structure of the characteristic part of the crystallinity measuring apparatus X3 of the thin film semiconductor which concerns on 3rd Embodiment of this invention.

符号の説明Explanation of symbols

X1、X2、X3…薄膜半導体の結晶性測定装置
1…マイクロ波発振器
2…サーキュレータ
3…導波管
4…E−Hチューナ
5、5'…導波管アンテナ
5'c…遮蔽部
6…薄膜試料
7…試料台
8…ミラー
9、9a、9b…レンズ
10…マイクロ波検出器
11…増幅器
12…励起レーザ光源
13…発振器
14…変調器
15…ロックオンアンプ
16…計算機
30…同軸ケーブル
50…空洞共振器
60…結合器
S1、S2、・・…処理手順(ステップ)
X1, X2, X3 ... Thin film semiconductor crystallinity measuring apparatus 1 ... Microwave oscillator 2 ... Circulator 3 ... Waveguide 4 ... E-H tuner 5, 5 '... Waveguide antenna 5'c ... Shielding part 6 ... Thin film Sample 7 ... Sample stand 8 ... Mirror 9, 9a, 9b ... Lens 10 ... Microwave detector 11 ... Amplifier 12 ... Excitation laser light source 13 ... Oscillator 14 ... Modulator 15 ... Lock-on amplifier 16 ... Computer 30 ... Coaxial cable 50 ... Cavity resonator 60... Couplers S1, S2,... Processing procedure (step)

Claims (7)

基板上に形成されたシリコンまたは単結晶シリコンの表層シリコン層からなる薄膜試料の結晶性評価のための測定を行う薄膜半導体の結晶性測定装置であって、
前記薄膜試料に対しマイクロ波を照射するマイクロ波照射手段と、
前記薄膜試料のバンドキャップ以上のエネルギーの励起光を所定周期で強度変調する励起光強度変調手段と、
前記励起光強度変調手段により強度変調された励起光を、前記マイクロ波の波長より小さい局所的な領域に制限するために集光して前記薄膜試料に照射する励起光照射手段と、
前記励起光の照射により変化する、前記薄膜試料からの前記マイクロ波の反射波の強度を検出するマイクロ波強度検出手段と、
ノイズを除去するために、前記マイクロ波強度検出手段による検出強度から前記励起光の強度変調に同期した周期成分を抽出する変調周期成分抽出手段と、
前記変調周期成分抽出手段により抽出された前記周期成分に基づいて得られた前記マイクロ波の反射波の強度の変化成分における強度値に基づいて前記薄膜試料の結晶性の評価指標値を算出する計算手段と、
を具備し、
前記基板上に形成されたシリコンの厚みは、数nm〜数十nmであり、
前記単結晶シリコンの表層シリコン層の厚みは、数μm以下である
ことを特徴とする薄膜半導体の結晶性測定装置。
A thin film semiconductor crystallinity measuring apparatus for measuring a crystallinity of a thin film sample formed of a surface silicon layer of silicon or single crystal silicon formed on a substrate,
Microwave irradiating means for irradiating microwave to said thin film sample,
Excitation light intensity modulating means for modulating the intensity of excitation light having energy equal to or higher than the band cap of the thin film sample at a predetermined period;
Excitation light irradiation means for condensing and irradiating the thin film sample with the excitation light intensity-modulated by the excitation light intensity modulation means in order to limit it to a local region smaller than the wavelength of the microwave ;
A microwave intensity detecting means for detecting the intensity of the reflected wave of the microwave from the thin film sample, which is changed by irradiation of the excitation light;
To remove the noise, the detection intensity of the microwave intensity detecting means, a modulation period component extracting means for extracting the synchronous with periodic components in the intensity modulation of the excitation light,
Calculation for calculating the evaluation index value of the crystallinity of the thin film sample based on the intensity value in the intensity changing component of the reflected wave intensity of the microwave obtained based on the periodic component extracted by the modulation periodic component extracting means Means,
Equipped with,
The thickness of silicon formed on the substrate is several nm to several tens of nm,
The thin-film semiconductor crystallinity measuring device, wherein the surface silicon layer of the single crystal silicon has a thickness of several micrometers or less .
前記マイクロ波照射手段が導波管アンテナを具備し、該導波管アンテナの前記薄膜試料に近接する端部において、前記マイクロ波を前記薄膜試料に放射するとともに該マイクロ波の反射波を捕捉してなり、
前記導波管アンテナの内部に、前記励起光照射手段に含まれるレンズが設けられ、前記励起光は、前記レンズにより集光され、前記薄膜試料に照射される
請求項1に記載の薄膜半導体の結晶性測定装置。
The microwave irradiation means comprises a waveguide antenna at the end adjacent to the thin film sample of the waveguide antenna captures the reflected wave of the microwave while emitting the microwaves into the thin film sample Do Te Ri,
The lens included in the excitation light irradiation unit is provided inside the waveguide antenna, and the excitation light is collected by the lens and irradiated to the thin film sample. For measuring crystallinity of thin film semiconductors.
前記励起光照射手段が、前記導波管アンテナの前記薄膜試料に近接する端部および前記レンズを通じて前記励起光を前記薄膜試料に照射してなる請求項2に記載の薄膜半導体の結晶性測定装置。 The crystallinity measuring apparatus for a thin film semiconductor according to claim 2, wherein the excitation light irradiation means irradiates the thin film sample with the excitation light through an end portion of the waveguide antenna adjacent to the thin film sample and the lens. . 前記導波管アンテナの前記薄膜試料に近接する端部に、マイクロ波を遮蔽するマイクロ波遮蔽部が形成され、該マイクロ波遮蔽部に前記マイクロ波を前記薄膜試料に放射するとともに該マイクロ波の反射波を捕捉する開口が形成されてなる請求項2又は3に記載の薄膜半導体の結晶性測定装置。 Its end proximate to the thin film sample of the waveguide antenna, is formed a microwave shielding section for shielding microwaves of the microwave with the microwave into the microwave shielding section radiates the thin film sample 4. The thin film semiconductor crystallinity measuring apparatus according to claim 2, wherein an opening for capturing the reflected wave is formed. 前記マイクロ波照射手段が、内部で前記マイクロ波を共振させる空洞共振器を具備し、該空洞共振器の前記薄膜試料に近接する端部に形成された開口において、前記マイクロ波を前記薄膜試料に放射するとともに該マイクロ波の反射波を捕捉してなる請求項1に記載の薄膜半導体の結晶性測定装置。 The microwave irradiation means comprises a cavity resonator for resonating the microwaves inside, at an opening formed in the end proximate the thin-film specimen of the cavity resonator, the microwaves into the thin film sample The thin-film semiconductor crystallinity measuring device according to claim 1, wherein the thin-film semiconductor crystallinity measuring device is configured to radiate and capture a reflected wave of the microwave . 前記基板上に形成されたシリコンは、ガラス基板上に形成されたポリシリコンであり、
前記単結晶シリコンの表層シリコン層は、エピウェハにおける表層シリコン層またはSOIウェハにおける表層シリコン層であること
を特徴とする請求項1ないし請求項5のいずれか1項に記載の薄膜半導体の結晶性測定装置。
The silicon formed on the substrate is polysilicon formed on a glass substrate,
The crystallinity measurement of a thin film semiconductor according to any one of claims 1 to 5, wherein the surface silicon layer of the single crystal silicon is a surface silicon layer in an epi wafer or a surface silicon layer in an SOI wafer. apparatus.
基板上に形成されたシリコンまたは単結晶シリコンの表層シリコン層からなる薄膜試料の結晶性評価のための測定を行う薄膜半導体の結晶性測定方法であって、
前記薄膜試料に対しマイクロ波を照射するマイクロ波照射手順と、
前記薄膜試料のバンドキャップ以上のエネルギーの励起光を所定周期で強度変調する励起光強度変調手順と、
前記励起光強度変調手順により強度変調された励起光を、前記マイクロ波の波長より小さい局所的な領域に制限するために集光して前記薄膜試料に照射する励起光照射手順と、
前記励起光の照射により変化する、前記薄膜試料からの前記マイクロ波の反射波の強度を検出するマイクロ波強度検出手順と、
ノイズを除去するために、前記マイクロ波強度検出手順による検出強度から前記励起光の強度変調に同期した周期成分を抽出する変調周期成分抽出手順と、
前記変調周期成分抽出手順により抽出された前記周期成分に基づいて得られた前記マイクロ波の反射波の強度の変化成分における強度値に基づいて前記薄膜試料の結晶性の評価指標値を算出する計算手順と、
を有し、
前記基板上に形成されたシリコンの厚みは、数nm〜数十nmであり、
前記単結晶シリコンの表層シリコン層の厚みは、数μm以下である
ことを特徴とする薄膜半導体の結晶性測定方法。
A method for measuring the crystallinity of a thin film semiconductor for measuring the crystallinity of a thin film sample comprising a surface silicon layer of silicon or single crystal silicon formed on a substrate,
A microwave irradiation procedure to irradiation with microwaves to said thin film sample,
An excitation light intensity modulation procedure for intensity-modulating excitation light having an energy equal to or higher than the band cap of the thin film sample at a predetermined period;
Excitation light irradiation procedure for condensing and irradiating the thin film sample with the excitation light intensity-modulated by the excitation light intensity modulation procedure in order to limit it to a local region smaller than the wavelength of the microwave ,
A microwave intensity detection procedure for detecting an intensity of a reflected wave of the microwave from the thin film sample, which is changed by irradiation of the excitation light;
To remove the noise, the detection intensity of the microwave intensity detection procedure, the modulation period component extracting procedure for extracting the synchronous with periodic components in the intensity modulation of the excitation light,
Calculation for calculating the evaluation index value of the crystallinity of the thin film sample based on the intensity value in the intensity changing component of the reflected wave intensity of the microwave obtained based on the periodic component extracted by the modulation periodic component extraction procedure Procedure and
I have a,
The thickness of silicon formed on the substrate is several nm to several tens of nm,
The method for measuring the crystallinity of a thin film semiconductor, wherein the thickness of the surface silicon layer of the single crystal silicon is several micrometers or less .
JP2006229803A 2006-08-25 2006-08-25 Thin film semiconductor crystallinity measuring apparatus and method Active JP5301770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229803A JP5301770B2 (en) 2006-08-25 2006-08-25 Thin film semiconductor crystallinity measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229803A JP5301770B2 (en) 2006-08-25 2006-08-25 Thin film semiconductor crystallinity measuring apparatus and method

Publications (2)

Publication Number Publication Date
JP2008051719A JP2008051719A (en) 2008-03-06
JP5301770B2 true JP5301770B2 (en) 2013-09-25

Family

ID=39235901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229803A Active JP5301770B2 (en) 2006-08-25 2006-08-25 Thin film semiconductor crystallinity measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP5301770B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5389586B2 (en) * 2009-09-24 2014-01-15 株式会社神戸製鋼所 Semiconductor thin film crystallinity evaluation method and crystallinity evaluation apparatus
JP5350345B2 (en) 2010-09-22 2013-11-27 株式会社神戸製鋼所 Apparatus and method for evaluating crystallinity of thin film semiconductor
JP5882801B2 (en) 2012-03-16 2016-03-09 株式会社神戸製鋼所 Semiconductor crystallinity evaluation apparatus and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114543A (en) * 1984-11-09 1986-06-02 Hitachi Ltd Semiconductor evaluating unit
JPS61152033A (en) * 1984-12-26 1986-07-10 Hitachi Ltd Measuring device for lifetime of minority carrier in semiconductor
US4652757A (en) * 1985-08-02 1987-03-24 At&T Technologies, Inc. Method and apparatus for optically determining defects in a semiconductor material
JPH0666368B2 (en) * 1987-07-14 1994-08-24 工業技術院長 Semiconductor evaluation equipment
JPH067564B2 (en) * 1988-09-07 1994-01-26 三菱マテリアル株式会社 Method for measuring semiconductor characteristics of wafer surface
JPH07105427B2 (en) * 1992-10-19 1995-11-13 学校法人幾徳学園 Semiconductor material lifetime evaluation method and device
JPH06275692A (en) * 1993-03-04 1994-09-30 Sony Corp Method and apparatus for measuring lifetime
JP3648019B2 (en) * 1997-07-03 2005-05-18 株式会社神戸製鋼所 Minority carrier lifetime measurement device
JP4441381B2 (en) * 2004-10-29 2010-03-31 三菱電機株式会社 Method for measuring surface carrier recombination velocity
JP2006196621A (en) * 2005-01-12 2006-07-27 Sharp Corp Lifetime measuring apparatus and its measuring method

Also Published As

Publication number Publication date
JP2008051719A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP2008191123A (en) Crystallinity measuring instrument for thin film semiconductor, and method therefor
KR101465377B1 (en) Thin-film semiconductor crystallinity evaluation apparatus, using m-pcd method
WO2010024324A1 (en) Semiconductor inspection device and inspection method
KR101648696B1 (en) Evaluation device for oxide semiconductor thin film
CN111326433B (en) Semiconductor inspection apparatus and inspection method
US20210270733A1 (en) Method and system for performing terahertz near-field measurements
US9383321B2 (en) Inspection apparatus and inspection method
JP5301770B2 (en) Thin film semiconductor crystallinity measuring apparatus and method
JP2007333640A (en) Apparatus and method for measuring semiconductor electrical characteristic
CN103730386B (en) Semiconductor silicon wafer laser annealing online detection method based on photocarrier radiation technology
JPWO2005022180A1 (en) Method and apparatus for measuring electric field distribution of semiconductor device
JP5580251B2 (en) Wafer bonding strength inspection apparatus and method
JP5358373B2 (en) Semiconductor thin film crystallinity evaluation method and crystallinity evaluation apparatus
JPH09243569A (en) Apparatus and method for evaluating semiconductor substrate
US9645045B2 (en) SHG imaging technique for assessing hybrid EO polymer/silicon photonic integrated circuits
JP5389586B2 (en) Semiconductor thin film crystallinity evaluation method and crystallinity evaluation apparatus
JP2013170864A (en) Inspection device and inspection method
WO2011108518A1 (en) Electromagnetic wave wavefront shaping element and electromagnetic wave imaging device using the same, and method of electromagnetic wave imaging
JP4885655B2 (en) Polysilicon thin film crystallinity measuring apparatus and method
JP5333150B2 (en) Electrostatic analysis method and electrostatic analysis apparatus
JP2011169615A (en) Quasi-electrostatic field analyzer and quasi-electrostatic field analysis method
US20240183796A1 (en) Apparatus for inspecting surface of object
CN103311147B (en) Semiconducting crystal evaluating apparatus and semiconducting crystal evaluation methodology
JPH11281576A (en) Device for measuring photo luminescence in crystal
TW200411167A (en) Detection method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081003

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Ref document number: 5301770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250