JP2003314425A - Pump turbine with splitter runner - Google Patents

Pump turbine with splitter runner

Info

Publication number
JP2003314425A
JP2003314425A JP2002122959A JP2002122959A JP2003314425A JP 2003314425 A JP2003314425 A JP 2003314425A JP 2002122959 A JP2002122959 A JP 2002122959A JP 2002122959 A JP2002122959 A JP 2002122959A JP 2003314425 A JP2003314425 A JP 2003314425A
Authority
JP
Japan
Prior art keywords
runner
pump
turbine
short
splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002122959A
Other languages
Japanese (ja)
Other versions
JP3782752B2 (en
Inventor
Shigemi Umeda
成実 梅田
Kotaro Tezuka
光太郎 手塚
Yasuyuki Enomoto
保之 榎本
Hidetada Arai
秀忠 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP2002122959A priority Critical patent/JP3782752B2/en
Priority to CNB031229743A priority patent/CN1266379C/en
Priority to MYPI20031524A priority patent/MY134358A/en
Publication of JP2003314425A publication Critical patent/JP2003314425A/en
Application granted granted Critical
Publication of JP3782752B2 publication Critical patent/JP3782752B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pump turbine having a splitter runner wherein a low lift operating range is expanded to increase a pump efficiency by effectively suppressing a cavitation occurring on a runner vane during a low lift operation. <P>SOLUTION: This pump turbine having the splitter runner is formed so that the edge lines of short vanes 18 and a band 21 on the connection point side among the edge lines LE of the short vanes 18 in height direction at the front edge 19 during the operation of the pump are positioned in a direction reverse to the rotating direction of the runner during the operation of the pump on the basis of the connection point J<SB>1</SB>of a radial radiating line RL<SB>1</SB>radially extending from the center line of a spindle in radial direction through the connection point J<SB>1</SB>between the short vanes 18 and a crown 20 with the short vanes 18 and the crown 20. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、長翼と短翼を周方
向に沿って交互に配置するスプリッタランナを備えるポ
ンプ水車に係り、特に短翼のポンプ運転時における入口
側の縁部の形状に改良を加えるスプリッタランナを備え
るポンプ水車に関する。 【0002】 【従来の技術】一般にポンプ水車は、ランナの回転方向
を変えることにより、発電運転およびポンプ運転のいず
れにも自由に切り替えることができるようになってい
る。 【0003】ポンプ水車は、発電運転中、渦巻状のケー
シングに流入する流水をガイドベーンを介してランナに
案内し、ここでランナを回転駆動させ、その際に発生す
る回転トルクを主軸を介して発電機に与えるようになっ
ている。 【0004】また、ポンプ運転中、ポンプ水車は、ラン
ナを発電電動機の駆動力により、発電運転とは逆方向に
回転駆動させ、吸出管の流水をランナ室に案内させ、こ
こでランナから流水にエネルギが与えられ、ガイドベー
ンおよび渦巻状のケーシングを介して上池(図示せず)
に揚水させるようになっている。 【0005】このように、発電運転およびポンプ運転の
両運転を自由に切り替えることのできるポンプ水車のラ
ンナは、周方向に沿って等ピッチで配置されるランナベ
ーンを複数枚備えており、これらのランナベーンがそれ
ぞれの上下を、主軸(回転軸)側に設けるクラウンと吸
出管側に設けるバンドとの間に支持された構成となって
いる。 【0006】このような構成のランナを備えるポンプ水
車は、図6に示すようにクラウン8に固設する同一長さ
のランナベーン7をランナ3の周方向に沿って6枚〜7
枚設置するのが一般的であり(特開2000−1367
66公報)、その使用実績も数多くなっている。 【0007】しかし、最近のポンプ水車では、水車運転
時に落差や流量が変化した場合にも高効率な運転を可能
とするためや、水車運転時、またはポンプ運転時にラン
ナベーン7の入口側で発生するキャビテーションを抑制
する等の目的で、例えば図7および図8に示すように、
クラウン8に固設する長翼10のランナベーン7と隣の
長翼10のランナベーン7との間に短翼11のランナベ
ーン7を配置する、いわゆるスプリッタランナが提案さ
れている(特開2001−90650公報)。 【0008】なお、図8は、このようなスプリッタラン
ナを回転軸に垂直な平面に投影し、吸出管側から見たラ
ンナの投影線図で、実線が長翼10のランナベーン7で
あり、破線が短翼11のランナベーン7である。 【0009】図8に示したように、こういったスプリッ
タランナにおいては、回転軸に垂直な平面への投影図上
で、回転軸である主軸の中心点Oから、長翼10とクラ
ウン8端部の接続点Pを通る半径方向放射線RL
と、ポンプ運転時の長翼10の前縁(長翼ポンプ入口
端縁曲線)12とが一致していることが多く、主軸の中
心点O、長翼10とクラウン8端部との接続点P、お
よび長翼10とバンド9端部との接続点Qが半径方向
放射線RL上に配置されるように構成されている。そ
して、短翼11についてもこの点は同様であり、回転軸
に垂直な平面への投影図上で、回転軸である主軸の中心
点Oから、短翼11とクラウン8端部の接続点Pを通
る半径方向放射線RLと、ポンプ運転時の短翼11の
前縁(短翼ポンプ入口端縁曲線)13とが一致している
ことが多く、主軸の中心点O、短翼11とクラウン8端
部との接続点P、および短翼11とバンド9端部との
接続点Qが半径方向放射線RL上に配置されるよう
に構成されている。 【0010】スプリッタランナにおいては、長翼10、
短翼11をそれぞれ4〜6枚ずつ交互に設けることで通
常のポンプ水車よりもランナベーン7の枚数を多くして
ランナベーン7一枚当りの翼負荷を低減させ、かつ、特
にポンプ運転時の入口側においてランナベーン7の間の
流路が極端に狭くならないようにできる。しかしながら
短翼11の長さが短すぎる場合には、水車運転時に短翼
の翼負荷が減少してランナベーン7として有効に作用し
なかったり、また、短翼の入口側におけるキャビテーシ
ョン特性が悪化したりする恐れがあるため、短翼11の
長さは、ポンプ運転時の入口側(すなわち、水車運転時
の出口側)において隣り合う長翼10間で構成される入
口ポートに干渉しない範囲で長くすることが望ましく、
長翼11の70%〜80%としていることが多い。図9
は従来のスプリッタランナのバンド側におけるランナベ
ーン7の配置を外側から見た展開模式図であるが、この
図に示すように、短翼11のポンプ運転時における前縁
13の位置が、長翼10の前縁12と隣の長翼10の前
縁12とを結ぶ仮想前縁線ILEよりポンプ運転時にお
いて下流側に位置している。 【0011】このように、長翼10と短翼11とをラン
ナ3の周方向に沿って交互に配置するスプリッタタイプ
のランナ3を備えるポンプ水車は、ランナベーン1枚当
りの翼負荷を少なくさせるとともに、流水の整流効果を
向上させて翼負圧面の圧力低下を抑制し、流水の持つエ
ネルギの動力(回転トルク)への変換効率およびキャビ
テーション抑制を高めることのできる利点を持っている
ので、最近、にわかに注目され、研究開発が進められて
いる。 【0012】 【発明が解決しようとする課題】スプリッタタイプのラ
ンナ3を備えるポンプ水車は、図9に示すように、ポン
プ運転時、流水が長翼10に対し、設計時の相対速度W
のベクトル(破線)で流入するとき、長翼10の入口
取付角度と流水の流入角との食違いが少ないので、キャ
ビテーションを発生させていない。 【0013】しかし、運転状態が変り、ポンプ水車が低
揚程運転となると、揚水量は増加するため、ポンプ水車
には、流水が長翼10に対し相対速度Wのベクトル
(実線)で流入するようになる。このために長翼10の
圧力面14のうち前縁12周辺にキャビテーションCA
Vが発生し易くなるが、この傾向は特にバンド9側で顕
著である。 【0014】このような、低揚程でのポンプ運転時にラ
ンナベーン7入口のバンド9側圧力面に生じるキャビテ
ーションCAVは、長翼10のみを備えるポンプ水車、
スプリッタランナを備えるポンプ水車に関係なく発生す
るが、スプリッタランナを備えるポンプ水車では、図9
に示したように、長翼10のランナベーン7と隣の短翼
11のランナベーンとの流路幅FWが狭いために、キャ
ビテーションCAVが発生することによってこの部位に
おける流路が閉塞され易くなる。このため、従来のスプ
リッタランナを備えるポンプ水車においては、このよう
な低揚程運転時にはポンプ効率が著しく低下することと
なり、結果として低揚程側でのポンプ運転の運転範囲が
狭くなるという問題があった。 【0015】本発明は、このような事情に基づいてなさ
れたもので、低揚程運転時、ランナベーンに発生するキ
ャビテーションをより一層効果的に抑制し、結果として
より一層の低揚程運転幅を拡げ、ポンプ効率の向上を図
ったスプリッタタイプのランナを備えるポンプ水車を提
供することを目的とする。 【0016】 【課題を解決するための手段】本発明に係るスプリッタ
タイプのランナを備えるポンプ水車は、上述の目的を達
成するために、請求項1に記載したように、両端をクラ
ウンとバンドで支持され、ランナの周方向に沿って長翼
と短翼とを交互に配置するスプリッタランナを備えるポ
ンプ水車において、前記短翼のポンプ運転時の前縁にお
ける縁線は、前記縁線と前記バンドとの接続点側が、前
記スプリッタランナの回転中心から前記縁線と前記クラ
ウンとの接続点とを通る直線を基準に、ポンプ運転時の
前記スプリッタランナの回転方向と逆方向に位置するよ
うに形成されるものである。 【0017】 【発明の実施の形態】以下、本発明に係るスプリッタラ
ンナを備えるポンプ水車の実施形態を図面および図面に
付した符号を引用して説明する。 【0018】図1は、本発明に係るスプリッタランナを
備えるポンプ水車の第1実施形態を示す図である。な
お、図1は、主軸(回転軸)の中心線に垂直な平面に、
吸出管側から見て投影するランナ投影線図である。 【0019】本実施形態に係るスプリッタランナを備え
るポンプ水車は、クラウン20およびバンド21と、こ
れらの間にその上下を支持され、周方向に沿って配列さ
れた複数のランナベーン16からなるランナ15によっ
て構成されている。これらのランナベーン16は、実線
で示す長翼17と、破線で示す短翼18とからなり、こ
れらの長翼17と短翼18はランナ15の周方向に沿っ
て交互に配置されている。そして、このように交互に配
置された長翼17と短翼18のうち短翼18は、ポンプ
運転時の水流の入口側となる前縁(短翼ポンプ入口端
縁)19の縁線LEを、クラウン20からバンド21に
かけて、主軸(回転軸)の中心点Oからの放射方向に対
してポンプ運転時のランナ15の回転方向RVと逆方向
(反時計方向)に向うように形成している。 【0020】すなわち、本実施形態は、短翼18のポン
プ運転時における前縁(短翼ポンプ入口端縁)19の縁
線LEを、縁線LEとバンド21との接続点Kが、主
軸(回転軸)の中心点Oから短翼18とクラウン20と
の接続点Jを通り、半径方向に延びる半径方向放射線
RLに対してポンプ運転時のランナ回転方向RVと逆方
向に位置するように形成している。 【0021】このような構成とすることで、本実施形態
のスプリッタランナを備えるポンプ水車においては、短
翼18のバンド21側における翼長が従来よりも短くな
っている。図2は、本実施形態に係るランナ15のバン
ド21側におけるランナベーン16の配置を外側から見
た展開模式図であるが、この図に示すように、本実施形
態によればバンド21側において短翼18のポンプ運転
時の入口側で、短翼18の位置を破線で示した従来の短
翼18aよりもランナ15の回転方向と逆方向に移動さ
せていることがわかる。そして、これによって長翼17
の前縁22付近においては短翼18が存在しないため、
流路幅を十分に取ることができる。 【0022】したがって、本実施形態では、運転状態の
変化によってポンプ水車が低揚程運転となった場合に、
流水が設計時の相対速度Wから相対速度Wで流入する
ように変化し、長翼17のバンド21側における圧力面
23のうち前縁22周辺にキャビテーションCAVが発
生し発達成長しても、この部位における流路幅が十分に
確保されているため流路の閉塞が起こりにくい。すなわ
ち、本実施形態によれば、低揚程運転時においても効率
の低下が起こりにくく、結果として低揚程側のポンプ運
転の運転範囲を広く取り、ポンプ効率を向上させること
ができる。 【0023】また、本実施形態では、短翼18のポンプ
運転時の前縁19を、バンド21との接続点を移動させ
て形成したので、クラウン20側における翼長は従来の
短翼18aと大きく変らない。したがって単純に短翼1
8の翼長を短くしたものとは異なりクラウン20側にお
いては比較的翼長を長く取ることができるので、水車運
転時の短翼18の翼負荷やキャビテーション特性に与え
る影響をできる限り少なくし、ポンプ運転時の効率を向
上させている。 【0024】ここで、短翼18における前縁19の縁線
LEとバンド21との接続点Kは、主軸(回転軸)の
中心点Oを原点とし、これと縁線LEとバンド21との
接続点Kを結ぶ仮想直線が、半径方向放射線RLに対
して、主軸(回転軸)に垂直な平面への投影線図上でな
す角θk1が、 【数1】 となるように決定することが望ましい。 【0025】この回転角θk1の決定にあたっては、低
揚程でのポンプ運転時におけるキャビテーション特性改
善の効果と、水車運転時の短翼18の翼負荷分布や水車
運転時の入口側に発生するキャビテーション特性に与え
る影響とを勘案して最適値となるようにするが、経験的
には、縁線LEを主軸(回転軸)に垂直な平面への投影
線図上で直線状に形成する場合、5°≦θk1≦10°
とするときに最もよいバランスとなる。 【0026】図3は、本発明に係るスプリッタランナを
備えるポンプ水車の第2実施形態を示しており、図1と
同様に主軸(回転軸)の中心線に垂直な平面に投影して
吸出管側から見たランナ投影線図である。なお、第1実
施形態の構成部分と同一部分には同一符号を付す。 【0027】本実施形態に係るスプリッタランナを備え
るポンプ水車についても、ランナ15における短翼18
のポンプ運転時における前縁(短翼ポンプ入口端縁)1
9の縁線LEを、縁線LEとバンド21との接続点K
が、主軸(回転軸)の中心点Oから短翼18の縁線LE
とクラウン20との接続点Jを通り、半径方向に延び
る半径方向放射線RLに対してポンプ運転時のランナ回
転方向RVと逆方向に位置するように形成している点は
第1実施形態と同様であるが、本実施形態においては、
縁線LEの形状をランナ15の回転方向RVに凸な曲線
としたことを特徴としている。 【0028】すなわち、本実施形態においては、縁線L
Eの主軸(回転軸)に垂直な平面上における極座標表示
K(r,θ)が、クラウン20との接続点J(r
0,θ=0)を基点として、ここからバンド21との
接続点K(r,θ)にかけて、ランナ15の回転
方向RVをθの正方向としたとき、 【数2】 となるように構成している。 【0029】このように、本実施形態は、第1実施形態
で述べたものよりも、短翼18のポンプ運転時における
前縁19の縁線LEをランナ15の回転方向RV側に膨
らんだ形状、すなわちランナ15の回転方向RVに凸な
曲線としている。これによって、特にクラウン20側に
おいて短翼18の翼長をそれほど短くせずに、かつバン
ド21側では隣接する長翼17との翼間を十分広く取る
ことができる。つまり、この実施形態によれば、短翼1
8の長さを必要以上に短くせずに済むので、水車運転時
に短翼18に作用する負荷分布や水車運転時の入口側キ
ャビテーション特性に与える影響を最小限に抑えなが
ら、かつ、低揚程でのポンプ運転時に長翼17のバンド
21側前縁圧力面に発生するキャビテーションによっ
て、長翼17と隣接する短翼18との間の流路の閉塞を
起こりにくくすることができる。そして、その結果とし
て、低揚程でのポンプ運転時においても効率の低下が起
こりにくく、結果として低揚程側のポンプ運転の運転範
囲を広く取り、ポンプ効率を向上させることができる。 【0030】さらに本実施形態はこの例に限らず、例え
ば、図4に示すように、短翼18のポンプ運転時におけ
る前縁19の縁線LEを、主軸(回転軸)に垂直な投影
面上で、クラウン20との接続点J(r=0,θ
=0)からバンド21との接続点K(r,θ)に
かけて、その中間点であるK(r,θ)までを半
径方向放射線RLの直線上に形成し、そこから先をラン
ナ15の回転方向RVに凸な曲線となるように構成して
もよい。 【0031】図5は、本発明に係るスプリッタランナを
備えるポンプ水車の第3実施形態を示しており、図1と
同様に主軸(回転軸)の中心線に垂直な平面に投影して
吸出管側から見たランナ投影線図である。なお、第1実
施形態の構成部分と同一部分には同一符号を付す。 【0032】本実施形態に係るスプリッタランナを備え
るポンプ水車についても、ランナ15における短翼18
のポンプ運転時における前縁(短翼ポンプ入口端縁)1
9の縁線LEを、縁線LEとバンド21との接続点が、
主軸(回転軸)の中心点Oから短翼18の縁線LEとク
ラウン20との接続点Jを通り、半径方向に延びる半
径方向放射線RLに対してポンプ運転時のランナ回転方
向RVと逆方向に位置するように形成している点は第1
実施形態,第2実施形態と同様であるが、本実施形態に
おいては、縁線LEの形状をランナ15の回転方向RV
に凹な曲線としたことを特徴としている。 【0033】すなわち、本実施形態においては、縁線L
Eの主軸(回転軸)に垂直な平面上における極座標表示
K(r,θ)が、クラウン20との接続点J(r
0,θ=0)からバンド21との接続点K(r
θ)にかけてランナ15の回転方向RVに対して凹な
曲線、つまり縁線LEとクラウン20との接続点J
基点として、ランナ15の回転方向をθの正方向とした
とき、 【数3】 となるように形成している。 【0034】ここで、縁線LEのうち、クラウン20と
バンド21の中間に位置する点K(r,θ)を設
け、クラウン20との接続点J(r=0,θ
0)から点K(r,θ)までをランナ15の回転
方向に対して凹な曲線とし、点Kからバンド21との
接続点J(r,θ)までを主軸(回転軸)に垂直
な平面への投影図上で直線となるように形成してもよ
い。 【0035】このような構成とすることによっても、第
2の実施形態と同様に、クラウン20側においては短翼
18の翼長をそれほど短くせずに、かつバンド21側で
は隣接する長翼17との翼間を十分広く取ることができ
る。特に、この実施形態によれば、短翼18の縁線LE
を主軸(回転軸)に垂直な平面への投影図上でランナの
回転方向RVに対して凹な形状にしたので、ポンプ運転
時に長翼17前縁のバンド21側だけでなく、クラウン
20側に入った位置(より主軸(回転軸)の中心点O
側)でキャビテーションが発生するような場合であって
も、キャビテーション特性を大きく改善することができ
る。そして、ポンプ運転時にキャビテーションがほとん
ど発生することのないクラウン20側においては、短翼
18の長さを長く取っているので、水車運転時に短翼1
8に作用する負荷分布や水車運転時の入口側キャビテー
ション特性に与える影響は比較的小さくすることができ
る。すなわち、本実施形態によれば、低揚程でのポンプ
運転時に長翼17のバンド21側前縁圧力面に発生する
キャビテーションによって、長翼17と隣接する短翼1
8との間の流路の閉塞を起こりにくくすることができる
ので、低揚程でのポンプ運転時においてもキャビテーシ
ョンの発生による効率の低下が起こりにくく、結果とし
て低揚程側のポンプ運転の運転範囲を広く取り、ポンプ
効率を向上させることができる。 【0036】以上説明した各実施形態は、短翼18のポ
ンプ運転時の前縁(短翼ポンプ入口端縁)19の縁線L
Eを、縁線LEとバンド21との接続点が、主軸(回転
軸)の中心点Oから短翼18とクラウン20との接続点
を通り、半径方向に延びる半径方向放射線RLに対
してポンプ運転時のランナ回転方向RVと逆方向に位置
するように形成するものであり、この際に縁線LEを、
主軸(回転軸)に垂直な平面に対する投影線面上で種々
の直線あるいは曲線としているが、この縁線LEの主軸
(回転軸)に垂直な平投影面上での形状については、ポ
ンプ水車の立地によって定まる特性によって、直線、回
転方向RVに対して凸な曲線、あるいは回転方向RVに
対して凹な曲線を選択して適用すればよい。つまり、ポ
ンプ水車の立地から定まる落差、流量等の条件に最適な
短翼18の形状を上述の各実施形態によって適用すれ
ば、水車運転時の特性に与える影響を最小限に抑えて、
かつ低揚程でのポンプ運転時においても効率の低下が起
こりにくいランナ15を提供することができる。そし
て、その結果として低揚程側のポンプ運転の運転範囲を
広く取り、ポンプ効率を向上させることができる。 【0037】 【発明の効果】以上の説明のとおり、本発明に係るスプ
リッタタイプのランナを備えるポンプ水車は、ランナの
周方向に沿って長翼と短翼とを交互に配置する際、短翼
の前縁の高さ方向の縁線を、ポンプ運転時のランナ回転
方向と逆方向に向う位置に配置し、隣りの長翼における
バンド側の前縁の高さ方向の縁線との距離をより一層拡
げているので、長翼の圧力面にキャビテーションが発生
しても流水の閉塞をさせにくくして低揚程運転の幅を拡
げることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pump turbine having a splitter runner in which long blades and short blades are alternately arranged along a circumferential direction, and in particular, a short blade pump. The present invention relates to a pump-turbine provided with a splitter runner for improving the shape of an inlet-side edge during operation. 2. Description of the Related Art Generally, a pump-turbine can be freely switched between a power generation operation and a pump operation by changing the rotation direction of a runner. [0003] During power generation operation, a pump turbine guides running water flowing into a spiral casing to a runner through a guide vane, where the runner is driven to rotate, and the rotational torque generated at that time is passed through a main shaft. The power is given to the generator. Further, during the operation of the pump, the pump-turbine rotates the runner by the driving force of the generator motor in a direction opposite to the power generation operation, and guides the flowing water of the suction pipe to the runner chamber, where the water flows from the runner to the flowing water. Energized, upper pond (not shown) through guide vanes and spiral casing
It is designed to be pumped. As described above, the runner of the pump turbine capable of freely switching between the power generation operation and the pump operation is provided with a plurality of runner vanes arranged at a constant pitch along the circumferential direction. Are supported between the crown provided on the main shaft (rotating shaft) side and the band provided on the suction pipe side. As shown in FIG. 6, a pump-turbine having a runner having such a structure is provided with six runner vanes 7 of the same length fixed to a crown 8 along the circumferential direction of the runner 3.
It is common to install two sheets (Japanese Patent Laid-Open No. 2000-1367).
66 gazette), and the use results thereof are increasing. However, in recent pump-turbines, high-efficiency operation is enabled even when the head or flow rate changes during the operation of the turbine, or the water is generated at the inlet side of the runner vane 7 during the operation of the turbine or the pump. For the purpose of suppressing cavitation, for example, as shown in FIGS. 7 and 8,
A so-called splitter runner in which the runner vane 7 of the short wing 11 is arranged between the runner vane 7 of the long wing 10 fixed to the crown 8 and the runner vane 7 of the adjacent long wing 10 has been proposed (Japanese Patent Application Laid-Open No. 2001-90650). ). FIG. 8 is a projection diagram of such a splitter runner projected on a plane perpendicular to the rotation axis and viewed from the side of the suction pipe. The solid line is the runner vane 7 of the long blade 10, and the broken line is the broken line. Is the runner vane 7 of the short wing 11. As shown in FIG. 8, in such a splitter runner, the projection of the long wing 10 and the end of the crown 8 from the center point O of the main axis, which is the axis of rotation, in a projection onto a plane perpendicular to the axis of rotation. radial radiation RL through the connection point P 1 parts
1 and the leading edge (long edge pump inlet edge curve) 12 of the long blade 10 during pump operation often coincide with each other, and the center point O of the main shaft, the connection between the long blade 10 and the end of the crown 8 The point P 1 and the connection point Q 1 between the long wing 10 and the end of the band 9 are configured to be arranged on the radial radiation RL 1 . The same applies to the short wing 11, and the connection point P between the short wing 11 and the end of the crown 8 from the center point O of the main axis, which is the rotation axis, on the projection onto a plane perpendicular to the rotation axis. radial radiation RL 2 through 2, it is often the leading edge (short blade pump inlet edge curve) 13 short blades 11 of pump operation are the same, the center point of the main shaft O, and short blade 11 The connection point P 2 between the end of the crown 8 and the connection point Q 2 between the short wing 11 and the end of the band 9 are arranged on the radial radiation RL 2 . In the splitter runner, the long wing 10,
By alternately providing 4 to 6 short blades 11 each, the number of runner vanes 7 is increased as compared with a normal pump-turbine to reduce the blade load per runner vane 7 and, particularly, on the inlet side during pump operation. In this case, the flow path between the runner vanes 7 can be prevented from becoming extremely narrow. However, if the length of the short wing 11 is too short, the blade load of the short wing is reduced during operation of the water turbine and does not effectively act as the runner vane 7, or the cavitation characteristics on the inlet side of the short wing deteriorate. Therefore, the length of the short blades 11 is increased within a range that does not interfere with the inlet port formed between the adjacent long blades 10 on the inlet side during pump operation (ie, the outlet side during turbine operation). Preferably
It is often 70% to 80% of the long wing 11. FIG.
FIG. 3 is a schematic development view of the arrangement of the runner vanes 7 on the band side of the conventional splitter runner as viewed from the outside. As shown in FIG. Is located downstream from the virtual leading edge line ILE connecting the leading edge 12 of the adjacent long wing 10 and the leading edge 12 of the adjacent long wing 10 during the pump operation. As described above, the pump turbine having the splitter type runners 3 in which the long blades 10 and the short blades 11 are alternately arranged along the circumferential direction of the runner 3 reduces the blade load per runner vane. In recent years, it has the advantage of improving the rectification effect of flowing water, suppressing the pressure drop on the blade negative pressure surface, and increasing the efficiency of converting the energy of flowing water into power (rotary torque) and suppressing cavitation. R & D is being promoted. As shown in FIG. 9, in a pump-turbine provided with a splitter type runner 3, when the pump is operated, the flowing water flows with respect to the long blades 10 at a relative speed W at the time of design.
When flowing in with a vector of 0 (broken line), cavitation is not generated because there is little discrepancy between the inlet installation angle of the long blade 10 and the flowing water inflow angle. However, when the operation state changes and the pump turbine operates at a low head, the pumping amount increases, so that flowing water flows into the pump turbine at a vector (solid line) of the relative speed W 0 to the long blade 10. Become like Therefore, the cavitation CA is formed around the leading edge 12 of the pressure surface 14 of the long wing 10.
V tends to occur, but this tendency is particularly remarkable on the band 9 side. Such cavitation CAV generated on the pressure surface on the band 9 side at the inlet of the runner vane 7 at the time of pump operation at a low head is caused by a pump turbine having only the long blade 10,
This occurs regardless of the pump turbine provided with the splitter runner, but in the pump turbine provided with the splitter runner, FIG.
As shown in (1), since the flow path width FW between the runner vane 7 of the long wing 10 and the runner vane of the adjacent short wing 11 is narrow, the flow path in this portion is easily blocked by the occurrence of cavitation CAV. For this reason, in the pump turbine provided with the conventional splitter runner, the pump efficiency is significantly reduced during such a low head operation, and as a result, there is a problem that the operating range of the pump operation on the low head side is narrowed. . The present invention has been made in view of such circumstances, and more effectively suppresses cavitation generated in the runner vanes during low-head operation, and as a result, further widens the low-head operation width. An object of the present invention is to provide a pump-turbine provided with a splitter-type runner for improving pump efficiency. According to a first aspect of the present invention, there is provided a pump-turbine provided with a splitter-type runner according to the present invention. In a pump-turbine provided with a splitter runner that supports and alternately arranges long blades and short blades along the circumferential direction of the runner, an edge line at a leading edge of the short blade during a pump operation includes the edge line and the band. The connection point side of the splitter runner is formed so as to be located in the direction opposite to the rotation direction of the splitter runner during pump operation with reference to a straight line passing from the rotation center of the splitter runner to the connection point between the edge line and the crown. Is what is done. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a pump-turbine equipped with a splitter runner according to the present invention will be described with reference to the drawings and reference numerals attached to the drawings. FIG. 1 is a view showing a first embodiment of a pump-turbine provided with a splitter runner according to the present invention. FIG. 1 shows a plane perpendicular to the center line of the main shaft (rotation axis),
It is a runner projection diagram projected when it sees from a draft tube side. The pump-turbine provided with the splitter runner according to the present embodiment includes a crown 20 and a band 21 and a runner 15 including a plurality of runner vanes 16 supported between the crown 20 and the band 21 and arranged along the circumferential direction. It is configured. The runner vanes 16 include long blades 17 indicated by solid lines and short blades 18 indicated by broken lines. The long blades 17 and the short blades 18 are alternately arranged along the circumferential direction of the runner 15. The short wings 18 of the long wings 17 and the short wings 18 alternately arranged in this manner form an edge line LE of a leading edge (short wing pump inlet edge) 19 on the inlet side of the water flow during the pump operation. From the crown 20 to the band 21, it is formed so as to face in the opposite direction (counterclockwise) to the rotation direction RV of the runner 15 during the pump operation with respect to the radiation direction from the center point O of the main shaft (rotation axis). . That is, in the present embodiment, the edge line LE of the leading edge (short blade pump inlet edge) 19 during the pump operation of the short blade 18 is defined by the connection point K 1 between the edge line LE and the band 21. through the connection point J 1 of the short blade 18 and the crown 20 from the center point O of the (rotary shaft), so as to be positioned in the runner rotating direction RV opposite direction during pump operation to the radial direction radiation RL extending radially Is formed. With such a configuration, in the pump-turbine equipped with the splitter runner of this embodiment, the blade length of the short blade 18 on the band 21 side is shorter than before. FIG. 2 is an exploded schematic view showing the arrangement of the runner vanes 16 on the band 21 side of the runner 15 according to the present embodiment, as viewed from the outside. It can be seen that the position of the short blade 18 is moved in the direction opposite to the rotation direction of the runner 15 compared to the conventional short blade 18a indicated by a broken line on the inlet side of the blade 18 during the pump operation. And by this, long wing 17
The short wing 18 does not exist near the leading edge 22 of
A sufficient width of the flow path can be obtained. Therefore, in the present embodiment, when the pump turbine is operated at a low head due to a change in the operation state,
Even if the flowing water changes so as to flow at the relative speed W from the relative speed W 0 at the time of the design, and the cavitation CAV is generated around the leading edge 22 of the pressure surface 23 on the band 21 side of the long wing 17, the water grows and grows. Since the width of the flow channel at this portion is sufficiently ensured, the flow channel is unlikely to be blocked. That is, according to the present embodiment, the efficiency is unlikely to decrease even during the low head operation, and as a result, the operating range of the pump operation on the low head side can be widened, and the pump efficiency can be improved. In the present embodiment, the leading edge 19 of the short wing 18 during the pump operation is formed by moving the connection point with the band 21, so that the blade length on the crown 20 side is the same as that of the conventional short wing 18a. Does not change much. Therefore, simply short wing 1
Unlike the wings having a shorter wing length, the crown 20 can have a relatively longer wing length on the side of the crown 20, so that the influence on the wing load and cavitation characteristics of the short wing 18 during operation of the water turbine is minimized. The efficiency during pump operation is improved. [0024] Here, the connection point K 1 of the edge line LE and the band 21 of the leading edge 19 of the short blade 18, and the center point O of the spindle (rotation axis) and the origin, and this and edge line LE and the band 21 An angle θ k1 formed by a virtual straight line connecting the connection points K 1 on the plane perpendicular to the main axis (rotation axis) with respect to the radial ray RL is expressed as follows : It is desirable to determine so that In determining the rotation angle θ k1 , the effect of improving the cavitation characteristics during the operation of the pump at a low head, the distribution of the blade load on the short blades 18 during the operation of the turbine, and the cavitation generated on the inlet side during the operation of the turbine. The optimum value is set in consideration of the influence on the characteristics. However, empirically, when the edge line LE is formed linearly on a projection diagram on a plane perpendicular to the main axis (rotation axis), 5 ° ≦ θ k1 ≦ 10 °
When it comes to the best balance. FIG. 3 shows a second embodiment of the pump-turbine equipped with the splitter runner according to the present invention. As in FIG. 1, the pump-turbine is projected on a plane perpendicular to the center line of the main shaft (rotary shaft) to draw the suction pipe. It is the runner projection line figure seen from the side. The same components as those of the first embodiment are denoted by the same reference numerals. The pump turbine provided with the splitter runner according to the present embodiment also has a short wing 18 in the runner 15.
Leading edge (short wing pump inlet edge) 1 during pump operation
9 is connected to a connection point K 1 between the edge line LE and the band 21.
Is the edge line LE of the short wing 18 from the center point O of the main shaft (rotation axis).
And through the connection point J 1 of the crown 20, that are formed so as to be located in the runner rotating direction RV opposite direction during pump operation to the radial direction radiation RL extending radially in the first embodiment Similar, but in this embodiment,
The shape of the edge line LE is a curved line that is convex in the rotation direction RV of the runner 15. That is, in the present embodiment, the edge line L
The polar coordinate display K (r, θ) on a plane perpendicular to the main axis (rotation axis) of E is the connection point J 1 (r 0 =
(0, θ 0 = 0) as a base point, and from this point to the connection point K 1 (r 1 , θ 1 ) with the band 21, the rotation direction RV of the runner 15 is defined as the positive direction of θ. It is configured so that As described above, in the present embodiment, the edge line LE of the leading edge 19 during the pump operation of the short blade 18 is bulged toward the rotation direction RV of the runner 15 compared to the first embodiment. That is, the curve is a convex curve in the rotation direction RV of the runner 15. This makes it possible to keep the blade length of the short wing 18 not particularly short on the crown 20 side and to make the gap between the adjacent long wings 17 sufficiently wide on the band 21 side. That is, according to this embodiment, the short wing 1
Since the length of the turbine 8 does not need to be shortened more than necessary, the load distribution acting on the short wing 18 during the operation of the turbine and the influence on the cavitation characteristics on the inlet side during the operation of the turbine are minimized, and at the same time, at a low head. Due to the cavitation generated on the pressure surface at the leading edge of the long wing 17 on the band 21 during the operation of the pump, the flow path between the long wing 17 and the adjacent short wing 18 can be hardly blocked. As a result, a decrease in efficiency is unlikely to occur even during the pump operation at a low head. As a result, the operating range of the pump operation on the low head side can be widened, and the pump efficiency can be improved. Further, the present embodiment is not limited to this example. For example, as shown in FIG. 4, the edge line LE of the leading edge 19 during the pump operation of the short wing 18 is projected onto a projection plane perpendicular to the main axis (rotation axis). Above, the connection point J 1 (r 0 = 0, θ 0 ) with the crown 20
= 0) to the connection point K 1 (r 1 , θ 1 ) with the band 21, and the intermediate point K m (r m , θ m ) is formed on the straight line of the radial radiation RL, and from there. The tip may be configured to be a curve that is convex in the rotation direction RV of the runner 15. FIG. 5 shows a third embodiment of the pump-turbine equipped with the splitter runner according to the present invention. As in FIG. 1, the pump-turbine is projected on a plane perpendicular to the center line of the main shaft (rotary shaft) to draw the suction pipe. It is the runner projection line figure seen from the side. The same components as those of the first embodiment are denoted by the same reference numerals. The pump turbine having the splitter runner according to the present embodiment also has a short wing 18 in the runner 15.
Leading edge (short wing pump inlet edge) 1 during pump operation
9, the connection point between the edge line LE and the band 21 is
Spindle through the connection point J 1 of the edge line LE and the crown 20 of the short blade 18 from the center point O of the (rotary shaft), runner rotating direction RV in pump operation with respect to the radial radiation RL extending radially opposite The point that is formed to be located in the direction
In the present embodiment, the shape of the edge line LE is changed in the rotation direction RV of the runner 15 in the same manner as the embodiment and the second embodiment.
It is characterized by having a concave curve. That is, in the present embodiment, the edge line L
The polar coordinate display K (r, θ) on a plane perpendicular to the main axis (rotation axis) of E is the connection point J 1 (r 0 =
0, θ 0 = 0) to the connection point K 1 (r 1 ,
θ 1 ), when the rotation direction of the runner 15 is defined as the positive direction of θ with respect to the curve concave with respect to the rotation direction RV of the runner 15, that is, the connection point J 1 between the edge line LE and the crown 20. 3] It is formed so that it becomes. [0034] Here, among the edge lines LE, crown 20 and intermediate K m (r m, θ m ) points located in the band 21 is provided, the connection point between the crown 20 J 1 (r 0 = 0 , θ 0 =
Points from 0) K m (r m, up to theta m) and a concave curve with respect to the rotational direction of the runner 15, the main shaft from the point K m to a connection point between the band 21 J 2 (r 1, θ 1) It may be formed so as to be a straight line on a projection on a plane perpendicular to the (rotation axis). With this configuration, as in the second embodiment, the length of the short wings 18 is not reduced so much on the crown 20 side, and the adjacent long wings 17 on the band 21 side. The space between the wings can be made sufficiently wide. In particular, according to this embodiment, the edge line LE of the short wing 18
Is formed in a concave shape with respect to the rotation direction RV of the runner on a projection onto a plane perpendicular to the main axis (rotation axis), so that not only the band 21 side of the leading edge of the long blade 17 but also the crown 20 side during pump operation. (The center point O of the spindle (rotary axis))
Even if cavitation occurs on the side), the cavitation characteristics can be greatly improved. On the side of the crown 20 where cavitation hardly occurs during the operation of the pump, the length of the short wing 18 is made longer.
8 can have a relatively small effect on the load distribution and the cavitation characteristics on the inlet side during the operation of the turbine. That is, according to the present embodiment, the short wing 1 adjacent to the long wing 17 is formed by cavitation generated on the pressure surface of the leading edge of the long wing 17 on the band 21 at the time of pump operation at a low head.
8 can be made less likely to be blocked, so that even during pump operation at a low head, a decrease in efficiency due to cavitation hardly occurs, and as a result, the operating range of the pump operation on the low head side is reduced. Widely used to improve pump efficiency. In the above-described embodiments, the edge line L of the leading edge (short blade pump inlet edge) 19 of the short blade 18 during the pump operation is used.
The E, the connection point of the edge line LE and the band 21, the main shaft passes through the connection point J 1 from the center point O of the (rotation axis) and the short blade 18 and the crown 20, with respect to the radial radiation RL extending radially And the runner rotation direction RV during the pump operation is formed in the opposite direction.
Although various straight lines or curved lines are formed on a projection line plane with respect to a plane perpendicular to the main axis (rotation axis), the shape of the edge line LE on a flat projection plane perpendicular to the main axis (rotation axis) is defined by the pump water turbine. Depending on the characteristics determined by the location, a straight line, a curve that is convex with respect to the rotation direction RV, or a curve that is concave with respect to the rotation direction RV may be selected and applied. In other words, by applying the shape of the short wing 18 that is optimal to the conditions such as the head and the flow rate determined from the location of the pump turbine according to each of the above-described embodiments, it is possible to minimize the influence on the characteristics during the operation of the turbine.
In addition, it is possible to provide the runner 15 in which the efficiency does not easily decrease even during the pump operation at a low head. As a result, the operating range of the pump operation on the low head side can be widened, and the pump efficiency can be improved. As described above, the pump-turbine equipped with the splitter type runner according to the present invention has a short wing when the long wing and the short wing are alternately arranged along the circumferential direction of the runner. The height edge of the leading edge of the band is arranged at a position opposite to the runner rotation direction during pump operation, and the distance from the height edge of the band-side leading edge of the adjacent long blade is determined. Since the wing is further expanded, even if cavitation occurs on the pressure surface of the long blade, it is difficult to block the flowing water, and the width of the low head operation can be expanded.

【図面の簡単な説明】 【図1】本発明に係るスプリッタランナを備えるポンプ
水車の第1実施形態を示し、ランナを主軸(回転軸)に
垂直な平面に投影して吸出管側から見た一部切欠ランナ
投影線図。 【図2】図1のランナのバンド側におけるランナベーン
の配置を外側から見た展開模式図。 【図3】本発明に係るスプリッタランナを備えるポンプ
水車の第2実施形態を示し、ランナと主軸(回転軸)に
垂直な平面に投影して吸出管側から見た一部切欠ランナ
投影線図。 【図4】本発明に係るスプリッタランナを備えるポンプ
水車の第2実施形態の変形例を示し、ランナと主軸(回
転軸)に垂直な平面に投影して吸出管側から見た一部切
欠ランナ投影線図。 【図5】本発明に係るスプリッタランナを備えるポンプ
水車の第3実施形態を示し、ランナを主軸(回転軸)に
垂直な平面に投影して吸出管側から見た一部切欠ランナ
投影線図。 【図6】吸出管側から見てバンドを取り除いた従来のポ
ンプ水車のランナを示す斜視図。 【図7】吸出管側から見てバンドを取り除いた従来のポ
ンプ水車のスプリッタランナを示す平面図。 【図8】従来のスプリッタランナを備えるポンプ水車を
示し、主軸(回転軸)に垂直な平面に投影して吸出管側
から見た一部切欠ランナ投影線図。 【図9】図8のランナのバンド側におけるランナベーン
の配置を外側から見た展開模式図。 【符号の説明】 3 ランナ 7 ランナベーン 8 クラウン 9 バンド 10 長翼 11 短翼 12,13 前縁 14 圧力面 15 ランナ 16 ランナベーン 17 長翼 18,18a 短翼 19 前縁 20 クラウン 21 バンド 22 前縁 23 圧力面
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a first embodiment of a pump-turbine equipped with a splitter runner according to the present invention, in which the runner is projected onto a plane perpendicular to a main axis (rotation axis) and viewed from a suction pipe side. Partially notched runner projection diagram. FIG. 2 is an exploded schematic view of the arrangement of runner vanes on the band side of the runner of FIG. 1 as viewed from the outside. FIG. 3 shows a second embodiment of the pump-turbine equipped with the splitter runner according to the present invention, and is a partially cut-out runner projection diagram viewed from the suction pipe side by projecting onto a plane perpendicular to the runner and the main shaft (rotation axis). . FIG. 4 shows a modified example of the second embodiment of the pump-turbine equipped with the splitter runner according to the present invention, and shows a partially cut-out runner projected on a plane perpendicular to the runner and the main shaft (rotation axis) and viewed from the suction pipe side. Projection diagram. FIG. 5 shows a third embodiment of the pump-turbine equipped with the splitter runner according to the present invention, in which the runner is projected onto a plane perpendicular to the main axis (rotation axis) and a partially cut-out runner projection diagram viewed from the suction pipe side. . FIG. 6 is a perspective view showing a runner of a conventional pump-turbine with a band removed from the suction pipe side. FIG. 7 is a plan view showing a splitter runner of a conventional pump-turbine with a band removed from the suction pipe side. FIG. 8 is a partially cut-out runner projection diagram showing a conventional pump-turbine equipped with a splitter runner, projected onto a plane perpendicular to a main shaft (rotation axis) and viewed from a suction pipe side. FIG. 9 is a developed schematic view of the arrangement of runner vanes on the band side of the runner of FIG. 8 as viewed from the outside. DESCRIPTION OF SYMBOLS 3 Runner 7 Runner vane 8 Crown 9 Band 10 Long wing 11 Short wing 12, 13 Front edge 14 Pressure surface 15 Runner 16 Runner vane 17 Long wing 18, 18a Short wing 19 Front edge 20 Crown 21 Band 22 Front edge 23 Pressure surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 手塚 光太郎 神奈川県横浜市鶴見区末広町二丁目4番地 株式会社東芝京浜事業所内 (72)発明者 榎本 保之 神奈川県横浜市鶴見区末広町二丁目4番地 株式会社東芝京浜事業所内 (72)発明者 新井 秀忠 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 Fターム(参考) 3H072 AA17 BB20 CC45 CC85    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Kotaro Tezuka             2-4 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa               Toshiba Keihin Works Co., Ltd. (72) Inventor Yasuyuki Enomoto             2-4 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa               Toshiba Keihin Works Co., Ltd. (72) Inventor Hidetada Arai             1-1-1 Shibaura, Minato-ku, Tokyo Co., Ltd.             Toshiba head office F-term (reference) 3H072 AA17 BB20 CC45 CC85

Claims (1)

【特許請求の範囲】 【請求項1】 両端をクラウンとバンドで支持され、ラ
ンナの周方向に沿って長翼と短翼とを交互に配置するス
プリッタランナを備えるポンプ水車において、前記短翼
のポンプ運転時の前縁における縁線は、前記縁線と前記
バンドとの接続点側が、前記スプリッタランナの回転中
心から前記縁線と前記クラウンとの接続点とを通る直線
を基準に、ポンプ運転時の前記スプリッタランナの回転
方向と逆方向に位置するように形成されることを特徴と
するスプリッタランナを備えるポンプ水車。
Claims: 1. A pump-turbine having splitter runners, both ends of which are supported by a crown and a band, and long blades and short blades are alternately arranged along the circumferential direction of the runner. The edge line at the leading edge during the pump operation is such that the connection point side between the edge line and the band is based on a straight line passing from the rotation center of the splitter runner to the connection point between the edge line and the crown. A pump-turbine provided with a splitter runner formed so as to be located in a direction opposite to the rotation direction of the splitter runner at the time.
JP2002122959A 2002-04-24 2002-04-24 Pump turbine with splitter runner Expired - Lifetime JP3782752B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002122959A JP3782752B2 (en) 2002-04-24 2002-04-24 Pump turbine with splitter runner
CNB031229743A CN1266379C (en) 2002-04-24 2003-04-23 Divided-flow impeller for water pump-hydroturbine
MYPI20031524A MY134358A (en) 2002-04-24 2003-04-23 Pump-turbine splitter runner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002122959A JP3782752B2 (en) 2002-04-24 2002-04-24 Pump turbine with splitter runner

Publications (2)

Publication Number Publication Date
JP2003314425A true JP2003314425A (en) 2003-11-06
JP3782752B2 JP3782752B2 (en) 2006-06-07

Family

ID=29267471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002122959A Expired - Lifetime JP3782752B2 (en) 2002-04-24 2002-04-24 Pump turbine with splitter runner

Country Status (3)

Country Link
JP (1) JP3782752B2 (en)
CN (1) CN1266379C (en)
MY (1) MY134358A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181957B2 (en) 2008-10-03 2015-11-10 Yasuyuki Enomoto Hydraulic machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT507922A1 (en) * 2009-02-25 2010-09-15 Hermann Riegerbauer WATER WHEEL
CN104514252A (en) * 2014-05-06 2015-04-15 金纯信 Water turbine based power suction type closestool
DE102015219331A1 (en) 2015-10-07 2017-04-13 Voith Patent Gmbh Radial impeller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181957B2 (en) 2008-10-03 2015-11-10 Yasuyuki Enomoto Hydraulic machine

Also Published As

Publication number Publication date
JP3782752B2 (en) 2006-06-07
MY134358A (en) 2007-12-31
CN1266379C (en) 2006-07-26
CN1453471A (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP2004068770A (en) Axial flow compressor
JP4163062B2 (en) Splitter runner and hydraulic machine
JP4693687B2 (en) Axial water turbine runner
JP5314441B2 (en) Centrifugal hydraulic machine
JPH11159433A (en) Hydraulic machinery
JP2003314425A (en) Pump turbine with splitter runner
JP3600449B2 (en) Impeller
JP4280127B2 (en) Francis-type runner
JP3350934B2 (en) Centrifugal fluid machine
JP4751165B2 (en) Francis pump turbine
JP4322986B2 (en) Pump turbine
JPS5941024B2 (en) Francis type runner
JP3822416B2 (en) Francis type pump turbine
JP2003201994A (en) Centrifugal pump
JPH01318790A (en) Flashing vane of multistage pump
JPH09296799A (en) Impeller of centrifugal compressor
JP2003065198A (en) Hydraulic machinery
JP4090613B2 (en) Axial flow turbine
JP2007107428A (en) Runner for hydraulic machine and hydraulic machine using the same
JP2007239631A (en) Windmill
JP2004156587A (en) Hydraulic turbine
JP2002122095A (en) Centrifugal pump
JPH08312517A (en) Runner of reversible pump-turbine
JP2001234843A (en) Water turbine moving blade
JPH11182482A (en) Mixed flow pump of high specific speed

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060310

R150 Certificate of patent or registration of utility model

Ref document number: 3782752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term